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Abstract
Background  The immunomodulatory function of human mesenchymal stromal cells (MSCs) strongly depends on 
external factors; such as cytokines and other signalling molecules encountered in the disease microenvironment. 
An insufficiently inflammatory environment can fail to activate MSCs, and certain signals can impair their function. 
Obesity is on the rise worldwide, making it an additional factor to be considered prior to MSC therapy, as the 
microenvironment presents its own challenges. Elevated levels of serum free fatty acids, specifically palmitate, have 
the potential to affect MSC therapy. Palmitate-exposure has been shown to impair MSC immunomodulation of T cells 
in vitro. However, this is yet to be studied in the context of macrophages.

Methods  MSCs from three independent donors were exposed to 0.4mM of palmitate for 6–24 h. Gene expression, 
protein production and functional capacity were then assessed in response to palmitate. A ceramide synthesis 
inhibitor (Fumonisin B1) and a CC-chemokine ligand 2 (CCL2)-neutralising antibody were further used to assess the 
impact of these components on palmitate-associated immunomodulation.

Results  We demonstrated that palmitate-exposed MSCs have enhanced suppression of human monocyte-derived 
macrophage (MDM) production of tumour necrosis factor α (TNFα), in a CCL2-dependent manner. We further 
elucidated parts of the pathway, such as ceramide synthesis, through which palmitate promotes this enhanced 
immunomodulation of macrophages.

Conclusion  Palmitate-exposed MSCs show enhanced immunomodulation of human MDMs, through the ceramide/
CCL2 axis in vitro.
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Background
The immune calming properties of mesenchymal stro-
mal cells (MSCs) makes them a promising therapeutic 
for a range of inflammatory conditions [1–5]. MSCs can 
suppress T cell proliferation [6] and reduce pro-inflam-
matory macrophage activation and function [7, 8]. More-
over, MSCs can polarise macrophages towards a more 
pro-resolving, non-classical, M2 phenotype [9]. In fact, 
the communication between MSCs and macrophages 
in vivo is now thought to play an essential role in MSC 
therapeutic efficacy; as depleting macrophages prevents 
MSCs from mediating their therapeutic effects [10, 11].

The microenvironment MSCs encounter upon admin-
istration to patients has an important impact of the effi-
cacy of MSCs. MSCs require a minimal threshold of 
pro-inflammatory activation to carry out their immu-
nomodulatory functions and in some cases the disease 
microenvironment may not provide adequate signals for 

this activation [14–18]. In the context of MSC adminis-
tration in acute graft versus host disease (aGvHD) and 
in Crohn’s Fistula there is evidence that differences in 
patients are associated with response or non-response 
to MSC therapy [19, 20]. Thus, the microenvironment 
within patients who are to receive MSC therapy requires 
further investigation.

Worldwide, the number of individuals living with 
obesity is on the rise, with over half of the adults in the 
EU being overweight [21–23]. This would suggest an 
increase in the number of patients receiving cell-based 
therapies, including MSC therapy, that will also be living 
with the complication of obesity. Patients who are living 
with obesity, alongside additional inflammatory condi-
tions, have an increased level of complexity within their 
disease microenvironment. In addition to increased lev-
els of pro-inflammatory cytokines [22–24] and adipo-
kines [25, 26], obesity is associated with elevated levels of 
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serum free fatty acids (FFAs). Palmitate, the most abun-
dant inflammatory FFA in the body, has been shown to 
exacerbate obesity-related insulin resistance through 
increased ceramide synthesis and inhibition of Akt phos-
phorylation [27, 28]. The anti-tumour response is also 
impacted by palmitate via de-sensitisation of mono-
cytes and macrophages to stimulator of interferon genes 
(STING)-induced type-I interferon signalling, and induc-
tion of programmed cell death protein 1 (PD-1) [29, 30]. 
Moreover, palmitate has shown to induce endoplasmic 
reticulum (ER) stress in lung epithelial cells leading to 
apoptosis [31]. Palmitate-induced ER stress has also been 
described in MSCs [32], and exposure to palmitate for 
48  h or more is associated with significant cell lipotox-
icity [33]. Additionally, the ability of MSCs to suppress 
T cell proliferation in vitro is drastically impaired by the 
presence of palmitate, owing at least in part to decreased 
indoleamine 2,3-dioxygenase (IDO) activity, resulting in 
a lower conversion of tryptophan into kynurenine [6, 10, 
34–41]. Although suppression of T cell proliferation is 
considered an important mechanism of action for MSCs 
[42, 43], recent evidence increasingly points towards an 
important role for MSC-macrophage interactions [19, 20, 
44–46].

