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Abstract 
Introduction:  Obesity is a worldwide epidemic, with over 1 billion people worldwide living with obesity. It is associated with an increased risk 
of over 200 chronic co-morbidities, including an increased susceptibility to infection. Numerous studies have highlighted the dysfunction caused 
by obesity on a wide range of immune cell subsets, including dendritic cells (DCs). DCs are innate immune sentinels that bridge the innate and 
adaptive immune systems. DCs provide critical signals that instruct and shape the immune response. Our group has previously reported that 
DCs from people with obesity display defective cytokine production; however, the mechanisms underpinning these defects are unclear. 
Methods:  We investigated the functional responses of DCs using a murine-specific single-stranded RNA virus, Sendai virus, in mice on a 
standard diet and in a model of diet-induced obesity. 
Results:  Here, we demonstrate that GM-CSF cultured bone marrow–derived DCs (GM-DCs) from mice on a high-fat diet (HFD) have reduced 
cytokine production following viral challenge. This was associated with a dysfunctional metabolism through reduced translation in the HFD 
GM-DCs. 
Conclusions:  We propose that obesity-mediated effects on DCs have downstream consequences on their ability to effectively mediate subse-
quent immune responses, especially during viral infection.
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Introduction
Obesity is a multi-factorial, chronic, and progressive dis-
ease, which currently affects over 1 billion people worldwide 
[1]. A defining feature of obesity is a chronic, low-grade in-
flammation which is typically characterized by increased 
pro-inflammatory cytokine secretion and the infiltration of 
leukocytes, into the adipose tissue [2]. Furthermore, we know 
that there is a clear association between obesity and various 
non-communicable diseases such as type 2 diabetes mel-
litus, cardiovascular disease, and cancer [3, 4]. Importantly, 
people with obesity (PWO) have an increased susceptibility 
to infection, resulting in increased morbidity and mortality, 
as demonstrated during the H1N1 infection and coronavirus 
disease 2019 (COVID-19) pandemics [5, 6].

It is well established that obesity-driven immune 
dysregulation plays a major role in the development of these 
co-morbidities. Obesity has a myriad of effects on immune 
cells, mainly deleterious [7–9]. Obesity-associated lipid accu-
mulation within natural killer cells impedes their function, 
demonstrated via reduced interferon (IFN)-γ production 
[10]. Obesity is also associated with macrophage polarization 
towards a more inflammatory phenotype [7]. The inability 
of immune cells to mount adequate or appropriate immune 
responses against pathogens in PWO is understandably a 
significant cause for concern. Alongside the increased sus-
ceptibility to infection, PWO also display reduced antibody 
titres following vaccination [11–13]. A year after vaccination, 
individuals with an increased body mass index demonstrated 
a significant decrease in influenza-specific antibody titres [11]. 
Studies in mice with diet-induced obesity (DIO) addition-
ally demonstrated altered T-cell-mediated immune responses 

[14, 15], where mice with DIO displayed reduced influenza-
specific memory T-cell function [14].

DCs are professional antigen-presenting cells with the par-
ticular ability of inducing the differentiation of naïve T cells 
into memory T cells [16], a crucial component of successful 
vaccination strategies [17]. Immature DCs act as sentinels, 
circulating the body and entering tissues where pathogen 
encounter is most likely [16, 18]. In an immature or resting 
state, DCs are more phagocytic and have reduced stimulatory 
properties due to low expression of antigen presentation and 
co-stimulatory molecules [16], allowing antigen detection. 
Upon antigen uptake and processing, the DCs are activated 
and undergo maturation where the cells upregulate their an-
tigen presentation machinery, including MHC molecules, 
co-stimulatory molecules, and cytokines [16].

Previous human and animal studies have explored the im-
pact of obesity on DCs and have detailed defects that are 
context- and location-dependent. A decrease in DCs was 
observed in the circulation of PWO, along with a reduction 
in the expression of maturation marker, CD83, following 
TLR stimulation [19]. However, increased adipose tissue DCs 
were observed in both humans and mice [20]. The molecular 
mechanism underpinning these alterations in DCs in the set-
ting of obesity remains unclear. DC maturation involves an 
upregulation of mRNA transcripts and vast protein produc-
tion; therefore, the cells must drastically increase their metab-
olism, to meet the energetic and metabolic demands of the 
cell. As obesity has been found to affect the metabolism of 
various immune cells [10, 21, 22], we hypothesized that obe-
sity could impact DC metabolism, underpinning in part the 
defects reported in DCs.
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To explore this further, we investigated the impact of obe-
sity on murine GM-CSF cultured bone marrow–derived 
DCs (GM-DCs) and their subsequent challenge in vitro 
with Sendai virus (SeV), a negative sense single-stranded 
RNA virus (ssRNA) [23]. GM-DCs resemble in vivo 
monocyte-derived DCs (Mo-DCs), Mo-DCs are a group of 
cells that were found to differentiate during infection from 
monocytes or during inflammation [24]. Mo-DCs have a 
conventional DC (cDC)-like and inflammatory phenotype. 
SeV is a murine-specific, potent activator of DCs [25] and 
a strong inducer of IFN-β [26]. SeV is useful to study the 
effects of ssRNA viruses, as there are many disease-causing 
RNA viruses, for example, influenza or HIV [27]. We found 
that the SeV challenge elicits a robust antiviral response in 
GM-DCs with increased production of key cytokines such 
as TNF and IFN-β. We demonstrate that this antiviral re-
sponse is dependent on metabolic rewiring, in particular glu-
cose metabolism. Finally, we demonstrate that obesity limits 
the antiviral response, and this is paired with diminished 
protein translation.

