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ABSTRACT: Layered double hydroxides (LDH) have exhibited promising applications
as electrocatalysts in oxygen evolution reactions (OER). In this work, trimetallic LDHs
(CoNiFe-LDH) were designed and grown on graphene (G) through a one-step
hydrothermal approach to obtain a structure that promotes efficient charge transfer. A 2-
level full-factorial design was utilized to evaluate the effects of varying the concentrations
of Co (1.5, 3, and 4.5 mmol) and graphene (10, 30, and S0 mg) on the OER activity.

The potential needed to deliver 10 mA cm™ was chosen as the response parameter. The e’
independent and dependent parameters were fitted to a linear model equation through
ANOVA analysis. The computed p-values were below 0.05 signifying the statistical
significance of the concentrations of cobalt and graphene and their interaction, v &
suggesting a correlation with the OER activity. The OER experiments were conducted in e O(VFH
triplicate using the Cop3Ni;Fe;-LDH/G3) (central point) to estimate variability e
(0.58%). Comparative analysis showed that Co[l.S]NimFe[ZS]—LDH/G[10] achieved the

lowest onset potential (1.54 V), potential at 10 mA cm™> (1.58 V), and Tafel slope (58.4 mV dec™), indicating that a low
concentration of cobalt and graphene make an efficient electrocatalyst for OER. Furthermore, the optimized composite
demonstrated favorable electronic properties, with a charge transfer resistance (Rcp) of 188.1 Q, and exhibited good stability,
maintaining its catalytic activity with no significant loss over a 24-h period.
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1. INTRODUCTION this reaction.” Notably, noble metal-based materials, including
IrO, and RuO,, have shown superior OER performance under
alkaline conditions.” Nonetheless, their use is limited by high
costs and limited reserves. Hence, the strategic design of novel
electrode materials featuring low cost, high conductivity, and
minimal overpotential assumes a crucial role in advancing
electrocatalysis.

In recent years, layered double hydroxides (LDH) have
gained recognition as possible candidates for the OER due to
their cost-effectiveness, tunable composition, and favorable
electrocatalytic properties.9 Ni-based LDHs, particularly NiFe-
LDH, have been extensively studied and demonstrated as
efficient OER electrocatalysts in alkaline environments.'’ Due
to its optimal adsorption energy for hydroxide anions, NiFe-
LDH is recognized as a very good electrocatalyst for OER."!
However, its limited electrical conductivitzr hinders further
enhancement of its OER catalytic activity.'” Meanwhile, Co-

For many decades, fossil fuels, such as gas, oil, and coal, have
acted as the primary contributors to electricity generation.'
Nevertheless, the combustion of carbon-based fuels causes
substantial emissions of greenhouse gases, notably carbon
dioxide (CO,), thereby triggering climate change and
adversely affecting human well-being and the environment.”
Consequently, there is an endeavor to curtail the utilization of
fossil fuels and channel investments into renewable energy
modalities, such as solar, wave, and wind power. Despite their
environmental merits, these renewable sources are charac-
terized by intermittency, making them incapable of ensuring a
consistent energy supply.3 Consequently, increasing their
proportion in the energy grid poses a big challenge. Thus, it
is important to innovate and develop efficient and environ-
mentally acceptable energy sources.

The oxygen evolution reaction (OER) constitutes a pivotal
half-reaction within diverse renewable energy technologies.
These include water electrolysis,4 metal-air batteries,” and fuel
cells.® Essentially, it involves the conversion of water (H,0)
into molecular oxygen (O,) through a four-electron transfer
process. Despite its significance, the OER is intrinsically
sluggish and energy-intensive, necessitating the advancement
of electrocatalysts that are both efficient and stable to facilitate
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based LDHs, such as NiCo-LDH"® and CoFe-LDH'* have
been proven to have excellent electrocatalytic activity.

In contrast to binary LDHs, the ternary LDHs, incorporating
diverse transition elements can exhibit higher capacitance and
contain more abundant active sites."> Introducing a third metal
ion in binary LDHs can alter the electronic structure and
improve the conductivity, thereby increasing the density of
active sites and facilitating more efficient electron transfer.'®
Notably, Co-doping of NiFe-LDH, with vertical orientation,
interconnections, and uniform distribution, has been shown to
effectively enhance its electrocatalytic performance.'’

Nevertheless, the utilization of LDH electrode materials is
limited by their low conductivity and tendency for
agglomeration. These challenges can be mitigated through
the integration of LDH with carbon materials which exhibit
good conductivity,"® and this includes graphene (G)," carbon
fibers,” carbon nanotubes (CNT),*" and carbon cloth (CC).”*
Graphene serves as an excellent substrate for catalyst
immobilization in electrocatalysis, attributed to its remarkable
electrical conductivity, large surface area, and impressive
stability.”> This enhances the quantity of active sites,
consequently improving electrochemical performance.”*
Therefore, the combination of ternary LDHs, characterized
by reversible redox activity, with conductive graphene is
anticipated to offer a promising strategy for developing hybrid
materials with superior OER activity, facilitated by the
advantageous interplay between LDHs and graphene.”®

Accordingly, in this work, the concentrations of cobalt and
graphene, which serves as the carbon source, were optimized
using a full-factorial design to formulate CoNiFe-LDH/G
composites, aiming to enhance OER performance through an
economical and efficient single-step hydrothermal reaction.
This optimized composite was characterized and used as an
electrocatalyst for the OER. Its performance was compared
with the corresponding bimetallic components. This innovative
approach employs statistical analysis to improve the efficiency
of material preparation, leading to enhanced OER perform-
ance. Additionally, to the best of our knowledge, CoNiFe-LDH
combined with graphene nanoplatelets has not previously been
explored as an electrocatalyst for OER.