The aim of this study was to investigate how MSC 
immunomodulation of human monocyte-derived mac-
rophages (MDMs) would be affected by exposure to 
palmitate in vitro. We demonstrated that palmitate signif-
icantly enhanced MSC suppression of pro-inflammatory 
macrophages. We identified enhanced MSC expression 
of PTGS2, IL-6, CCL2 and ANGPTL4 following exposure 
to palmitate. We also identified CC-chemokine ligand 
2 (CCL2) as the protein responsible for mediating this 
improvement in MSC immunomodulation. We further 
elucidated the pathway through which palmitate pro-
moted increased production of CCL2 by MSCs, by-way-
of investigating ceramide de novo synthesis. We showed 
that palmitate led to the induction of ceramide de novo 
synthesis, and blockade of this pathway prevented both 
CCL2 production by MSCs and the associated MDM 
suppression.

Methods
Ethical approval
Ethical approval was granted by the Medical Research 
Ethics Committees at St Vincent’s University Hospi-
tal and by Maynooth University Ethics Committee 
entitled: Metabolic and Immunological Links Between 
Obesity, Systemic Inflammation, Type 2 Diabetes Mel-
litus and Non-Alcoholic Fatty Liver Disease granted on 
28th June 2024 (BSRESC-2024-38575) and Investigating 
the role of macrophage education by MSCs in mediat-
ing MSC therapeutic efficacy granted on 11th February 

2022 (BSRESC-2022-2460651). All patients gave written 
informed consent prior to partaking in the study.

Human MSC culture
Human bone marrow-derived MSCs (three independent 
donors) were purchased from RoosterBio (Frederick, 
MD, USA). Initially, MSCs were expanded in RoosterBio 
expansion medium (RoosterBasal and RoosterBooster) 
for passages 1 and 2 according to the manufacturer’s 
instructions. After, MSCs were cultured and maintained 
up to passage 6 in low glucose Dulbecco’s modified Eagle 
medium (DMEM; Sigma-Aldrich, Wicklow, Ireland) 
supplemented with 10% (v/v) fetal bovine serum (FBS; 
ThermoFisher Scientific, Dublin, Ireland) and 1% (v/v/) 
penicillin/streptomycin (Sigma-Aldrich, Wicklow, Ire-
land). MSCs were seeded at 1 × 106 cells per T175 flask 
and cultured at 37  °C in 5% CO2. Medium was replen-
ished every 2–3 days and cells were passaged at 80% 
confluency. All experiments were carried out between 
passages 3–6. For palmitate and C2 ceramide experi-
ments, MSCs were exposed to 0.4 mM palmitate-BSA 
(palmitate; Cayman Chemicals, MI, USA) or BSA as a 
control (6 to 24 h), 40 µM fumonisin B1 (ThermoFisher 
Scientific, Dublin, Ireland), or 10 µM C2 ceramide 
(Sigma-Aldrich, Wicklow, Ireland) or vehicle control 
(ethanol) (3 to 6hrs). For serum studies, MSCs (3 inde-
pendent donors) were exposed to 20% of lean or obese 
patient serum for 24 h. This was then removed, the cells 
were washed with PBS, and serum-free media was added 
for a further 24  h. This was then harvested and CCL2 
secretion was quantified by ELISA.

Culture of human monocyte derived macrophages (MDMs)
Human peripheral blood mononuclear cells (PBMCs) 
were isolated from buffy coats received from the Irish 
Blood Transfusion Service (Saint James’ hospital, Dublin, 
Ireland) by lymphoprep (StemCell, Vancouver, Canada) 
density gradient centrifugation. PBMCs were seeded 
at a density of 2 × 106 cells per well in tissue culture 
24-well plates and allowed to adhere for 60  min. Cells 
were washed with Dulbecco’s Phosphate-Buffered Saline 
(DPBS; Merck, Cork, Ireland) to remove any non-adher-
ent cells and medium was replaced with 300 µL cRPMI, 
supplemented with 5% human male AB plasma (Merck, 
Cork, Ireland) and topped up to 600 µL after 24 h. Mono-
cytes were differentiated into monocyte-derived macro-
phages for 6 days. After 5 days, cells were washed with 
DPBS and medium replenished. On day 6, cells were 
detached by first washing them with DPBS, then add-
ing 300 µL per well of lidocaine detachment buffer (0.5% 
bovine serum albumin (BSA; Merck) and 5 mg/mL lido-
caine HCL (Fluorochem, Cork, Ireland)) for 20  min at 
37 °C. Cells were gently pipetted up and down and trans-
ferred to a centrifugation tube. 400 µL DPBS was added 
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to wells, remaining cells were gently dislodged using the 
tip of a Pasteur pipette, collected, and centrifuged at 
300  g for 5  min. MDMs were then seeded into 96 well 
flat bottom plates at a density of 2 × 104 cells per well for 
macrophage suppression assays.