Methods and materials
Mice and diet-induced model of obesity
Male C57BL6/J mice were purchased from Charles River 
Laboratories at 6–8 weeks of age. Mice were acclimatized for 
1 week prior to the initiation of experiments. Following accli-
matization, mice were fed either the standard diet (SD; 18% 
kcal of fat, T2918, Envigo) or the high-fat diet (HFD; 60% 
kcal of fat, TD.06414, Envigo) ad libitum. Mice were fed their 
respective diets for 16 weeks. Five representative mice were 
weighed from each group each week from Week 0 (start of 
diet). Mice were culled via cervical dislocation.

Generation of GM-DCs
Mice were sacrificed and the femur and tibia of the mice were 
flushed with sterile PBS using a 27¾ gauge needle to isolate 
the bone marrow precursors. Cells were washed and plated 
in complete medium (RPMI-1640 plus GlutaMAX [Thermo 
Fisher Scientific]), supplemented with penicillin (100 I.U./
ml) and streptomycin (100 μg/ml, Sigma-Aldrich), 10% v/v 
premium foetal bovine serum (Thermo Fisher Scientific) and 
recombinant mouse GM-CSF (20 ng/ml, BioLegend). Fresh 
complete medium was added on Day 3 and Day 7. On Day 
6, supernatants were discarded, and the complete culture 
medium was entirely replaced. On Day 10, culture super-
natant containing non-adherent and loosely adherent cells 
was harvested, washed, and resuspended in fresh medium 
with GM-CSF (10 ng/ml) for subsequent experiments. Sendai 
virus Cantell strain was gifted from Professor Paul Moynagh 
(Maynooth University, Co. Kildare, Ireland). SeV is also 
known as murine respirovirus. SeV was obtained at a hemag-
glutination (HA) tube titre of 4000/ml.

Enzyme-Linked Immunosorbent Assay
GM-DCs were seeded (1 × 106 cells/ml; 200 μl/well) in 
96-well plates and allowed to rest for 1–2 hours. Cells were 
infected with SeV at a 1:1000 dilution, in the presence or 
absence of metabolic inhibitors, 2-Deoxy-D-glucose (2-DG; 
1 mM, Sigma-Aldrich), oligomycin (1 μM, Sigma-Aldrich), 

and heptelidic acid (5 μM, Abcam) for 18 hours. All 
conditions were plated in triplicates. Supernatants were 
collected and IFN-β, IL-6, and TNF-α were quantified by 
sandwich ELISA (R&D systems) as per the manufacturer’s 
instructions.

RNA
GM-DCs were seeded (1 × 106 cells/ml; 3 ml/well) in 6-well 
plates, rested, and infected with SeV at 1:1000 dilution, in 
the absence or presence of 2-DG and oligomycin for 3, 6, 
and 18 hours. Total RNA was extracted from cells using 
TRIzol Reagent (ThermoFisher Scientific) and ThermoFIsher 
Scientific’s protocol. cDNA was generated from 500 ng of 
RNA using the qScript cDNA Synthesis kit (QuantaBio) 
and real-time PCR analyses were performed using PerfeCTa 
SYBR Green FastMix ROX Reaction Mix (QuantaBio) 
and KiCqStart primer sets (Sigma-Aldrich) and an Applied 
Biosystems StepOnePlus Real-Time PCR System. Expression 
levels were normalized relative to the housekeeping gene actin 
beta (Actb).

RNA sequencing
RNA isolated from basal and 18-hour SeV-treated SD and 
HFD GM-DCs was sequenced by Novogene (UK) Company 
Limited on an Agilent 5400 Fragment Analyzer system. 
Cleaned data were aligned to the reference mouse (Mus 
musculus) genome (ensembl_mus_musculus_grcm38_p6_
gca_000001635_8) using the alignment program HISAT2. 
Alignment was proceeded by quantification of gene ex-
pression. The gene counts were inputted into edgeR and 
normalized using the Voom R package. The Log2FoldChange, 
P-values, and false discovery rate were calculated. Differential 
expression analysis was performed between two conditions, 
each with three biological replicates: SD GM-DCs untreated 
versus SeV-stimulated; SD GM-DCs untreated versus HFD 
GM-DCs untreated; and SD GM-DCs SeV-stimulated versus 
HFD GM-DCs SeV-stimulated. Gene Set Enrichment Analysis 
(GSEA) was performed on normalized gene counts, and mouse 
hallmark gene sets from the Molecular Signatures Database 
(MSigDB) were used to determine differences in genes within 
specific cellular pathways. Results from RNA sequencing data 
were displayed as heatmaps or volcano plots of differentially 
expressed genes. Heatmaps were produced using Morpheus 
(https://software.broadinstitute.org/morpheus) and volcano 
plots were produced using Graph Pad Prism 10 software.

