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Temporal lobe epileptic seizures are one of the most common and well-characterized types of epilepsies. The cur-
rent knowledge on the pathology of temporal lobe epilepsy relies strongly on studies of epileptogenesis caused
by experimentally induced status epilepticus (SE). Although several temporal lobe structures have been impli-
cated in the epileptogenic process, the hippocampal formation is the temporal lobe structure studied in the
greatest amount and detail. However, studies in human patients and animal models of temporal lobe epilepsy in-
dicate that the amygdaloid complex can be also an important seizure generator, and several pathological pro-
cesses have been shown in the amygdala during epileptogenesis.

Therefore, in the present review, we systematically selected, organized, described, and analyzed the current
knowledge on anatomopathological data associated with the amygdaloid complex during SE-induced
epileptogenesis. Amygdaloid complex participation in the epileptogenic process is evidenced, among others,
by alterations in energy metabolism, circulatory, and fluid regulation, neurotransmission, immediate early
genes expression, tissue damage, cell suffering, inflammation, and neuroprotection. We conclude that major ef-
forts should be made in order to include the amygdaloid complex as an important target area for evaluation in
future research on SE-induced epileptogenesis.

This article is part of the Special Issue “NEWroscience 2018”.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Epilepsy is one of the most common neurological conditions in the
world, affecting all ages, ethnicities, and social classes, imposing a
major burden in psychological, physical, social, and economic areas
[1-3]. Worldwide, it is estimated that about 85 million people live
with epilepsy, and its annual incidence reaches 61.4 per 100,000 inhab-
itants [4].

Epileptic seizures are transitory electrophysiological events charac-
terized by synchronous and excessive neuronal activity in the brain
[5]. They are accompanied by abnormal, subtle, and transitory alter-
ations of consciousness and/or motor, sensitive, autonomic, or psychic
symptoms, perceived by the patient or an observer [6]. The process by
which pathological alterations gradually occur in the brain, leading a
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previously normal neural network to evolve to an epileptic one is re-
ferred to as epileptogenesis [7-9]. Temporal lobe structures, such as
the hippocampus, the amygdaloid complex, and the pyriform cortex,
when lesioned, are some of the most susceptible regions to the mal-
adaptive epileptogenic plasticity [7,10].

The epileptogenic process is studied preclinically mostly utilizing ro-
dents as subjects, divided in two groups of experimental models [11-
14]. In the now classical kindling model, repeated subthreshold electri-
cal stimuli result in progressive behavioral and electrographic (electro-
encephalogram (EEG)) epileptiform response, leading to the consistent
occurrence of stimulus-induced generalized seizures [8,13,15,16].
Epileptogenesis can also be induced in animals that are submitted to
status epilepticus (SE), an abnormally prolonged seizure that occurs
after a single insult [10,13,17-19]. Convulsive SE can endure several
hours, depending on the chosen post-SE treatment protocol and SE re-
fractoriness to medication [14,19]. SE is followed by a latent period,
when several neuroplastic alterations occur in the brain while no
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seizures are observed [10,13]. In animal models, one to two weeks after
SE, the chronic stage starts, characterized by the presence of spontane-
ous recurrent seizures [10,13].

A great number of studies using animal models of SE focus on path-
ological alterations in the hippocampus as the main area involved in
epileptogenesis [20-22]. Nonetheless, many other studies implicate
the amygdaloid complex in seizure generation, seizure activity, and
epileptogenesis [15,23-29]. For example, inflammatory processes re-
lated to seizures evolve jointly or even faster in the amygdala, when
compared with the hippocampus [30,31]. Furthermore, electrode im-
plantation in the amygdala alone increases epileptogenesis [32].
Interictal epileptic discharges tend to be initiated in the amygdala or
in the nearby cortical areas, such as the piriform cortex [23,24,33,34].
Additionally, in most of the cases, patients with epilepsy submitted to
surgical ablation of the temporal lobe can only obtain full control of sei-
zures if the amygdala is also resected [35]. Occasionally, removal of only
the amygdala is enough to decrease seizures [36].

The amygdaloid complex modulates cognitive functions and plays a
central role in the processing of emotional memories, emotionally
driven behaviors, and mood/affective perturbations [37]. Furthermore,
it presents rich network connections with other temporal lobe struc-
tures [38]. Consequently, the epilepsies involving this area are impor-
tant not only for their role in specific kinds of seizures but also in the
expression of psychiatric comorbidities that are associated with this dis-
ease [39].

The amygdala participation and importance in temporal lobe epi-
lepsy and its comorbidities have been reviewed, most recently with
focus on emotional disturbances, electrophysiological phenomena,
computational network analysis, and pathophysiology [40-43]. Con-
versely, there has been no recent structured and comprehensive review
on amygdala pathology in animal models of SE. We believe that the
summarized data from the literature allow an increased perception on
the amygdala participation in epileptogenesis, providing opportunities
to formulate new hypothesis, discuss about diverging and convergent
views, and draw new perspectives and insights.

2. Methods

A search in PubMed Medline® database was performed using the
following terms, without any date restriction: (“status
epilepticus”[MeSH Terms] OR “status epilepticus”[All Fields]) AND
(“amygdala”[MeSH Terms] OR “amygdala”[All Fields] OR “amygdaloid
complex”[All Fields]) AND (“pilocarpine”[MeSH Terms] OR
“pilocarpine”[All Fields]) OR (“kainic acid”[MeSH Terms] OR “kainic
acid”[All Fields]) OR (“electric stimulation”[MeSH Terms] OR “electric
stimulation”[All Fields] OR “electrical stimulation”[All Fields]) AND
(“rats”"[MeSH Terms] OR “rats”[All Fields] OR “rat”[All Fields]).

Only articles written in English that used young adult and/or adult
male rats with SE induced by electrical or chemical stimulation were
used. The articles should describe amygdala alterations during or conse-
quent to SE. Publications based on protocols that induced direct me-
chanical, chemical, or electrical damage to the amygdala were
excluded. Other criteria for exclusion were lack of appropriate controls
for the purpose of this review (sham/vehicle-treated animals), inclusion
of areas adjacent to the amygdala in evaluations, and diverging data/
conditions described. Some types of articles were not included: review
articles, articles that were based on human studies only, those that did
not use rats or used only modified rat strains, and those that did not
show anatomopathological or related findings. Additionally, female
(young and adult) and young (male and female) rats were not included,
given that such animals have specific modifying factors to be consid-
ered, such as hormonal cycle influences and central nervous system de-
velopmental processes [44-49]. Subsequent searches were performed
in order to verify the addition of new publications between the first
list of publications and the finalization of this review (last search date
was June, 2019).