2. EXPERIMENTAL SECTION

2.1. Materials. The cobalt (Co(NO;),-6H,0), nickel (Ni(NO,),
6H,0) and iron salts (Fe(NO;);-9H,0), urea (NH,CONH,),
graphene nanoplatelets and RuO, were all obtained from Sigma-
Aldrich, UK. A glassy carbon electrode (GCE, 3 mm diameter) was
used as a support for the CoNiFe-LDH/G composites.

2.2. Synthesis of Coy,Nij;Fe3-LDH/Gy,; Composites. The
Co[,)Nip3)Fer3-LDH/Gp,) composites were synthesized using a
hydrothermal method. The Ni and Fe content was maintained
constant, while the amounts of graphene and Co were varied to give
different molar ratios of Co to Ni and Fe (Co:Ni:Fe = 0.5:1:1 or 1:1:1
and 1.5:1:1). The Co and graphene levels were varied to investigate
their combined effects on the OER activity. Experimentally, these
composites were synthesized according to the procedures developed
in the previous worl<s,14’26_28 using a 2-level full factorial design, as
illustrated in Table 1. The graphene nanoplates (10, 30, or SO mg,
Table 1) were dispersed in a 10 mL solution of deionized water and
ethanol (equal volumes), and then sonicated for 20 min. A second
solution containing Co(NOj3), at different concentrations (1.5, 3, or
4.5 mmol, Table 1), combined with 3 mmol of Ni(NO;),, and 3
mmol of Fe(NO;); in 20 mL of deionized water was prepared. Then,
a third solution was obtained by dissolving 1.5 g of urea in 10 mL of
deionized water. All three solutions were mixed, followed by stirring
for 1 h to ensure complete dissolution. The resulting mixture was
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Table 1. Factors and Levels for the Optimization of the
CoNiFe-LDH/G Composites

1% factor [ 2" factor [ [Co] [G]

composites Co] G] mmol mg

Coy, i3 Fe(3-LDH/ -1 -1 LS 10
[10]

CO[4_5]N1[3]F€[3]-LDH/ +1 -1 4.5 10
Gho)

Co,.5Ni; Fer;-LDH/ -1 +1 1 50
Giso)

C0[4_5]Ni[3]Fe[3]-LDH/ +1 +1 4.5 S50
[s0]

COBJNiB]FeB]—LDH/ 0 0 3 30

[30]

carefully transferred into a 100 mL Teflon-lined stainless-steel
autoclave and maintained at 120 °C for 12 h. The Cop, Nif;Fe;)-
LDH/ Gp,) composites were washed several times with ethanol and
deionized water, collected and then dried at 60 °C for 18 h. To verify
the elemental composition, X-ray energy-dispersive spectroscopy
(EDX) was conducted in triplicate for all composites, with the results
summarized in Table 2. The elemental composition of the
Co[mNif31Fe(3-LDH/Gy,; composites (Table 2) aligns with the
precursor concentrations (Table 1), reflecting controlled Co and
graphene (%C) variation while maintaining constant Ni and Fe
(standard deviation <0.8%). Additionally, to evaluate the influence of
each component on the electrochemical performance and OER
activity, a series of control materials with different compositions were
synthesized using the same method, and named CoNiFe-LDH, NiFe-
LDH/G, CoNi-LDH/G, and CoFe-LDH/G.

2.3. Characterization. The optimized Cof,,Nif;jFe;-LDH/ Gy,
and its graphene-free counterpart, Cor,,jNif3 Fep;-LDH, were chosen
for further investigation through structural characterization and
electrochemical analysis. X-ray photoelectron spectroscopy (XPS)
(Kratos AXIS ULTRA spectrometer) was conducted using mono-
chromatic Al Ka radiation (1486.58 eV, 300 W, 20 mA, 15 kV) to
determine surface element composition and valence state of the as-
synthesized composite. The sample morphologies were examined via
field emission scanning electron microscopy (FE-SEM, Hitachi S-
4800), while the elemental composition was analyzed using energy-
dispersive X-ray spectroscopy (EDX, Oxford Instrument INCAz-act
ESX system). X-ray diffraction (XRD) analysis was conducted using a
Powder X-ray PANalytical X’Pert-PRO MPD system to investigate
the crystal structure of the samples. The measurements were
performed with Cu Ka radiation (4 = 1.5406 A) at an operating
voltage of 40 kV, while the composites were also analyzed by Fourier
transform infrared spectroscopy (FTIR, Nicolet iS50 FTIR
spectrometer) in the range 4000—500 cm™". The potential leaching
of Co, Ni and Fe from the LDH composite was analyzed using
inductively coupled plasma mass spectrometry (ICP-MS) (7900 ICP-
MS, Agilent, Japan). The plasma was generated using argon gas
(99.99% purity) with a 15 L min™' plasma flow rate, while the
auxiliary and nebulizer gases were supplied at 1 L min™".

2.4. Electrochemical Measurements. The OER activity of the
LDH electrocatalysts was studied at a polished and thoroughly
cleaned GCE. The GCE was polished sequentially with 1 and 6 um
Akasol diamond suspensions on an Aka—Napel microcloth, followed
by thorough rinsing with deionized water, sonication in deionized
water and dried under an air flow. The LDH catalyst ink was
formulated by mixing 3 mg of the LDH with 0.5 mL deionized water
and 0.5 mL ethanol, followed by sonication for 10 min to ensure
homogeneity. The resulting ink was applied to the GCE via drop
casting, achieving an approximate catalyst loading of 84.9 uL cm™>.

