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Abstract—Fixed speed actuators have a characteristic nonlin-
ear transient response. While this may not present a problem for
single-input, single-output (SISO) control systems containing such
actuators, the mixture of different fixed speed actuators is usually
problematic in multivariable control applications. This paper
presents two methods which allow such nonlinear actuators to
present a linear response and therefore allow their incorporation
in linear multivariable control design methods. The first method is
based on a closed-loop describing function approximation, while
the second uses an equivalent nonlinearity concept to linearise the
relay which represents the fixed-speed limitation. A simulation
study, demonstrating the performance of both schemes in a
multivariable control setting, is presented.

Index Terms—Actuator, linearisation, describing function,
equivalent nonlinearity, multivariable control

I. INTRODUCTION

There is a wealth of literature on actuator linearization.
Many studies use feedback linearisation, which uses an inverse
actuator model and relies on the sensitivity reduction of the
feedback to compensate for any residual nonlinearity, e.g. [1].
However, this cannot be applied to relay-type systems, since
the relay represents a non-invertible characteristic. A number
of studies look at small signal linearised representations, e.g.
[2], but these are only valid for a very small range of operation.
Most studies treat saturating actuators, e.g. [3], [4], but these
researchers consider an essentially linear actuator, which has
an amplitude limitation. Finally, [5] considers an electro servo-
hydraulic valve, but linearises the static characteristic. The
approach in this paper is to deal with the complete actuator
servo loop and to develop a compensation method, which
achieves something close to exact linearisation of the servo
loop, over its complete range of operation.

Nonlinear actuators of the form shown in Fig.1 are found in
many systems, both hydraulic and electrical. The effect of the
relay shown is often manifested as a controller output which
has only ‘raise’ or ‘lower’ signals, limiting the maximum rate
of change of the output, often for safety reasons or due to
physical limitations. Electrical fixed-speed (ac) drives are also
cheaper than their variable-speed counterparts, with speed fixed
by the supply frequency.

This paper develops two compensation methods, one based
on the concept of the use of a dither signal to transform the
relay characteristic into an ‘equivalent nonlinearity’ [8] while
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Fig. 1. Fixed-speed actuator system

the other method determines a describing function approxima-
tion [6] for the complete actuator loop. The operation of both
methods is demonstrated in both single-loop and multivariable
control settings and the duty cycle implied by the switching
control signals is examined.

II. EQUIVALENT NON-LINEARITY

The concept of an equivalent non-linearity for a nonlinear
characteristic subject to a (relatively) high frequency dither
signal has been traced back to J.C. Lozier of Bell Labs in
1950 [7], [8]. It can be used both as an analysis technique
to examine the effect of a combination of a high frequency
dither signal and a non-linearity, or as a synthesis technique,
where a dither signal is specially constructed and injected into
a system in order to produce a more desirable (probably less
severe) non-linear function. It is the latter case that is addressed
in this paper.

A. Equivalent non-linearity concept

The equivalent nonlinearity concept addresses the system
as shown in Fig.2. The original non-linearity is specified in
y = f(u), while the equivalent non-linearity of f( ) with the
addition of the dither signal is specified by § = g(r).

It can be shown that the equivalent non-linearity of the
single-valued function z(t) = f(u(t)), with u = r + d(t), where
r is a (relatively) low frequency signal and d(t) a (relatively)
high frequency dither signal, is given by g(r), where:

=g(r) = /:’0 fwp(u —r)du e))

|

and p( ) is a weighting function related to a probability density
function on d(t). The technique relies on two assumptions:
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Fig. 2. Equivalent non-linearity concept

« The frequency of the dither waveform, d(t), lies above the
bandwidth of the dynamic system, G(s), which follows
the non-linear element, and

« The spectral difference between 7(t) and d(t) is such that,
over a dither period, T, no significant error is incurred by
regarding r(t) = r as constant.

B. Calculation of the equivalent non-linearity

In general, for a single-valued non-linearity, f( ), with input
u(t) = r + d(t), with d(t) being the dither signal [8], and r
being relatively constant over the dither period,

y=f(r+d()) 2)

Let p(q)dgq be the probability that, for any time ¢, chosen at
random, d(t) lies in the range ¢ to ¢ + dg, with p(q) being the
probability density function for the dither. When d(t) has the
value ¢,

y=/r(r+q ©)
The expected value for y is:
y= / f(r+a)p(g)dq ©)

To calculate p(q), let F(q) be the probability that d(t) lies
above ¢,

oo q
F(q) =/ ple)dg = / p(q)dq (5)
q oo
and p(q) can now be determined from:
dF(q) _
Td —p(q) (6)

C. A relay with triangular dither

The equivalent nonlinearity for an ideal relay with a tri-
angular dither signal on the input will now be evaluated. A
triangular dither signal is a powerful one and has the capability
significantly linearise a relay, as will be demonstrated. The
triangular dither signal is shown in Fig.3 and a relay with
limits of £R, as shown in Fig.1, is the non-linearity under
study.

