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 A B S T R A C T

Tidal barrages generate electrical energy using the tidal height variations throughout the day, and stand out 
from other renewable energy schemes because of their inherent storage capabilities and the relatively slow 
variation of the tides, allowing flexibility in their operation. The resulting optimal control problem of operating 
tidal barrages has unique features that call for a range of possible operating modes (generating, sluicing and 
pumping). This paper presents a comprehensive model for tidal barrage power plants, using the La Rance 
power plant as case study. The operation of the hydraulic turbines is modelled using a generic hill chart, which 
accounts for all possible operating points (not only those with maximum efficiency, as commonly seen in the 
literature). An artificial neural network was designed and trained to obtain a compact function approximation 
for the hill chart. The optimal control problem is solved using moment-based control, a mathematical tool 
from the family of weighted residual methods, broadly applied in wave energy control. Moment-based control 
is implemented by parameterising the external and control inputs with a harmonic expansion, and the nature 
of the frequency range required for an efficient parameterisation is explored.
1. Introduction

Driven by the need to reduce CO2 emissions, nations worldwide 
are transitioning towards renewable energy sources to generate elec-
tricity. As the penetration of renewables in power grids increases, 
new challenges arise for system operators, given the intermittent and 
unpredictable behaviour of renewable sources, such as wind and solar. 
Such issues suggest a need for new technologies that could complement 
wind and solar generation to bring stability to power grids, one ex-
ample being energy storage facilities. A less explored option, but with 
significant potential, are tidal barrages, which use changes in the tidal 
elevation throughout the day to generate electricity.

Tidal barrages consist of an embankment located in a coastal area 
that separates the sea from a basin, with turbines and sluice gates 
that allow the passage of water between the basin and the open sea, 
as seen in Fig.  1. As the tidal elevation increases and decreases, the 
head difference created between the sea and the inner basin level is 
used to fill and empty the basin through the turbines, thus generating 
electricity. Fig.  2 shows an example of the operation of a tidal barrage 
in time. In addition to the basic generation modes, pumping and 
sluicing can be added to enhance the generating capacity of the tidal 
barrage, whereby a desired operating head can be reached. As a result, 
there are several possible ways to operate the turbines and sluice gates 
in the barrage, with flexibility over the duration and timing for each 
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stage. The energy available for generation will not only depend on the 
resource (i.e. the tidal elevation), but also on the dimensions of the 
basin and the capacity of the turbines and sluice gates, i.e. how fast the 
basin can be filled or emptied. Furthermore, the operation during one 
generating cycle determines the available head on the following cycles, 
also influencing how much energy can be harnessed in the next stages. 
Finding the optimal operation of the barrage for a given objective (for 
instance, energy maximisation) is therefore non-trivial, and involves a 
large number of variables.

The literature on control of tidal barrages typically focuses on 
two approaches: Fixed parameter optimisation and flexible operation 
optimisation. In fixed parameter optimisation, the parameters that 
define each operational phase of the barrage are predefined based on a 
preliminary optimisation analysis and then used to simulate the system. 
Examples of fixed parameter optimisation are [1], where different 
starting heads (i.e. the head that triggers generation) are evaluated a 
priori to determine which is the optimal, or [2], where the optimal tim-
ing of generation periods is computed via an analytic model. Flexible 
operation optimisation (as presented in this study) involves selecting 
each operating stage dynamically using an optimisation routine, which 
can account for the variations in tidal range throughout the month, 
and can handle more complex tidal barrage models, achieving better 
solutions compared to fixed parameter optimisation.
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Fig. 1. Diagram of a tidal barrage power plant: an embankment with turbines and sluice gates separates the open sea from a basin. The water flows in and out 
of the basin through the turbines and sluice gates.
Flexible operation optimisation can be local, by exploiting relatively 
standard discretisation techniques (i.e. MPC-like approaches [3]), or 
globally, by considering a global parameterisation of the evolution of 
the tidal elevation during a time window [4]. For instance, a local 
discretisation approach exploited in the literature is based on estab-
lishing a sequence of barrage operating modes (generating, pumping 
and sluicing) and optimising the duration [5] or starting head [6] of 
each mode throughout each semi-diurnal tidal cycle independently. The 
method can be improved by further incorporating the subsequent tidal 
cycle as well ([7] using the duration of operational modes and [8] 
using head), evidencing the influence of barrage operation on the 
energy generation of subsequent cycles. The underlying assumptions, 
within such a local framework, automatically imply that there is no 
overlap between turbine and sluice gate operation, and the turbine 
flow is uniquely determined by the operating head, which constrains 
the solution space. In [9], the control action is defined in terms of 
the operational modes and the turbine speed, and the sluice gates are 
operated independently. Although the study in [9] also considers a pre-
defined sequence of operational modes, it shows that operating the 
sluice gates simultaneously with the turbines achieves higher energy 
output than only sluicing when the turbines are inactive.

Studies on tidal barrage control often use sophisticated genetic [8] 
and evolutionary algorithms [9] to handle all possible combinations 
within a large (discretised) design space. On the other hand, in [10], 
the continuous-time formulation of tidal barrage operation is solved 
by using a discretisation based on moments. In moment-based anal-
ysis, a technique originally developed for model reduction [11] and 
broadly applied to solve the energy-maximising control problem in 
wave energy conversion [12], a set of basis functions is used to pa-
rameterise the inputs (both external and manipulated) and compute 
the steady state response of the system, similarly to spectral weighted 
residual methods [13]. The moment-based control framework applied 
to tidal barrages, presented in [10] and extended to incorporate model 
enhancements in [4], is used to manipulate turbine and sluice gate 
flow, resulting in more flexible operation of the barrage (in terms of 
the timing of each operational mode). However, both [4,10] consider 
monochromatic input tides, neglecting the variation in tidal range 
throughout spring-neap cycles. Furthermore, [4] operates based on a 
simplified turbine model, which can lead to non-representative con-
trol solutions (i.e. turbine flow and sluice gates operation); without a 
tailored turbine representation, able to represent accurately (yet com-
putationally efficient) effective power flow conversion, the moment-
based controller can compute turbine profiles which do not take into 
account losses accordingly, leading to suboptimal results in realistic op-
erations. To represent the turbines realistically, the complete hill chart 
of the turbines, which constitutes a non-linear mapping determining 
2 
turbine efficiency at each operating point, must be considered within 
the optimisation framework. Nonetheless, a direct consideration of the 
hill chart within the corresponding optimisation procedure, accounting 
for all operating conditions, can considerably increase the complex-
ity and computational burden of the control problem, rendering the 
optimisation procedure intractable.

In this paper, a comprehensive tidal barrage model is presented, 
including all main components relevant for its operational optimisation, 
using the La Rance power plant as a case study. The focus is on the 
hydraulic turbines, which are modelled using a neural-network-based 
structure as a function approximation of the turbines’ hill chart. The 
operation of the turbines includes pumping under positive head scenar-
ios, which is seen in the operation of the turbines from La Rance [14], 
yet is neglected in the research literature. Applying the control action 
over both the turbine and sluice gate flows, without a pre-defined 
operational sequence, avoids predetermination of operational modes, 
enabling overlapping of sluicing mode with generating or pumping 
modes, leading to an overall improved performance of the controller. 
Moment-based control is then used to solve the energy-maximising 
optimal control problem, and the performance of the controller is 
assessed in terms of its relevant design parameters. Previous work on 
moment-based control of tidal barrages [4] use a simplified turbine 
model, and evaluates the controller over a short time window, using 
a monochromatic input tide. In contrast, the novelty of the work 
presented in this paper relies on two main aspects:

• Integrating a turbine model, that accounts for the complete opera-
tional range of the tidal barrage, within the moment-based control 
framework;

• Developing a formulation of the tidal barrage optimal control 
problem in the moment-domain that incorporates a polychro-
matic representation of the tidal elevation, thus accounting for 
variations in tidal range throughout spring-neap cycles.