The electrochemical measurements were carried out in 1 M KOH
(pH 13.6) in a three-electrode cell, with the LDH-modified GCE, a
silver/silver chloride (Ag/AgCl) reference, and a high surface area
platinum wire counter electrode. Linear sweep voltammetry (LSV)
was conducted at a scan rate of 5 mV s All potentials were
converted to the reversible hydrogen electrode (RHE) scale (Egyg =

https://doi.org/10.1021/acsaem.5c00483
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Table 2. Composition in % Atomic of the CoNiFe-LDH/G Composites

Co % atomic”

43 £ 0.5
93 £ 09
40 £ 0.5
8.9 + 0.7
5.8 +£ 0.6

composites
Cory 57Nif3jFe;;-LDH/ Gy
Copy5)Nif ]FeB]-LDH/G[w]
Copy 5)Nig ]FeB]-LDH/G[SO]
CO[4_5]Ni[3]Fe[3]-LDH/G[SO]
CODJNiD]Fem-LDH/GDo]

“Mean + standard deviation (n = 3).

3
3

Ni % atomic”
59+ 04
5.6 +0.7
5.8+ 0.7
5.6 £ 0.6
5.7+ 0.5

0% atomic”

448 £ 2.7
41.5 £ 2.5
358 £2.2
31.8 £ 2.1
39.5 £ 2.6

C % atomic”

386 £2.1
37.5 = 1.9
48.1 £ 2.6
474 £ 24
42.8 + 24

Fe % atomic”
6.4 + 0.5
6.1 + 0.6
6.3 + 0.6
6.3+ 0.8
6.2 + 0.7

Epg/aga + 0.197 V + 0.059 X pH) and were iR-corrected. Current
densities were normalized to the geometric surface area of the GCE.
Electrochemical impedance spectroscopy (EIS) measurements were
performed over a frequency range of 1 X 10° to 0.007 Hz at 1.58 V
(RHE) using a 10 mV perturbation potential. The obtained
impedance data were fitted to an equivalent circuit model to
determine the charge transfer resistance. In addition, the stability of
the selected trimetallic LDH, Cop,Nij3jFe;-LDH/Gp,;, was
evaluated over a 24 h-period under a constant applied potential of
1.58 V (RHE). Following the 24 h polarization period, the EIS
response of the LDH was measured and compared to the response of
the freshly prepared LDH. Additionally, to assess the stability of the
composite under conditions relevant to scaled-up electrochemical
systems, which generally require higher current densities, a
chronoamperometry experiment was conducted at a constant
potential of 1.66 V (RHE), equivalent to S0 mA cm™? for 72 h-period.
2.5. Statistical Analysis. Linear models were employed to
analyze the OER response variable, incorporating replication as a
factor with three levels. A linear response surface accounting for Co
and G concentrations in the linear predictor for the mean was
employed. The interaction effect of Co and G concentrations on the
potential required to achieve 10 mA cm ™ was evaluated using F-tests.
A contour plot was generated to illustrate the predicted OER value
over a continuous 2D grid for varying concentrations of Co and G.

3. RESULTS AND DISCUSSION

3.1. Alkaline Electrolyte Preparation and Evaluation.
Alkaline aqueous electrolytes, such as KOH and NaOH, are
crucial for energy devices, including electrolyzers, fuel cells,
supercapacitors, and batteries.”” Recent findings have shown
that Fe impurities can notably impact the OER performance of
Ni-based electrocatalysts.”” Therefore, addressing impurities is
vital to assess alkaline electrolyte quality for objective
evaluation and comparison of electrochemical energy systems.
Based on this, CoNiFe-LDH/G was initially employed for
OER in 1 M KOH solutions in unpurified, supplemented with
excess Fe (20 ppm) and purified conditions to assess the effect
of Fe ions on the electrocatalytic performance of the LDH
composite. For the guriﬁcation process, the method developed
by Marquez et al.’' was employed, in which Fe ions are
adsorbed onto the surface of insoluble Ni(OH),. It is evident
in Figure 1 that the presence or excess of iron did not impact
the onset potential or the current at the lower overpotentials.
However, it did have a slight impact at the higher current
densities, particularly above S0 mA cm™. Consequently, the
CoNiFe-LDH/G composites were studied and statistically
optimized at 10 mA cm™ in the commercial KOH solution as
the purification process is costly and time-consuming for large-
scale operations due to the numerous steps and chemicals
involved.

3.2. Selection of the Coy,,Nij3Fe;s-LDH/G,; Compo-
site. Factorial design is a useful approach for studying how
different parameters affect the optimization of a specific
process. In the context of a full-factorial experimental design,
measurements of responses are conducted across the complete
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80

—— KOH purified
| —— KOH unpurified
—— KOH + Fe excess

60

40

20

Current density (mA cm'z)

T T
1.6 1.8
Potential (V vs. RHE)

1.4 2.0

Figure 1. OER polarization curves using Coy; sjNif3jFer3-LDH/ Gy
in 1 M KOH solution, in purified, unpurified, and Fe-excess
conditions.

array of combinations formed by varying the levels of the
experimental parameters. For this study, a 2-level full-factorial
design was used to evaluate the influence of cobalt and
graphene concentrations (independent parameters) on the
performance of the NiFe-LDH. The potential equivalent to a
current density of 10 mA cm™ during the OER (dependent
variable), was the chosen response parameter. Five combina-
tions of dependent variables were used in the optimization
experiments. The polarization curves and Tafel slopes of the
Co(,Nif3jFe(3-LDH/Gy,; composites for OER are shown in
Figure 2a,b, respectively. Additionally, the OER activity was
studied in triplicate using the Cop3)Nif3)Fep;)-LDH/Gys0
(central point) to estimate the variability, which was
determined at 0.58%, indicating a low variability.