Flow cytometry for MDM characterisation
MDMs were detached using a lidocaine detachment 
buffer (0.5% BSA, 5  mg/mL lidocaine in DPBS). 2% rat 
serum was used to block non-specific binding of anti-
bodies. Cells were incubated for 15 min at 4 °C with fluo-
rescent antibodies. Cells were then first washed, then 
resuspended in cold flow cytometry staining (FACS) 
buffer (2% FBS in Dulbecco′s Phosphate Buffered Saline 
(DPBS/PBS)) and then acquired using the Attune Nxt 
flow cytometer (ThermoFisher Scientific, Dublin, Ire-
land). Gating was performed on live (live/dead stain, 
near-IR fluorescent reactive dye, Invitrogen), CD14+ 
(PE) cells (Supplementary Fig. 1) using antibodies against 
CD206 (Pacific Blue), HLA-DR (FITC), CD11b (PE-Cy7), 
CD86 (APC), and CD163 (PerCP). Data were analysed 
using floreada.io.

Intracellular staining of COX-2
MSCs were seeded at a density of 1 × 105 cells per well in 
tissue culture 6-well plates and allowed to adhere over-
night. MSCs were then exposed to 0.4 mM palmitate-
BSA (palmitate; Cayman Chemicals, MI, USA) for 24 h. 
After 20  h, a protein transport inhibitor cocktail con-
taining Brefeldin A and Monensin (Invitrogen, Massa-
chusetts, US) was added to block protein transport. Cell 
viability was determined using the Zombie Aqua™ Fix-
able Viability Kit (Biolegend, CA, USA). Cells were then 
washed and prepared for intracellular staining using the 
Foxp3/Transcription Factor Staining Buffer Set (Biosci-
ences, Dublin, Ireland) following the manufacturer’s 
instructions. Samples were stained for COX-2 (PE) for 
45 min. Cells were then washed in flow cytometry stain-
ing buffer (2% FBS in DPBS) and acquired using the 
Attune Nxt flow cytometer (ThermoFisher Scientific, 

Dublin, Ireland). Gating for COX-2 was performed on 
live single cells. Data were analysed using floreada.io.

Enzyme-linked immunosorbent assay (ELISA)
Levels of human ANGPTL4, IL-10, TNFα, and CCL2 
(R&D and BioLegend, CA, USA) in cell culture super-
natant were determined using ELISA kits following the 
manufacturer’s instructions. Samples were diluted as 
necessary to stay within the range of the kits. Analysis 
was carried out in Corning 96-well half-area plates and 
volumes adjusted accordingly (ThermoFisher Scientific, 
Dublin, Ireland).

Analysis of gene expression
Total ribonucleic acid (RNA) was extracted from MSCs 
using TRIzol (Ambion Life Sciences, Cambridgeshire, 
UK) following the manufacturer’s instructions. RNA 
concentrations were measured via spectrophotometry 
(Nanodrop 2000, ThermoFisher Scientific, DE, USA). For 
coding deoxyribonucleic acid (cDNA) synthesis, 500 ng 
RNA were used following the manufacturer’s instructions 
(Quantabio, MA, USA). Real-time polymerase chain 
reaction (PCR) was carried out using PerfeCta SYBR 
Green FastMix (Quantabio, MA, USA). Expression of 
genes of interest (for primer sequence information see 
Table  1) was qualified in relation to the housekeeping 
gene hypoxanthine-guanine phosphoribosyl transferase 
(hprt), using the ΔCT method. The fold change in gene 
expression relative to the control was determined via cal-
culating the 2−ΔΔCT values.

Macrophage suppression assay
MDMs were cultured as described and co-cultured with 
MSCs at a MSC to macrophage ratio of 1:20. MSCs were 
incubated with 0.4 mM palmitate-BSA (palmitate; Cay-
man Chemicals, MI, USA), 5 µg/mL neutralising CCL2/
MCP-1 neutralising antibody (R&D Systems, Abingdon, 
UK), 40 µM fumonisin B1 (ThermoFisher Scientific, 
Dublin, Ireland), or 10 µM C2 ceramide (Sigma-Aldrich, 
Wicklow, Ireland) for 24 h prior to co-culture. MSCs were 
washed with DPBS before addition of MDMs. Co-culture 
was stimulated with 100 ng/mL lipopolysaccharide for 
24 h (LPS; E. coli O111:B4, Sigma-Aldrich, Wicklow, Ire-
land). Supernatants were collected, and TNFα and IL-10 
concentration was quantified using ELISA.

Statistical analysis
An ordinary One-Way ANOVA with Tukey’s multiple 
comparisons test was performed to test for statistical sig-
nificance between multiple experimental groups, and an 
unpaired t test with Welch’s correction was performed to 
test for statistical significance between two experimental 
groups. GraphPad Prism version 10.2.3 was used for sta-
tistical computations and graphing.