The remainder of this paper is structured as follows. Section 2 de-
scribes the models developed for each component of the tidal barrage. 
Section 3 describes the theory behind the moment-based framework 
and its implementation for solving the tidal barrage energy-maximising 
optimal control problem. Section 4 presents the study case of the La 
Rance power plant, the results of the solution of the energy-maximising 
optimal control problem, and a harmonic analysis to refine the relevant 
discretisation that should be used to parameterise the inputs of the 
system. Finally, Section 5 outlines the conclusions of this paper.
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Fig. 2. Example of the operation of a tidal barrage in time, described in 
Section 2.1.

2. Tidal barrage model

2.1. Operating modes

Here, the basic principles behind the operation of tidal barrages are 
described, including two-way generation with pumping, illustrated in 
Fig.  2. Two-way generation refers to the capability of the turbines to 
generate both on ebb (while emptying the basin) and on flood (while 
filling the basin).

When the tide level 𝑛𝑜 (bold line in Fig.  2) is higher than the basin 
level 𝑛𝑖 (dotted line), the potential energy created by the head between 
the basin and the sea drives the water flow into the basin through the 
turbines, generating electricity while raising the basin level 𝑛𝑖. This 
operational mode is called flood generation (FG). During this stage, 
the sluice gates can be opened, increasing the water flow through the 
barrage, or closed. After a certain minimum head ℎ𝑚𝑖𝑛 is reached, the 
water pressure is insufficient for the turbines to generate hydraulic 
power, so the water flows freely through the sluice gates and/or turbine 
ducts, known as sluicing mode (S). During this stage, the turbines may 
also operate as pumps, increasing the flow and filling the basin faster. 
In this paper, this type of operation is referred to as positive pumping 
(PP), where the turbine operates as a pump aided by gravity. After the 
water levels inside and outside the basin are equal, the turbines can 
pump the water into the basin against gravity to increase the available 
head, termed flood pumping (FP). The inner level is then held (H) until 
the tidal elevation decreases to an extent that the minimum head is 
reached, allowing the turbines to generate again, this time by emptying 
the basin and entering ebb generation mode (EG). When the minimum 
head is again reached, the basin is emptied using the sluice gates and/or 
turbine ducts (S), or by positive pumping (PP). Then, the turbines can 
pump the water out of the basin by ebb pumping (EP) and, afterwards, 
the basin level is held (H), and the cycle repeats. Note that operating 
the turbines as pumps means injecting energy into the system, rather 
than generating, but with an increase in the available potential energy 
afterwards [15], giving an overall greater positive generated energy.

2.2. Standing assumptions

Within this section, the basic standing assumptions adopted in this 
study to develop the tidal barrage model are summarised. Firstly, the 
dominant dynamics of the system are given by the slow variation of 
3 
the tidal elevation (slow refers to a variation with a time span of min-
utes/hours). That implies that the dominant hydrodynamic processes 
relevant to the operation of the barrage are those given by the principle 
of mass conservation: 
d𝑛𝑖
d𝑡 =

−𝑄𝑡 −𝑄𝑠
𝐴𝑏(𝑛𝑖)

, (1)

also known as the 0D hydrodynamic model [16]. In Eq.  (1), 𝑛𝑖(𝑡) is 
the inner basin water level, 𝑄𝑡(𝑡) and 𝑄𝑠(𝑡) are the flows through the 
turbines and sluice gates, respectively, and 𝐴𝑏(𝑛𝑖) is the basin area, 
which is a function of the basin level, as described in Section 2.6.

Moreover, since the overall main dynamics of the system are slow, 
the dynamic response of the turbine, electrical generator, and sluice 
gates, which are orders of magnitude faster, can be omitted for opera-
tional optimisation. The electrical power output is assumed to be equal 
to the mechanical power of the turbine 𝑃𝑡. Lastly, all the turbines in 
the barrage are assumed to operate in unison, that is, the turbines are 
not controlled individually, but as a single unit. The same applies to 
the sluice gates.

2.3. Tidal elevation

The tidal elevation can be described as the sum of constituents [17]: 

𝑛𝑜(𝑡) =
𝑁𝑖
∑

𝑖=1
𝐴𝑖 cos(𝜔𝑖𝑡 − 𝜙𝑖), (2)

where 𝑁𝑖 ∈ N∕0 is the number of constituents considered. Each con-
stituent 𝑖 has a certain period 𝑇𝑖, with 𝑇𝑖∕𝑇𝑗 ∈ Q, ∀𝑖 ≠ 𝑗, corresponding 
to a frequency 𝜔𝑖 = 2𝜋∕𝑇𝑖, that depends on the particular phenomenon 
that causes each specific constituent, and a certain amplitude 𝐴𝑖 (in 
meters) and phase 𝜙𝑖 that depends on the location of the tidal height 
measurement point on Earth.

Eq.  (2) implies that the tidal elevation is periodic, with consecutive 
rises and falls in sea water level. In this study, the term tidal cycle refers 
to the time interval in which there is one peak and one trough in the 
water level. That is, during one tidal cycle, the basin in the barrage is 
filled once and emptied once.

2.4. Turbine model

The bulb turbine, which is the type of turbine used in the La 
Rance power plant, is the most commonly used turbine type in tidal 
barrages [18]. The operation of these turbines can be split into five 
distinct modes, listed in the following:

• Ebb generation (EG),
• ebb pumping (EP),
• flood generation (FG),
• flood pumping (FP),
• idling, and
• positive pumping (PP).

Generation and pumping are differentiated for ebb and flood since, 
in general, the guide vanes in the turbine shaft are unidirectional, 
meaning that the flow can be controlled more efficiently in one way 
compared to the other. As a result, the turbine efficiency is different 
for ebb and flood operational modes [19].

2.4.1. Operating points
The efficiency of a bulb turbine is given by a hill chart, which 

is a static mapping of the operation of the turbine created by the 
manufacturer. Hill charts have unitary speed 𝑛11 and unitary discharge 
𝑄11 as inputs so that they can be scaled to different turbine sizes, based 
on affinity laws [20]. Each level curve of the hill chart corresponds to a 
value of turbine efficiency so that the turbine power can be determined 
for every head-flow pair. As a result, instead of parameterising each 
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Fig. 3. Turbine efficiency, taken from the Andritz Hydro hill chart in [1].

operational mode of the turbine separately, the instantaneous head-
flow pair is used to calculate the turbine efficiency and inform the 
controller whether the operation corresponds to ebb or flood generation 
or pumping. For this study, the hill chart from an Andritz Hydro turbine 
is digitised [1] and converted into a head-flow plot (with the head 
𝐻 = 𝑛𝑖−𝑛𝑜 on the horizontal axis and the turbine flow 𝑄𝑡 on the vertical 
axis) using the parameters from the turbines in La Rance power plant, 
as seen in Fig.  3.