Single-cell energetic metabolism by profiling 
translation inhibition
GM-DCs were seeded (1 × 106 cells/ml; 2 ml/well), rested, 
and infected with SeV at 1:1000 dilution for 18 hours. 
Following stimulation, the Single-Cell ENergetIc metabolism 
by profilIng Translation inhibition (SCENITH) assay was 
performed as per Argüello et al. [28], including the calcula-
tion of the metabolic dependencies and capacities. The cells 
were divided amongst five wells: control, 2-DG, Oligomycin, 
2-DG & Oligomycin, and no puromycin wells. Inhibition 
concentrations were 100 mM of 2-DG and/or 1 μM of 
oligomycin. The cells were incubated with their respective 
inhibitors for 15 minutes at 37°C. Followed by the addition of 
puromycin (11 μM, Sigma-Aldrich) to all wells, except no pu-
romycin wells, for 25 minutes at 37°C. Ice-cold PBS stopped 
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puromycin incorporation. Subsequently, extracellular staining 
was performed (anti-CD11c FITC, anti-MHC II VioBlue, 
anti-CD40 PE, anti-CD86 Pe-Cy7, eFluor506 Viability dye). 
Following staining, cells were fixed and permeabilized using 
the True-Nuclear Transcription Factor Buffer set (BioLegend). 
The cells were stained intracellularly with anti-puromycin 
AlexaFluor488 (Sigma-Aldrich). Flow cytometry was 
performed using the Attune Nxt Flow Cytometer, and results 
analysed using FlowJo software (Treestar).

Immunoblotting
GM-DCs were seeded (1 × 106 cells/ml; 3 ml/well), rested, 
and infected with SeV at 1:1000 dilution for 3 and 6 hours. 
Cells were lysed in 2X Laemmli sample buffer (4X: 0.25M 
Tris-base (pH 6.8), 6% (w/v) SDS, 40% (w/v) glycerol 
(Sigma-Aldrich), 0.04% Bromophenol blue (Sigma-Aldrich), 
20% 2-mercaptoethanol (Sigma-Aldrich) in dH2O, and 2X: 
one in two dilution of 4X in dH2O). Samples were resolved 
by SDS-PAGE and transferred to nitrocellulose membranes as 
per Bio-Rad’s instructions. Followed by immunoblot analysis 
with anti-phospho-IκBα Rabbit (Cell Signaling Technology) 
and anti-β-Actin Mouse (Sigma-Aldrich) antibodies. Protein 
bands were visualized by enhanced chemiluminescence. 
Densitometry analysis was performed using ImageJ software. 
β-actin was used to normalize the target protein, phospho-
IκBα (p-IκBα), levels.

Statistical analysis
Graph Pad Prism 10 software was used for data visualization 
and statistical analysis. Data are expressed as mean ± standard 
error mean. Student’s t-test was used for differences between 
the two groups. Analysis of three or more groups was deter-
mined using ANOVA. Statistical significance was denoted as 
P < 0.05.

Results
Infection with the murine respiratory virus Sendai 
(SeV) is a robust inducer of immunomodulatory 
responses in DC
While SeV infection in mice is a known inducer of type 
I interferons [26], the phenotypic, functional, or indeed 
transcriptomic effects of infection on DC responses are rel-
atively unexplored. We examined the transcriptional and 
immunomodulatory effects of SeV infection on GM-DCs. We 
demonstrate that transcriptional remodelling occurs following 
SeV stimulation of GM-DCs (Fig. 1A and B). Specifically fol-
lowing 18-hour SeV stimulation, 1293 genes were signifi-
cantly increased in expression concomitant with a significant 
decrease in 1528 genes, compared to untreated GM-DCs (Fig. 
1A and B and Supplementary Table 1). Additionally, to fur-
ther examine response-specific differences in GM-DC gene 
expression following SeV infection at the pathway level be-
tween basal and SeV-treated GM-DC, GSEA was performed.

Based on results obtained from GSEA, we examined spe-
cific genes associated with these pathways and genes re-
quired for DC activation or their antiviral response (Fig. 
1B). We identified significant enrichment in genes associated 
with DC maturation, activation, and cytokine production. 
Specifically, there was an enrichment in genes involved in an-
tigen processing (Tap1), type I interferon production (Ifna1, 
Ifna4, Ifna5, Ifnb1), chemokine (Cxcl9, Cxcl10, Cxcl11), and 

cytokine production (Il27, Il6, Il15) in addition to interferon-
stimulated genes (Isg15). Specifically, DEAD Box Protein 
58 (Ddx58) (also known as Rig-I), Interferon Induced with 
Helicase C Domain 1 (Ifih1) (also known as Mda-5), and 
Tlr3 are also induced upon SeV infection and function to de-
tect viral nucleic acids. SeV replication can result in the pro-
duction of defective interfering RNA (DI RNA) which can 
activate RIG-I and MDA-5, these viral sensors lead to the ac-
tivation of transcription factors, NF-κB and IRF3 [29, 30]. 
These transcription factors activate target genes involved in 
pro-inflammatory and antiviral responses, such as cytokines 
(IFNs, TNFα) or chemokines [31]. Collectively the induction 
of these genes is critical for antiviral immune responses in 
DCs [32, 33].