As shown in Figure 2ab, the Cop, 5Nif3jFe(3-LDH/ Gy
provides the best OER activity when compared with the other
composites that have higher Co and G concentration levels. An
impressive onset potential of 1.54 V, combined with a potential
of 1.58 V to generate 10 mA cm ™2, and a Tafel slope of 58.4
mV dec™' were achieved for the Cor, 5Nij3;Fe;;-LDH/Gyyq).
This highlights the important roles of both cobalt and
graphene when designing the optimum electrocatalyst.
Interestingly, lower concentrations of Co are preferable, and
this may be connected with the development of Co-containing
particles with the higher Co contents.”” While the presence of
graphene may be beneficial with the carbon providing sites for
adsorption of the OH™ ions, an excess concentration may
lead to agglomeration of the graphene sheets giving poorer
dispersion of the transition metal centers, decreasing the
number of active sites for catalysis.”*

https://doi.org/10.1021/acsaem.5c00483
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1600

30)
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log|j(mA cm'2) |

Figure 2. (a) The OER LSV curves of the composites synthesized with different molar ratios of Co(NO;), and amounts of graphene. (b) Tafel

slopes derived from the LSV curves.

To assess the reproducibility of the OER performance using
the synthesized composites, all experiments were carried out in
triplicate. The corresponding standard deviations (<5%) are
reported in Table 3, indicating a high level of experimental

Table 3. Potential at 10 mA cm™> with RSD for the
Synthesized Electrocatalysts

catalyst potential at 10 mA cm™ (V)®  RSD (%)
Cop1.5)Nig3 Fe(5-LDH/ Gy 1.58 + 0.02 211
Coyy5Nij3Fe3-LDH/Gyyg) 1.67 + 0.01 142
Coyy 5Nig3;Fer3)-LDH/ Gigo) 1.69 + 0.01 1.53
Cop.5)Nigs Fe(5-LDH/Gygg) 1.67 + 0.02 234
CopsNi[3 Fers-LDH/G 3, 162 + 001 136

“Mean + standard deviation (n = 3).

consistency and reliability. To determine the impact of the
main factors on the OER, the independent and dependent
parameters were fitted to the linear model equation. ANOVA
analysis was conducted at a 95% confidence level, and the
corresponding results are presented in Table 4.

Table 4. A Summary of the ANOVA Tests with the
Significance of the Variables

source F-value p < 0.05 remarks
model 17.4 0.005 significant
[Co] 9.5 0.009 significant
[G] 18.7 0.004 significant
[Co][G] 25.0 0.003 significant
model S 0.01
R 0.97
adjusted R* 0.92

A satisfactory prediction regression model, with high
determination coefficient values of R* = 97.2%, and R*(adj)
= 91.6%, was obtained, confirming that the ANOVA test is
validated. The p-values are less than 0.05, indicating that the
parameters and their interactions are significant, while the F-
values confirm that the model is significant (p < 0.05). In
particular, the model terms indicate that the cobalt and
graphene concentrations and their interactions, are significant,
implying that the OER activity is correlated to these
parameters. It was also confirmed by the Pareto plot of effects,
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illustrated in Figure 3a, that the main effects, cobalt
concentration and amount of graphene, and their interaction
are significant at a 5% significance level. The response data
were fitted to a linear regression equation, according to eq 1,
where the potential is expressed in units of V vs RHE and
corresponds to the potential required to deliver 10 mA cm™ of
current density.

Potential = 1.5025 + 0.1050[Co] + 0.003750[G]

— 0.002500[Co]*[G] — 0.02500CtPt (1)
Here, CtPt corresponds to the central point, [Co] indicates the
concentration of cobalt, [G] gives the graphene amounts, and
the term [Co]*[G] represents the level of interaction between
Co and G. Based on eq 1, it can be confirmed that there is a
linear correlation between the factors and the response, with
the potential increasing as the cobalt concentration and mass
of graphene increases, making the electrocatalysts Iess
favorable for the OER. On the other hand, the interactions
between the cobalt and graphene contribute to lowering the
potential. This indicates that lower concentrations of Co and
graphene are more favorable. Indeed, this can be seen in the
2D contour plot, in Figure 3b, which shows the main and
interaction effects of the dependent variables on the potential
at 10 mA cm™2 This confirms the relationship between the
cobalt concentration and the amount of graphene, with the
optimum combinations with Co concentrations between 1.5
and 2.25 mM and G between 10 and 20 mg. Therefore, the
Cory 5)Ni3)Fer3)-LDH/Gyyg) was selected as the optimized
material for further investigations. To elucidate the contribu-
tion of each element to the OER activity, control materials
were synthesized and analyzed systematically.

3.3. Characterization of the Optimized LDH Compo-
site. In addition to the characterization of the LDH composite,
the incorporation of graphene into the LDH was investigated.
A combination of XPS, FE-SEM, XRD, and FTIR analyses was
employed in the characterization studies, and to elucidate the
structural and morphological changes induced by the addition
of graphene.