Since there is no analytical description of a hill chart, within this 
study, an artificial neural network (ANN) is trained to obtain a fitted 
function that can allow interpolation between known points. The use 
of an ANN has the purpose of defining, offline, a parametric form of 
the hill chart that can be then used within the controller, avoiding 
the need for interpolation at each iteration of the optimisation. The 
ANN is trained once, using the operating points of the turbine extracted 
from the digitised hill chart, and included in the model as a function 
𝜂(𝑄𝑡,𝐻).

According to Cybenko’s theorem [21], a multi-layer perceptron with 
one hidden layer can uniformly approximate any continuous function; 
hence, the chosen neural network consists of only one hidden layer. 
A maximum of 350 neurons is considered for the layer, giving 350 
possible networks, each of them trained and tested with the mapping 
from Fig.  3. The performance of each neural network is assessed in 
terms of the mean squared error (MSE). The selected training algorithm 
is Levenberg–Marquardt back-propagation, given its relatively fast con-
vergence [22]. Fig.  4(a) shows the resulting MSE on the training and 
test sets for each architecture. It can be seen that, while the MSE on 
the training set decreases monotonically with an increasing number 
of neurons, the MSE on the testing set reaches a minimum and then 
increases due to overfitting. The selected architecture is therefore a 
network with 115 neurons which, in this case, has the lowest MSE on 
the test data. Fig.  4(b) shows that there is a slight positive slope in 
the MSE for the test dataset after 2200 epochs, potentially indicating 
overfitting. The selected number of epochs used for training was 2500, 
which is considered enough to achieve low MSE in both training 
and testing sets without overfitting. Table  1 shows the parameters 
describing the chosen neural network, and Fig.  5 shows a schematic 
of its architecture.

In this study, the representation of turbine efficiency with an ANN 
aims to achieve a comprehensive, yet computationally feasible, repre-
sentation of the turbines. If desired, the same ANN can be trained with 
the hill chart data from the actual turbines (in this case, the turbines 
from La Rance power plant), rather than using a generic hill chart data 
used in this paper, which was readily available to the authors.
4 
Table 1
Parameters of the neural network characterising the turbine operating points 
mapping.
 Inputs 𝑄𝑡, 𝐻  
 Output 𝜂  
 No. of hidden layers 1  
 No. neurons in hidden layer 115  
 No. epochs 2500  
 No. datapoints 1598  
 Training set 70%  
 Testing set 30%  
 Activation function of hidden layers Log-sigmoid  
 Activation function of output layer Positive linear  
 Training algorithm Levenberg–Marquardt 
 MSE (test data) 0.01  

2.4.2. Turbine efficiency mapping
From the turbine characterisation in Section 2.4.1 the turbine effi-

ciency for each pair (𝑄𝑡,𝐻) can be determined. Efficiency is typically 
defined as the ratio between the power output 𝑃𝑜𝑢𝑡 and power input 𝑃𝑖𝑛
of a system, i.e. 

𝜂 =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

. (3)

Generation takes place when the head 𝐻 = 𝑛𝑖 − 𝑛𝑜 has the same sign as 
the flow 𝑄𝑡 (in this study, the convention is that the flow leaving the 
basin is positive; that is, for ebb operation, 𝑄𝑡 > 0, and flood operation, 
𝑄𝑡 < 0). During ebb generation, the power injected into the barrage 
system is the hydraulic power due to the hydraulic head (denoted as 
𝑃ℎ𝑦𝑑), and the power output is the mechanical power generated by the 
turbine: 

𝜂EG =
𝑃𝑡

𝑃ℎ𝑦𝑑
=

𝑃𝑡
𝜌𝑔𝐻𝑄𝑡

, (4)

where 𝑔 is the gravitational constant, 𝜌 is the sea water density, and the 
EG subscript refers to ebb generation, as per the nomenclature used in 
Fig.  2. During flood generation, the same definition applies, although 
with a decrease in efficiency. Usually, the peak efficiency is around 90% 
for ebb operation, and around 70% for flood operation [19]. Therefore, 
from now on, the efficiency during flood operation is assumed to be 
20% lower than the efficiency during ebb operation, and the resulting 
efficiency during flood generation 𝜂FG is 

𝜂FG =
𝑃𝑡

𝑃ℎ𝑦𝑑
=

0.8𝑃𝑡
𝜌𝑔𝐻𝑄𝑡

= 0.8 𝜂EG. (5)

Pumping, on the other hand, takes place when the sign of 𝐻 is 
opposite to the sign of 𝑄𝑡, meaning that the turbines are driving the 
water against the hydraulic head. The purpose of pumping in tidal 
barrages is to increase the operating head during the next tidal cycle, so 
that, by injecting power into the system for a certain time interval, the 
overall energy produced in a subsequent period increases. During ebb 
pumping, the input power comes from the electrical generator, which 
draws power from the grid, and the output hydraulic power pushes the 
water out of the basin. The efficiency during ebb pumping operation 
𝜂EP is 

𝜂EP =
𝑃ℎ𝑦𝑑

𝑃𝑡
=

𝜌𝑔𝐻𝑄𝑡
𝑃𝑡

. (6)

In flood pumping, the same efficiency loss applies as during flood 
generation, i.e. the efficiency during flood pumping 𝜂FP is calculated 
as: 

𝜂FP =
𝑃ℎ𝑦𝑑

𝑃𝑡
=

0.8𝜌𝑔𝐻𝑄𝑡
𝑃𝑡

= 0.8 𝜂EP. (7)

Bulb turbines need a minimum pressure difference, i.e. a minimum 
head ℎ𝑚𝑖𝑛, to generate power. When the operating head is lower than 
ℎ𝑚𝑖𝑛, the turbine gate could be closed, blocking the water flow through 
the turbine duct, or open, allowing the free passage of water without 
converting its potential energy into mechanical energy (known as idling 
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(a) The MSE on the training set is mono-
tonically decreasing as the number of 
neurons increases, while the MSE on the 
testing set reaches a minimum and then 
increases.

  
(b) Variation in MSE with number of 
epochs for an ANN with a single layer of 
115 neurons.

 

Fig. 4. Criteria for choosing the neural network architecture and the number of epochs used for training.
Fig. 5. Architecture of the neural network characterising the turbine operating points mapping.
mode). During idling mode, the water flow is given by the orifice 
equation: 
𝑄𝑡 = 𝐶𝑑𝑡𝐴𝑡

√

2𝑔𝐻 with 𝐴𝑡 ≤ 𝐴𝑡𝑚𝑎𝑥 (8)

where 𝐶𝑑𝑡 is the discharge coefficient of the turbine gate, 𝐴𝑡𝑚𝑎𝑥  is 
the maximum area of the turbine duct and 𝐴𝑡 is the instantaneous 
turbine duct area, which can be manipulated with the turbine guide 
vanes. Given that there is no energy conversion during idling mode, 
the efficiency of the turbine is considered to be 0. Another option is 
that the turbine could pump the water in or out of the basin, aided by 
gravity, which here is referred to as positive pumping. If 𝑄𝑡 is greater 
than the orifice equation (considering maximum duct area): 
𝑄𝑡 > 𝐶𝑑𝑡𝐴𝑡

√

2𝑔𝐻 with 𝐴𝑡 = 𝐴𝑡𝑚𝑎𝑥 , (9)

the additional flow is being pumped. The equivalent positive pumping 
efficiency 𝜂PP (since the energy consumed is being used only to pump 
the additional flow) is calculated as: 