To examine if this transcriptional diversity in SeV-infected 
DC translates into functional diversity, in terms of DC activa-
tion, we performed subsequent gene and protein analysis to 
measure cytokine levels in GM-DCs in response to SeV (Fig. 
1C–E). Upon SeV stimulation across varying time points, we 
demonstrated peak cytokine mRNA expression at 6 hours. 
We demonstrated a significant increase in pro-inflammatory 
and antiviral cytokines, Tnf, Il6, and Ifnb1 (P < 0.05) via 
RT-PCR, in agreement with our transcriptomic analysis 
(Fig. 1C–E). Following 18-hour SeV stimulation, the corre-
sponding cytokine protein levels were significantly increased 
(P < 0.05), ensuring the GM-DCs are equipped for subse-
quent antiviral responses, such as the activation of adaptive 
immune cells (Fig. 1C–E). To understand the dominant intra-
cellular signalling pathways which may be responsible for this 
response we investigated the effect of SeV stimulation on the 
NF-κB pathway. NF-κB is a master immune regulator with 
a plethora of diverse immunological related genes under its 
control [31]. Activation of NF-κB involves the phosphoryla-
tion and subsequent proteolytic degradation of the inhibitory 
protein IκB by specific IκB kinases [31]. We measured IκBα 
phosphorylation and demonstrated that SeV stimulation sig-
nificantly increased the phosphorylation of IκBα compared to 
untreated GM-DCs (P < 0.01; Fig. 1F and G). Therefore, sug-
gestive that the antiviral response in SeV-stimulated GM-DCs 
may be mediated in part via the NF-κB pathway.

Metabolic rewiring through glycolysis is required 
for SeV-induced cytokine responses in DC
Depending on the stimuli, DCs require different metabolic 
pathways to respond. While upregulation of glycolysis is 
required following LPS stimulation [34], the metabolic 
adaptations used by DCs in response to SeV infection are 
unknown. To understand the metabolic capacity of SeV-
stimulated DCs at a single-cell level, we performed SCENITH 
[28]. SCENITH measures the levels of protein translation 
within individual cells via flow cytometry as a surrogate 
marker for cellular metabolic activity (e.g. energy produc-
tion). The incorporation of puromycin is used to determine 
the rates of protein synthesis within the cell. We report a sig-
nificant increase (P < 0.05) in puromycin incorporation (as 
demonstrated via geometric mean fluorescence intensity) in 
SeV-stimulated GM-DCs compared to untreated cells (Fig. 
2A and B). Next, we determined the effect of abrogating 
specific metabolic pathways on protein synthesis during 
viral infection. The addition of 2-DG (inhibitor of glycol-
ysis) and/or oligomycin (inhibitor of oxidative phosphoryl-
ation) to untreated and SeV-stimulated GM-DCs markedly 
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Figure 1: SeV drives immune responses in GM-DCs. (A) Volcano plot depicting differentially expressed genes (DEGs) from SeV-stimulated GM-DCs 
compared to basal generated from RNA sequencing data. (B) Heat map of key DEGs involved in GM-DC viral activation, gene counts, obtained from 
RNA sequencing data, are normalized with an FDR < 0.1 and log2fold change either ≥1.5 or ≤−1.5 (n = 3). (C) RT-PCR of Tnf mRNA expression relative to 
Actb following 6-hour SeV stimulation (n = 4) and TNFα production (pg/ml) following 18-hour SeV stimulation (n = 9). (D) RT-PCR of Il6 mRNA expression 
relative to Actb following 6-hour SeV stimulation (n = 7) and IL-6 production (pg/ml) following 18-hour SeV stimulation (n = 10). (E) RT-PCR of Ifnb1 
mRNA expression relative to Actb following 6-hour SeV stimulation (n = 7) and IFNβ production (pg/ml) following 18-hour SeV stimulation (n = 11). 
(F) Immunoblot of phospho-IκBα (40kDa) and β-Actin (42kDa) expression basally and following 6-hour SeV stimulation. (G) Densitometry of p-IκBα 
expression relative to β-Actin (n = 4). Statistical analysis performed using paired student’s t-test or Wilcoxon test where appropriate.
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Figure 2: Metabolic rewiring through glycolysis is necessary for GM-DC cytokine responses. (A) Representative histogram of puromycin incorporation in basal 
GM-DCs and following 18-hour SeV stimulation. (B) MFI of puromycin incorporation in basal GM-DCs and following 18-hour SeV stimulation and (C) in the 
presence or absence of 2-DG or oligomycin or both (n = 5). (D) Tnf (n = 4), (E) Il6 (n = 5), or (F) Ifnb1 (n = 5) mRNA expression relative to Actb following 6-hour 
SeV stimulation in the presence or absence of 2-DG. (G) Tnf (n = 4), (H) Il6 (n = 5), or (I) Ifnb1 (n = 5) mRNA expression relative to Actb following 6-hour SeV 
stimulation in the presence or absence of oligomycin. (J) TNFα (n = 5), (K) IL-6 (n = 6), or (L) IFNβ (n = 6) production (pg/ml) following 18-hour SeV stimulation in 
the presence or absence of 2-DG. (M) TNFα (n = 5), (N) IL-6 (n = 6), or (O) IFNβ (n = 6) production (pg/ml) following 18-hour SeV stimulation in the presence or 
absence of oligomycin. Statistical analysis performed using paired student’s t-test or Ordinary one-way ANOVA with Tukey’s correction where appropriate.
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decreased protein translation, an effect more pronounced 
with the simultaneous addition of both (Fig. 2C; P < 0.05). 
Furthermore, we determined if specific metabolic dependen-
cies and capacities of GM-DCs were altered in response to 
SeV infection (Supplementary Fig. 1). Glucose or mitochon-
drial dependence refers to the reliance on glucose oxidation 
or OxPhos for protein synthesis, respectively. While LPS, 
acting as a positive control, significantly decreased the mito-
chondrial dependence of GM-DCs, in addition to a concom-
itant significant increase in the glycolytic capacity (P < 0.05; 
Supplementary Fig. 1D and F), no such metabolic switch was 
reported following SeV stimulation (Supplementary Fig. 1C 
and E). SeV-stimulated GM-DCs do not significantly change 
metabolic dependencies but instead display a higher degree 
of metabolic flexibility. No differences were observed in FAO 
& AAO capacity for both conditions (Supplementary Fig. 1G 
and H).