Table 1  Sequences for primers used in real-time PCR
Primer Forward primer sequence 

(5’-3’)
Reverse primer sequence 
(3’-5’)

HPRT ATAAGCCAGACTTTGTTGG ATAGGACTCCAGATGTTTCC
CERS4 ATCCTCTACACCACATACTAC TACGAATGTCCTTCTCCATC
CERS5 CTGGCATAACTATCCATTTCAG GACCAATAGAAGGCCAATTC
CERS6 CTTTACATGTGTCCAAGGATG TTGGGACTTGTAGTTTTGAG
PTGS2 AAGCAGGCTAATACTGATAGG TGTTGAAAAGTAGTTCTGGG
IL-6 GCAGAAAAAGGCAAAGAATC CTACATTTGCCGAAGAGC
IDO TTGTTCTCATTTCGTGATGG TACTTTGATTGCAGAAGCAG
CCL2 AGACTAACCCAGAAACATCC ATTGATTGCATCTGGCTG
ANGPTL4 AGGCAGAGTGGACTATTTG CCTCCATCTGAGGTCATC
VEGFA AATGTGAATGCAGACCAAAG GACTTATACCGGGATTTCTTG
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Results
Palmitate-enhanced Immunomodulation of MDMs by 
MSCs is linked to CCL2
MSCs reduce LPS-stimulated MDM production of TNFα 
in a dose-dependent manner (Supplementary Fig. 2). To 
investigate if palmitate enhanced or reduced TNFα pro-
duction by MDMs, low dose MSC (1 MSC: 20 MDMs) 
were exposed to palmitate for 24  h and used in a mac-
rophage suppression assay (Fig.  1A). Pre-exposure to 
palmitate significantly improved MSC ability to decrease 
the production of TNFα by MDMs compared to naive or 
BSA control MSCs (Fig. 1B). Others have shown a small 
induction of apoptosis following exposure of MSCs to 
palmitate for 96 h [36], we did not observe a significant 
induction of apoptosis following 24  h exposure to 0.4. 
mM palmitate (Supplementary Fig.  3). MSCs produce 
a multitude of immunomodulatory factors in response 
to pro-inflammatory stimulation [12, 47]. In response 
to palmitate, the expression of PTGS2 (Fig.  1C), IL-6 
(Fig. 1D), CCL2 (Fig. 1E), and ANGPTL4 (Fig. 1F) were 
increased. While CCL2 was significantly increased at 
6 h and 24 h, PTGS2, IL-6 and ANGPTL4 were only sig-
nificantly upregulated at 24  h post-palmitate exposure 
(Fig. 1). In contrast, MSC expression of VEGF and IDO 
were unaffected by palmitate exposure (data not shown).

Given that PTGS2, CCL2 and ANGPTL4 have been 
associated with macrophage suppression, the gene 
expression results were confirmed at the protein level. 
While both COX-2 (Fig. 1G) CCL2 (Fig. 1H) and ANG-
PTL4 (Fig.  1I) protein production were increased fol-
lowing palmitate exposure, only CCL2 and ANGPTL4 
reached significance. In our assay, naive or palmitate 
exposed MSCs were co-cultured with MDMs and LPS. 
Therefore, it was possible that changes in gene expression 
observed could also be mediated by LPS or the combi-
nation of palmitate and LPS. LPS and palmitate-exposed 
MSCs showed further enhanced expression of CCL2, 
PTGS2 and IL-6 but not ANGPTL4 (Fig.  2A-D). Given 
the increase in both the gene and the protein expression 
of CCL2 (Figs. 1 and 2), we decided to pursue a CCL2-
neutralisation approach. This experiment highlighted 
that neutralisation of CCL2 abrogated the enhanced 
immunosuppressive capacity of palmitate-treated MSCs 
(Fig. 2E).

MSCs and palmitate stimulated MSCs promote an increase 
in CD206 expression by MDMs
MSCs have been shown to promote an M2 switch in LPS 
stimulated macrophages [48, 49]. LPS stimulated macro-
phages expressed significantly increased levels of the M1 
activation marker CD86 and reduced levels of CD11b. 
Naive MSCs at a MSC: MDM ratio of 1:20 significantly 
increased the frequency of MDMs expressing the M2 
marker CD206 but had limited effects on M1 markers 

CD86 or HLA-DR. Palmitate stimulated MSCs had simi-
lar effects to naive MSCs increasing the frequency of 
CD206 expressing cells although not significantly (Sup-
plementary Fig. 4).

Blocking ceramide de novo synthesis negates the effects of 
palmitate on MSC Immunomodulation of MDMs
Ceramide synthases (CERS) are essential enzymes 
required for the de novo synthesis of ceramides [50]. 
Palmitate exposure significantly increased expression 
of the ceramide synthase (CERS) genes CERS4 (Fig. 3A) 
and CERS5 (Fig.  3B), but not CERS6 (Fig.  3C), suggest-
ing increased ceramide de novo synthesis in response to 
palmitate. Inhibition of CERS activity using fumonisin 
B1 [51, 52], did not affect CCL2 gene expression at 6  h 
(Fig. 3D), but significantly reduced CCL2 production by 
MSCs in response to palmitate at 24 h (Fig. 3E). This con-
firmed the hypothesis that palmitate-induced production 
of CCL2 by MSCs was linked to the de novo synthesis 
of ceramide. We further confirmed CCL2 production 
from MSCs in response to clinically relevant samples 
from patients with obesity, or healthy controls (Fig. 3F). 
MDMs in co-culture with MSCs exposed to both palmi-
tate and fumonisin B1 produced the same levels of TNFα 
as those in co-culture with BSA control MSCs (Fig. 3G, 
including BSA and palmitate groups seen in Fig.  1B for 
comparison). Interestingly, palmitate exposed MSCs 
enhanced IL-10 production by MDMs following LPS 
stimulation and addition of fumonisin B1 abrogated this 
effect (Fig. 3H).