𝜂PP =

⎧

⎪

⎪

⎨

⎪

⎪

𝜂EP

[

1 −
𝐶𝑑𝑡𝐴𝑡

√

2𝑔𝐻
𝑄𝑡

]

if 𝑄𝑡 > 0,

𝜂FP

[

1 −
𝐶𝑑𝑡𝐴𝑡

√

2𝑔𝐻
𝑄

]

if 𝑄𝑡 < 0,

(10)
⎩ 𝑡

5 
The following efficiency map for the turbine 𝜇(𝑄𝑡,𝐻) ∈ [0, 1] is used 
to formally incorporate the above description of the efficiency for each 
operating mode: 

𝜇 ∶

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜂EG if sign(𝑄𝑡) = sign(𝐻) > 0, 𝐻 ≥ ℎ𝑚𝑖𝑛,

𝜂FG if sign(𝑄𝑡) = sign(𝐻) < 0, 𝐻 < −ℎ𝑚𝑖𝑛,
1

𝜂EP
if sign(𝑄𝑡) ≠ sign(𝐻), 𝑄𝑡 > 0,

1
𝜂FP

if sign(𝑄𝑡) ≠ sign(𝐻), 𝑄𝑡 < 0,

0 if |𝐻| < ℎ𝑚𝑖𝑛, 𝑄𝑡 ≤ 𝐶𝑑𝑡𝐴𝑡
√

2𝑔𝐻,
1

𝜂PP
if |𝐻| < ℎ𝑚𝑖𝑛, 𝑄𝑡 > 𝐶𝑑𝑡𝐴𝑡

√

2𝑔𝐻,

(11)

so that the power output from the turbine can be calculated as: 
𝑃𝑡 = 𝜇(𝑄𝑡,𝐻)𝜌𝑔𝑄𝑡𝐻. (12)

The ANN described in Section 2.4.1 is used to calculate 𝜂EG, 𝜂FG, 𝜂EP
and 𝜂FP are calculated in terms of 𝜂 (the output of the ANN): 
𝜂EG = 𝜂 (ebb generation),
𝜂FG = 0.8 𝜂 (flood generation),
𝜂EP = 𝜂 (ebb pumping),

(13)
𝜂FP = 0.8 𝜂 (flood pumping),
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and 𝜂PP is calculated as in Eq.  (10).
The mapping 𝜇 in (11) is highly discontinuous and difficult to 

handle numerically. For ease of computation, the discrete jumps in 
the mapping are implemented as smooth transitions using hyperbolic 
tangent functions.

2.5. Sluice gates model

As mentioned in Section 2.2, the sluice gates are modelled taking 
into consideration only their quasi-static position (not the dynamic 
response of the servomotor that moves the sluice gates). The equation 
governing the flow through the sluice gates is the orifice equation, also 
used for the idling mode of operation in the turbines: 

𝑄𝑠 = 𝐶𝑑𝑠𝐴𝑠
√

2𝑔𝐻, (14)

where 𝐶𝑑𝑠 is the discharge coefficient of the sluice gates and 𝐴𝑠 is the 
sluice gates area. In essence, Eq. (14) shows that the flow through the 
sluice gates can be controlled by varying the sluice gate area.

2.6. Basin topology

Tidal barrages are located in estuaries or bays, and the topology 
of the basin is usually irregular, depending on the bathymetry of the 
site. Therefore, the impounded area inside the basin, 𝐴𝑏, varies with 
the basin water level 𝑛𝑖.

It is a common practice in the literature to approximate the function 
𝐴𝑏(𝑛𝑖) in terms of a polynomial. In the present study, following the 
model from [14], the basin area 𝐴𝑏 is approximated as a linear function 
of 𝑛𝑖.

3. Moment-based optimal control framework

Moment-based theory, originally developed as a model reduction 
tool, uses the mathematical concept of moments to characterise the 
steady-state behaviour of a (linear or non-linear) dynamical system. 
In particular, the main idea is to parameterise the steady-state be-
haviour of the tidal barrage system, driven by the tidal elevation 𝑛0, 
in terms of the approximate solution of a corresponding invariance 
equation. Such a steady-state representation is then used to transcribe 
the infinite-dimensional optimal control problem associated with the 
optimal operation of the tidal barrage, leading to a finite-dimensional 
(tractable) nonlinear program able to provide policies for the opera-
tion of the turbines 𝑄𝑡 and sluice gates 𝑄𝑠, via off-the-shelf standard 
numerical optimisation routines. Aiming to keep this paper reasonably 
self-contained, within this section, the basic formulation of an opti-
mal control problem (OCP) using the moment-domain framework is 
introduced.

3.1. Moment-based theory

Let us consider a non-linear single-input single-output continuous-
time dynamical system described, for 𝑡 ∈ R+, by the set of equations 

𝑥̇ = 𝑓 (𝑥, 𝑢),

𝑦 = ℎ(𝑥),
(15)

with 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R and 𝑦(𝑡) ∈ R, and 𝑓 ∶ R𝑛 × R → R𝑛 and 
ℎ ∶ R𝑛 → R the state transition and output mappings, respectively. 
Consider that the input 𝑢 can be described in terms of the following 
exogenous system (commonly termed a signal generator): 
𝜃̇ = 𝑆𝜃,

(16)

𝑢 = 𝐿𝜃,

6 
where 𝜃(𝑡) ∈ R𝜈 , 𝑆 ∈ R𝜈×𝜈 is a non-derogatory matrix defining the 
class of input signals generated by (16), and 𝐿𝖳 ∈ R𝜈 . The resulting 
interconnected system has the form of: 
𝜃̇ = 𝑆𝜃,

𝑥̇ = 𝑓 (𝑥,𝐿𝜃),

𝑦 = ℎ(𝑥).

(17)

Considering the assumption that the signal generator (16) is such that 
𝜆(𝑆) ⊂ C0 with simple eigenvalues guarantees that (16) generates 
bounded trajectories and, therefore, adopting a set of mild assumptions, 
the definition of the non-linear moment of the system is well-posed. 
Another assumption is that the triple (𝐿,𝑆, 𝜃(0)) is minimal, i.e. it is 
observable and excitable. Then, there exists a mapping 𝜋 defined by 
𝜕𝜋(𝜃)
𝜕𝜃

𝑆𝜃 = 𝑓 (𝜋(𝜃), 𝐿𝜃), (18)

such that the moment of the system is ℎ◦𝜋 = ℎ(𝜋). Note that, for any 
fixed trajectory 𝜃(𝑡), the steady-state output response of the system is 
𝑦𝑠𝑠(𝑡) = ℎ(𝜋(𝜃(𝑡))) [23].

While the invariance equation in (18) effectively provides a char-
acterisation of the steady-state manifold of the interconnected system,
i.e. a parameterisation of its steady-state behaviour in terms of the 
signal generator (16), computing an analytical solution for a generic 
set of system maps {𝑓, ℎ} is not trivial. Following [13], where moment-
based methods are shown to be strongly connected with the family 
of weighted residual methods (WRM) [13], a Galerkin-like approxima-
tion procedure is adopted within this paper, briefly described in the 
following.