For a triangular dither signal of amplitude D, as shown in
Fig.3, F'(q) may be evaluated as the fraction of time that d(t)
spends above ¢, and is easily seen to be:

F(q) = A/B for —D<q<D @)
_ D—q 8
= 5D (3)

2

—-D ’ N
Fig. 3. Triangular dither signal
Flq) |,
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x 4,
—-D D
Fig. 4. Function F'(q) for triangular dither
Also

F(g) = 0 for ¢>D 9)
F(g) = 1 for ¢g<-D (10)

The form of F(q), for a triangular dither signal, is shown in
Fig.4 and the corresponding probability density function, p(q),
shown in Fig.5.

We can now evaluate the effect of the dither signal on the
relay by evaluating equation (1). The integral in (1) represents
the common area under the function formed by the product
f(r)p(r — u) or, equivalently, p(r)f(u — r). This is easily
calculated graphically, as shown in Fig.6. The area under the
negative portion of the p(r)f(u—r) curve is 25 (D —r) while
the area under the positive portion is %(D +r), giving a net
area of %. The equivalent nonlinearity is therefore:

R
y=—1r for —D<r<D (11D
D
with
y = D for r>D (12)
Y —D for r<—-D (13)
p(q)
L
2D
-D D"
Fig. 5. Probability density function for triangular dither
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Fig. 6. Evaluation of convolution product

which is linear in r between the relay saturation limits!.
Providing the ‘equivalent nonlinearity’, g(r) operates in its
linear region, the closed-loop transfer function of the actuator
system in Fig.1, with dither injected, is:

1
1+ (D/K(s)Gy(s)Rk;) s

If, for the present, we neglect the motor/valve dynamics, and
we choose K (s) = k,, we get:

Ten = (14)

1
1+ (D/kok;R) s
which is a first order transfer function with time constant
D
" kokiR
III. DESCRIBING FUNCTION APPROXIMATION

Ten =

5)

(16)

Td

The describing function (DF) gives a representation for a
nonlinear characteristic in terms of a frequency and amplitude-
dependent gain. For static nonlinear characteristics, such as
the relay, the DF has an amplitude dependence only. In the
development of the describing function, a ‘test’ sinusoidal
signal is injected into the nonlinearity and the transmission
‘gain’ of the nonlinearity with respect to the fundamental
component of the output signal calculated. It is assumed
that the harmonics on the output are attenuated by low-pass
elements following the nonlinearity, which is reasonable in
this case, given the presence of the integrating function of the
motor and the valve/motor dynamics.

For the relay in Fig.1, we can determine the describing
function straightforwardly [6] as:

N, (u) =

- 7l

a7

............................. CLC) R
] |
« : :
yi(t) N Cascade | ya(t) | Actuator | : y(t
: | compensator system :
Fig. 7. Amplitude dependent cascade compensator

where v is the amplitude of the signal entering the relay. If,
for the present, we neglect the motor/valve dynamics and,
initially (at least) let K(s) = k,, evaluating the closed-loop
differential equation for the actuator system of Fig.l, using
the DF approximation of Eq.(17) for the relay, yields:

mlu(t)|g(t) — 4koki(ya(t) — y(t)) =0

and the closed-loop actuator system approximates a linear,
unity-gain, first-order dynamical system, with an amplitude
dependent gain, with time constant:

(18)

mlul

. = 19
™ Thok >
If an amplitude dependent compensator, defined by:

Taga(t) + ya(t) = e (u(t))ya(t) + ya(t) (20)

is now placed in cascade with the actuator system of Fig.1,
as shown in Fig.7, the overall system transfer function is

effectively:
1

- 1+ 71y4s

h(s) @1
where 7. is a design parameter and chosen subject to actuator
speed limitations (see Section IV-A). It may be noted that the
cascade compensator in (20) may easily be implemented using
the state-space form:

Az(t) + B(t)ya(t)
Ca(t) + D(t)ya(t)

(22)
(23)

with A = —(1/74), C=1 and the dependence on |u| confined
to B(t) = (14 — 7e(w))/73 and D(t) = 7.(u)/74.

IV. ACTUATOR CONTROLLER CALCULATIONS
A. Choice of 14

Both the equivalent nonlinearity (EN) and describing func-
tion (DF) approaches have, to a first approximation, the capa-
bility to reduce the actuator system in Fig.1 to a linear, first
order transfer function. In the EN approach, the addition of a
dither signal is required, while the DF approach requires the
use of an amplitude-dependent cascade compensator.