C2 ceramide can enhance MDM Immunomodulation by 
MSCs
Aside from being used for energy generation through 
fatty acid oxidation, palmitate is an important substrate 
for the de novo synthesis of sphingolipids, specifically 
ceramide [53–56]. To confirm that ceramide is the cru-
cial link between palmitate uptake and CCL2 secretion, 
MSCs were exposed to the cell membrane-permeable 
ceramide analogue: C2 ceramide [57]. Gene expression 
of key genes was measured after 3 and 6 h. PTGS2 was 
significantly elevated at the 3  h time point, reducing at 
the 6  h timepoint (Fig.  4A). ANGPTL4 was elevated at 
both 3 and 6 h (Fig. 4B). IL-6 expression only increased at 
the 6 h time point (Fig. 4C). Neither expression of VEGF 
(Fig.  4D) nor IDO (Fig.  4E) were affected by exposure 
to C2 ceramide. Overall, these patterns in gene expres-
sion mimicked those observed in response to palmitate 
(Fig. 1).

MSCs were also exposed to 10 µM ceramide or vehicle 
control for 24  h, and CCL2 production was measured 
(Fig.  4F). Ceramide promoted the production of CCL2 
in all three MSC donors. Ceramide-exposed MSCs also 
showed improved suppression of TNFα production by 
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Fig. 1  Palmitate enhances MSC immunomodulation of MDMs. (A) Experimental design graphic: Human bone marrow MSCs were exposed to 0.4 mM 
palmitate for 24 h, washed with PBS and co-cultured with human MDMs at 1:20 ratio of MSC: MDMs. The co-culture was stimulated with 100 ng/mL of LPS 
for 24 h, and MDM production of TNFα was measured by (B) ELISA (n = 3 MSC donors + 3–4 MDM donors). Relative gene expression of MSCs in response 
to 0.4 mM palmitate after 6–24 h was measured for (C) PTGS2, (D) IL-6, (E) CCL2, and (F) ANGPTL4 (n = 3). The protein production of (G) COX-2, (H) CCL2 
and (I) ANGPTL4 were also measured using flow cytometry (COX-2) or ELISA (CCL2 and ANGPTL4). Data is presented as mean ± SEM. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001, ns: not significant. Statistical test: Ordinary one-way ANOVA with Tukey’s multiple comparisons test (B-F) and unpaired t test 
with Welch’s correction (G-I)

 



Page 7 of 15Tunstead et al. Stem Cell Research & Therapy          (2025) 16:435 

MDMs (Fig. 4G), and while naïve MSCs had no effect on 
IL-10 production, C2 ceramide pre-treated MSCs signifi-
cantly increased the IL-10 production (Fig. 4H).

Discussion
Tissue source [12, 13], donor [58–60], and recipient 
disease microenvironment [14, 15, 17] all influence 
the therapeutic efficacy of MSCs. Increasing glycolytic 
metabolism in MSCs by culturing them under hypoxia 
[42, 61, 62] or suppressing mitochondrial respiration 
with oligomycin [63] can drastically improve their abil-
ity to suppress the proliferation of T cells. In many cases, 
stimulation with pro-inflammatory cytokines like IFNγ 
[42, 64, 65], TNFα, and IL-1β [66–68] enhances MSC 
immunomodulation. Importantly there are also exter-
nal factors that can impair MSC immunomodulation. 
Exposure to dexamethasone [69] or an activation of the 
proliferator-activated receptor (PPAR)-δ [70] negatively 
impact the ability of MSCs to suppress T cell prolifera-
tion. The same is true for MSC exposure to palmitate, 
with palmitate at certain concentrations even promot-
ing a pro-inflammatory response in MSCs, leading to 

increased T cell proliferation [36]. Importantly, high lev-
els of palmitate are found in the serum of patients with 
obesity and type 2 diabetes mellitus (T2DM) and may 
have a negative impact on MSC efficacy in palmitate rich 
environments. The interaction between MSCs and mac-
rophages have been identified as essential in the mode of 
action used by MSCs to reduce or control inflammation 
in various inflammatory conditions [44, 71, 72]. Thus, we 
sought to better understand the impact that a palmitate 
rich environment may have on MSCs immunomodula-
tion of MDMs in vitro.