Following a standard WRM procedure, given any fixed trajectory 
𝜃(𝑡), the following ansatz for 𝜋, 𝜋, is proposed: 

𝜋 ≈ 𝜋 = 𝛱𝜃, (19)

where 𝛱⊺
∈ R𝜈 . Subsequently, an error function, commonly called

residual, is defined as: 

 ∶= 𝛱𝑆𝜃 − 𝑓 (𝛱𝜃,𝐿𝜃). (20)

To compute an approximate solution for Eq.  (20), a finite set of time 
collocation points 𝑁𝑐 ∈ N is chosen, i.e. the residual is projected onto a 
set of uniformly shifted Dirac-delta distributions {𝛿(𝑡 − 𝑡𝑗 ) ≡ 𝛿𝑗}

𝑁𝑐
𝑗=1: 

∫ 𝛿𝑗d𝑡 = (𝑡𝑗 ) = 0, (21)

for every 𝑗 ∈ {1,… , 𝑁𝑐}.

3.2. Optimal control problem of tidal barrage operation

The optimal control problem for tidal barrages consists of the 
following building blocks:

• An objective function 𝑓𝑜,
• an external input 𝑛𝑜 (i.e. the tidal elevation),
• a set of manipulated variables, and
• a set of input and state constraints.

Given the flexibility of tidal barrages, different objective functions 
can be selected. This study focuses on energy maximisation over a given 
time interval 𝛺 = [𝑡1, 𝑡2] ⊂ R+, with an additional term  ∶ R+ → R
that penalises abrupt operation of the sluice gates [4]. The selected 
manipulated variables are 𝑄𝑡 and 𝐴𝑠, that is, the flow through the 
turbines and sluice gates, respectively. Inequality constraints, reflecting 
physical limitations in the system, are considered for 𝑄𝑡, 𝐴𝑠, 𝑃𝑡 and 𝑛𝑖, 
and a single state equality constraint, reflecting the system dynamics 
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(i.e. Equation (1)). The resulting OCP can be formalised as follows: 

(𝑄opt
𝑡 , 𝐴opt𝑠 ) = arg max

(𝑄𝑡 ,𝐴𝑠)

[

∫𝛺
𝑃𝑡 −  d𝑡

]

,

subject to:
𝐴𝑏(𝑛𝑖)𝑛̇𝑖 = −𝑄𝑡 − 𝐶𝑑𝑠 sign(𝑛𝑖 − 𝑛𝑜)

√

2𝑔 |
|

𝑛𝑖 − 𝑛𝑜||𝐴𝑠,

𝑛min𝑖 ≤ 𝑛𝑖 ≤ 𝑛max𝑖 (basin water level limits),
|𝑄𝑡| ≤ 𝑄max

𝑡 (turbine flow limits),
0 ≤ 𝐴𝑠 ≤ 𝐴max𝑠 (sluice gate opening limits),
|𝑃𝑡| ≤ 𝑃𝑚𝑎𝑥

𝑡 (instantaneous power limits),

(22)

where  is a continuous quadratic function over the interval [0, 𝐴max𝑠 ] ⊂
R+ representing the energy consumption of the sluice gates: 

 = 𝑘𝑤𝐴̇𝑠
2, (23)

with 𝑘𝑤 ∈ R+ a non-dimensional weighting coefficient. The purpose of 
this penalty cost function is to account for the energy consumption of 
the servomotor of the sluice gates, so that they are not overutilised.

3.2.1. Representation of tidal elevation using moments
Given the harmonic nature of the tidal elevation, i.e. the exter-

nal input of the tidal barrage system, it is reasonable to construct 
the signal generator used to parameterise the OCP (22) such that it 
generates a family of harmonic functions. Note that these harmonic 
functions must share the same fundamental frequency, otherwise the 
OCP is not necessarily well-posed (see [23]). On the other hand, the 
constituents used to model the tidal elevation do not necessarily share a 
fundamental frequency; in fact, that is not the case for the constituents 
that are most prominent in most areas of the globe.1 Therefore, the 
tidal elevation described in Eq.  (2) can be projected onto a space with 
a known fundamental frequency, providing a suitable (approximate) 
representation of the resource using the implicit form description (16).

The tidal elevation function 𝑛𝑜 is now mapped onto a harmonic 
signal generator with state-vector 𝜃 in the moment domain, with fun-
damental frequency 𝜔𝑜. The choice of 𝜔𝑜, together with a cut-off 
frequency 𝜔𝑚𝑎𝑥, determines the accuracy of the representation for 𝑛𝑜. 
Given that 𝑛𝑜 is not necessarily periodic, following [24], 𝑛𝑜 is windowed 
onto a mapping with period 𝑇𝑜 = 2𝜋∕𝜔𝑜, in accordance with the 
definition of the signal generator. Considering the interval 𝛺 = [0, 𝑇𝑜] ⊂
R+: 
𝑛𝑜 = 𝑛𝑜 , (24)

where  ∶ 𝛺 → [0, 1] is a windowing mapping that smoothly drives 𝑛𝑜
to zero at the extremities.

Denote the elements associated with the state vector of the signal 
generator as: 

𝜃⊺ =
[

1 𝜃1 𝜃2 ... 𝜃2𝑛−1 𝜃2𝑛
]

, (25)

where the terms 𝜃2𝑖−1(𝑡) correspond with cosine functions, while 𝜃2𝑖(𝑡)
are sine functions, for 𝑖 ∈ {1,… , 𝑛}, and with frequencies 𝑓2𝑖−1 = 𝑓2𝑖 =
𝑖𝜔𝑜. Note that 𝑛 is the number of frequencies for a given 𝜔𝑜 and 𝜔𝑚𝑎𝑥. 
The projection of the tidal elevation onto {𝜃𝑖} can be computed as 

𝑛𝑜 ≈ 𝐿𝑜𝜃, 𝐿𝑜 = ⟨𝜃⊺, 𝑛𝜖𝑜⟩𝛺 ⊘ ⟨𝜃⊺, ⊕2𝑛
𝑖=1𝜃𝑖⟩𝛺 , (26)

where the symbol ⊘ denotes the standard element-wise (Hadamard) 
division.

Note that, according to the actual description of 𝑛𝑜, it might not be 
computationally efficient to use all coefficients from Eq.  (26). Instead, 

1 It can be argued that a set of numbers with a finite number of decimals 
always share a fractional maximum common divisor, but in our case that leads 
to a high order signal generator that is not computationally feasible.
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Fig. 6. Representation of the tidal elevation in the moment domain, using the 
harmonic signal generator 𝜃𝑜.

the most prominent (in terms of energy) harmonics can be extracted by 
defining a threshold 𝜖 such that: 

𝐋2
𝑜,𝑖

max𝑝∈[1,𝑛]{𝐋2
𝑜,𝑝}

> 𝜖, (27)

where 𝐋𝑜,𝑖 is the norm of the coefficients (of the sine and cosine 
functions) of the 𝑖th frequency. This way, the dimension of the signal 
generator is reduced by eliminating those coefficients below the thresh-
old, with a minor impact on the fidelity of the projection. The resulting 
signal generator can be defined as: 
𝜃𝑜 = 𝑆𝑜𝜃𝑜,

𝑛𝑜 ≈ 𝐿𝑜𝜃𝑜,
(28)

with 

𝑆𝑜 = 0⊕

( 𝑗
⨁

𝑝=1

[

0 −𝜔𝑝
𝜔𝑝 0

]

)

