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Abstract: This paper addresses the issue of vacuum pump degradation in semiconductor
manufacturing. The ability to identify the current level of vacuum pump degradation and
predict the Remaining-Useful-Life (RUL) of a dry vacuum pump would allow manufacturers
to schedule pump swaps at convenient times, and reduce the instances of unexpected pump
failures, which can incur significant costs. In this paper, artificial neural networks are used to
model the current level of pump degradation using pump process data as inputs, and a double-
exponential smoothing prediction method is employed to estimate the RUL of the pump. We also
demonstrate the benefit of incorporating process data, from the upstream processing chamber,
in the development of a solution.
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1. INTRODUCTION

Almost all semiconductor manufacturing processes require
some level of vacuum to operate. Ultra-high vacuum in a
processing chamber is generally achieved using a turbo-
molecular pump located at the processing tool followed
downstream by a dry vacuum pump usually located within
the subfab environment. Dry pumps are generally very
reliable, but when applied to the pumping of particularly
harsh processes in semiconductor manufacturing, they can
occasionally suffer from unexpected failures.

Growing pressure on profit margins has lead IC man-
ufacturers to increase their focus on improving process
yields, tool uptime, and wafer throughput. At the same
time, the increase in the use of tools for 300mm wafers
and the introduction of new material technologies and
cleaning flows constantly raise the by-product challenge
and increase the value of wafers (Mooney and Shelley,
2005). The occurrence of a vacuum pump failure can cause
irreparable damage to wafers, but also results in significant
tool downtime and cleanup, which can can be a major ex-
pense. Furthermore, a vacuum pump failure results in un-
planned maintenance of a pump which is significantly more
expensive than planned maintenance in terms of resources,
planning and manpower. As semiconductor manufacturing
becomes an increasingly lean operation, vacuum pump
suppliers are likewise expanding their operations in the
field of condition monitoring and predictive maintenance.

Dry vacuum pumps typically comprise two separate pumps
each driven by their own motor. The standard configura-
⋆ This work was supported by Enterprise Ireland under grant
EI/CTFD/05/IT/323.

tion consists of a single stage booster pump backed by a
multi-stage main pump. These types of pumps are subject
to a number of potential failure modes. These include
sudden ingestion of deposits, exhaust pressure blockages,
deposition causing pump seizure and the degradation of
pump components leading to excessive loss of performance.

Several publications have addressed the issue of condition
monitoring and predictive maintenance of vacuum pumps.
(Mooney and Shelley, 2005) provides an overview of new
capabilities in pump predictive maintenance through the
introduction of networked monitoring systems. The issue
of process by-products accumulating in the pumping mech-
anism was considered by (Konishi and Yamasawa, 1999).
The accumulation of deposits within the running clear-
ances of the pump causes friction resulting in the pump
current exceeding current limits and causing the pump to
shut down. In (Konishi and Yamasawa, 1999), the use of
an ARMAX model to predict vacuum pump motor current
was considered. The use of fuzzy-logic based condition
monitoring is considered in (Twiddle et al., 2008), where a
fuzzy-model based diagnostic scheme to detect mechanical
inefficiency and exhaust system blockage in a dry vacuum
pump is designed. It is demonstrated that the power ratios
of certain frequency components in the exhaust pressure
signal spectrum can be used to predict the gas load, motor
current, and hence, mechanical efficiency.

The application of condition monitoring techniques to vac-
uum pump maintenance represents a significant technical
challenge. Dry vacuum pumps are designed to have high
reliability, very low maintenance, and the capability of
pumping corrosive and reactive gas mixtures. However,
modern semiconductor fabrication facilities operate mul-
tiple processes with such different operating conditions as
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varying chamber pressures, gas flow rates, and different gas
mixtures and properties. These process-related properties
and operating conditions are often proprietary and as such,
they are often inaccessible to the vacuum pump suppliers,
(Cheung et al., 2006).

In the case study presented here, the degradation of a
dry vacuum pump leading to excessive loss of vacuum
performance is addressed. Pump data from a major semi-
conductor manufacturing facility is employed to develop
a means to identify, track and predict the rate of pump
degradation. The ability to identify and predict the loss
of vacuum performance will allow for the planning of
‘Just-In-Time’ (JIT) pump exchanges at convenient times,
resulting in less tool downtime and loss of product.