The chemical composition, and valence states of the
Coyy5)Nif3Fe3-LDH/Gpyg) are summarized in the XPS
spectra shown in Figure 4. The XPS survey spectrum, Figure
4a, confirms the presence of Fe, Ni, Co, O and C. The Co 2p
spectra in Figure 4b, display two peaks at 781.6 eV (Co**

https://doi.org/10.1021/acsaem.5c00483
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Figure 3. (a) Pareto plot of the standardized effects of 2* full-factorial design (response is potential at 10 mA cm™%; @ = 0.05); and (b) 2D contour
plot of potential at 10 mA cm™ as a function of cobalt concentration and amount of graphene.
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Figure 4. XPS of Cop, 5Ni[3;Fe(3;]-LDH/Gyyo; (a) Survey, (b) Co 2p, (c) Ni 2p, (d) Fe 2p, (e) O 1s, and (f) C 1s.

2p,,) and 797.5 eV, (Co** 2p, ), along with a satellite peak at
803.0 eV, confirming the presence of the Co®* species.”” The
Ni 2p spectra in Figure 4c show characteristic peaks at 856.1
and 874.3 €V, corresponding to the Ni** 2p;/, and Ni** 2p, ),
energy states, respectively. This is consistent with the N
species within Ni(OH),.*° Additional satellite peaks are seen at
862.0 and 866.0 eV, and these suggest the formation of NiO*”
at the surface. In Figure 4d, two peaks at 711.0 and 724.9 eV
corresponding to Fe’* 2p,,, and Fe*" 2p,,, are evident, and
this is consistent with previous studies.”*””

In Figure 4e, the O 1s spectrum reveals two peaks at 529.6
and 531.6 eV, corresponding to M-O and O—H, respectively.
These peaks suggest the formation of hydroxyl interlayer ions
in the trimetallic LDHs;" while the peak at 5332 eV is
associated with adsorbed water."' In the C 1s spectrum shown
in Figure 4f, a peak at 284.5 eV is identified with C = C and

5459

C—C bonds, while another peak at 286.0 eV corresponds to
C—0, confirming the successful incorporation of graphene.*”
Furthermore, a peak at 290.8 eV in the C 1s spectra,
corresponds to CO; which may originate from reaction
by‘products,43 or indicate the presence of intercalated
carbonate anions. Collectively, the peaks observed in the
spectra for these constituent elements provide evidence for the
successful synthesis of the intended trimetallic LDH
composites, forming a heterogeneous architecture. Addition-
ally, XPS analysis was performed on the Cor, 5jNij3)Fe;-LDH
composite (Figure S1) to assess the chemical interactions
between the LDH and graphene. Notably, a slight narrowing of
the peak at 531.6 eV related to M-O bonds upon graphene
addition is observed on comparing Figures 4e and S1d. The
slight narrowing, around 1/4 of the M-O peak width, in the
XPS spectra of graphene-incorporated LDHs can be attributed
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Figure S. FE-SEM images of (a) CoNiFe-LDH and (b) Coy, 5jNif3)Fe3-LDH/Gp,5) EDX spectra for (c) CoNiFe-LDH and (d) Cor, 5Nz Fe(3)-
LDH/Gyyq.
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Figure 6. (a) XRD and (b) FTIR spectra of CoNiFe-LDH and Cor, sNif;)Fe(3-LDH/Gpyq)-

to electronic interactions between graphene’s s-electron likely due to their stable structure, which prevents significant
system and the LDH structure, causing subtle charge interaction with graphene. This lack of interaction results in no
redistribution around the metal centers and altering their discernible alterations in their XPS profiles.”> The combined
local electronic environment.** Furthermore, the incorporation effects observed in the LDH-graphene composite, such as the
of graphene can enhance structural organization by reducing narrowing of the M-O peak, indicate structural modifications
defects and improving uniformity, resulting in a more that suggest the successful incorporation of graphene into
homogeneous chemical environment.”> In contrast, the XPS LDHs. This structural enhancement contributes to improved
spectra of metal hydroxides showed no noticeable changes, stability and performance of the composite.
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Figure 7. (a) The OER LSV curves, (b) Tafel slopes derived from the LSV curves, (c) histogram of overpotentials at 10 and 50 mA cm™2, and (d)

electrochemical impedance plots recorded in 1 M KOH.

The morphological changes induced by graphene incorpo-
ration were further examined using FE-SEM, as shown in
Figure S. The surface of CoNiFe-LDH, Figure Sa, exhibits a
characteristic two-dimensional flake structure. The compact
CoNiFe-LDH flakes intersect, giving rise to the formation of
clusters, and exhibit a vertical arrangement, in accordance with
recent experimental observations.*® Furthermore, the CoNiFe-
LDH nanosheets are stacked layer by layer, exhibiting a
compact arrangement, which results in a dense surface coating.
The morphology modification of the trimetallic surface with
the insertion of graphene can be observed in Figure 5b. The
metal layer of CoNiFe-LDH is positively charged, while the
graphene nanoplates are negatively charged.47 Hence, electro-
static attraction facilitates the adsorption of graphene onto the
CoNiFe-LDH surface, leading to the formation of the LDH-G
coating with graphene nanoplatelets covering its surface — a
characteristic structure of graphene.””*® Furthermore, exami-
nation of the sectional FE-SEM image of CoNiFe-LDH and
Cory 5)Nif3)Fer3)-LDH/Gyyg) reveals a close attachment and
coverage of graphene on the surface of Cop, 5)Nij3)Fe(3-LDH/
Gig)- This is consistent with the data in Table 1, where the p-
values indicate a significant interaction between the Co and G.