Now, we will address the choice of 7;. While significant
freedom in the choice of 7 is available, it is important that we
establish a lower bound on 7,4 so that we don’t try to violate
the rate limit of the actuator output, which is given by k;.
Otherwise, nonlinear behaviour will result.
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Let us consider a step response, and try to determine the
minimum 74 which will retain linear behaviour. The response
of the system described by (21) is:

Ystep = As(l - e_?d)

where A; is the magnitude of the step function. The maximum
slope of the step response is determined by:

(24)

dystep

it = Jra)e” 7 =AY @)
To avoid violation of the maximum slope, k;, we must have:
Ag/ta < k; (26)

or
T4 > As/ki 27

In order to get the fastest linear response, set 7q = As/k;. We
now determine the actuator controllers required to obtain this
limiting condition.

B. Controller calculations
Again neglecting the motor/valve dynamics initially, we
have from (16) that:
D

sziz

kok; R As/ki

(28)

giving:
D

° AR
for the maximum rate linear response, using the EN frame-
work. In the DF framework, we simply choose 74 (in Eq.(21))
from Eq.(27), with the choice of K (s) being relatively unim-
portant. However, in the case that the relay contains some dead-
zone (often artificially introduced to prevent limit cycling),
K (s) may be chosen as a constant gain, k, in conjunction
with the dead-zone value (note that k, effectively scales the
dead-zone quantity).

k (29)

V. RESULTS

A. Single loop responses

With parameters of k; = 2 and 7 = 0.01 s, we compute the
responses of two actuators to steps of amplitude A, = 10.0.
One actuator is compensated using the DF technique, while
the other is subject to a triangular dither signal of amplitude
2. The relay is symmetrical and saturates at £1. Fig.8 shows
the responses of both systems, together with a linear system
with time constant 74 = As/k; = 5 s. From (29), k, = 0.2.
Fig.8 also shows the response for an uncompensated actuator.

Clearly, the response achieved with both linearising method-
ologies is very close to the linear equivalent, with just a minor
mismatch in the case of the EN methodology. Though a linear
actuator response is achieved, the price to be paid is an increase
in the time taken to achieve the setpoint. In many applications,
the faster response may be desirable, with little negative impact
of the nonlinear transient response. This is most likely the
case when the actuators are used in isolation. However, when
such an actuator system is contained within a larger control

4-

Step response

' —— EN formulation
Y —— DF formulation
— Linear equivalent
- = =Uncompensated i

15 20
Time (secs)

0 i i
10

Fig. 8. Uncompensated and compensated single actuator response
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Fig. 9. Example multivariable system

strategy, particularly involving multivariable interactions, there
is significantly stronger motivation to obtain a linear response,
at the expense of some degradation in transient response time.
The following example illustrates such a scenario.

B. Multivariable control example

In this example, we consider the case where, for simplicity,
all multivariable interaction takes place in a matrix of constant
gains. The system under study, shown in Fig.9 has two inputs
and two outputs and both inputs actuate the system via
nonlinear actuator systems of the form shown in Fig.1, but with
different parameters. The dynamical blocks on the output are
similar single-input, single-output (SISO) dynamics described
by g1(s), g1(s), where:

Gu=(33) a6 —n)= 5"

“5p1 0

3 3

The actuator parameters are given in Table L.
The multivariable system described above is indicative of
a number of application areas, including those arising in steel

TABLE I
ACTUATOR PARAMETER VALUES
ki T
Actuator 1 2 0.1
Actuator 2 | 0.5 | 0.3
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Fig. 10. Diagonalised system

rolling [9] and in boiler systems [10], where the dynamics of
the multivariable interaction are significantly faster than other
SISO dynamics in the system. Typically, different causal inputs
to the system, with diverse inertias and ranges of movement,
require different actuator systems.

A typical strategy to control the system of Fig.9 is to
diagonalise the system and apply single-loop compensation.
However, this can only be achieved if the actuators can be
linearised. Furthermore, since neither actuator can be driven
beyond its maximum rate, as detailed in (27), the fastest
actuator will need to be slowed down to the minimum time
constant achievable by the slowest one. We therefore choose
Ta = Ag/k; for Actuator 2, where A, in this situation
represents the maximum range of movement. For this example,
we will assume that A, = 5.