As cytokine production is a key function of DCs upon ac-
tivation, we next examined the effect of glycolytic inhibition 
following SeV stimulation. GM-DCs were stimulated with 
SeV in the presence or absence of 2-DG and cytokine gene 
expression was measured. We demonstrated a significant re-
duction in Tnf (Fig. 2D; P < 0.0001) and Il6 expression (Fig. 
2E; P < 0.05), with a trending decrease in antiviral Ifnb1 (Fig. 
2F; P = 0.0577), following the inhibition of glycolysis. We 
confirmed these results at the protein level and determined 
that SeV stimulation following glycolytic inhibition reduced 
all measured cytokines (Fig. 2J–L; P < 0.05), with an almost 
complete abrogation of IFNβ (Fig. 2L; P < 0.0001). To fur-
ther confirm the requirement of glycolysis for SeV-induced 
GM-DC cytokine responses, a second glycolytic inhibitor was 
used, Heptelidic acid (GAPDH inhibitor), and its addition 
also resulted in a significant reduction in cytokine produc-
tion (Supplementary Fig. 2; P < 0.05). We also investigated 
the role of mitochondrial metabolism in SeV-induced cyto-
kine responses in DCs and observed no significant differences 
in cytokine mRNA (Fig. 2G–2I) or protein expression (Fig. 
2M–O). Hence, the inhibition of OxPhos did not affect the 
cytokine production by GM-DCs, emphasizing that GM-DC 
may have a greater dependency on glycolysis for cytokine 
production.

Obesity leads to defective antiviral responses in 
mice
Given that PWO demonstrate increased susceptibility to viral 
infection, and the increased prevalence of obesity world-
wide, we next aimed to examine if obesity impacts the an-
tiviral response in DCs. We utilized a diet-induced model 
of obesity to determine the impact of adiposity on antiviral 
immune responses. A schematic overview of this 16-week 
HFD model is depicted in Fig. 3A. Supplementary Fig. 3A 
and B confirms that HFD mice had greater average weight 
and higher average weight gain each week compared to SD 
mice (P < 0.001). Furthermore, after 16 weeks, on the day of 
sacrifice, the HFD mice weighed significantly more than the 
SD mice (Supplementary Fig. 3C; P < 0.0001), and the HFD 
mice had approximately double the weight of adipose tissue 
compared to SD mice (Supplementary Fig. 3D; P < 0.0001).

Following both SD and HFD diets, GM-DCs were 
generated in vitro, stimulated with SeV, and cytokine ex-
pression was determined. Peak cytokine gene expression 
was observed at 6 hours (Fig. 3B–D). While a non-significant 

trending decrease in Tnf was observed in SeV-stimulated HFD 
GM-DCs compared to SD GM-DCs (Fig. 3C), no differences 
were observed between SD and HFD GM-DC Il6 expression 
(Fig. 3D). However, the expression of antiviral Ifnb1 was sig-
nificantly reduced in HFD GM-DCs at 6 hours post-SeV in-
fection (Fig. 3B; P < 0.05). Furthermore, at the protein level, 
we observed a significant decrease in IL-6 and IFNβ following 
SeV stimulation of HFD GM-DCs compared to SD (Fig. 3E 
and G; P < 0.05).

We hypothesized that a reduction in IFNβ in HFD 
GM-DCs could potentially have effects on downstream 
interferon-stimulated genes (ISGs). IFN-induced Oas2 yields 
a protein that activates ribonuclease L to inhibit viral replica-
tion via the degradation of viral and cellular RNA [35, 36], 
we had observed an increase in Oas2 following SeV stimu-
lation in our RNAseq data (Fig. 1B). Schlafens (SLFNs) are 
an understudied protein family activated by type I IFNs and 
members of this family have roles ranging from cell differen-
tiation, proliferation, and inhibition of viral replication [37–
40]. Following 18 hours of SeV infection, we demonstrate a 
significant decrease in the expression of these IFN-activated 
genes, Oas2 and Slfn4, in HFD GM-DCs compared to SD 
(Fig. 3H and I; P < 0.01).

The upregulation of cytokines following viral stimulation 
requires the activation of various signalling pathways, in-
cluding NF-κB. Given that SeV stimulation results in NF-κB 
activation (Fig. 1F and G), we next assessed if obesity could 
impair this activation. We demonstrate that SeV stimulation 
in GM-DCs generated from HFD mice does not differ signif-
icantly in NF-κB activation compared to mice fed a SD (Fig. 
3J and K). Therefore, the antiviral perturbations conferred by 
the HFD are potentially mediated via a different mechanism.