2. PROBLEM DESCRIPTION

During its lifetime, a dry vacuum pump is exposed to large
quantities of often toxic and corrosive gases. In some cases,
the gases used may reduce the expected lifetime of the
pump. Semiconductor processing chambers require clean-
ing between each processed wafer. A common gas used for
this task is nitrogen trifluoride (NF3). This gas is highly
corrosive, and in large quantities, can lead to an increased
rate of degradation of dry pump components, resulting
in the gradual loss of vacuum performance. Eventually,
this loss of performance results in the foreline pressure
in the processing chamber exceeding tolerance limits and
the possibility of irreparable damage to wafers. This paper
focuses on a means to identify the current level of pump
degradation from analysis of pump variables, and having
identified the current level of degradation, provide a means
to estimate the Remaining-Useful-Life (RUL) of the pump.

The proposed solution comprises two elements. A diagnos-
tic element to determine the current level of pump degra-
dation and a prognostic element to provide an estimate
of the RUL of the pump, given the current degradation
level and rate of degradation. Artificial Neural Networks
(ANNs) are employed to model the level of pump degra-
dation, and a Double Exponential Smoothing Prediction
(DESP) method is used to estimate the RUL of the pump.

3. DATA COLLECTION

3.1 Pump Data

In this study, dry pump data from 14 processing cham-
bers in a major semiconductor manufacturing facility was
available. Each of the chambers run a similar deposition
process. Pump data covering approximately one full year of
operation is available. The recorded data includes variables
such as current, power, temperature and exhaust pressure.

Each of the chambers employ an Edwards (formerly BOC
Edwards) iH600 dry vacuum pump. The iH600 pump
comprises an HCDP80 dry pump, with an HCMB600 me-
chanical booster pump fitted to the inlet of the HCDP80
pump. Both the HCDP and HCMB pumps have enclosed,
water-cooled, motors.

Pump data collection was carried out using the Edwards
FabWorks system. FabWorks is a condition monitoring
and analysis system for vacuum and exhaust management
equipment. The FabWorks system is capable of monitor-
ing up to 3000 items of equipment connected across its
network. Each piece of equipment sends both status and
process variable update information to a central server
where the information is stored and processed. Access to
the FabWorks system can be made from any computer
connected to the LAN, allowing for both real-time and
historical analysis of pump data.

The design of and installation of each individual network is
dependant on the number of pieces of equipment connected
to it. This is undertaken to ensure sufficient bandwidth is
always maintained for the transmission of data across it.
One of the design features of such a network is the selection
of the data sampling approach. In this case, the variables
in each pump are recorded using an event-based sampling
technique known as send-on-delta sampling or, delta-
logging (Mooney and Shelley, 2005). Using this approach,
each variable is sampled using a regular sampling interval.
Once the latest variable is sampled x(ti), it is compared
to the most recent value sent to the network database
x(ti−1). If the difference between the two values exceeds
or equals a preset threshold value δ, as in equation 1, then
the latest variable value is timestamped and sent to the
central server. If the threshold value δ is not exceeded,
then no update is sent to the server.

|x(ti) − x(ti−1)| ≤ δ (1)

This sampling approach is very suitable for monitoring of
dry pumps in a large semiconductor fabrication facility,
which may have in excess of 1000 dry pumps in operation.
A consideration in the installation of such a network is
the rate at which pump data and status updates are sent
across the network so that sufficient bandwidth is always
maintained.

A major factor influencing the rate at which variable
updates occur is determined by the selection of the δ value
for each variable. This value effectively acts as a trade-off
between signal tracking accuracy and network bandwidth.
The smaller the δ value, the greater the signal tracking
accuracy and network load, and vice versa.

3.2 Chamber Data

In addition to the pump data available for the study, pro-
cess data from the upstream chambers in the form of status
information and foreline pressure measurements was made
available. The status information provided a means to de-
termine exactly the times at which the pump is processing
gases from upstream and when it is idling (processing no
gases). In some cases, it is possible to determine when
the pump is processing gases from analysis of the pump
variables, the load on the pump increases when processing
gases. However, depending on the load generated and the
signal tracking resolution in the pump data, this may not
always be possible, or reliable. Knowledge of when the
pump is processing provides a means to identify the pump
data, idling, and processing modes.
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The foreline pressure measurements allow for a means to
determine the current level of the degradation in the pump
and to quantify the loss of performance. Figure 1 plots the
average foreline pressure for each processed wafer observed
during the final seven months of a dry pumps lifetime.
Figure 1 demonstrates how, as the pump degrades over
time, the average foreline pressure in the chamber rises.
Eventually, acceptable tolerance limits for foreline pressure
in the processing chamber are exceeded and processing
ceases.
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Fig. 1. Average foreline pressure for each processed wafer