Research papers were selected or excluded based on three phases. In
the first phase, we excluded only those articles that could be ruled out
undoubtedly by their Abstracts. If any uncertainty remained, the article
was left to the second phase. In this phase, all articles that remained
were read entirely, and the decision was taken for their maintenance
or not in the review. Two authors (CQT and LRF) evaluated all Abstracts
(first phase) and papers (second phase) and decided if they would be
included in the current review. In the third phase, all the relevant infor-
mation was collected: age and strain of the rats, method for SE induction
and termination, duration of SE, and main anatomopathological results
presented.

3. Results
3.1. Publications included in the review: general characterization

The sequence of procedures for the selection process of the articles
to be included in this study is presented in Fig. 1. The oldest article
found in the search was from 1975. The total number of articles
screened was 243. One hundred and two (102) did not reach inclusion
criteria during the first phase (screening by Title and Abstract reading),
leaving 141 to be completely read. We did not obtain access to 2 articles,
so they were excluded as well. After complete reading, another 74 arti-
cles were excluded from this review. Therefore, in total, 178 articles
were excluded from the review, and 65 articles were considered ade-
quate for our study. All references in the final search are divided in 2 ta-
bles: Table 1, with the articles included in the review and their main
data, and the Supplemental Table, where the articles excluded from
the review are listed with the reason for their exclusion.

Articles included in the review were published between 1983 and
2018. The majority of them presented data from SE induced by systemic
injections of pilocarpine or kainic acid (55 publications). SE could also
be induced systemically by soman or MK-801 followed by pilocarpine
injections, or locally by kainic acid or carbachol injections, or by electri-
cal stimulation of limbic areas outside the amygdaloid complex. We
classified each data according to the following categories: energy me-
tabolism-, neuroprotection-, circulatory and fluid regulation-, neuro-
transmission-, immediate early genes-, tissue damage-, inflammation-,
plasticity-, and cell suffering-related data. Using the classified data
from Table 1, it was possible to create a timeline or kinetics with the
main anatomopathological processes identified in the amygdaloid com-
plex after SE in young adult and adult male rats (Fig. 2).

3.2. Current literature on amygdaloid complex anatomopathological pro-
cesses after SE: detailed description

Brain regional metabolism quantification during seizures and
interictal periods can be used to identify the nervous system structures
responsible for the generation, maintenance, propagation, and control
of the epileptic activity [112,113]. Once SE is initiated, the first alter-
ations observed in the amygdala are metabolic. There is an immediate
(3 min) increase, followed by a decrease (15-120 min), in brain perfu-
sion rate (BPR) and in the apparent diffusion coefficient (ADC) signal
[62-64]. Regardless of the behavioral and electrographic differences in
SE observed between animals [28,29], those initial alterations are ac-
companied by an increase in local glucose uptake [28,29,84,97,110].
High-energy phosphates (adenosine triphosphate, phosphocreatine)
are reduced in about 50% 1-2 h after SE onset [69,70], suggesting that
the increased glucose uptake is not sufficient to provide the amount of
energy demanded by the amygdala during SE. Blood-brain barrier leak
starts, especially in the medial amygdaloid nucleus [80]. Subsequently,
at 24 h after SE, vascular endothelial growth factor (VEGF) is increased
[87], possibly as an attempt to compensate the increased demand for en-
ergy. In fact, 14 days after SE, the blood vessel density is increased in the
amygdala [73]. On the other hand, during the first 2 h of SE, morphology
shown by magnetic resonance images (MRI) is normal, neuronal
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Fig. 1. Flowchart of the articles' selection process.

survival is maintained, and most cell damage and inflammation markers
are sparsely or not observed [62,67,79,85,86,92,96,103,108].

The genomic reprogramming in response to the damage caused by
SE includes the expression of hundreds of genes, and this is coincident
with the distribution map of Fos protein expression [60,84]. Fos is one
of the most reported immediate early genes that are expressed after
an epileptic seizure, activated because of excessive neuronal activity
[114-116]. Immediate early genes start to appear 2 h after SE onset
(and after SE termination, depending on the study), in several amygda-
loid nuclei [52,60,74,84,90]. Fos and Fos B proteins are expressed in su-
perposing time points after SE. Fos-positive strongest immunoreactions
are observed 2-4 h after SE, while Fos B protein expression peak occurs
up to 2 days later [90]. Nonetheless, they can be both observed concom-
itantly between 2 and 24 h after SE in the medial amygdaloid nucleus
after SE [60,90]. Other immediate early genes-positive (jun D proto-on-
cogene and c-jun) neurons are increased as well [59,60]. All the above
phenomena are described in the first minutes to hours after SE, indicat-
ing a great amount of activity in the amygdala and related areas. Con-
versely, one study showed that there are no alterations in dopamine
and catecholamine metabolites' levels in the amygdala 30 min after SE
onset [50]. Glucose uptake remains increased for several hours as com-
pared with the baseline [28,98,99]. However, the high-energy phos-
phates are maintained in lower levels in the amygdala up to 3 days
after SE [70].

Several studies have also shown that the later appearance of neuro-
nal lesions in the amygdala can be directly associated with local hyper-
metabolism and increased T2-weighted signal intensity in the MRI
during the first minutes to hours after SE onset [28,61,65,92,96]. Corre-
spondingly, as early as 2.5 h after SE induced by pilocarpine (but not by
kainic acid), some silver-impregnated neurons are seen in the amygdala
[56]. On the other hand, inflammatory process markers and gliosis were
not seen before 4-12 h after SE [79,81,86,92,103,111]. Epileptic seizures
can increase the expression of inflammatory mediators in the brain re-
gions involved in the generation and in the propagation of epileptic ac-
tivity [117-120].

Neuronal damage is evident in the amygdala starting 4 h and
peaking 12-48 h after SE [56,57,108,111,74,75,79,81,86,92,94,100].
Markers of inflammation and oxidative stress such as histamine, cas-
pase 3, and cytochrome c oxidase activity present a similar pattern
[81,86,94,108,111]. In addition, microglia activation, gliosis, and tissue
edema are also observed [56,57,75,86,92].