The EDX spectra, in Figure Sc,d, suggest that the main
elements on both LDH surfaces are Co, Ni, Fe and O,
confirming the successful development of the CoNiFe-LDH.
However, the Co; 5)Nij3)Fer3)-LDH/Gyy), Figure 5d, exhibits
a higher relative carbon and oxygen concentration, compared
to CoNiFe-LDH (Figure Sc). This is associated with the
insertion of graphene sheets, which are decorated with oxygen-
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containing functional groups, such as C—O groups and oxygen
vacancies,” into the LDH which is beneficial in the transfer of
electrons from the LDH to graphene.™

Crystallographic analysis via XRD provided further insights
into the structural integration of graphene with the LDH, as
presented in Figure 6a. The XRD pattern of CoNiFe-LDH
shows diffraction peaks at 26 = 11.5, 17.6, 23.4, 34.4, 38.9,
46.2, 59.9, 61.5, and 62.6° which can be indexed to the (003),
(020), (006), (012), (015), (018), (110), (113), and (116)
planes of the LDH phase.'”>" This is a clear indication of the
successful synthesis of CoNiFe-LDH. The XRD of the
Coyy 5)Nif3)Fe3)-LDH/Gyg) shows a similar diffraction pattern.
However, an additional weak peak at 27.26° is seen,
corresponding to the (002) plane of graphene.**** This
confirms the successful formation of Cop, 5)Nij37Fe(3-LDH/
Gpyo)-

[F%IR spectroscopy was used to obtain further chemical
insight into the Cop, 5)Nij3jFe(3-LDH/Gyyq) and the corre-
sponding graphene-free CoNiFe-LDH. The FTIR spectra were
recorded between 4000 and 500 cm™, and typical plots are
illustrated in Figure 6b. A broad absorption band is evident at
3495 cm™!, and this corresponds to the O—H stretching
vibrations of the interlayer H,O molecules and is typical of
LDHs.”® The vibration mode of the NO,” ions in the
interlayer is evident at 1355 cm™".>* The bands observed from
600—700 cm™ are attributed to M—O, M—O—M and O—M—
O vibrations where M corresponds to Co, Ni and Fe.’*
Compared with CoNiFe-LDH, the FT-IR spectrum of the
Coyy 5)Nif3)Fer3)-LDH/Gyyg) shows an extra weak absorption

https://doi.org/10.1021/acsaem.5c00483
ACS Appl. Energy Mater. 2025, 8, 5455—5467


https://pubs.acs.org/doi/10.1021/acsaem.5c00483?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.5c00483?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.5c00483?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.5c00483?fig=fig7&ref=pdf
www.acsaem.org?ref=pdf
https://doi.org/10.1021/acsaem.5c00483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Energy Materials

www.acsaem.org

band at 1645 cm™" which is related to the vibration of C = C at
graphene,””>® and this confirms that the graphene nano-
platelets were successfully incorporated throughout the LDH
structure.

Overall, the combined XPS, FE-SEM, XRD and FTIR
analyses demonstrate that graphene incorporation into the
Cory 5)Nif3)Fer3)-LDH structure is facilitated by electrostatic
attractions and chemical interactions between functional
groups, resulting in enhanced structural stability and
potentially improved OER activity.

3.4. Electrocatalyst Performance. The OER activity of
the Coy; 5)Nif3)Fe(3;-LDH/ Gy}, and the two-component
control samples, NiFe-LDH/G, CoNi-LDH/G and CoFe-
LDH/G were studied and compared to the RuO, benchmark
catalyst. The resulting LSV curves are presented in Figure 7a.
While RuO, demonstrates a lower onset potential of 1.38 V,
the optimized Copys)Cup3)Fer3)-LDH/Gyg) catalyst shows a
comparable onset potential and similar slope, suggesting
promising electrochemical behavior. The onset potential and
overpotential at 10 mA cm > (Figure 7c) were selected as the
basis for characterizing the catalytic performance of the
materials, and these are summarized in Table 5. It can be

Table S. Onset Potential and Overpotential for the Different
Composites

composites onset potential (V)  overpotential (mV)
Copy.5Nijy Fe(3 - LDH/Gyyq) 1.54 350
CoNiFe-LDH 1.64 470
NiFe-LDH/G 1.67 650
CoNi-LDH/G 1.63 430
CoFe-LDH/G 1.58 390

observed that the optimized Cop 5)Ni3;Fe3-LDH/ Gy
shows the lowest onset potential at 1.54 V corresponding to
an overpotential of 350 mV. The NiFe-LDH/G demonstrates
the highest onset potential at 1.67 V with an overpotential of
650 mV, highlighting the significant role of cobalt in enhancing
the OER performance. This can be attributed to the oxidation
of Ni** to Ni** promoted by the Co charge transfer effect
which in turn gives the higher conductivity NiOOH phase.>”
Additionally, NiOOH activates the Fe sites which are
inaccessible to electron transfer in the Ni(OH), phase.'”*
Meanwhile, the Fe** ions promote the oxidation of Co** to
Co*, forming CoOOH which further improves the OER
activity for the Cop, ¢jNif3Fer3-LDH/ Gy composite.’’
Furthermore, CoNiFe-LDH shows a higher onset potential
at 1.64 V with an overpotential of 470 mV compared to
Cory 5)Nif3)Fer3)-LDH/Gyyg), suggesting that the added gra-
phene ensures an adequate electron supply during the
electrocatalytic process, thereby boosting the OER perform-
ance.