, 𝜃(0) = 𝟏2𝑗+1, (29)

and hence 
𝜃𝑜(𝑡)⊺ =

[

1 cos𝜔1𝑡 sin𝜔1𝑡 ... cos𝜔𝑗 𝑡 sin𝜔𝑗 𝑡
]

, (30)

where 𝜃𝑜(𝑡) ∈ R2𝑗+1 is composed of a certain number of frequencies 𝑗, 
all sharing the same fundamental frequency 𝜔𝑜. That is to say that the 
signal generator described by 𝜃𝑜 is used to project 𝑛𝑜  onto the space 

 = span
(

1 ∪ {cos𝜔𝑖𝑡, sin𝜔𝑖𝑡}𝑖∈N𝑗

)

. (31)

Fig.  6 shows the tidal elevation 𝑛𝑜 used as input, and its projection 
onto the harmonic signal generator 𝜃𝑜, as per Eq. (28). The threshold 
𝜖 is selected to achieve an RMSE between 𝑛𝑜 and 𝑛𝑜  of 0.2 m, which 
is considered an acceptable approximation of 𝑛𝑜. Note that the RMSE 
between 𝑛𝑜 and its projection, using all coefficients from Eq.  (26), tends 
to zero, since the additional frequencies enhance the approximation of 
𝑛𝑜 in the moment domain.

3.2.2. Representation of the control inputs in the moment-domain
Eq.  (18) computes the steady-state output response of a nonlinear 

system in terms of the family of continuous functions 𝜃(𝑡). Nonetheless, 
while 𝑛𝑜  can have a certain number of (𝑗+1)-components, the manipu-
lated (control) variables can certainly belong to an ‘augmented’ space,
i.e. with a larger number of harmonics associated with 𝜔𝑜 (see [23]). 
To achieve this, an extended higher-dimensional signal generator is 
defined, with a certain number of harmonics 𝑑 of each frequency 𝑖
present in 𝜃𝑜. First, consider a multiset 𝑜 such that 
𝑜 = ∪𝑑

𝑝=1{𝑝𝜔𝑖}𝑖∈N𝑗
. (32)

Note that the multiset 𝑜 is composed of 𝑑 multiples of the 𝑗 frequencies 
in 𝜃𝑜. Since all 𝑗 frequencies share the same fundamental frequency 𝜔𝑜, 
by taking multiples of each, 𝑜 could include each frequency multiple 
times. Accordingly, the set 𝑐 is defined as 
𝑐 = set(𝑜), (33)

i.e. as the largest set of elements in 𝑜 with no repetition of any 
frequency, and where the maximum frequency is less than, or equal 
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to, 𝜔𝑚𝑎𝑥. Suppose the cardinality of 𝑐 is #𝑐 = 𝑘 ≤ 𝑑. Then, the 
corresponding extended signal generator can be defined as follows: 
𝜃𝑐 = 𝑆𝑐𝜃𝑐 ,

𝑄𝑡 = 𝐿𝑄𝑡
𝜃𝑐 ,

𝐴𝑠 = 𝐿𝐴𝑠
𝜃𝑐 ,

(34)

with 

𝑆𝑐 = 0⊕

( 𝑘
⨁

𝑚=1

[

0 𝜔𝑚
−𝜔𝑚 0

]

)

, 𝜃𝑐 (0) = 𝟏2𝑘+1, (35)

where 𝜔𝑚 ∈ 𝑐 , ∀𝑚 ∈ N𝑘. Note that the tidal elevation can be written 
in terms of 𝜃𝑐 by simple inclusion, i.e. as: 
𝑛𝑜 = [𝐿𝑜 𝟎] 𝜃𝑐 = 𝐿𝑛𝑜 𝜃𝑐 , (36)

where 0 is a null vector of appropriate dimensions.

3.2.3. Steady-state output response calculation
To characterise the steady-state response of the tidal barrage system 

in terms of moments, and then exploit such a parameterisation in the 
transcription of the OCP in (22), the solution to the differential Eq. (18) 
must be approximated. Following the procedure outlined in Section 3.1, 
and considering that the number of harmonics 𝑑 in the augmented 
signal generator (34) is sufficiently large, for any given trajectory 𝜃𝑐 (𝑡), 
the moment of the tidal barrage system can be approximated [13] as 
follows: 
𝜋 ≈ 𝜋̄ = 𝐿𝑛𝑖𝜃𝑐 . (37)

and hence the steady-state response of the system, corresponding to the 
system state variable 𝑛𝑖, can be approximated as: 
𝑛𝑠𝑠𝑖 (𝑡) ≈ 𝐿𝑛𝑖𝜃𝑐 . (38)

𝐿𝑛𝑖  is computed by applying the Galerkin-like method described 
in Section 3.1. In particular, the state equation corresponding to the 
hydrodynamics of the barrage system is mapped onto the moment 
domain by essentially replacing the state and inputs in Eq.  (1) with 
their moment-based parameterisation: 
𝐴𝑏𝐿𝑛𝑖𝑆𝜃𝑐 = −𝐿𝑄𝑡

𝜃𝑐 − 𝐶𝑑𝑠𝐿𝐴𝑠
𝜃𝑐
√

2𝑔(𝐿𝑛𝑖 − 𝐿𝑛𝑜 )𝜃𝑐 . (39)

For any given 𝐿𝑛𝑜 , the corresponding residual map  can be defined 
as: 
(𝐿𝑛𝑖 , 𝐿𝑄𝑡

, 𝐿𝐴𝑠
, 𝑡) =

𝐴𝑏(𝐿𝑛𝑖𝜃𝑐 (𝑡))𝐿𝑛𝑖𝑆𝜃𝑐 (𝑡) + 𝐿𝑄𝑡
𝜃𝑐 (𝑡)+

𝐶𝑑𝑠𝐿𝐴𝑠
𝜃𝑐 (𝑡)

√

2𝑔(𝐿𝑛𝑖 − 𝐿𝑛𝑜 )𝜃𝑐 (𝑡).

(40)

Finally, the dynamics of the overall barrage system, in the moment-
domain, respond to the following non-linear system of equations for a 
set of 𝑁𝑐 collocation instants, i.e. 

𝑅(𝐿𝑛𝑖 , 𝐿𝑄𝑡
, 𝐿𝐴𝑠

) =
⎡

⎢

⎢

⎣

(𝐿𝑛𝑖 , 𝐿𝑄𝑡
, 𝐿𝐴𝑠

, 𝑡𝑁1
)

⋮
(𝐿𝑛𝑖 , 𝐿𝑄𝑡

, 𝐿𝐴𝑠
, 𝑡𝑁𝑐

)

⎤

⎥

⎥

⎦

= 0. (41)

3.2.4. Optimal control problem in the moment domain
Using the parameterisation described in Sections 3.2.1–3.2.3, the 

optimal control problem (22) can be rewritten as follows: 
(𝐿𝑄opt𝑡

, 𝐿𝐴opt𝑠
) =

arg max
(𝐿𝑄𝑡 ,𝐿𝐴𝑠 )

[

𝜌𝑔 ∫𝛺
𝜇 (𝐿𝑛𝑖 − 𝐿𝑛𝑜 )𝜃𝑐

(

𝐿𝑄𝑡
𝜃𝑐
)⊺
d𝑡 − 

]