An increase in citrulline, a determinant of nitric oxide presence in
the tissue, is observed in the amygdala at this time [70]. Accordingly,

cyclooxygenase-2, an enzyme that may be induced by nitric oxide,
start to rise in several amygdaloid nuclei as well: lateral, basolateral,
basomedial, and cortical [74]. In the lateral nucleus of the amygdala,
there is an increase in the number of neurons immunoreactive to the
proapoptotic B-cell lymphoma 2-associated X (Bax) protein, while no
alterations are observed for the antiapoptotic protein B-cell lymphoma
2 (Bcl2) [103]. The underlying damage process in the amygdala also
starts to be more evident about 12-24 h after SE in MRI studies. This is
observed by an initial decrease in T2-weighted signal, with peak at
24-72 h after SE [61,65,92,95,96,101,105].

While peaks in neuronal damage occur between 8 and 48 h after SE,
the degenerating process is progressive and lasts several weeks to months
in the amygdala. The degeneration is shown through the observation of
pyknotic neurons, FluoroJade-positive neurons [121,122], and neurons
with deoxyribonucleic acid fragmentation [56,71,86,93,103,104,108].
Likewise, the amygdaloid complex showed reduced cell counts using
thionin or immunohistochemistry for neuronal markers such as the
neuronal nuclei protein Neu-N, microtubule-associated protein 2
(MAP2), and glutamic acid decarboxylase (GAD) [17,54,67,68,71,75~
79,81,86,56,92,93,96,99,102-104,106,108,109,58,59,61,62,64-66]. Some
amygdaloid nuclei such as the lateral, basal, medial, and cortical, are
more prone to damage than others, for example, the dorsal lateral and
the central amygdaloid nuclei [58,71,92,103,104].

Two to three weeks after SE, positive silver staining or argyrophilic
neurons, known to be neurons in distress, are present in the amygdala
[71,93,104]. Concomitantly, cell reorganization with synaptic plasticity
are also part of the observed consequences to SE in the amygdala.
Newly generated cells are detected and are later (42 days after SE) ob-
served with neuronal or glial phenotypes [75]. Interestingly, such cells
do not migrate from other areas but are generated locally [75]. Addition-
ally, during this same time range, the metabotropic glutamate receptor
mGIuR5 availability and zinc-containing fibers (Timm staining) are not
altered or reduced [53,55,89]. Likewise, histamine receptors H1 and H3
binding and messenger ribonucleic acid (mRNA) expression decrease
[81]. On the other hand, other molecules are increased, such as hista-
mine and histamine-reactive fibers, the gamma-aminobutyric acid
(GABA) transporters GAT-1 and GAT-3, neuropeptide Y immunoreac-
tive neurons, mu-opioid receptors binding, microtubule-associated pro-
tein-2 (MAP2), stromal-derived factor 1 alpha (SDF-1 alpha), and
synaptophysin [72,75,81,83,89,91,100]. The SDF-1 alpha and
synaptophysin hyperregulation suggests cell synthesis, migration, and
synaptic remodeling in the amygdaloid complex circuitry [72,123]. Fur-
thermore, the increased expression of GAT-1 and GAT-3 suggests a
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Table 1
Publications included in the review and main data collected (total 65).
Authors SE induction method; SE duration Data
Alam and Starr, 1996 [50] Systemic lithium + pilocarpine or M 30 min after self-sustained SE started: no alteration in dopamine, DOPAC (dopamine
intrahippocampal carbachol; 30 min metabolite) and HVA (catecholamine metabolite) levels (HPLC).
Atanasova et al., 2018 Systemic kainic acid; at least 3 h M 5 months: reduced angiotensin Il receptor (type 1; AT1) expression at the temporal part
[51] of the basolateral amygdala.
Barone et al., 1993 [52] Systemic pilocarpine; 2-4 h M 2-4 h: positive Fos staining, especially in the basolateral nucleus
Cavarsan et al., 2012 [53]  Systemic methyl-scopolamine + pilocarpine; W2 and 8 h, 1 and 7 days: increased homer1a with peak at 24 h; mGluRS5 not different from
90-150 min control
Chen and Buckmaster, Systemic kainic acid; at least 4 h B 7-12 months after SE: reduced amygdaloid complex volume, especially posterior
2005 [54] portions
Choi et al., 2014 [55] Systemic lithium + methyl-scopolamine + M 24 h and 7 days after SE: mGluR5 availability is reduced, peak at 7 days (measured by
pilocarpine; at least 1 h [11C]ABP688 positron emission tomography tracer)
W 4 weeks after SE: mGIuR5 binding potential back to control levels
Covolan and Mello, 2000  Systemic methyl-scopolamine + pilocarpine or M 2.5 h: some silver-impregnated neurons are seen in the amygdala of pilocarpine-injected
[56] kainic acid; at least 90 min animals but not KA-injected animals.

M 8 h: peak of silver-impregnated neurons in several amygdaloid nuclei (basolateral,
anterior, basomedial, central, cortical, lateral), in both models;
MW 8-48 h: edema, with peak at 24 h, especially in the cortical nucleus

Dedeurwaerdere et al., Systemic kainic acid; at least 4 h M 7 days after SE: translocator protein and OX42 (markers of activated microglia) increased
2012 [57] in the amygdala, higher in more severe SE.

Dos Santos et al., 2005 Systemic methyl-scopolamine + pilocarpine; at B About 60 days after SE: reduced volume of the central amygdaloid nucleus; no reduction
[58] least 90 min in the lateral and basolateral nuclei; Sprouting (NeoTimm staining) reduced in the central

amygdaloid nucleus and not altered in the lateral and basolateral amygdaloid nuclei

Dragunow et al., 1993 Dorsal hippocampus electrical stimulation or M 24 h: c-jun mRNA and protein expressed in the amygdala
[59] MK801 + pilocarpine; “many hours” M 6 days: cell loss in the amygdala

Dube et al., 1998 [60] Systemic lithium + methyl-scopolamine + M 2 and 24 h after SE: high Fos staining (“early” and “late” waves, respectively)

pilocarpine; at least 2 h M 6 h after SE: high density of silver-stained neurons;

M 24 h after SE: Jun-D moderately induced, low to moderate levels of HSP70;
M 2 days after SE: no Fos was observed in the amygdala