During wafer processing, foreline pressure measurements
are recorded at a much faster sampling rate than the
pump data, and generate vast quantities of data. A means
to extract the most useful data needs to be considered.
Semiconductor wafer processing is generally undertaken
via a number of ‘recipe steps’ using different gases, flow
rates and pressure settings. In this application, the average
foreline pressure over a single identified recipe step was
employed to represent the average foreline pressure during
the processing of a single wafer. The specific recipe step
was selected for a number of reasons.

• the recipe time step was of significant duration rela-
tive to the total wafer processing time

• the chamber gate valve remained completely open and
was not used to control chamber pressure during the
recipe step

Hence, the major factor influencing foreline pressure dur-
ing the recipe step should be the performance of the dry
pump.

Due to the proprietary nature of the process chamber
data, each of the data streams for foreline pressure from
each chamber are re-scaled automatically so that it is not
possible to determine a physical value from the data. To
overcome this issue, the foreline pressure measurements
from each chamber over the lifetime of the pump were
mapped to the interval [0,1]. In this study, the rescaled
foreline pressure values represent the level of degradation

in the pump.

In general, vacuum pump suppliers do not have access
to such upstream performance data, and certainly not in
real-time, and as such, a major driver for this study is
to identify any benefits of incorporating such upstream
process data in the development of algorithms for vacuum
pump condition monitoring. By having access to and
incorporating such data in the development phase, it will
be demonstrated how pump degradation can be identified
and predicted using only the available pump data in real-
time.

4. DATA PREPROCESSING

4.1 Data Reconstruction

The use of an event-based sampling approach to dry pump
data collection results in the data stream for each pump
variable being on an irregular sampling interval. The time
between the receipt of updates of variable values can be
significant, depending on the variable in question, the
pump state and the selection of the δ value.

To overcome this issue, the pump data was reconstructed
onto a regular sampling interval. A one minute sampling
interval was chosen, for two reasons. No updates of tem-
perature values were ever identified occurring, within one
minute of the most recent update received, thus ensuring
all temperature updates received were incorporated on
the one minute interval. The temperature signals were
reconstructed using linear interpolation. The power signals
were first resampled onto a two second interval, which
was sufficient to incorporate 98% of updates received. The
power signals were reconstructed such that, if no variable
update was received within the two second interval, the
most recently available value was used. The power signals
were then averaged over each minute to correspond with
the temperature values. In addition, a one minute interval
was chosen as the wafer processing time was an integer
multiple of one minute, at approximately eight minutes.
This allowed the pump data to be easily tabulated with
the chamber foreline pressure and status data.

Having reconstructed the data onto a regular sampling
interval, statistical summary data was produced in the
form of mean values for each observed variable, during the
processing of each wafer. The use of mean values per wafer
has the advantage of reducing the signal noise introduced
by the reconstruction of the data onto a regular interval.
Furthermore, it allows for the processing of the data on a
wafer per wafer basis, and for any RUL prediction to be
made in terms of number of wafers until failure.

4.2 Data Filtering

Due to the data reconstruction approach, significant signal
noise was introduced to the pump process data. The
generation of mean values for each variable on a per wafer
basis served to reduce the signal noise somewhat. However
further filtering to smooth the data was necessary. An
Exponentially Weighted Moving Average (EWMA) filter
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was employed. The form of the filtering is shown in
equation (2) below.

St = αyt + (1 − α)St−1 (2)

The EWMA filter applies a weighting factor which de-
crease exponentially. The weighting for older data points
decreases exponentially, giving more importance to more
recent observations, whilst not discarding older observa-
tions entirely. The degree of smoothing is determined by
the selection of the smoothing constant α.

