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Abstract:  In an important paper comparing expected utility and mean-variance analysis, Feldstein 
(1969) examined a simple portfolio problem involving just two assets, one riskless and one risky.  He 
concluded there could easily be ‘plunging’, that is, investment in the risky asset alone.  His background 
assumptions were that the risky asset’s yield was log normally distributed and that the investor’s 
attitude to risk was expressible by a logarithmic utility.  We look at how conclusions are affected by 
choice of distribution and utility function.  While conclusions can depend on choice of distribution, 
they are remarkably robust to choice within the range of plausible positive distributions.  In contrast, 
conclusions are sensitive to choice of utility function and we find the key determinant to be how much 
the investor’s relative risk aversion differs from unity and in what direction. Based on historical stock 
market returns, our analysis implies that the prevalence of diversification that is observed is consistent 
with a relative risk aversion coefficient of about 2.5.  
 
 
 
                                    
                                                     I      INTRODUCTION     
 
 

Feldstein (1969) published an important and much cited paper criticising the use of mean- 
 

variance (or   ) analysis rather than expected utility in the theory of economic behaviour under  

 
uncertainty.  He based his analysis on a simple portfolio problem involving just two assets, one riskless  
 
and one risky.  But since the risky asset could itself be considered to be the optimal, or market,  
 
portfolio of risky assets, the separation theorem of mean-variance portfolio analysis suggests the  
 
importance of the problem.  
 

There were three components to Feldstein’s paper.  The first outlined the possibility that the 

   indifference curves of a risk averter might not be convex downwards.  The second argued that 

an investor choosing a combination of a riskless and a risky asset might be much more likely to opt or 

‘plunge’ for a risk-only portfolio than previous analysis had suggested, so that, contrary to Tobin’s 

(1958) analysis, diversification between money and bonds need not generally follow from risk 

aversion.  The third criticised the use of    analysis for multi-asset portfolios.  Subsequent 
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discussion of Feldstein’s paper has concentrated on the first and third components.  The second, which  

appears to have received  relatively little attention, provides the motivation for this paper.   

 
Feldstein assumed a log normal distribution1 of the return on the risky asset and a logarithmic  

 
utility function.  He demonstrated that a utility-maximising strategy would lead to plunging for the  
 
risky asset given values of the parameters of the log normal that he considered far from unlikely.  We  
 
will review his results in section II along with some discussion of subsequent comments.  We continue  
 
to examine how much plunging depends  on the specification of the probability distribution and  utility  
 
function.  We show in section III that if the logarithmic utility function is retained, Feldstein’s results  
 
are remarkably robust across a range of distributions.  However, in section IV, we show that the  
 
situation is very different with regard to choice of utility function and we relate the variations in the  
 
likelihood of plunging to the degree of risk aversion embedded in the utility functions.  Finally, in  
 
section V we consider some implications of these findings. 
 
  
 
                                        II      FELDSTEIN’S ANALYSIS 
 
  

Feldstein, following Tobin (1958), considered an investor with initial wealth A, allocating a  
 

proportion p to the risky asset, so that, after one period, wealth becomes y = (1-p)A + pAx, where the  
 
riskless asset is assumed non-interest bearing and x is random with a mean presumed greater than  
 
unity2.  Feldstein took x as log normal with parameters * and *  , that is, a density of 
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 For investment in the risky asset to have any attraction, Feldstein  further assumed that the  
 
investor is risk averse with a logarithmic utility function.  So the investor wants to choose p so as to  
 

                                                           
1 Since, as is well known, expected utility and   analysis are compatible given normality, 

Feldstein needed to assume some non-normal distribution.  However, log normality, or other positive 
distributions, seem more plausible than the normal and have more empirical support. 
2 Obviously, the mathematical nature of the problem is unchanged by attaching a non-stochastic yield 
to the riskless asset and adjusting the yield of the risky asset accordingly. 
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maximise  
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is obviously positive at p = 0, so that there will certainly be some investment in the risky asset.  At        
 
p = 1 it is  
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So the derivative is still positive, implying plunging, that is, all funds invested in the risky asset, if 
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Feldstein maintained this would often be the case, giving the example of 05.1 , when  

 
plunging occurs unless  is well more than four times the expected bond yield of 5%.  He contrasted   
 
this situation with the ubiquity of diversification implied by Tobin’s (1958) mean variance analysis of  
 
the same two asset model and linked it to non convexity of indifference curves, so as to emphasise that  
 
mean variance analysis is not always an adequate substitute for expected utility maximisation.   
 