Antiviral immune responses in GM-DC are 
underpinned by certain obesity-driven metabolic 
defects
Obesity has previously been shown to affect the metabolism 
of various immune cells and consequently their function. We 
hypothesized that the HFD could impact GM-DC metabo-
lism, thus resulting in defective antiviral immune responses. 
Using SCENITH, we measured puromycin incorporation in 
SD and HFD GM-DCs basally and following SeV or LPS (pos-
itive control) stimulation. Firstly, basal HFD GM-DCs had a 
significant reduction in puromycin incorporation compared 
to SD GM-DCs (Fig. 4A and D; P < 0.05). SeV stimula-
tion increased protein translation within HFD GM-DCs 
compared to basal (Supplementary Fig. 4A; P < 0.05), with 
no significant difference observed in LPS-stimulated HFD 
GM-DCs compared to basal (Supplementary Fig. 4B). We 
report a significant decrease in puromycin incorporation 
in HFD SeV-stimulated (Fig. 4B and D; P < 0.01) and LPS-
stimulated (Fig. 4C and E; P < 0.05) GM-DCs, compared to 
SD GM-DCs. Furthermore, upon examination of metabolic 
dependencies and capacities, we demonstrate that both SD 
and HFD GM-DCs have comparable results following SeV 
infection (Supplementary Fig. 4C–J). Basal SD and HFD 
GM-DCs have similar glucose and mitochondrial depend-
ence (Supplementary Fig. 4C–F). LPS stimulation compared 
to basal resulted in the same decrease in mitochondrial de-
pendence (Supplementary Fig. 4F) and increase in glycolytic 
capacity (Supplementary Fig. 4H) in HFD GM-DCs, similar 
to SD (Supplementary Fig. 1D and F).

D
ow

nloaded from
 https://academ

ic.oup.com
/discovim

m
unology/article/4/1/kyaf001/8002952 by M

aynooth U
niversity user on 29 January 2026

http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data
http://academic.oup.com/dis/article-lookup/doi/10.1093/discim/kyaf001#supplementary-data


8 Woodcock et al.

Figure 3: Obesity results in defective antiviral responses. (A) Schematic of the 16-week diet-induced model of obesity, where C57BL6/J mice were placed on 
either a standard diet (SD) or high-fat diet (HFD) for 16 weeks, after which bone marrow precursors were obtained and GM-DCs were generated (created with 
BioRender.com). (B) Ifnb1 (SD n = 5, HFD n = 6), (C) Tnf (n = 4) or (D) Il6 (SD n = 6, HFD n = 7) mRNA expression relative to Actb following SeV stimulation at 
different time points between SD and HFD. (E) IFNβ (n = 8), (F) TNFα (n = 9) or (G) IL-6 (n = 10) production (pg/ml) following 18-hour SeV stimulation. (H) Oas2 
(n = 3) or (I) Slfn4 (n = 4) mRNA expression relative to Actb following SeV stimulation at different time points between SD and HFD. (J) Immunoblot of phospho-
IKBα (40kDa) and β-Actin (42kDa) expression following 6-hour SeV stimulation of SD and HFD GM-DCs. (K) Densitometry of p-IκBα expression relative to β-Actin 
(SD n = 4, HFD n = 6). Statistical analysis performed using unpaired student’s t-test or Two-way ANOVA with Tukey’s correction where appropriate.
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As approximately 50% of cellular energy is utilized for pro-
tein synthesis and we demonstrated the importance of glycol-
ysis for cytokine production (Fig. 2J–L), we next investigated 
the impact of glycolytic inhibition on HFD GM-DC cyto-
kine production. We normalized SD and HFD GM-DC cyto-
kine production to determine whether 2-DG impacted both 
conditions to the same extent. In the presence of 2-DG, rela-
tive IFNβ (Fig. 4F) and IL-6 (Fig. 4H) production were com-
parable for SD and HFD GM-DCs following SeV stimulation. 
The same abrogation of IFNβ was observed in HFD GM-DCs 
(Fig. 4F). However, relative TNFα levels were reduced in HFD 
GM-DCs compared to SD when glycolysis was inhibited (Fig. 
4G). These results demonstrate that HFD GM-DCs utilize the 
same metabolic pathways within the cell, including glycolysis 
for cytokine production; however, overall, the rates of protein 
synthesis, including cytokine production, are reduced within 
HFD GM-DCs compared to SD.

Discussion
Obesity is a progressive, multi-factorial disease, correlated 
with over 200 chronic co-morbidities [4, 41]. During the 
H1N1 and COVID-19 pandemic, obesity was associated 
with increased susceptibility, morbidity, and mortality to the 
influenza A (subtype H1N1) and severe acute respiratory 
syndrome-coronavirus-2 (SARS-CoV-2) viruses, respectively 
[5, 6]. Vaccinations are utilized as a means of protection against 
these viruses. However, obesity is also linked with reduced 
vaccination efficacy [11–13]. Given that DCs are essential in 
inducing robust effector and memory T-cell responses during 
vaccination and indeed infection, we sought to investigate the 
impact of obesity on their function. In this study, we report 
the induction of a potent antiviral response in GM-DCs in re-
sponse to the murine-specific single-stranded RNA virus, SeV. 
We show for the first time that this response is coupled with 

Figure 4: Obesity-driven defects in metabolism. Representative histograms of puromycin geometric mean fluorescence intensity (MFI) in SD and 
HFD GM-DCs (A) basally, (B) following 18-hour SeV stimulation or (C) following 18-hour LPS stimulation. Puromycin incorporation (MFI) in SD and HFD 
GM-DCs (D) following 18-hour SeV stimulation (SD n = 5, HFD n = 6) or (E) following LPS stimulation (SD n = 4, HFD n = 5). Relative (F) IFNβ (n = 6), (G) 
TNFα (n = 5) or (H) IL-6 (n = 6) concentration following 18-hour SeV stimulation in the presence or absence of 2-DG. Statistical analysis performed using 
Ordinary one-way ANOVA with Tukey’s correction or Two-way ANOVA with Bonferroni’s correction where appropriate.
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a boost in protein translation concomitant with an increased 
dependency on glycolysis. Furthermore, we demonstrate for 
the first time, that obesity impairs this antiviral response to 
SeV in GM-DCs as demonstrated by reduced induction of 
key pro-inflammatory and antiviral mediators. Finally, we 
report that this impairment in antiviral responses is associ-
ated with an impairment in protein synthesis. Collectively our 
data demonstrate that SeV can induce a robust antiviral re-
sponse in GM-DCs which is reliant on cellular metabolism 
and increased protein translation. Furthermore, we demon-
strate that obesity impairs this response.