Interestingly, palmitate did not negatively impact 
macrophage suppression by MSCs. Pre-exposure of 
MSCs to palmitate enhanced MSC suppression of mac-
rophage-produced TNFα and led to increased IL-10 
secretion in response to LPS stimulation, compared 
to the naive MSCs. A range of MSC secreted factors 
have been implicated in immunosuppression of mac-
rophages or promotion of a more anti-inflammatory 
pro-resolving macrophage phenotype. Prostaglandin-
endoperoxide synthase 2 (PTGS2), the gene encoding for 
COX-2, is strongly associated with MSC suppression of 

Fig. 2  Palmitate enhances MSC immunomodulation of MDMs via increased CCL2 production. Human bone marrow MSCs that were exposed to both 
0.4 mM palmitate, and 100ng/ml LPS, for 6 h and analysed for gene expression of (A) CCL2, (B) PTGS2, (C) ANGPTL4 and (D) IL-6 (n = 3). Using the same ap-
proach as seen in Fig. 1A, palmitate exposed MSCs were cocultured with MDMs (1:20 MSC: MDM ratio) and LPS (100ng/ml). A CCL2-neutralising antibody 
or isotype control (5 ug/mL) were added to the culture and LPS stimulated MDM production of TNFa was measured by ELISA after 24 h (E) (n = 3 MSC 
donors + 3–4 MDM donors). Data is presented as mean ± SEM. *p < 0.05, **p < 0.01, ****p < 0.0001. Statistical test: unpaired t test with Welch’s correction 
(A-D) and ordinary one-way ANOVA with Tukey’s multiple comparisons test (E)

 



Page 8 of 15Tunstead et al. Stem Cell Research & Therapy          (2025) 16:435 

Fig. 3  Palmitate enhances MSC immunomodulation of MDMs via ceramide de novo synthesis. Human bone marrow mesenchymal stromal cells (MSCs) 
were exposed to 0.4 mM palmitate for 24 h, and relative gene expression of the ceramide synthase genes (A) CERS4, (B) CERS5, and (C) CERS6 was mea-
sured via qPCR (n = 3). MSCs were further exposed to 0.4 mM palmitate and 40 µM fumonisin B1 for 6 h (for gene expression) or 24 h (for protein produc-
tion). (D) CCL2 gene expression was measured by qPCR and (E) CCL2 production was measured by ELISA. We further confirmed CCL2 production by MSCs 
in response to 20% obese serum (F). MSCs were thoroughly washed with PBS and used in a human monocyte-derived macrophage (MDM) suppression 
assay at a MSCs to MDM ratio of 1:20. After 24 h of stimulation with 100 ng/mL LPS, concentration of (G) TNFα and (H) IL-10 production was measured 
by ELISA (n = 3 MSC donors + 3–4 MDM donors). It is important to note that the BSA and palmitate-treated control groups have been taken from Fig. 1B, 
which we added to allow for accurate comparison. Data is presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Statistical test: Ordi-
nary one-way ANOVA with Tukey’s multiple comparisons test (A-H)
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Fig. 4  C2 ceramide exposure shows similar effects to that of palmitate in the context of MDM immunomodulation. Human bone marrow MSCs were 
exposed to 10 µM C2 ceramide and gene expression was measured via qPCR after 3 and 6 h for (A) PTGS2, (B) ANGPTL4, (C) IL-6, (D) VEGF, and (E) IDO. 
(F) After 24 h of exposure, CCL2 protein production was measured by ELISA (n = 3). MSCs were also exposed to 10 µM C2 ceramide for 24 h, thoroughly 
washed, and co-cultured with human MDMs at a MSCs to MDM ratio of 1:20. The co-culture was stimulated with 100 ng/mL LPS for 24 h and concen-
tration of (G) TNFα and (H) IL-10 in the supernatant was measured by ELISA (n = 3 MSC donors + 3–4 MDM donors). Data is presented as mean ± SEM. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Statistical test: Unpaired t test with Welch’s correction (A-F) and ordinary one-way ANOVA with Tukey’s 
multiple comparisons test (G, H)
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macrophages [8, 9, 20, 41]. MSC-derived IL-6 plays a role 
in MSC homeostasis, suppression of T cell proliferation 
[73], and inhibition of dendritic cell differentiation [74]. 
CCL2 derived from MSCs has been associated with MSC 
promotion of IL-10 production by macrophages [10, 44]. 
The enzyme IDO plays a major role in MSC suppres-
sion of T cell proliferation and MSCs have been shown 
to promote macrophage production of IDO [1, 6, 75, 76]. 
In addition to calming immune cells, MSCs can also pro-
mote angiogenesis and tissue repair via release of ANG-
PTL4 [77, 78] and vascular endothelial growth factor 
(VEGF) [15].