While many subsequent papers, whether defending or further criticising mean-variance  
 

analysis, have discussed Feldstein’s paper (including, among others, Tobin (1969), Tsiang (1972),  
 
Bierwag (1974), Borch (1974), Levy (1974), Mayshar (1978) Felstein (1978) and Meyer (1987)), the  
 
plunging phenomenon itself has not featured prominently.  Mayshar accepted the correctness of  
 
Feldstein’s analysis of plunging, but  maintained it was  really unrelated to issues of the convexity of   
 
indifference curves, or validity of mean-variance analysis.  One of his arguments was that Feldstein had  
 
analysed  indifference curves generated by when x is assumed log normal, but in the  )}({ xuE
 
portfolio problem considered a variable )}1(1(  xpAy , which being a translation of a log  
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normal has a somewhat different distribution.  Another was the more general point that if the investor  

 restricted to choosing values of p and will obtain the same value of x irrespective of choice of p, then  

whatever the distribution of x, the distributions of the variables 
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are obviously identical, where )}1(1{)(   pApy  and  Appy )( .  Then whatever the  

istribution and whatever the (concave) utility function, the optimal p, assuming it < 1, could be  

btained from mean variance analysis in terms of 

 
d
 

yy   and o .  While more roundabout than direct  

etermination by equating the derivative of with respect to p to zero, it is certainly  

ompatible with it3.  But whether p is < 1, or whether plunging occurs is ignored in this argument  

nd it is not at all clear that it should be.  There would seem no sense in using mean variance analysis  

hen p=1 and, if plunging is possible, interest should focus on how distribution and utility function  

ffect its occurrence.  Certainly, condition (4) was derived assuming log normality and log utility.   

ote too that if p = 1, y is log normally distributed if x is.  In contrast to Mayshar, Meyer (1987)  

isputed the validity of Feldstein’s result on plunging, claiming it resulted from an implicit borrowing  

striction in the model.  But if the investor could borrow without cost, this would just increase A with  

lunging still occurring.   
 

o no detailed examination seems to have been conducted into how the occurrence of  

lunging might change with the distribution or how it might depend on the precise utility function  

hosen.   

                          III      VARYING THE PROBABILITY DISTRIBUTION 

  
etaining, for the present, the logarithmic utility, formulae (2) and (3) remain unchanged.  

lunging will occur if  
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hile a mixture of assets will be optimal if it is negative.  If x could take negative values, the  

xpectation of the reciprocal of x may not exist, which can usually be interpreted as ,  

plying that plunging cannot occur.  So, for example, assuming a normal distribution for x would 
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3 Other authors have made this point including (implicitly) Bierwag (1974) and Meyer (1987).   
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exclude plunging.  But if we assume that the most that can be lost by investment in a risky asset is the  

mount invested, a non-negative distribution is appropriate for x.   
 

aking x as positively distributed , the well known delta method for approximation of  

xpectations proceeds 
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here 

 

3w  denotes the third moment about the mean.  Now if we ignore terms with denominators  

volving powers of
 

 in  greater than 3, this gives 
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which implies (4)  again as the determinant of plunging.  Admittedly, this approximation assumes that  

e coefficient of variation is not large, but note that if the distribution is positively skew, implying

 

 3   th

 
positive, this reduces (6) making it more likely that (5) is positive and plunging occurs. 
 

owever, we need not rely on approximation arguments to show that plunging can occur for  

ther than the log normal. Suppose x follows a Pearson Type 3 distribution (often called the two  

arameter gamma) 
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his will be less than unity and plunging will occur if 

                                .                                                                             (7) 

o plunging is quite plausible unless variation is very large, although not  quite as likely as with a log  
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However, taking 05.1  as in Feldstein’s example, (7) shows plunging occurs unless 22. ,  

 
again more than least four times the expected bond yield of 5%.   
 
      

Again, suppose x follows a Weibull distribution, which, like the log normal and Gamma  
 
distributions, has been found in various empirical studies to provide a good fit to wealth distributions.   
 