Figure 2 plots the normalised mean values per wafer of
the drypump temperature of a pump approaching failure.
Both the original data and the filtered data using the
EWMA filter with α = 0.01 are shown. The output of the
filter serves to smooth the data significantly whilst still
retaining all of the important trends in the data. Each of
the variables were filtered this way.
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Fig. 2. Filtering applied to dry pump temperature data

5. MODELING PUMP DEGRADATION

The proposed solution to the issue of vacuum pump degra-
dation comprises two stages. The first is a diagnostic ele-
ment to determine the current level of pump degradation
from analysis of process data from the pump. The second
prognostic stage attempts to predict the current pump
degradation level into the future in order to determine an
estimate of the RUL of the pump.

The diagnostic element of the proposed solution uses an
ANN to determine the current level of pump degradation
using the summary process data from the pump as inputs
to the network. The target vector in training for the
network is the level of pump degradation identified from
the foreline pressure data.

5.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a non-linear map-
ping techniques, inspired by biological neural networks.

Just as in a biological system, ANN training involves
adjustments to the synaptic connections (weights) between
neurons.

An ANN can be trained for many applications such as
function approximation (nonlinear regression), pattern as-
sociation, or pattern classification. During training, the
weights and biases of the network are iteratively adjusted
using a training algorithm such as backpropagation to
minimize the network performance function. In function
approximation, for example, ANNs are trained, so that
particular input values lead to specific target outputs.
The network is adjusted, based on a comparison of the
output and the target, until the network output matches
the target.

ANNs have been applied to numerous problems in the
fault diagnosis and system modeling domain (Venkata-
subramanian et al., 2003). These include (Rietman, 1998),
where ANNs are employed to model and predict changes in
pressure in a plasma reactor, using process data as inputs.

In this study, a standard feed-forward MLP neural net-
work was employed to model pump degradation. Various
network architectures were considered and tested. The
selected architecture comprises a single hidden layer with
twenty neurons, using tan-sigmoid activation functions
and a single output layer using a log-sigmoid activation
function to limit the output to between [0,1]. The training
data was split into training, validation and test data, to
help prevent overfitting of the data. The number of hidden
layers and neurons were chosen by testing of various combi-
nations and the network was trained using the Levenberg-
Marquardt backpropagation algorithm.

An input feature vector was generated for training of
the ANN. The vector comprises averaged values of tem-
perature and power for both the booster and the main
pump, over the period of a single processed wafer. The
selection of these four variables to form the input vector,
was based upon the correlation of their filtered values with
the foreline pressure. The inclusion of the current signal
for the booster and main pumps resulted in a significant
deterioration in performance and so were not included in
the final input feature vector.

The rescaled mean foreline pressure values per processed
wafer, were used as the target values for the training of
the network. The objective of the network was to identify
the current level of pump degradation on a per-wafer
basis, by analysis of the summary pump data. In this
study, complete historical data for four pump failures as a
result of vacuum pump degradation was available. Network
training was carried out using combinations of three of the
datasets as inputs, using the remaining dataset for testing.

5.2 Network Testing and Results

Figure 3 compares the modeled degradation level against
the actual degradation level using a dataset from a failed
pump. The dataset was not used during the network
training process. In this case, the model output tracks the
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Fig. 3. Modeled and actual level of pump degradation

actual level of degradation quite accurately, demonstrating
that the current level of pump degradation can be identi-
fied from analysis of the pump data.

6. RUL ESTIMATES

Having demonstrated the ability to determine the current
level of pump degradation, the most useful information to
the manufacturer is an estimate of the RUL of the pump.
This allows for planning of pump replacements at a conve-
nient time, with minimal disruption to manufacturing. In
determining the RUL of the pump, there are a number of
factors which cannot be determined a priori, such as the
future utilisation rate of the pump (idling/processing) and
the number of times the pump is shutdown and restarted,
which can influence the RUL.

Figure 4 shows degradation trends for three pump fail-
ures. Analysis of the available data, suggests that the
failure trend generally becomes well established by the
time the pump has approached 80% degradation. The
times to failure observed between degradation exceeding
80% and pump failure ranged from approximately 1000 to
3500 wafers. This represents between 150 and 500 hours,
approximately, of wafer processing. Predictions of RUL at
and above 80% level of degradation were considered appro-
priate, to provide a sufficient horizon for taking corrective
action.