Ebisu et al., 1994 [61] Systemic kainic acid; 4-8 h M 3 days: reduced levels of n-acetyl-aspartate (MRI), high T2 signal intensity and high
degree of cell loss; there was correlation between the parameters.
Engelhorn et al., 2005 Systemic methyl-scopolamine + pilocarpine; up to M 3 min after SE onset: brain perfusion rate increased (129 4+ 16%);
[62] 8h M 15, 30, 60, and 120 min after SE onset: brain perfusion rate reduced (maximal at 60 min,

62% from baseline);
M 0.5 and 2 h after SE onset: no difference in surviving neurons
M 24 h, 1, and 2 weeks: progressively reduced percentage of surviving neurons in the
amygdala, 66, 54, and 38%, respectively.
Engelhorn, Hufnagel, et Systemic methyl-scopolamine + pilocarpine; SE M3, 5,10, 15, 20, 30, 45, 60, 90, and 120 min apparent diffusion coefficient: peak increase at
al,, 2007 [63] duration not informed 3 min after seizure onset and reduced from 15 to 120 min (peak 30-90 min); no differences
were observed 5 and 10 min after seizure onset.
W 05,2 h, 1, 7, 14 days: progressively reduced surviving neurons from 1 day to 14 days,
reaching 38% from control (62% reduction).
Engelhorn, Weise, et al,  Systemic methyl-scopolamine + pilocarpine; up to M 3 min after seizure onset: increased apparent diffusion coefficient;
2007 [64] 8h M 30, 60, 90, and 120 min after seizure onset: reduced apparent diffusion coefficient;
W 5, 10, and 15 min after seizure onset: no alterations in apparent diffusion coefficient;
M 2 weeks after SE: 38% surviving cells in the amygdala

Fabene et al., 2003 [65] Systemic methyl-scopolamine + pilocarpine; at W 12 h after SE: reduction of apparent diffusion coefficient (61%); increased T2-weighted
least 4 h MRI (22%); “numerous” FluoroJade B-positive neurons in the amygdala.
Figueiredo et al., 2011 Systemic hydroxyiminomethyl-pyridinium + M 1 and 7 days after SE: basolateral amygdala evaluated; 64% neuronal survival, score
[66] soman + atropine; about 10 h moderate for neurodegeneration (FluoroJade C staining); GABAergic neurons (GAD67) were

not different at 1 day after SE but were reduced at 7 days after SE, in the same proportion of
general neuronal loss.

Francois et al,, 2011 [67]  Systemic lithium + methyl-scopolamine + MW 0.5, 3, 8, and 24 h: FluoroJade B staining progressively increased with statistical
pilocarpine; SE duration not informed significance at 24 h.
M 14 days: basolateral amygdala 72% and median nucleus 38-52% neuronal loss.
Fritsch et al., 2009 [68] Systemic kainic acid; at least 3 h B 7-10 days after SE: 15% reduction in total neuron and 43% reduction in GAD67 neurons

(special vulnerability of inhibitory neurons in the amygdala); FluoroJade C-positive cells
(basolateral, medial, lateral, posterior cortical, central amygdala nuclei); increased GAD65-67
protein in the amygdala (27.1 4 7.8%); GABA4 subunit alphal also increased (157 + 19%);
glutamate receptor GluK1 reduced to 73,0 4 4,6% of control group.

Gupta and Dettbarn, Systemic kainic acid; at least 1 h M 2 h after KA injection: increased citrulline (300%); and decreased high-energy phosphates
2003 [69] (55%, adenosine triphosphate, total adenine nucleotides, nicotinamide adenine dinucleotide,
phosphocreatine, and total creatine compounds).
Gupta et al., 2000 [70] Systemic kainic acid; SE duration not informed M 1 h and 3 days: high-energy phosphates — adenosine triphosphate, total adenine

nucleotides (ATP + ADP + AMP), phosphocreatine and total creatine compounds
(phosphocreatine + creatine) - reduced in about 50%.

Halonen, Nissinen and Perforant path electrical stimulation; 40-60 min M 2 weeks after SE induction: neuronal damage observed in 15 of 18 amygdaloid areas
Pitkanen, 1999 [71] evaluated (silver staining). Especially damaged: lateral, basal, and cortical nuclei.
Hanaya, Boehm and Systemic lithium 4 methyl-scopolamine + M 1,3, 7,and 21 days after SE: increased synaptophysin expression, peak at 1 day, tending
Nehlig, 2007 [72] pilocarpine; 6-8 h back to normal, statistical significance lost at 7 days; GAP-43: reduced in all amygdala areas
(laterodorsal, basolateral, centrolateral, medial), starting at 7 days and reducing more at 21
days
Handforth and Electrical stimulation of several brain areas; 40-50 M Detailed study, based on behavior and EEG, different types of SE were suggested; 40-50
Ackermann, 1995 [29]  min min after self-sustained SE started: amygdala was involved in all patterns of SE obtained in the

experiments (4C-2DG, slice radiography).
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Authors

SE induction method; SE duration

Data

Handforth and Treiman,
1995 [28]
Hayward et al., 2010 [73]

Joseph et al., 2006 [74]

Jung et al., 2009 [75]

Kemppainen and
Pitkanen, 2004 [76]

Kemppainen, Nissinen
and Pitkanen, 2006 [77]

Klitgaard et al., 2002 [78]

Lehtimaki et al., 2003
[79]

Leroy et al., 2003 [80]

Lintunen et al., 2005 [81]

Liu et al,, 2016 [82]

Lurton and Cavalheiro,
1997 [83]
Motte et al., 1998 [84]

Nakasu et al., 1993 [85]

Narkilahti et al., 2003
[86]

Nicoletti et al., 2008 [87]

Penschuck et al., 2005
[88]

Pereno and Beltramino,
2010 [89]

Pereno, Balaszczuk and
Beltramino, 2011 [90]

Systemic lithium + pilocarpine; 1-2 h

Systemic scopolamine + pilocarpine; SE duration
was not informed

Systemic dextrose + kainic acid; 4-5h

Systemic lithium + methyl-scopolamine +
pilocarpine; at least 1 h

Systemic kainic acid; SE duration not informed

Systemic kainic acid; SE duration not informed

Systemic methyl-scopolamine + pilocarpine;
7.5-120 min

Systemic kainic acid; “several hours”

Systemic lithium + methyl-scopolamine +
pilocarpine; 6-12 h

Systemic kainic acid; at least 5 h

Systemic kainic acid; at least 4 h

Systemic methyl-scopolamine + pilocarpine; 5-24

h
Systemic lithium + pilocarpine; up to 10 h

Systemic kainic acid; at least 1 h

Systemic kainic acid; 6-12 h

Systemic atropine methylbromide + pilocarpine; 1

Ventral hippocampus electrical stimulation; at least

2h
Systemic kainic acid; at least 3 h

Systemic kainic acid; at least 3 h

M Detailed SE study based on EEG; different stages of SE were determined; increased signal
in the amygdala in all stages evaluated ('#C-2DG, slice radiography)

M 2 and 14 days after SE: no alterations in cerebral blood volume; increased cerebral blood
flow in the amygdala at 2 (16%) and 14 (30%) days; at 14 days, 27% increase in blood vessel
density in the amygdala.