The density is 
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It is evident that f(x)/x tends to infinity as x goes to zero for 2 , implying that the expectation goes  
 
to infinity also and that plunging cannot occur.  For 2  exact integration gives 
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The mean of a Weibull is    
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and so for large , since , the right hand side of (8) becomes the reciprocal of1)1(   .  This must  

 
be less than unity, as   was presumed greater than unity, so plunging must then occur.   Practically  

 
plausible values of are best judged from the coefficient of variation.  The variance of a Weibull is               
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and, obviously, large implies small .   The square of the coefficient of variation is  
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So for any and  ,   can be deduced from (10) and then from (9), so that (8) can show if  

 
plunging occurs.  Taking the case of 05.1  and  = .2, or four times the expected yield, we find  

 
(8) takes the value .996 so that plunging occurs even with that much variation, which is essentially the  
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same as Feldstein found for the log normal distribution.   
 

Similar findings follow for other plausible positive distributions for which algebraic exact  
 
solutions are obtainable.  The multiple of the expected yield that variation must exceed before plunging  
 
is ruled out can vary somewhat, but the overall situation is clear.  Plunging ought not to be an  
 
infrequent prediction with distributions that are usually considered plausible candidates for wealth, at  
 
least when we believe an investor’s risk aversion can be represented by logarithmic utility.   
 
         
                             IV      VARYING THE UTILITY FUNCTION 
 
 

To point up the difference that choice of utility function can make, we first contrast  
 

logarithmic utility with the extremely popular negative exponential utility   
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which must be less than unity if A is large enough and so the amount invested in the risky asset is  
 
Ap, constant irrespective of the amount available for investment.  However, this absence of plunging  
 
also occurs with the distributions considered in the previous sections.  Taking the two-parameter  
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This can be integrated exactly to give 
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which, if A is large, will obviously be negative at p = 1.  The optimum investment Ap is 
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again a constant, irrespective of A.  The contrast between results for the logarithmic utility and the  
 
negative exponential utility must be due to the different degrees of risk aversion they embody.  The 
 
coefficients of  absolute risk aversion and relative risk aversion are  
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negative exponential utility. 
 
 For a finer exploration of the influence of risk aversion on plunging, we take the utility  
 
function 
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showing decreasing absolute risk aversion and constant relative risk aversion.  So this utility function is     
 
not at all as risk averse as  the negative exponential utility, but it can be either less risk averse than the  
 
logarithmic utility (if  is negative) or more risk averse (if  is positive).  So it should be a sensitive 
 
criterion for examining plunging.  For any distribution density f(x), the expected utility is 
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If this is positive plunging occurs.  It can be evaluated by integration for any of the positive  
 
distributions mentioned earlier.  For (1), the log normal density, (11) becomes  
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with logarithmic utility, in the sense that it will occur in spite of ever greater variability.  At  = -1  
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This becomes (7) for 0 and 1 rR plays the same role as it does for the log normal  

 
distribution.  Similar results follow for the Weibull, although formulae are somewhat messier.  
    

An approximation type argument is also be worth developing.  For any utility function 
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where 3  is the third central moment of the distribution.  The first term on the right hand side is  

 
positive if  
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and clearly (13) is the case of this corresponding to and the two parameter gamma  yeu   1
 
distribution.  The second term will be positive when is, as it often is, and the distribution is  '''u
 
positively skew, which would favour plunging.  However, the terms involving higher derivatives in the  
 
Taylor expansion, neglected in the above expansion, might partially, or even totally, counterbalance  
 

this term, which must be occurring with and the two parameter gamma. yeu   1
 

So the overall finding is that the closeness to unity of relative risk aversion is the key  
 

parameter as regards plunging.  Values near unity, or less than it, imply plunging unless variation is  
 

very large relative to yield.  Large positive values of imply absence of plunging.  Returning to the  rR
 
negative exponential, or constant absolute risk aversion utility, with which we commenced this section,  
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its as y rR   , fully in line with the absence of plunging found for that utility function. 