As the level of pump degradation approaches 80%, the
time series observations of the pump degradation levels are
‘generally’ of the form in Equation 3. Double exponential
smoothing-based prediction models a given time series
using a simple linear regression equation, where the y-
intercept β0 and the slope β1 are slowly changing over
time. In such cases, double exponential smoothing can
used to apply unequal weighting to the individual elements
of the time series.

yt = β0 + β1t + ǫt (3)
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Fig. 4. Degradation trends for observed pump failures

In order to obtain updated estimates of the time series,
double exponential smoothing uses what is called the

single and double smoothed statistic, ST and S
[2]
T

. These
values are computed using two smoothing equations, (4)
and (5), where both equations use the same smoothing
constant α, which lies within the range [0,1]. This value
determine the degree of smoothing applied to the data.
The first equation smoothes the original time series and
the second filters the ST values.

ST = αyT + (1 − α)ST−1 (4)

S
[2]
T

= αST + (1 − α)S
[2]
T−1 (5)

Using ST and S
[2]
T

, updated estimates of β0 and β1 are
determined as:

β0(T ) = 2ST − S
[2]
T

− Tβ1(T ) (6)

β1(T ) = (
α

1 − α
)(ST − S

[2]
T

) (7)

Having estimated β0 and β1, the forecast made at time T
for the future value of yT+τ is given by,

ŷT+τ (T ) = β0(T ) + β1(T )(T + τ) (8)

With some manipulation, see (Bowerman and O’Connell,
1993), it can be shown that the forecast ŷT+τ (T ) is given
by,

ŷT+τ (T ) = (2 +
ατ

(1 − α)
)ST − (1 +

ατ

(1 − α)
)S

[2]
T

(9)

Such an approach to estimating the RUL of a degrading
system has previously been applied to determining time-
to-wash intervals for shipboard gas turbine engines which
experience gradual performance degradation caused by the
ingestion of salt (Kacprzynski et al., 2001).

The choice of a number of parameters must be carefully
considered in the application of the double exponential
smoothing prediction. The smoothing constant α is de-
termined by simulated forecasting of an historical dataset.
Using a section of available historical data, a regression line
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is fitted to the data and the initial least-squares estimates
of β0 and β1 are determined. Using (6) and (7), initial

values of ST and S
[2]
T

can be calculated. Using these values,

the historical dataset is used to update ST and S
[2]
T

and in
each time period a forecast is computed using the current

values of ST and S
[2]
T

. The procedure is repeated for a range
of α values, and the value which minimises the sum of the
squared forecast errors in selected for use in forecasting
future values.

The time series generated by the output of the neural net-
work generally comprises thousands of values, where the
difference between each consecutive value is quite small.
In order to extract the relevant linear trend from the data
over a smaller dataset, a new dataset comprising every
50th value of the time series was complied. This dataset
was used for the prediction of the estimated RUL of the
pump, and the generation of approximate 95% confidence
limits.

Figure 5 illustrates the performance of the DESP method
applied to the prediction of the RUL of a pump from
80% observed degradation. Also shown is the actual rate
of degradation in the pump, and the approximate 95%
confidence limits of the prediction.
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Fig. 5. RUL Prediction at 80% observed degradation

As can be seen, the actual time of failure of the pump fell
well within the confidence limits for the prediction. The
DESP method predicted pump failure at approximately
1250 wafers into the future with confidence intervals in
the range of 590 to 2300 wafers. The actual time of pump
failure was 1700 wafers into future.

7. CONCLUSIONS

In this paper, we have presented a method to both, identify
the current level of vacuum pump degradation, and to
estimate the RUL of a dry vacuum pump. The developed
solution has the potential to reduce the instances of unex-
pected pump failures caused by pump degradation. This

could help reduce pump maintenance costs, but also, the
costs associated with scrapped wafers, tool downtime and
chamber cleaning, following an unexpected pump failure.

In general, vacuum suppliers do not have access to process
data from the upstream processing chambers. In this pa-
per, we have demonstrated how, by incorporating status
data and foreline pressure measurements from the up-
stream processing chamber in the development of a so-
lution, a means to quantify the level of pump degradation
was possible. In the absence of such data, a means to de-
termine accurately the current level of pump degradation
on those manufacturing tools is now possible.

As the database of historical pump failures grow, a number
of issues may be considered. A reduction in the δ values
may greatly improve the signal resolution and present
opportunities for improving the model accuracy and RUL
prediction. A larger database may also present an oppor-
tunity for considering alternative approaches to modeling
the level of pump degradation.
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