,

subject to:
𝑅(𝐿𝑛𝑖 , 𝐿𝑄𝑡

, 𝐿𝐴𝑠
) = 0,

𝐿𝑛𝑖 ≤ 𝑛𝑖 ,

𝐿𝑄𝑡
 ≤ 𝑄𝑡

,

𝐿𝐴𝑠
 ≤ 𝐴𝑠

,

𝜌𝑔⊙ (𝐿 − 𝐿 )⊙
(

𝐿 
)

≤ 

(42)
𝑛𝑖 𝑛𝑜 𝑄𝑡 𝑃𝑡

8 
Table 2
Parameters from La Rance power plant [14].
 Parameter Value Unit  
 Basin surface area 𝐴𝑏(𝑛𝑖) 0.09336𝑛𝑖 + 13.1 km2  
 Sluice discharge coefficient 𝐶𝑑𝑠 1 –  
 Turbine discharge coefficient 𝐶𝑑𝑡 1 –  
 Maximum basin level 𝑁𝑚𝑎𝑥

𝑖 5 m  
 Minimum basin level 𝑁𝑚𝑖𝑛

𝑖 −5 m  
 Maximum turbine flow 𝑄𝑚𝑎𝑥

𝑡 280 m3/s 
 Number of turbines 𝑛𝑡 24 –  
 Maximum gate area 𝐴𝑠 900 m2  

Table 3
Descritpion of tidal constituents.
 Symbol Description Period [h] Amplitude [m] 
 𝑀2 Lunar semidiurnal 12.4206 3.813978  
 𝑆2 Solar semidiurnal 12.0000 2.049028  
 𝐾1 Lunar diurnal 23.9345 −0.0795165  
 𝑂1 Lunar diurnal 25.8193 0.075388  

where 
𝛬 =

[

𝜃𝑐 (𝑡𝑁1
) … 𝜃𝑐 (𝑡𝑁𝑐

)
]

,

 = [𝛬 𝛬] ,

𝑛𝑖 =
[

𝑛𝑚𝑎𝑥𝑖 𝟏𝑁𝑐
𝑛𝑚𝑖𝑛𝑖 𝟏𝑁𝑐

]

,

𝑄𝑡
=
[

𝑄𝑚𝑎𝑥
𝑡 𝟏𝑁𝑐

−𝑄𝑚𝑎𝑥
𝑡 𝟏𝑁𝑐

]

,

𝐴𝑠
=
[

𝐴𝑚𝑎𝑥
𝑠 𝟏𝑁𝑐

𝟎𝑁𝑐

]

,

𝑃𝑡 =
[

𝑃𝑚𝑎𝑥
𝑡 𝟏𝑁𝑐

− 𝑃𝑚𝑎𝑥
𝑡 𝟏𝑁𝑐

]

,

(43)

⊙ denoting the standard element-wise (Hadamard) product and 
represented in the moment-domain as: 

 = 𝑘𝑤𝐿𝐴𝑠
𝑆𝑐𝑆

𝖳
𝑐 𝐿

𝖳
𝐴𝑠
. (44)

Note that  is the turbine efficiency mapping 𝜇, which depends on 
(𝑄𝑡, 𝐴𝑠) and is implicitly a function of time, evaluated at the collocation 
points. In (42), the inequality constraint over 𝑃𝑡 is tightened by a factor 
of 10% to ensure that the maximum power is not exceeded, discussed 
in Section 4.2.

4. Case study and sample results

The tidal barrage model presented in Section 2 is parameterised 
using the characteristics of the La Rance power plant, as presented 
in Table  2. Note that the reference value for tidal elevation is the 
mean sea level; that is, the tidal range has a zero mean, and the basin 
level is constrained between −5 m and 5 m. The polynomial function 
describing the basin surface area follows the same convention.

In this study, the four most predominant tidal constituents are 
used [17]: the principal lunar semidiurnal component 𝑀2, the principal 
solar semidiurnal component 𝑆2, and the lunar diurnal components 𝐾1
and 𝑂1. Table  3 shows the period and amplitude of each constituent. 
A tidal elevation forecast of 15 days is extracted from the EDF France 
website [25], and the amplitudes of each constituent are adjusted to 
approximately match the forecast with an MSE lower than 0.3 m (which 
is within the order of uncertainty associated with the forecast itself).

The simulations were performed in Matlab®, using the non-linear 
solver fmincon, with a timestep of 6 min and a collocation timestep of 
30 min. The PC used has a 13th Gen Intel® CoreTM i7-1365U processor 
with 16 GB of RAM. The approximate computational time was of one 
day for a 14-day window calculation.
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(a) Harmonic expansion of the inputs and outputs of the 
system using the full spectrum of frequencies.

  
(b) Harmonic expansion of the inputs and outputs of 
the system using the parameterisation in terms of 𝜃𝑐
(Eq. (35)).

 

Fig. 7. Norm of the 𝐿 coefficients of each frequency for the control (turbine flow 𝑄𝑡 and sluice gate area 𝐴𝑠) and external (tidal elevation 𝑛𝑜) inputs and the 
output (inner basin level 𝑛𝑖) of the tidal barrage system.
4.1. Harmonic analysis

As described in Section 3.2.2, the representation of the control 
inputs in the moment domain is assumed to be a harmonic expansion of 
the frequencies used for the representation of tidal elevation. To eval-
uate how such a simplifying assumption affects the control solution, a 
harmonic analysis is performed to determine the dominant frequencies 
in the solution space.

Initially, the case in which all harmonics 𝑛 of the corresponding 
fundamental frequency 𝜔𝑜 are included as part of the corresponding 
signal generator, until a defined cutoff frequency, is considered. As 
such, the overall number of harmonics included in the corresponding 
signal generator is inherently determined by the chosen 𝜔𝑚𝑎𝑥. For this 
study, a cutoff frequency of 23 cycles/day (6 radians/day) is adopted to 
represent the system behaviour. Note that, the longer the time window 
𝑇𝑜 chosen for the analysis, the smaller the fundamental frequency 
𝜔𝑜, meaning that more harmonics will be needed to reach a given 
cutoff frequency. In this analysis, a time window of 3 days is chosen, 
corresponding to a fundamental frequency of 0.33 cycles/day and 70
harmonics.

Fig.  7 shows the resulting frequency domain representation of the 
tidal elevation, inner basin level, turbine flow and total sluice gate 
area for this full spectrum case. The four most dominant harmonics in 
the tidal elevation are coloured in yellow and red, with the remaining 
harmonics coloured in blue. The darkest red shade corresponds to 
the semidiurnal component of the tide (close to 2 cycles/day), which 
is predominant in all three inputs and the system output. It can be 
seen that harmonics of these four dominant frequencies of the tidal 
elevation are equally dominant in the turbine flow, sluice gates area 
and inner basin level, meaning that the controller needs only the most 
prominent frequencies in the projection of the tide to parameterise the 
controlled inputs, which is aligned with the proposed parameterisation 
in Section 3.2.1 (see Eq.  (27)). The spectrum of the turbine flow and 
inner basin level is clearly correlated with the spectrum of the tidal 
elevation. On the other hand, the spectrum of the sluice gates area 
covers a wider range of harmonics. Naturally, the constant function 
{1} (see Eq.  (31)) is one of the most predominant, together with 
harmonics of the semidiurnal component, the dominant one being 
the double of the semidiurnal component, i.e. the sluice gate position 
operates at double the frequency of the turbine flow. Also, the weight 
of the harmonics decreases, and can be considered negligible, after 20 
cycles/day. The control solution with this parameterisation yields 8 
GWh of energy generated.