M 2, 6, 24 h: increased COX-2 in neurons at all time points, peak at 24 h (amygdala nuclei
marked: lateral, basolateral, basomedial, and posterolateral cortical);

M 2 h: Fos staining in several nuclei of the amygdala

M 14 and 42 days after SE: 33% reduction in cell number in the amygdala; increased 0X-42
(microglial activation marker), peak at 14 days; same pattern for proliferation (BrdU); at 42
days, newly generated cells were 20% neurons, 30% astrocytes, and 25% oligodendrocytes (at
42 days)

M 1, 3, and 28 d: SDF-1a prominently increased in the amygdala, mainly astrocytes.

W 6-7 weeks after SE: moderate to severe damage (medial division of the lateral nucleus,
periamygdaloid cortex, posterior cortical nucleus, lateral division of amygdalohippocampal
area); mild to moderate damage (lateral part of parvicellular division of the basal nucleus,
accessory basal nucleus, anterior cortical nucleus, other areas of periamygdaloid cortex,
medial division of amygdalohippocampal area). Reduced retrograde labeling of amygdala
neurons by tracers injected in hippocampus.

W 13-15 weeks after SE: the lateral nucleus of the amygdala was evaluated; dorsolateral
division not affected; ventrolateral and medial divisions presented positive damage score (as
compared with zero in control rats) and volume reduction of up to 23% from control.

M 21 days after SE: all animals with 90 min or longer SE duration presented necrosis in the
amygdala; 3/9 and 9/17 animals presented necrosis in the amygdala after 7.5- and 15-min SE
duration, respectively.

W 1 and 3 h after SE onset: no difference in IL-6 or glycoprotein 130 (GP130) expression
relative to control.

M 6 and 12 h after SE onset: increased IL-6 expression; GP130 expression continues at
normal levels.

W 1 and 3 d after SE onset: no difference in IL-6 or GP130 expression relative to control.

M 7 days after SE onset: no difference in IL-6 expression relative to control; GP130
hyperregulation.

W 90 min after SE onset: blood-brain barrier leak in the medial (66%), but not in the
basolateral, amygdaloid nucleus; increased cerebral blood volume (generalized);

W 2 months after SE: reduced cell count in the medial amygdaloid nucleus

M Histamine H1 receptor mRNA expression after SE: not altered at 3 and 6 h; reduced
expression levels at 12 h, 1, 2, 3, and 7 days; back to normal levels at 4 weeks, 6 months, and 1
year.

M Histamine H1 receptor binding after SE: not altered at 3, 6, and 12 h; reduced at 1, 2, 3,
and 7 days; back to normal levels at 6 months and 1 year.

M Histamine H3 receptor mRNA expression after SE: not altered at 3 and 6 h; variable at 12
h (depending on the isoform); reduced at 1, 2, and 3 days; isoforms return to normal levels
between 7 days and 4 weeks and maintain in normal levels 6-12 months.

M Histamine H3 receptor binding after SE: not altered at 3, 6, and 12 h; reduced at 1, 2, 3, 7
days, 4 weeks, 6 months, and 1 year.

M Histamine levels (HPLC): increased at 6 h, 1, 3, 7 days.

M Histamine-reactive fibers: increased at 6 h, 1, 2, 3 days, 4 weeks; back to normal levels 1
year after SE.

M 13 weeks after SE: reduced protein phosphatase 2A activity; reduced expression of its
regulatory B unity PR55; increased ratio of phosphorylated tau epitopes Ser198 and Ser262.

M 4 and 60 days after SE: increased neuropeptide Y immunoreactivity in the amygdala.

M 1 h after SE onset: 14C-2DG injected; 582% increase in local cerebral metabolic rate;

M 4 h after SE: if 2 min SE duration, moderate intensity in Fos expression; if 30-240 min SE
duration, strong Fos expression;

M 24 h after SE: HSP72 and acid fuchsin strong in the amygdala in groups with 90 min or
longer SE.

W Immediately after SE, 1 and 4 weeks after SE: no alterations in T1- and T2-weighted MRI
(visual inspection)

M 1,2, 4, and 8 h after SE onset: increased levels of caspase 3 in the amygdala. Colocalized
with both glia (higher quantity) and neurons; not with microglia.

M 16, 24, and 48 h after SE: higher increase in caspase 3 (peak at 16 h) in the lateral, basal,
and medial amygdala; not increased in the central amygdala;

M 48 h: FluoroJade B and TUNEL positive neurons increase.

M 24 h after SE: increased VEGF expression in the astroglia and neurons, particularly
striking in neurons in the amygdala

M 4 months after SE: increased number of KCNQ2-expressing neurons in the basolateral
amygdala.

W 10 days, 1, 2, 3, and 4 months after SE: medial amygdaloid nucleus evaluated; reduced
Timm staining at 10 days, gradually recovering to normal levels, completely normal at 4
months; synaptophysin peak at 10 days, returning back to normal levels at 3 months; MAP2
increased expression that was maintained during all times evaluated.