While MSCs increased the frequency of CD206 
expressing macrophages, palmitate pre-exposed MSCs 
did not have a greater effect on macrophage polarisa-
tion. Interestingly, palmitate pre-exposure of MSCs led 
to increased gene expression of PTGS2, IL-6, CCL2, 
and ANGPTL4, but not VEGF or IDO. Protein produc-
tion of COX-2, ANGPTL4 and CCL2 was also enhanced. 
Boland et al. [36] have previously showed that palmitate 
impaired MSC suppression of T cell suppression is asso-
ciated with a defect in kynurenine activity. In line with 
our data, Boland et al. also show enhanced expression of 
PTGS2 and IL-6 alongside defective kynurenine activ-
ity and loss of T cell suppression in palmitate exposed 
MSCs. The palmitate-induced altered signalling associ-
ated with defective T cell suppression by MSCs remains 
unclear. Palmitate has been shown to induce endoplasmic 
reticulum (ER) stress and apoptosis in MSCs [34]. For 
successful suppression of T cell proliferation, MSCs need 
to be activated by proinflammatory cytokines such as 
IFN-γ leading to induction of IDO production by MSCs, 
which then turns tryptophan into kynurenine, depriv-
ing T cells of this essential amino acid [6, 42, 75, 79, 80]. 
Interestingly upregulation of genes associated with lipid 
and sterol biosynthesis in MSCs may alter the capacity 
for MSCs to be activated by pro-inflammatory cytokines 
[81]. While COX-2 and PGE2 activity have been shown 
to play a partial role in MSC suppression of T cell pro-
liferation, IDO induced kynurenine activity is thought to 
be the dominant mechanism. In the context of MSC sup-
pression of macrophages COX-2, CCL2, and the phago-
cytosis of apoptotic MSCs have been named repeatedly 
as important factors [10, 38, 39, 44, 48]. Thus, our data 
suggest that palmitate exposure leads to enhanced pro-
duction of immunomodulatory factors associated with 
MSC suppression of macrophages.

As neutralisation of CCL2 abrogated the effects of pal-
mitate on MSCs in an MDM suppression assay, we con-
cluded that CCL2 is likely the primary mechanism of 
action through which palmitate enhances MSC immuno-
modulation of MDMs. While CCL2 is primarily consid-
ered a chemoattractant, MSC-derived CCL2 has recently 
been associated with increased IL-10 production in 

macrophages and monocytes and a promotion of an M2 
macrophage phenotype [10, 44, 82]. CCL2 also enhances 
LPS-induced IL-10 production in macrophages [83] and 
has been shown to promote adipose tissue macrophage 
infiltration [84]. Evidence from the literature shows that 
following i.v. administration, MSCs undergo apoptosis 
and release high levels of CCL2 which attract mono-
cytes [20, 85]. Furthermore, a link between ceramide de 
novo synthesis from palmitate and a resulting produc-
tion of CCL2 prompted by ceramide activation of the 
NFκB pathway has been reported in adipocytes [86, 87]. 
Ceramide de novo synthesis from palmitate and direct 
administration of ceramide have been associated with 
activation of nuclear factor kappa-light-chain-enhancer 
of activated B cells (NFκB) and p38 signalling, and sub-
sequent production of COX-2 [88, 89]. In adipocytes, 
which are closely related to MSCs, palmitate exposure 
and de novo ceramide synthesis led to the secretion of 
CCL2 [86, 87, 90].

We were able to show that palmitate promotes the 
expression of genes associated with ceramide de novo 
synthesis in MSCs, and that the suppression of ceramide 
de novo synthesis using fumonisin B1 blocks palmitate-
enhanced production of MSC derived CCL2. Fumonisin 
B1 also blocked the palmitate-enhanced MSC immuno-
modulation of MDMs, both regarding decreased TNFα 
and increased IL-10 production.

Finally, we were able to show that exposing MSCs 
directly to ceramide had similar effects to palmitate 
exposure, both in relation to gene expression, CCL2 
production, and immunomodulation of MDMs. While 
palmitate likely has multiple other effects in the cell, the 
data suggests a role for the palmitate/ceramide/CCL2 
axis in the improved MDM immunomodulation of pal-
mitate-exposed MSCs. Although we have not identi-
fied the signalling pathways through which ceramide 
C2 induces CCL2 in MSCs, there is evidence from the 
literature showing that ceramide-enriched LDL induces 
CCL2 in human monocytes via activation of CD14 and 
TLR4 [91]. Other studies have demonstrated that pal-
mitate enhances TLR4 signal transduction [92, 93]), and 
that palmitate upregulates CCL2 in pancreatic beta cells 
in a TLR4/MyD88/NFkB dependent manner [97]. Palmi-
tate can also induce ER stress leading to activation of ER 
stress sensors IRE1a and PERK with subsequent activa-
tion of NFkB and NLRP3 signalling. Several studies have 
linked palmitate enhanced activation of TLR4 or TRIF/
IRF3 inflammatory signalling cascades in macrophages 
[94–96].