Now, the same optimisation is run using the parameterisation de-
scribed in Sections 3.2.1 and 3.2.2, that is, using harmonics of the 
9 
predominant frequency components of the tidal elevation, as opposed 
to the full spectrum of frequencies used in the previous case study. In 
this case, only harmonics of the predominant tidal elevation frequencies 
are used, resulting in a total of 48 frequencies (30% less compared to 
the 70 frequencies used in the previous case). The frequency domain 
representation of the tidal elevation, inner basin level, turbine flow 
and sluice gates area for this case of reduced number of frequencies 
is shown in Fig.  7(b).

There is a clear correspondence between the frequencies seen in the 
solution of the turbine flow control and the inner basin level, in both 
cases (full spectrum and reduced number of frequencies). The sluice 
gate control presents more differences between both cases, since the 
solution in the first case covers the whole spectrum. In the second case, 
more energy is allocated over a smaller number of frequencies. The 
energy generated in this second case is 7.34 GWh, 8% lower than in the 
previous case, which is not negligible. Nonetheless, given that using the 
full frequency spectrum can be computationally infeasible for longer 
time simulations, approximating the solution by using harmonics of the 
tidal elevation frequency is considered appropriate.

4.2. Time-domain simulation results

Fig.  8 shows the results of the optimisation of the turbines flow 
𝑄𝑡 and sluice gates area 𝐴𝑠 for a neap-spring tidal cycle of 14 days. 
The operation includes both ebb and flood generation, with pumping. 
The overall energy generated during the neap-spring cycle (shaving the 
peak power to the maximum) is 24.4 GWh, which is higher than the 
average energy produced by the La Rance power plant in 14 days.2 
Note that, in this study, the hill chart used to model the turbines is 
generic and not the specific hill chart of the turbines from La Rance. 
Furthermore, the model does not account for the operation of the locks 
to allow navigation through the barrage, which has an impact on the 
time windows available for generation. Another source of error in the 
computation of tidal barrage energy production is the use of a simpli-
fied 0D hydrodynamic model, which has been shown in the literature 
to overestimate energy output, compared to using a 2D hydrodynamic 
model. For instance, [27] reports that, depending on the operational 
sequence, the calculated energy output of a proposed project in the 
Severn Barrage can be up to 10.9% higher with the 0D model than 
with the 2D model. [14] shows that, in the case of the La Rance power 
plant, using the 0D model along with the basin topology model (used in 

2 La Rance power plant produces close to 500 GWh per year [26].



A. Skiarski et al. Renewable Energy 256 (2026) 124632 
Fig. 8. Optimisation results for a neap-spring cycle (14 days).
this study), the deviation in energy generation is up to 4.7% compared 
to real measurements. 

It is interesting to note that utilisation of the sluice gates is almost 
negligible compared to the total available area of 900 m2. One explana-
tion for this is that the model explicitly includes the sluicing operating 
mode of the turbines. This can potentially be exploited for control co-
design of new tidal barrage schemes where the sluicing capacity could 
be reduced by allocating it to the turbines, leading to saving not only on 
the investment cost of the tidal barrage but also on operational costs. 
Nonetheless, the low utilisation of the sluice gates could also be due to 
misrepresentation of the range of frequencies of the control solution, as 
seen in Fig.  7. Therefore, the parameterisation of the sluice gates area 
in the controller may need to include a wider range of frequencies.

One aspect of the control parameterisation to be considered is that, 
since there is a difference between the real tidal elevation and its 
representation in the moment domain, the physical system constraints 
may not be strictly met. This does not happen with the turbine flow, 
sluice gate area, and basin level constraints, but does happen with the 
power output constraint; the output power has peaks of up to 4% above 
the rated power of 240 MW, even after tightening the constraint by 10% 
to a value of 216 MW. Nonetheless, these peaks appear during very few 
hours of the time window. If this issue were addressed a posteriori by 
shaving the power peaks to the maximum power of the turbines, the 
energy output during the complete period of 14 days would decrease 
by less than 0.1%. In practice, this can be done by manipulating the 
pitch blades and wicket gates of the turbine in a sub-optimal fashion, 
to shave some of the hydraulic power.

From Section 2.4.1, the turbine efficiency data is from the manu-
facturer’s data (hill chart) for the type of turbines used at La Rance. 
In terms of validation, power curves (power 𝑃𝑡 vs head 𝐻), provided 
in [14], can be used to compare the power production from the 
moment-based controller to that currently achievable at La Rance. Fig. 
9 shows a significant improvement in the power production capability 
for the moment-based controller, generally achieving greater power 
output at each head level, while observing the power capacity limit.

5. Conclusions

This paper presents a detailed model of tidal barrages and its 
implementation in optimal control of their operation, using the La 
10 
Rance power plant as study case. The result is a parsimonious represen-
tation of the operation of a tidal barrage, which can be parameterised 
with data from any operating or proposed tidal barrage. The main 
modelling contribution is on the hydraulic turbine model, for which 
a generic Andritz Hydro hill chart is used to account for all possible 
modes of operation, including positive pumping, rarely seen in the 
literature. One limitation of the model implemented in this study is the 
use of a simplified 0D model, typical in control studies, to represent 
the hydrodynamic processes within the barrage basin. As previously 
mentioned, several studies in the literature show that energy output 
is overestimated when using a 0D model, compared to using a more 
accurate 2D hydrodynamic model. It can be argued that, here, the 
model is used for scheduling rather than for feasibility studies, and 
that the question is whether the control solution would change if 
optimising with a 2D model. Because of the computational burden 
of 2D hydrodynamic models, they are impractical for optimisation 
purposes, and it remains to be seen if the evaluation of optimal control 
solutions for tidal barrages is computationally tractable for any models 
other than 0D models.

On the optimal control problem formulation, using the turbine 
flow and sluice gates area as manipulated variables accounts for the 
different operating modes of the barrage in a holistic way, without 
pre-defining any sequence in the operation and allowing the operation 
of turbines and sluice gates to be independent from each other. This 
allows flexibility in the operation; during some cycles, the pumping 
stages are longer than in others, and generation in one direction can 
prevail over the other. This flexibility is desirable, given the short-term 
variability of the tidal range during neap tides compared to spring tides.

Moment-based control appears to be a computationally effective 
tool to solve the optimal control problem. It solves the control problem 
in a time window which can include several consecutive cycles, which 
is essential given the dependence of the available energy during one 
cycle with the operation during the previous cycle. The mathematical 
formulation of the moment-based optimal control problem applied to 
tidal barrage operation is developed considering multiple constituents 
in the tidal elevation representation, which is a step forward from 
previous work on this topic.

The frequency analysis shows that only the harmonic expansion of 
the most prominent frequencies in the tidal elevation are needed to 
effectively parameterise the control inputs and the output. This dras-
tically decreases the computational burden compared to using the full 
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Fig. 9. Turbine power curves (bold lines, adapted from [14]) and model results from simulation (dots).
spectrum of harmonics of the fundamental frequency. However, there 
is still room to further enhance the performance of the controller in 
terms of expanding the frequency range. A promising possibility would 
be to apply receding-horizon control, in which the control problem can 
be sliced up in more manageable sub-problems, which could improve 
the optimally of the solution without increasing the computational 
requirements of the controller.
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