A comparative analysis with studies from the recent
literature, as shown in Table 6, demonstrates that the
Cory 5)Nif3)Fer3)-LDH/Gyyg) exhibits a lower overpotential at
10 mA cm™ This suggests that its electrocatalytic perform-
ance is either superior or at least comparable to other reported
electrocatalysts for OER. This improved performance can be
attributed to the in situ growth of CoNiFe-LDH on the
graphene substrate, which effectively mitigates the restacking
of graphene sheets and prevents the aggregation of LDH
particles. This structural integration fosters strong interactions
and synergistic effects between the CoNiFe-LDH and
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Table 6. Performance Comparison of the Optimized LDH
with the Literature

KOH overpotential at 10 mA
composites electrolyte (M) cm? (mV) ref.

CoAl-LDH/NG 1.0 365 64
N-NiZnCu- LDH/ 1.0 489 42

rGO
CoNiMn- LDH/ 0.1 369 65

PPy/rGO
CoAl-LDH 1.0 415 64
NiCe-LDH/CNT 1.0 417 66
ZnCo-LDH/rGO 0.1 450 67
NiMn-LDH 1.0 520 68
CO;—CoAl-LDH 1.0 422 69
benzoate-Co-LDH 1.0 360 70
Mo-NiFe-LDH 1.0 491 71
ZnCo-LDH 1.0 420 72
CO[I.S]Ni[S]FeB]' 1.0 350 this

LDH/GUO] work

graphene, facilitating enhanced electron transfer and con-
sequently leading to superior electrocatalytic efficiency.®®

Additional insights into the kinetics and mechanism of the
OER were obtained using Tafel analysis. The Tafel equation is
described in eq 2, where the slope (b) determines how rapidly
the current density (i) increases with an increase in
overpotential (7), while the constant (a) depends on the
exchange current density. The LSV curves are presented in
Figure 6a, while the Tafel regions and the associated slopes are
shown in Figure 6b.

n=a+ blog(i) 2)

A low Tafel slope of 58.4 mV dec™ was obtained for the
Cory 5)Nif3jFe;-LDH/Gyg), Figure 7b. This combined with
the low overpotential relative to the other LDHs, Table 4,
indicates that this optimized system has an electronic structure
that permits more efficient adsorption/desorption of the
oxygenated species, giving rise to a higher OER activity.”
Additionally, the CoNiFe-LDH without graphene has a much
higher Tafel slope of approximately 94.5 mV dec™’, clearly
highlighting the significant role of graphene in the
CO[LS]NiB]FeB]—LDH/G[10] composite.

Further information on the electronic conductivity of the
composites was obtained using electrochemical impedance
spectroscopy (EIS). The equivalent circuits employed for
fitting the impedance data are shown in Figure S2 and involve
the solution resistance, (R,), charge transfer resistance (Rcr)
and a constant phase element (CPE). The impedance of the
Cory 5)Nif3)Fer3)-LDH/Gyyg) composite can be fitted to a
simple Randles cell, while an additional constant phase
element is required with the NiFe-LDH/G. The plots are
characterized by a depressed semicircle, Figure 7d. The
diameter of the semicircle, which corresponds to the Rcrp,
varies considerably depending on the nature of the LDHs.
Cearly the Co; 5)Nif3)Fer3)-LDH/Gyyg) composite has the
lowest charge transfer resistance.

The Ry values for the various LDH composites are
compared in Table 7. Clearly, the Cop,s)Nij3;Fe(3-LDH/
Gyo exhibits the lowest Rer, at 188.1 + 4.58 L, and this is
consistent with its lower onset potential, lower overpotential
and favorable Tafel slope. Indeed, the Rcr obtained for
Cor; 5)Nip31Fe[3)-LDH/Gyyo) is around 20 times lower
compared to NiFe-LDH/G, which has the highest Rcp of
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Table 7. Electrochemical Impedance Parameters

composites
Cory 51Nif37Fe;-LDH/ Gy
CoNiFe-LDH
NiFe-LDH/G
CoNi-LDH/G
CoFe-LDH/G

Rer (Q)
188.10 + 4.58
52930 + 4.58
354.70 + 6.20
SI1.50 + 5.24
503.90 + 5.83

Rer, (Q)

3673.0 + 7.12

The stability was further evaluated using LSV curves, Figure
8b, and electrochemical impedance spectroscopy, Figure 8c,
indicating differences before and after the stability test. While
the onset potential is slightly improved after the 24 h period,
there are more significant changes in the higher current
densities. Additionally, the charge transfer resistance (Rcr)
increases after the stability test from 188.1 to 424.1 Q. The

3673.0 + 7.12 Q. Furthermore, the CoNiFe-LDH without
graphene has a higher Rcp of 529.30 + 4.58 Q. Consequently,
the incorporation of G and Co into the Coy, 5Nif;;Fef;-LDH/
Gyy) improves its electronic conductivity, expediting the
charge transfer rate in the OER process.”*

It is widely known that stability is a critical factor in
determining whether electrocatalysts can be practically
applied.”> Therefore, the stability of the Cory.5)Nif31Fers)-
LDH/Gy,q) was examined using chronoamperometry as a fixed
potential of 1.58 V (RHE) equivalent to 10 mA cm™> The
corresponding current—time plot is illustrated in Figure 8a.
The current density decreases slightly to 9.48 mA cm™ after
24 h due to the accumulation of bubbles on the active sites.”*
This indicates that there is only a negligible degradation in
current density after a 24-h period, confirming that the
Coy; 5)Nif3)Fer3)-LDH/Gyg) has advantageous durability and
catalytic stability.

polarization of the catalyst at these high anodic potentials for
the long-term of 24 h may cause its oxidation leading to some
degradation of the Cor,s)Nif3Fe;-LDH/Gyyop electronic
conductivity.”