While our data shows that palmitate has a beneficial 
effect on macrophage immunomodulation by MSCs in 
vitro, this finding needs to be confirmed in a more com-
plex in vivo setting.
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There are limitations of our study. The question of how 
palmitate induced MSC-derived CCL2 interacts with 
MDMs to enhance MSC immunosuppressive effects 
remains unanswered. We have not determined if CCL2 
binds to CCR2 or another receptor on MDMs and the 
sequence of signalling events involved remain to be 
uncovered. In addition, we have not measured the effect 
of CCL2 neutralisation on LPS stimulated MDM produc-
tion of IL-10 induced by palmitate exposed MSCs or in 
ceramide C2 mediated enhanced MSC suppression of 
MDMs.

Although an interesting finding that exposure to pal-
mitate enhances MSC capacity to suppress cytokine 
production by macrophages in vitro it is unsuitable as a 
potential licensing strategy to enhance MSC therapeu-
tic efficacy given the additional negative effects. How-
ever, the knowledge that a palmitate rich environment 
likely does not negatively affect MSC therapy in condi-
tions where macrophages play a key role such as ARDS 
[97], atherosclerosis [98], and Crohn’s disease [99] may 
be valuable when treating patients with obesity. In fact, 
MSCs have been administered to T2DM patients for the 
treatment of diabetic nephropathy. These trials included 
patients with obesity (average patient BMI was defined 
as obese) and initial findings showed trends of stabilizing 
or improving eGFR and mGFR at week twelve post infu-
sion [100, 101]. Administration of MSCs for treatment 
of Osteoarthritis in patients with obesity have also been 
shown to be efficacious [102]. A major consequence of 
elevated levels of palmitate in the blood is insulin resis-
tance. Macrophages can promote insulin resistance via 
production of pro-inflammatory cytokines such as TNFa 
[103]. In preclinical models of high fat diet induced obe-
sity there are several studies that show MSC administra-
tion improved insulin sensitivity, decreased triglyceride 
levels and lipotoxicity [104–107]. Indeed, MSCs have 
been shown to inhibit macrophage related inflammation 
in adipose tissue [108]. Thus, despite the negative effects 
of a palmitate rich environment on MSC suppression of 
T cell proliferation in vitro, there is a significant body of 
evidence to suggest that a palmitate rich environment 
such as that found in T2DM or obesity may not nega-
tively impact MSC therapeutic efficacy where the mode 
of action involves immunomodulation of macrophages 
or other MSC cytoprotective functions. Combined with 
these published findings, our data suggests that MSCs 
may reduce insulin resistance via suppression of TNFa by 
macrophages. Moreover, our study elucidates further the 
role that MSC-derived CCL2 has on macrophage immu-
nomodulation, which can be used for further research 
into MSC-macrophage interactions.

Conclusion
The environment in which MSCs are exposed to will be 
indicative of their functional capacity in vivo. With obe-
sity levels rising worldwide, there is an unmet need for 
understanding the complexities of this environment, and 
the impact it may have on MSC-based cell therapy. Our 
study, where we exposed MSCs to the highly inflamma-
tory FFA palmitate, highlights an enhanced immuno-
modulatory capacity in the context of human MDMs. We 
further elucidated that this occurs due to the promotion 
of the ceramide/CCL2 axis. This study, although limited, 
provides novel insight into the mechanism by which pal-
mitate-exposed MSCs aid in the immunomodulation of 
macrophage in vitro.
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macrophages (MDMs) were co-cultured at ratios of 1:5, 1:10, and 1:20 and 
stimulated with 100 ng/mL LPS for 24 hr. MDM production of TNFα was 
measured by ELISA. n = 3 (3 different PBMC donors, 1 MSC donor). Data 
are presented as mean ± SEM. **p<0.01, ****p<0.0001. Statistical test: 
Ordinary one-way ANOVA with Tukey’s multiple comparisons test
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ability and induction of apoptosis was examined using an Annexin V/PI as-
say. N=3, 3 independent MSC donors. Data are presented as mean ± SEM.
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then washed thoroughly twice with warm PBS and 5x103 MDMs were 
added in abRPMI for an MSC to MDM ratio of 1:20. The co-culture was 
stimulated with 100 ng/mL LPS for 24 hr and cells were harvested using 
a lidocaine detachment buffer. Cells were incubated with fluorochrome 
labelled antibodies and surface phenotype was analysed using the Attune 
Nxt flow cytometer. Gating was performed on live (live/dead stain, near-IR 
fluorescent reactive dye, Invitrogen), CD14+ (PE) cells using antibodies 
for CD206 (Pacific Blue), HLA-DR (FITC), CD11b (PE-Cy7), CD86 (APC), 
and CD163 (PerCP). Data were analysed using floreada.io. Statistical test: 
Ordinary one-way ANOVA with Tukey’s multiple comparisons test *p<0.05, 
ns; not significant. n = 3 human MDM donors.
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