W 2, 4,12, 24, 48 h: Fos staining increased between 2 and 12 h in anterior parts, and
between 2 and 24 h in posterior parts of the medial amygdaloid nucleus; Fos B presented a
progressive increase, with peak at 48 h, but starting at 2 h in posterodorsal, 4 h in anterodorsal

(continued on next page)
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Authors

SE induction method; SE duration

Data

Perez-Cruz and Rocha,
2002 [91]
Pirttila et al., 2001 [92]

Pitkanen, Tuunanen and
Halonen, 1996 [93]

Raffo, Koning and Nehlig,
2004 [94]

Righini et al., 1994 [95]

Roch et al., 2002 [96]

Sawamura et al., 2001
[97]

Scorza et al., 2002 [98]
Silva et al., 2011 [99]

Su et al., 2015 [100]

Suleymanova, Gulyaev
and Abbasova, 2016
[101]

Tchekalarova et al., 2017
[102]

Turski et al., 1983 [17]

Tuunanen et al., 1999
[103]

Tuunanen, Halonen and
Pitkanen, 1996 [104]

van Eijsden et al.,, 2004

Systemic kainic acid; at least 2 h

Systemic kainic acid; SE duration not informed

Perforant path electrical stimulation; at least 40
min

Systemic lithium + methyl scopolamine +
pilocarpine; up to 8-10 h

Systemic kainic acid; at least 1 h

Systemic lithium + methyl scopolamine +
pilocarpine; at least 2 h

Local, unilateral kainic acid in substantia nigra pars
reticulata; at least 3 h

Systemic pilocarpine; 6 h

Systemic methyl-scopolamine + pilocarpine; at
least 4 h

Local intracerebroventricular injection of kainic
acid; 1-2h
Systemic lithium + pilocarpine; at least 2 h.

Systemic kainic acid; at least 3 h

Systemic methyl-scopolamine + pilocarpine; 5-6 h
Systemic kainic acid; at least 7 h

Systemic kainic acid or perforant path electrical
stimulation; 10-16 h and 35-55 min, respectively

Systemic lithium + methyl scopolamine +

and posteroventral, and 12 h in the anteroventral medial amygdaloid nucleus; silver
impregnation was increased in all areas from 12 to 48 h, with peak at 24 h.

M 1 and 40 days after SE: p-opioid receptors binding increased in all amygdaloid areas
evaluated (anterior, medial, basolateral, and central)

M 2 h and 4 h after SE induction: no neuronal loss.

M 8 h after SE induction: the lateral nucleus starts to present reduced cell count.

M 10 days, 4-8 weeks after SE: neuronal count less than 50% of control in the lateral nucleus

M 10 days: gliosis peak in the lateral nucleus.

M Central nucleus preserved.

B MRI correlated to damage: reduced T2-weighted signal indicates medium to severe tissue
damage.

M 14 days after SE: 25% reduction in number of somatostatin-positive neurons in the lateral
and in the basal nuclei of the amygdala; some rats with high score silver impregnation in the
lateral nucleus (4/9) and mild-moderate-severe (1 each) impregnation in the basal nucleus
(total 3/9).

M 4 h after SE: 13-16% reduced cytochrome c oxidase activity in the medial amygdala as
compared with control. No alteration in lactate dehydrogenase.

M 24 h after SE: cytochrome c oxidase activity in the medial amygdala, as compared with
control, maintains reduced, not as much as previous time. No alteration in lactate
dehydrogenase.

M 2 weeks after SE: cytochrome c oxidase back to normal levels. No alterations in lactate
dehydrogenase activity.

M3 h,1,2,3,and 9 days: T2-weighted MRI increased from 1 to 3 days in the amygdala. 1 day
after SE, reduced apparent diffusion coefficient.

M 24 h, 2, and 9 weeks after SE: progressive cell loss detected in the amygdala.

B T2-weighted MRI increased in 2 waves, one with peak at 24 h and other starting at about
3 weeks and persisting until 9 weeks. Data collected at 2, 6, 24,30 h, 2, 3, 7, 14, 21 days, and 5,
7,9 weeks

B '“C-2DG injected 2 h after kainic acid, in rats presenting self-sustained SE; tissue collected
45 min later; autoradiography showed increased local cerebral glucose uptake in the
amygdala ipsilateral to injection site.

B Increased local cerebral glucose uptake in the amygdala (about 30%)

M 4 h: highly increased local cerebral glucose uptake in the medial, basolateral, lateral
amygdala nuclei; cerebral blood flow increased in the same areas;

M 24 h, 7 days: numerous FluoroJade B-positive neurons in the basolateral amygdala (other
areas not evaluated)

M 3 days after SE induction: IL-1b, IL-6, and TNF-alpha levels increased when compared
with control; GAT-1 and GAT-3 expressions increased when compared with control.

M 2 days after SE: increased T2 relaxation time (+ 17%);

M 7 and 30 days after SE: T2 relaxation time not different from baseline;

M 2, 7, and 30 days after SE: no amygdala volume alterations were observed.

M 10 weeks after SE: severe neuronal loss basolateral amygdala.

M 1 day after SE: extensive damage to the amygdala.

M Extensive study; amygdala divided in the deep nuclei (lateral, basal, accessory basal),
superficial nuclei (medial, anterior cortical, posterior cortical, periamygdaloid cortex, nucleus
of the lateral olfactory tract, and bed nucleus of the accessory olfactory tract), and remaining
nuclei (anterior amygdaloid area, intercalated nucleus, central nucleus, and the
amygdalohippocampal area).

B TUNEL increased progressively in most areas, with the exception of the anterior
amygdaloid area (not stained) and the central nucleus (peaks at 16 and 48 h)

W Silver staining: progressive increase, with stabilization at 4 h in the central nucleus,
medial nucleus, basal nucleus; and stabilization at 16 h in the anterior amygdaloid area.

M Thionin staining showed progressive cell loss in most nuclei.

M Dorsal part of the lateral, basal, central, and medial nuclei, anterior amygdaloid area, and
bed nucleus of the accessory olfactory tract were less affected than others (as per silver and
thionin evaluations)

M Bax and Bcl2 were evaluated in the lateral and basal nuclei, with no alterations in both,
except for a peak in Bax-ir neurons in the lateral nucleus at 2 h after SE and a loss of such
neurons from 24 to 48 h.

M 2 days and 2 weeks after SE (kainic acid only, all animals presented damage), damage
score based on silver impregnation, somatostatin, and GABA stainings: detailed evaluation;
some data are as follows: virtually all nuclei from the amygdala had some degree of damage;
noticeable lateral nucleus (ventrolateral and medial), basal nucleus (parvicellular division),
accessory basal nucleus, ventral portion of the central division of the medial nucleus,
periamygdaloid cortex, amygdalohippocampal area, and posterior cortical nucleus.

