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Abstract

We demonstrate a novel application of nonlinear systems in the design of pattern classi!ca-
tion systems. We show that pattern classi!cation systems can be designed based upon training
algorithms designed to control the qualitative behaviour of a nonlinear system. Our paradigm
is illustrated by means of a simple chaotic system—the Baker’s map. Algorithms for training
the system are presented and examples are given to illustrate the operation and learning of the
system for pattern classi!cation tasks.
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1. Introduction

Conventional pattern classi!cation systems are usually constructed by manipulating
the parameters of some nonlinear function; the parameters are chosen such that the out-
put of the function attains prescribed values for classes of input signal [3]. Although
static functions are usually chosen for the design of pattern classi!cation systems, non-
linear dynamic systems can also be used for the design of such systems (e.g. Hop!eld
neural networks). In this letter, we argue that e>ective pattern classi!cation systems
can be designed by manipulating the parameters of nonlinear dynamic systems such
that the qualitative behaviour of the function, rather than the steady-state output, acts as
a signature of stored patterns. Potential advantages of this approach include: compact
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representation of stored patterns; increased storage capacity; and the possibility of ex-
ploiting the qualitative behaviour of a function for speci!c applications. The objective
of this letter is not to investigate these potential advantages, but rather to illustrate that
controlling the qualitative behaviour of nonlinear systems provides a feasible basis for
the design of pattern classi!cation systems. Speci!cally: (i) we show that a typical
chaotic nonlinear system, the Baker’s map [2], can be used as the basis for the design
of pattern classi!cation systems; (ii) we present algorithms for training our Baker’s
map pattern classi!cation system; (iii) we present examples to illustrate the eFcacy of
our paradigm.

2. The Baker’s map and Lyapunov dimensions

In their classic study of fractal dimensions, Farmer et al. [4] re-introduced the Baker’s
map [2]. It is a transformation of the unit square [0; 1]×[0; 1], and has three parameters,
R1, R2 and S:

xn+1 =

{
R1xn if yn¡S;

1=2 + R2xn if yn¿ S;

yn+1 =



yn=S if yn¡S;

yn − S
1− S if yn¿ S:

(1)

Chaotic maps, such as the Baker’s map, are deterministic systems whose long-term
behaviour is unpredictable. Despite this uncertainty in behaviour, there are quantita-
tive measures of chaos which can be computed. One such measure is the Lyapunov
dimension (DL) of the chaotic attractor. This is a particular type of fractal dimension,
and is related to the average rates of expansion and contraction of the map. From
Fig. 1, it can be seen that repeated iteration of the map leads to an attractor, which
is the union of a line and a Cantor set, and thus the fractal dimension (Lyapunov

S

1

10 0

S

1

R1 10.5+R20.5
x

y y

x
0 0.5

S

1

Strip widths not to scale

Fig. 1. Action of Baker’s map on unit square: transforms square into two strips, then four strips, eight strips,
and so on.
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Fig. 2. Variation of Lyapunov dimension with parameters R and S.

dimension) must lie in the range 16DL6 2, depending on the choice of parameter
values. The so-called Lyapunov numbers �x and �y characterise the stability of the
map, and are de!ned as follows:

log �x = S logR1 + (1− S) logR2;

log �y = S log
1
S
+ (1− S) log 1

1− S : (2a,2b)

The Lyapunov dimension DL was introduced by Kaplan and Yorke [6] and for the
Baker’s map,

DL = 1 +
log �x
log 1=�y

: (3)

For the purposes of 2-bit pattern classi!cation, we require only two parameters, and so
let R1 = R2 = R. The variation of Lyapunov dimension with R and S is shown in Fig.
2. It has the useful property that it is monotonically increasing for R; S ∈ (0; 5). From
Fig. 3, it can be seen that many di>erent parameter pairs, or patterns, will lead to the
same Lyapunov dimension, for example, in the !gure, (R; S) = {(0:1; 0:5); (0:36; 0:1)}
correspond to the same Lyapunov dimension DA (note the Lyapunov dimension DL
varies between 1 and 2 depending on the values of R and S, as can be seen in Fig. 2.
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Fig. 3. Side-view of Fig. 2 showing two di>erent sets of parameters having the same Lyapunov dimension
DA.