It is clear from Figure 7 that the graphene sheets facilitate
the OER. However, in an alkaline environment, graphene
sheets are susceptible to oxidation, especially at the potentials
required for OER. To assess this, the stability of the graphene
was compared with the graphene immobilized within the
Cory 5)Nif3)Fe3)-LDH/Gyyg). Following a 24-h stability period
at 1.58 V, cyclic voltammograms were recorded in a neutral
phosphate buffer. The CV curves showed consistent behavior
over 30 cycles, and the final cycles are plotted in Figure 8d.
The two profiles exhibit distinct differences, particularly with
the appearance of a peak at 0.4 V, indicative of graphene
oxidation.” The absence of this peak at 0.4 V in the
Co; 5)Nif3Fef3-LDH/Gyygp CV profile indicates that the
graphene maintained its structural integrity when incorporated
into the composite. This enhanced stability is likely to be due
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Figure 8. (a) A 24 h-stability test of Coy, 5jNifzFe(3-LDH/Gyjo) at 10 mA cm %, (b) polarization curves before and after stability test, (c)
electrochemical impedance plot before and after stability test, and (d) CV in a buffer (pH 7.0) for graphene dispersed onto GCE and

Cor, 5)Nigz)Fe;;- LDH/ Gy after 24 h at 10 mA cm™.
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to the protective effect of the LDH phase, which appears to
effectively prevent oxidation of the graphene for at least 24 h.

It is well established that scaling up electrochemical systems
typically requires higher current densities. Therefore, to
evaluate the stability of the composite under such conditions
over an extended duration, a chronoamperometry experiment
was performed at a fixed potential of 1.66 V (RHE),
corresponding to a current density of S0 mA cm™? for a
period of 72 h. The resulting current—time profile shows an
initial decrease in current density over the first 14 h, stabilizing
at 44.5 mA cm™? as presented in Figure S3a. Beyond this
period, the current density remained constant for the
remaining 58 h, indicating that despite an initial decline, the
composite maintained stability at 44.5 mA cm™>. This stability
was further supported by LSV curves recorded before and after
the test, Figure S3b, which showed a slight increase in onset
potential after 72 h, with more pronounced changes at higher
current densities, as seen previously at 10 mA cm™2.

Additionally, SEM was utilized to analyze the surface
morphology of the composite both before and after the
stability test, as shown in Figure S4a,b, respectively. Unlike the
powder form of CoNiFe-LDH/G, the composite layer on GE
exhibits a more compact morphology (Figure S4a) with
minimal changes observed after the stability test (Figure S4b).
This suggests that the material retains its morphology even
under elevated current densities and prolonged operational
conditions.

Furthermore, to evaluate potential metal leaching, the
residual KOH solution after the 72 h stability test was
analyzed using ICP. The elemental concentrations of Co, Ni,
and Fe, expressed in ppb, are summarized in Table 8. The

Table 8. ICP-MS Analysis of Co, Ni, and Fe Concentrations
in 1M KOH Solution Following a 72 h-Stability Test at 50
mA cm™2

Co (ppb)”
642 + 0.03
533 £ 0.02

wavelength (nm) Ni (ppb)” Fe (ppb)“
230.79
238.89
216.55
231.60
238.20

261.19

“Mean + standard deviation (n = 3).

6.82 + 0.06

6.00 + 0.02
15.31 + 0.33
9.19 + 0.30

results indicate that the composite exhibits minimal metal
leaching over the long-term test, as evidenced by the low
concentrations of Co, Ni, and Fe in solution. Notably, Fe was
detected at a higher concentration, which is consistent with the
initial analysis of the unpurified KOH solution, where Fe
impurities are present.

4. CONCLUSIONS

In this study, Cop,Nij;Fep3-LDH/Gq,; composites were
synthesized through a single-step hydrothermal reaction. The
influence of cobalt and graphene concentrations on the OER
performance was examined using a 2-level full factorial design
to optimize the LDH composite for enhanced OER perform-
ance. The Cop, 5Nif;Fer3-LDH/Gpyg) composite reached the
lowest onset potential of 1.54 V, the potential at 10 mA cm ™
was 1.58 V, and the Tafel slope was 58.4 mV dec™, indicating
that a lower concentration of cobalt and graphene has the
optimum combination for the OER process. Furthermore, the
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ANOVA analysis showed that both cobalt and graphene
concentrations and their interactions are statistically signifi-
cant, with a linear correlation between them. Also, the
optimized composite showed good electronic properties and
stability, without losing significant catalytic activity over a 24-h
period. Additionally, the longer stability test at S0 mA cm™
demonstrates a stable performance at 44.5 mA cm™ for 58 h
after an initial decline in current density. This stability was
further supported by LSV analysis, which showed minor
changes in onset potential and more significant changes in
higher current density over 72 h. SEM imaging confirmed that
the composite retains its compact morphology under
prolonged operational conditions, while ICP-MS analysis
indicated minimal metal leaching, with a slightly higher Fe
concentration primarily attributed to impurities in the KOH
solution. These findings highlight the composite’s reliability for
electrochemical applications under elevated current densities.
Therefore, this study provides a facile and efficient strategy to
design and optimize a trimetallic LDH combined with
graphene as an electrocatalyst to enhance the OER activity.
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