The transcriptional programming of GM-DCs following 
SeV stimulation has not been previously investigated. We re-
port that SeV stimulation of GM-DCs results in the tran-
scriptional remodelling of processes spanning from immune 
signalling, antigen processing to metabolic processes, with 
a particular emphasis on genes involved in the antiviral re-
sponse. This agrees with previously published studies in 
which SeV stimulation has been shown to induce an anti-
viral response in GM-DCs characterized by increased type I 
IFN and pro-inflammatory cytokine secretion and increased 
co-stimulatory marker expression (CD80 and CD86) [42]. In 
order for an antiviral response to be initiated, SeV must be 
detected on the cell either by cytosolic pattern recognition 
receptors, such as RIG-I [43] and MDA-5 [29]. In agreement 
with this, our transcriptomic analysis identified an increase 
in expression in the viral sensors Ddx58 (RIG-I) and Ifih1 
(MDA-5) following infection. Importantly, these viral ge-
nomic sensors activate several diverse pathways, culminating 
in increased gene expression and the development of a ro-
bust antiviral response. We confirmed that SeV infection in-
duced NF-κB activation in GM-DCs which is in agreement 
with previous studies [42]. Furthermore, our transcriptomic 
analysis revealed that multiple genes involved in GM-DC ac-
tivation and maturation such as co-stimulatory molecules 
(Cd40), cytokines (Il6/Il27), and chemokines (Cxcl9/Cxcl10/
Cxcl11) were all upregulated in response to SeV infection. 
Further evidence is that DCs are capable of generating a 
robust antiviral response to SeV infection. Transcriptomic 
analysis of DCs from people infected with SARS-CoV-2 
also displays alterations in the expression of co-stimulatory 
(CD40/CD80/CD86) and maturation (CD83) markers and 
MHC class II molecules [44]. Moreover, as cytokine produc-
tion is a key DC effector function, we validated our RNAseq 
data by measuring the expression and production of various 
antiviral (Ifnb1/IFNβ) and pro-inflammatory cytokines (Tnf/
TNFα and Il6/IL-6) by real-time PCR and ELISAs. Increased 
mRNA expression gave rise to increased protein produc-
tion of these key cytokines, production of these cytokines 
following SeV stimulation has previously been shown [25]. 
Taken together, we can report that SeV induces a robust tran-
scriptional change in GM-DCs, resulting in a potent antiviral 
response.

Reprogramming of DC metabolism is required for DC 
fate and function. Due to the rarity of conventional DCs, 
GM-DCs have largely been used to study DC metabolism 
[45, 46]. We sought to determine the metabolic requirements 
during viral infection with SeV, compared to the more com-
monly used TLR agonist, LPS. While the effect of LPS stim-
ulation on GM-DC function and subsequent metabolism 
has been extensively studied, the role of SeV infection on 
GM-DC metabolism is entirely unknown. We report that ac-
tivation of DCs by SeV causes a significant increase in protein 

translation, an established surrogate marker of cellular me-
tabolism [28]. Using various inhibitors of glycolysis and ox-
idative phosphorylation—the two main energy pathways in 
the cell—we investigated the potential role these pathways 
may play in GM-DC response to SeV. We report that inhibi-
tion of glycolysis (confirmed with the two inhibitors, 2-DG 
and heptelidic acid) caused a significant decrease in cytokine 
mRNA expression and protein translation, demonstrating a 
key role of glycolysis for effective antiviral responses to SeV. 
Viruses can target metabolic pathways at different stages, 
reviewed by Girdhar et al. [47]. Influenza-infected DCs sig-
nificantly increased glycolysis; however, pyruvate, glutamine, 
and free fatty acids were also shown to play a role in effec-
tive DC function during influenza A infection [48]. However, 
OxPhos inhibition did not significantly affect cytokine 
mRNA expression or indeed protein production suggesting 
that the initial antiviral response to SeV in GM-DCs is more 
reliant on glycolysis. Previous studies in DC metabolism have 
reported what is known as a metabolic ‘switch’ in which 
cells downregulate one metabolic pathway in preference for 
another (usually OxPhos and glycolysis, respectively) [49]. 
Indeed, Everts et al. [34] observed a decrease in OxPhos fol-
lowing LPS stimulation of GM-DCs. We suggest that while 
LPS stimulation of DCs results in a metabolic switch from 
OxPhos to glycolysis, this may not be representative of what 
occurs following a viral infection such as SeV, a similar ob-
servation was demonstrated in influenza A-infected DCs 
[48]. In support of this, we demonstrate that SeV- or LPS-
stimulated GM-DCs exhibited contrasting metabolic depen-
dencies and capacities. LPS-stimulated GM-DCs had reduced 
mitochondrial dependence and increased glycolytic ca-
pacity compared to untreated GM-DCs, as opposed to SeV-
stimulated GM-DCs, where no differences were observed. 
Conventional DC subsets, derived from Flt3L-cultured DCs 
(FL-DCs), treated with LPS also displayed a decrease in mito-
chondrial dependency and an increase in glycolytic capacity 
[28], correlating with our current observation in GM-DCs, 
likely due to the long-term commitment towards glycol-
ysis following LPS treatment of GM-DCs. Further work is 
required to understand the complexities of SeV metabolic 
dependencies and capacities which appear unique to those 
observed following bacterial ligand infection. While our 
study is the first to examine the immunometabolic response 
of DCs to SeV, previous studies have aimed to explore what 
metabolic adaptations are induced in DCs following viral in-
fection. Specifically, Rezinciuc et al. [48] compared influenza 
A virus stimulation to other TLR ligands and demonstrated 
differences in GM-DCs metabolic responses, where the gly-
colytic switch was not observed, influenza A-infected DCs 
still significantly increased glycolysis but the decrease in ox-
ygen consumption rate (OCR) did not occur, unlike with 
other TLR ligands (R848/LPS) where the expected OCR 
decrease was observed. Following the discovery that SeV-
mediated immune responses are mediated via glycolysis, 
we next aimed to determine how these metabolic pathways 
could be impacted by obesity.