M 2 weeks after SE (kainic acid), density of GABA-positive neurons: reduced to 56% in the
lateral nucleus and to 25% in the basal nucleus; somatostatin-positive neurons: reduced to
48% in the lateral nucleus and to 33% in the basal nucleus. Specially, great loss of
somatostatin-positive neurons was seen in areas apparently preserved by silver staining and
Nissl, such as intermediate and magnocellular divisions of the basal nucleus.

M 2 weeks after SE (perforant path; 4 out of 9 presented damage) was mostly preserved,
with some degree of damage in the medial division of the lateral nucleus and ventral portion
of the central division of the medial nucleus. Somatostatin-positive neurons were reduced to
76% in the lateral nucleus and to 75% in the basal nucleus.

M 3 and 5 h after SE onset: decreased T2-weighted MRI signal and apparent diffusion
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Table 1 (continued)

Authors SE induction method; SE duration Data
[105] pilocarpine; 7 h (under anesthesia) coefficient at both times.

van Vliet et al., 2014 Systemic kainic acid; at least 4 h M 1 and 6 weeks after SE: blood-brain barrier leakage in the amygdala, peak at 24 h; Control
[106] is the same animal before SE.

van Vliet et al., 2016
[107]
Weise et al., 2005 [108]

Systemic kainic acid; at least 2 h.

Systemic methyl scopolamine + pilocarpine; 6-8 h

Wolf et al., 2016 [109] Systemic lithium + methyl-scopolamine +

pilocarpine; at least 2 h
Yamada et al.,, 2009 [110]  Systemic lithium + methyl-scopolamine +
pilocarpine; 91-136 min

Yang et al., 2016 [111] Local, intracerebroventricular kainic acid injection;

M 6 weeks after SE, neuronal loss confirmed by Nissl staining and blood-brain barrier
leakage confirmed by fluorescein detection.

MW 1,4, 8 days, 3 and 6 weeks after SE: blood-brain barrier leakage (MRI) in the amygdala in
all time points. Control is the same rat before SE.

M 30 and 120 min: no alterations

W 1,7, 14 days: number of neurons reduced progressively; caspase 3 marked predominantly
in neurons, at 1 and 7 days (peak), and back to normal levels at day 14; TUNEL presented the
same pattern as caspase 3.

W 47 days after SE induction: reduced neuronal survival (Neu-N positive cells counted),
maintenance of parvalbumin-positive neurons, increased optical density parvalbumin
reading.

M 1 and 45 min after SE: local cerebral glucose uptake increased in the amygdala at 45 min,
but not at 1 min (313%).

M The same day as SE: no differences were observed for hypoxia-inducible factor 1 (HIF-1);

“at least 1-2 h”

1, 3, and 7 days after SE: HIF-1 significantly increased, peak at 3 days.

M 3 days after SE: increased proinflammatory cytokines IL-1 beta, IL-6, and TNF-alpha, and
increased caspase 3.

Abbreviations: DOPAC: 3,4-dihydroxyphenylacetic acid; HVA: homovanillic acid; HPLC: high-performance liquid chromatography; KA: kainic acid; ATP: Adenosine-5'-triphosphate; ADP:
adenosine diphosphate; AMP: adenosine monophosphate; TUNEL: terminal deoxynucleotidy! transferase dUTP nick end labeling (dUTP = deoxyuridine 5-triphosphate).

higher receptor recycling process [100]. The synaptic reorganization in
the amygdala neuronal terminals is also evidenced 7-10 days after SE.
In this time range, glutamatergic receptors such as kainate type 1
(GLUK1) are reduced [68], while levels of GAD65/67 isoforms [68],
and of cytokine receptor GP130 [79], are increased.

The progressive loss of amygdala neurons and of amygdala volume,
as mentioned before, starts hours after SE and reaches maximal inten-
sity months later, with profound modifications been reported
[54,58,77,78,80,89,90,92,96,102,104,108,59,109,62-64,67,71,75,76].
Among the lost neurons, there is a preferential reduction of GABAergic
neurons immunoreactive to somatostatin, but GABAergic neurons in
general are lost in the same proportion as the total population
[66,68,93,104]. Still in the long-term, blood-brain barrier integrity is
compromised in the amygdala [106,107]. Additionally, blood vessel
density is increased [73], and eventual alterations in T2-weighted signal
are observed [96]. Four to six months after SE, the amygdala presents in-
creased number of neurons expressing the member 2 of the subfamily Q
(KCNQ2) voltage-gated potassium channels [88]. In addition, protein
phosphatase 2A activity and its regulatory B unity PR55 are reduced,
with concomitant increase in phosphorylated tau epitopes [82]. Fur-
thermore, angiotensin Il receptor type 1 is reduced [51]. Gliosis is still
observed [124], but microglia marked by 0X42 [75] and histamine re-
ceptor H1 [81] return to normal levels. Lastly, the H3 receptors stay re-
duced up to one year after SE [81].

4. Discussion and concluding remarks

Epilepsy and epileptogenesis are emergent properties of complex
systems made of multifactorial phenomena [7,125,126]. They can in-
volve different brain areas and occur because of genetic and develop-
mental factors, or they can develop after diverse brain insults,
stimulations, injuries, and infections [127-129]. A great number of ani-
mal models have been developed, allowing for the better understanding
of epilepsy, the discovery of new and better treatments, and the elucida-
tion of morphological and molecular mechanisms underlying seizures
and epileptogenesis [13,130-135]. Despite the above statements, a sig-
nificant parcel of the patients with temporal lobe epilepsy remains
pharmacoresistant [136-138].

In the current study, we aimed to organize the data on the participa-
tion of the amygdaloid complex as a whole and its nuclei in
epileptogenesis, considering histopathological, morphological, and im-
aging techniques. We were able to classify several alterations in the

amygdala during and after SE: energy metabolism, neuroprotection, cir-
culatory and fluid regulation, neurotransmission, immediate early
genes, tissue damage, inflammation, plasticity, and cell suffering. It is
important to note that any conclusions are hindered by the lack of de-
tails in most results descriptions (amygdaloid complex's several nuclei
become simply “amygdala” or “amygdaloid complex”), great variability
in protocols for SE induction and duration, and animal's age and strain.
Besides, there is concentration of results in some time points after SE.
For example, there is a great amount of data 2 h and 24 h after SE,
while much less is known about the other time points. Additionally,
nonexpected alterations were scarcely investigated. For example, if
Pereno and collaborators [90] did not immunostain Fos and Fos B in ma-
terials that were not produced specifically to the optimal time range of
those molecules' expression (Fos peaks at 2-4 h after SE and Fos B peaks
at 48 h after SE), it would not be possible to know that both can be ob-
served 24 h after SE in the medial amygdaloid nucleus. Thus, in general,
there is little negative data and even less unexpected data been gener-
ated in epilepsy research.