So, we appropriately compensate both actuators to align
them with the transfer function, h(s) in (21) yielding the
transfer function matrix:

0

Guo) = (5 1y ) Guite)

Since G, is non-singular, we diagonalise the system using

91(s)
0

(€19

(32)

and apply single loop compensation to the remaining two

independent dynamical SISO systems, in the configuration:
k1(s) and k2(s) can be chosen to equalise the dynamics in

each path, if desired, or individual (decoupled) responses can

be achieved. Let us choose:

ki1

S

ki(s) = kp1 + — = ka(s)

with k1 = 0.8 and k;; = 0.1.We have, from (27) that 7" =
10. This gives:

(33)

k=01

. , k2=04 (34)

The responses, with uncompensated actuators, to steps (of
amplitude 5 units) in inputs 1 and 2 respectively, are shown
in Fig.11, while the responses using compensated actuators is
shown in Fig.12.

Though the responses of the system with uncompensated
actuators is slightly faster, there are some undesirable inter-
actions between channels which cannot be eliminated. Good
channel separation is seen to be achieved for the system with

(a) Step in Input 1

6
= Qutput 1
= = = Qutput 2 7
80 100
(b) Step in Input 2
6 ‘ ‘
4 N / z - 7
7 Output 1
2r = = = Output 2 ]
7
N
2 i i i i
0 20 40 60 80 100
Time (secs)
Fig. 11. Multivariable system response (uncompensated)
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Fig. 12. Multivariable system response (compensated)

actuator compensation. In Fig.12, results are shown for the
EN formulation, with the DF formulation yielding comparable
results.

VI. DISCUSSION

There are a number of issues, arising in relation to the
actuator linearisation methods presented, which deserve some
comment. It should be noted that both linearisation methods
presented in this paper effectively perform some form of
switching action across the relay. This is an effective method
of propagating an ‘analogue’ signal across the relay, where we
rely on the low-pass components following the relay to perform
an integrating, or averaging, operation. Alternative switching
methodologies have been proposed elsewhere, for example in
[11], which employs the use of pulse-width modulation (PWM)
to assist in linearising the actuator over time. In [11], the width
of the pulses is proportional to the magnitude of the relay input.

Switching, in some systems, may cause unacceptable wear
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on components, for example in hydraulic systems, where a
switching action would require rapid changes in the direction
of a mechanical spool valve. Therefore, the techniques pre-
sented here are limited to electrical actuator systems. Note
that the degree of switching can be loosely controlled by
the introduction of dead-zone into the relay characteristic, at
the possible expense of some small steady-state error in the
actuator output. This is particularly true of the DF formulation,
since the amount of switching depends on the distance of the
actuator output from the setpoint. However, this is less so in
the case of the EN, where a consistent dither signal is applied.
Nevertheless, some experimentation with the dither amplitude,
or possible modulation of the dither amplitude with actuator
error, may lead to a more acceptable degree of switching.

It should also be noted that the effect of both dead-zone in
the relay and any backlash on the output may be taken into
account in both the DF and EN formulations, so compensation
for these effects is also possible.

In the calculations of Sections III and IV, we neglected the
unity-gain valve/motor dynamics. For the range of dynamical
time constants considered, these dynamics were not seen to
significantly affect the results. However, if desired, a more
accurate calculation of the cascade compensator in Fig.7 (as
opposed to the simple form in Eq.(20)) and K (s) (as opposed
to the simple form in Eq.(29)) can be made, resulting in
a two-degree-of-freedom controller in the case of K(s) for
the system with dither. Nevertheless, this significant increase
in complexity is unlikely to be justified in relation to the
performance improvement.

Finally, it should be borne in mind that the design of the
outer multivariable controller is not entirely independent of
the actuator constraints, even post-linearisation. Note that the
minimum time constant calculation in Eq.(27) depends on the
setpoint demands at the actuator input and violation of these
design limits will result in nonlinear behaviour (i.e. the output
will be rate-limited) and multivariable decoupling lost. This
could easily be demonstrated by using a more aggressive set
of dynamic controllers for k;(s), k2(s). In general, increasing
the outer loop proportional gain beyond a certain threshold
will cause an instantaneous input to the actuator which may
exceed the design specification, A. The use of derivative-type
action is also likely to lead to significant problem in this regard.
Integral action, on the other hand, generally provides a slow,
incremental, actuator demand and is unlikely to violate the
input design limits.

VII. CONCLUSION

This paper presents two relatively straightforward tech-
niques for linearising fixed-speed actuators. While the nonlin-
ear transient response from fixed-speed actuators may not be a
particular issue for stand-alone actuator systems, linearisation
is required if acceptable performance of multivariable system,
incorporating such actuators, is to be achieved. Simple calcula-
tions are provided to determine the maximum speed (minimum
time constant) of the linearised actuator systems, leading to
straightforward actuator controller calculations. Both lineari-

sation schemes produce a switching effect on the relay output
which can, to some extent, be mitigated by the incorporation
of appropriate dead-zone in the relay, at the expense of some
steady-state accuracy.
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