 
                                                  V      DISCUSSION 
 

The previous sections would lead one to expect that plunging ought to be a reasonably  
 

frequently observed phenomenon.  But that does not seem to be the real world situation.  It is well  
 
known that fund managers, even when the portfolio is ostensibly ‘aggressively managed’, always hold  
 
appreciable quantities of riskless assets.  So is there something wrong with the theoretical assumptions  
 
or other aspects of the model and analysis? 
     

We would get diversification and no plunging with different distributional assumptions, for  
 
example, if we replace positive distributions like the lognormal by the normal.  But there is plenty of  
 
literature reporting empirical tests of normality that rejected that distribution, but found positively  
 
skewed distributions such as the Weibull or log normal to be a better fit to data sets.  So the  
 
probabilistic or distributional assumptions seem unlikely to provide an explanation for the discrepancy  
 
between theory and practice.  Of course, even Feldstein (1969) agreed that plunging will not occur if  
 
  is sufficiently greater than .  Could it be that the relative magnitudes considered in previous  

 
sections are quite different from those experienced by fund managers? However, they do not seem out  
 
of line with the long-run evidence. If we look at a broad market index like the Standard and Poor’s 500  
 
for the period 1881 to 1999, the standard deviation of returns is about 3.2 times the annual return, well  
 
short of the ratio required for diversification according to Feldstein.   
       

Is the model structure over simplified?  The problem of investing in just two assets, one risky  
 

and one riskless, is, of course, just about the simplest possible.  But it is a standard textbook starting  
 
point.  Textbook treatment typically ignores any possibility of plunging, assuming that optimisation is  
 
attained with the derivative of expected utility zero.  Furthermore, the comparative statics of the choice  
 
problem are often examined by approaches that depend for their development on the very existence of  
 
the zero derivative .  The treatment in Varian (1992, 184-186) provides an example.  The model is also  
 
historically important.  Tobin (1958) used it to examine the behaviour of    investors and in  

 
particular to illustrate the effect of taxing capital gains from a risky asset. Feldstein (1969) employed it  
 
also, of course, as did commentators on his work.  Recently, Ormiston and Schlee (2001) have  
 
undertaken further analyses of the comparative static properties of this model to reveal how investors  
 
respond to some special changes in distribution.  Although mentioning that some conditions are  
 
required for an  “interior solution”, which is equivalent to absence of plunging, they do not pursue this  



 12

 
matter, but conduct analyses on the assumption they are satisfied.  So many authors have considered  
 
the model relevant in spite of its simplicity.  Also, intuitively, the two-asset problem ought to be  
 
suggestive for the multiple asset case.  The idea, mentioned earlier, of identifying the risky asset with  
 
the market portfolio would turn the simple problem into the choice of optimal portfolio, but perhaps we  
 
should stop short of  this4.   
 

This would seem to leave only the risk aversity of fund managers as the explanatory factor.  
 

As was shown in section IV, high relative risk aversion would imply diversification.  It seems strange  
 
though to attribute high relative risk aversion to ‘aggressive’ fund managers.  But perhaps there is  
 
another, usually  neglected, source of uncertainty associated with the formulation of the model. 
 
Feldstein and ourselves assume   and  , and indeed the distribution, known. The uncertainty  

 
analysed arose only from the randomness generated within that distribution.  But a fund manager  
 
would only have estimates of parameters such as   and  .  It is true that in many econometric  

 
problems the uncertainty introduced through estimation errors of parameters is negligible compared to  
 
that inherent in the stochastic nature of the model, because the estimates are relatively precise being  
 
based on adequate data. Although data on asset prices are usually abundant, arguments are frequently  
 
made that parameter structures may be non-stationary, so that most of the data may be of doubtful  
 
value  for estimating current values of parameters.  If fund managers have, at best, tentative estimates  
 
about which they are none too confident, this uncertainty may reinforce risk aversion.   
 
 Our analysis indicates that the likelihood of plunging diminishes as the relative risk aversion  
 
coefficient deviates positively from unity for given values of   and  . An implication of this result  

 
is that, for given values of   and  , we can establish a lower bound to the value of relative risk  

 
aversion which would be consistent with the ubiquity of diversification. Thus if we again take the S&P  
 
500 data for the period 1881 to 1999, the implied lower bound for Rr is about 2.5. If we exclude the  
 
bull-run period from 1982 on, the implied lower bound is about 2.  
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