As can be seen in Fig. 2 of the current review, several alterations are
observed in the amygdaloid complex during and after SE induction in
young adult and adult rats. For example, among all the categories classi-
fied in our review, there is strong evidence for plastic changes that lead
to altered circuitry and functionality in the amygdala. The neurotrans-
mission systems involved with the activation, propagation, and/or
maintenance of epileptic seizures are complex and relate to regulatory
processes of excitation and inhibition in several brain areas [139]. SE
physiopathology involves a failure in the mechanisms that normally
prevent the occurrence of an isolated epileptic seizure; caused by exces-
sive excitation and/or inefficient inhibition [ 140-142]. The plastic man-
ifestations in the adult CNS are characterized by dendritic alterations,
synaptic restructuring, axonal outgrowth, dendritic reorganization, syn-
aptogenesis, and neurogenesis [143-146], all those observed in the
amygdala. It is suggested that spontaneous recurrent seizures in tempo-
ral lobe epilepsy models result from this excessive, dysfunctional plas-
ticity, leading to pathological expressions of the neuronal function
[22,147,148]. The great plastic ability of neural tissue given by SE-in-
duced gene expression, concurrent with cell loss and therefore, clear-
ance of local connective sites, is accepted as part of the mechanisms
underlying epileptogenesis in SE models of temporal lobe epilepsy
[149]. All the data categorized in the current review, referring to the
amygdaloid complex, indicate that this structure is deeply involved in
the pathophysiology of epilepsy.
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Fig. 2. Timeline of anatomopathological alterations observed in the amygdala after status epilepticus. Note that the time axis is nonlinear, since the amount of data in each time point is
variable. This figure illustrates a qualitative evaluation of the evidence found for each pathological process category listed below. Higher curves indicate greater evidence, based on the
intensity of the described alterations, in the underlying time point. Pathological process categories: Energy metabolism, Circulatory and fluid regulation, Immediate early genes
expression, Inflammation, Cell suffering, Neuroprotection, Neurotransmission, Tissue damage, and Plasticity. Y-axis: arbitrary scale.

It is important to note, however, that the translation of research find-
ings in animal models to the human context is complex. For instance,
current animal models of epilepsy do not reflect the diverse etiologic
nature of epilepsy, nor are the new drugs discovered using animal
models more effective in avoiding pharmacoresistance [150-152].
Moreover, a parallel between human and rodent amygdaloid nuclei
may be hampered by its several morphofunctional differences or poor
data availability [40,153,154]. Comparison between both species have
revealed differences in amygdaloid complex nuclei volumes, neuronal
sizes, neuronal density, neuropil volume, interneuron composition and
distribution, and monoamine transporters [154-156], implying greater
functional complexity in human amygdala than in rats. Nonetheless,
many other evidences support similarities between human and rat
functional and epilepsy-related anatomopathological characteristics
[12,40]. For instance, human and rodents' amygdala have the same
function of identifying threatening situations, emotional learning, and
fear conditioning [157-160]. Specifically, amygdala atrophy in human
patients with epilepsy have been consistently shown, such as in animal
models [36,40,41,161]. In fact, amygdala volume was inversely

correlated to the number of epileptic seizures in chronic temporal lobe
epilepsy in humans [162].

Nonetheless, there is a much greater number of studies considering
hippocampal alterations after SE [163,164], when compared with those
in the amygdala. The reasons why this happens are not clear, but one
possible explanation is the neatly organized and well-known hippo-
campal anatomy, as opposed to the amygdala complex and less conspic-
uous anatomical and functional organization [165-170]. Despite the
above, amygdaloid complex's contribution to epileptogenic process is
demonstrated by the accumulating evidence reviewed here and else-
where [40-43]. In general, the process starts with metabolic alterations,
followed by inflammatory process development. Neurotransmission
and genetic expression are changed, together with plastic and prolifer-
ative phenomena. Finally, cell death leads to the long-term atrophy and
loss of functionality. This consequently results in seizures and in distur-
bances of mood, of emotional memories, and of cognition. Considering
that the amygdala is extensively connected to several other brain
areas besides hippocampus, it is critical that research be reexamined
in order to include other substrates in the exploration of the circuits
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that take part in epilepsy and epileptogenesis. Thus, we suggest that at-
tention should be directed to other areas besides hippocampus, in the
characterization of pathophysiology of epilepsy.

It is interesting to highlight, additionally, that the amygdaloid com-
plex is distributed in rat brains mostly in the same anteroposterior
range as hippocampal formation [171]. Actually, in the exact same
areas included in histopathological slices obtained for hippocampus
evaluation, not only the amygdala can be observed, but also several cor-
tices of interest for epilepsy (entorhinal, piriform, cingulate) and many
other areas that may be of interest for epilepsy pathophysiology (the
entire thalamus and hypothalamus, substantia nigra, periaqueductal
gray matter, superior colliculus, mesencephalic tegmentum). Thus, it
is probable that research laboratories that focus on hippocampal alter-
ations consequent to SE may have, in their archives, histopathological
material that can be used to investigate alterations in several other
brain areas. Since it was not the purpose of this review, we did not com-
pare results from the amygdala with those from hippocampus. How-
ever, a rapid inspection in the articles included in this review indicates
that pathophysiology of epilepsy develops differently in both structures.
Such differences have been described on intensity [66,83,99], time of
presentation after the onset of SE [56], presence or absence of the stud-
ied variables [53,70,95], and even opposite findings between both struc-
tures [51,65]. In times when ethics in animal use for research raise
concerns and the 3R strategies gain more attention [172-174], going
back to high quality material stored in research laboratories could gen-
erate original shared research data on epilepsy and epileptogenesis, giv-
ing rise to new hypotheses for future investigations. This kind of
approach and effort will be fundamental for actual multinational and
multicenter research in Global Cooperation in epileptology.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.yebeh.2019.106831.
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