Fig. 4. A more general way of solving the XOR problem: draw a straight line through the two points
belonging to class A (say), and !nd where the line intersects the y-axis.

For a general-purpose XOR-type pattern classi!er, described later, we use a linear
transformation to map one of the classes onto the same fractal dimension, which we
call DM, the modi!ed Lyapunov dimension as illustrated in Fig. 4. For di>erent types
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of class arrangement, it is necessary to !nd some transformation which will sepa-
rate the classes, so that for instance, patterns in class A lies below some value of
DM, and patterns in class B lie above. We illustrate a training algorithm in the next
section.

3. Training

Training algorithms for the Baker’s map system involves estimating the parameters
of the linear mapping onto DM for a given set of inputs and associated class labels.
In principle, a number of standard paradigms from the statistical pattern recognition
and neural network literature could be used as the basis for a training algorithm for
our system [3,5]. Here, we present a modi!ed simulated annealing training algorithm
consisting of the following steps [8,7]:

Initialise system parameters to state X0
Initialise annealing parameter T

Repeat until
{ classi!cation error is below threshold OR
annealing parameter T is below annealing threshold
{
Repeat for large number of iterations
{
Perturb system to new state Xi;
Determine change in cost(s) NEj = Ej(Xi)− Ej(Xi−1);
If NEj ¡ 0

Accept Xi;
else if NEj ¿ 0

Accept Xi with probability e−NEjT ;
end;

}
}
Reduce annealing parameter T ;

}

To overcome diFculties associated with adopting a single cost function for general
classi!cation tasks, we utilize a technique from the multiple-models and switching
literature [9]: we specify a number of cost functions, one of which is guaranteed to
converge for the unknown classi!cation task. Each cost function is evaluated online,
using training and test data sets, and the algorithm is terminated when one of the cost
functions converges or falls below some pre-speci!ed threshold. In the next section we
present an example to illustrate our algorithm.
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4. XOR pattern classi$cation task

We demonstrate the pattern classi!cation system with a simple XOR-type classi!-
cation task. It is necessary to assign values to R and S, representing high and low.
We arbitrarily choose the following values (though limiting both R and S to (0, 0.5)).
The training procedure is carried out on a line in the R-DL. plane, so we !nd the
corresponding values of Lyapunov dimension DL for each (R; S) pair. This is possible
as there exists a closed-form expression for DL in terms of R and S [4],

DL = 1− S ln[1=S] + (1− S) ln[1=(1− S)]
ln R

: (4)

Binary pattern R-value S-value DL

0 0 0.2 0.2 1.3109
0 1 0.2 0.4 1.4182
1 0 0.4 0.2 1.5461
1 1 0.4 0.4 1.7345

We now apply the simulated annealing algorithm to !nd a line, which will classify
the patterns correctly, as shown in Fig. 5. Finally, we apply test patterns to the Baker’s
map, to verify that the correct patterns are detected. The two cost functions used are
as follows, where di represent the perpendicular distances from the patterns to the line
(a) E =

∑
classAB tanh(di) (b) E =

∑
classAB tanh(di)

2.

Fig. 5. Patterns/classes in R–DL plane, and a possible separating line. In practice, each diamond or star can
represent a cluster of patterns.
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Fig. 6. Patterns between the dotted lines belong to class A. We can classify the patterns simply by looking
at their modi!ed Lyapunov dimension.

When we apply the simulated annealing algorithm, we !nd that the slope m=0:487
and y-intercept = 1:34. This information is used to separate the classes, as shown
in Fig. 6. There is some expected variation in Lyapunov numbers, (and hence the
Lyapunov dimension) due to the nature of the map (see Eq. (1)). We !nd average
values of the Lyapunov dimension, using a 500-point averaging window. In Fig. 6, we
apply the four possible patterns to the system, as inputs. After modifying the Lyapunov
dimension, the points lying below the separating line correctly correspond to the pattern
Class B.

5. Conclusions

We have shown that certain properties of chaotic mappings can be utilized to create
a simple pattern classi!cation system. Our system has been based on a purely chaotic
dynamical system, whereas some other researchers have found uses for nonlinear maps
not necessarily operating in a chaotic regime [1]. As the study of nonlinear dynamics
reaches a state of comparative maturity, it is hoped that other innovative applications
of chaos will be found.
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