We previously observed decreased circulating DCs 
in PWO, along with defective cytokine production and 
decreased maturation marker expression following LPS 
stimulation [19]. Based on this observation and our knowl-
edge of obesity-induced alterations in the metabolism of 
other immune cells [10, 22], we hypothesized that obesity 
may result in alterations in DC metabolism which in turn, 
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affects DC function. We first investigated if obesity altered 
GM-DC response to SeV using a 16-week diet-induced 
model of obesity. SeV was used as a stimulant in vitro, the 
effects of SeV in vivo on DCs within the periphery is an av-
enue worth exploring to determine how obesity affects the 
viral and metabolic responses of conventional DCs (cDCs), 
especially within metabolic tissues. Notably, we observed a 
significant decrease in cytokine production, IL-6, and IFNβ, 
key cytokines required for T-cell polarization and antiviral 
responses, respectively, in GM-DCs derived from mice fed a 
HFD. Obesity has been shown to impact murine dendritic 
cells (DCs) differently based on their localization. A study 
by van der Zande et al. [50] recently demonstrated that obe-
sity promoted DC activation and maturation in murine ad-
ipose tissue and liver which correlated with perturbations 
in downstream T helper cell populations, for example, an 
observed increase in Th1 cells in adipose tissue and liver. 
Chen et al. [21] also found an increase in splenic DCs of 
HFD mice but these DCs displayed defective antigen presen-
tation capacity. Cha et al. [51] demonstrated reduced Il12, 
Cd40, and Cd83 expression in HFD GM-DCs compared to 
controls. Our study further shows that obesity can result in 
further dysfunction in DCs, especially during a viral infec-
tion, and hints at dysfunction upstream. The impact of obe-
sity on the bone marrow compartment and haematopoiesis 
warrants further research.

Importantly, HFD GM-DCs have significantly decreased 
protein translation compared to SD GM-DCs in untreated, 
LPS- and SeV-stimulated conditions. Approximately half of 
the generated cellular energy is directed towards protein syn-
thesis; hence further work is required to determine whether 
the effect of obesity we observed is caused by an energy 
deficit or dysfunctional protein synthesis. There were no 
differences in the metabolic dependencies and capacities of 
SD and HFD GM-DCs. We also normalized cytokine levels 
to their respective sample, in the presence of 2-DG, and there 
were largely no differences between SD and HFD GM-DCs 
(except TNFα). Altogether, the HFD GM-DCs use the same 
pathways for SeV and LPS responses and glycolysis inhibi-
tion affected cytokine production to the same extent. TNFα 
levels were quite low for both SD and HFD and glycolysis 
inhibition yielded even lower levels, which may have caused 
varied measurements for the two groups. Additionally, we 
demonstrate these changes in protein production are not due 
to PRR signalling, a trending decrease in NF-κB signalling 
is detected in HFD GM-DCs but did not yield statistical 
significance. A decrease in NF-κB transcription levels from 
poly(I:C)-activated PBMCs of PWO has been observed, 
and these same cells displayed decreased IFNα, IFNβ, and 
IL-6 production, compared to controls [52]. Whether other 
signalling pathways or the rates of metabolic processes 
within GM-DCs in HFD mice are dysfunctional warrants 
further investigation.

HFD splenic DCs had an impaired ability to induce IFNγ 
production by CD8+ T cells [53], and recently, HFD splenic 
DCs were also shown to have a reduced antigen stimulatory 
capacity [21]. Taken together, including the data presented 
in this study, it is clear that DIO may cause a dysfunctional 
phenotype in murine DCs. GM-DCs are ontogenically dif-
ferent from cDCs and are cultured in vitro, hence GM-DCs 
do not reflect potential effects of obesity on cDCs in physio-
logical conditions. However, we observe that DCs generated 
from bone marrow precursors of HFD mice retain their 

dysfunctional phenotype after 10 days of in vitro culture, 
demonstrated via reduced rates of protein synthesis, in-
cluding diminished levels of antiviral and pro-inflammatory 
cytokines. The potential epigenetic wiring resulting in defec-
tive DC function serves as a potential mechanism of how obe-
sity increases host susceptibility to infection.

Supplementary data
Supplementary data is available at Discovery Immunology 
online.
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