THE ACTION OF THE MURPHY ELEMENT [, ON
THE RESTRICTION OF AN IRREDUCIBLE
S,-MODULE TO S,_,

HARALD ELLERS AND JOHN MURRAY

1. AN S,,_{-FILTRATION OF IRREDUCIBLE S,-MODULES

We study the irreducible representations of the symmetric group >,
over a field F' of positive characteristic p. For convenience, but no
loss of generality, we shall assume that F' is algebraically closed. Let
A= (A1 > X > ... > X\ > 0) be a partition of n. As usual the set
of nodes [\ := {(i,7) € Z* | 1 < i < [,1 < j < A} is called the
Young diagram of X\. We represent [\] as a set of square boxes in Z2,
by placing a square with opposite corners (i — 1,7 — 1) and (3, j), for
each (i,7) € [A]. In accordance with the anglo-american convention, we
orient the positive direction of the Y-axis downwards. The transpose
A" of A is the partition of n defined by A, = #{j | A\; > i}, for all i.
The Young diagram of \" is obtained from [A] by reflection in the main
diagonal.

We use [1,n] to denote the set of integers {1,...,n}. We fix a A-
tableaux t for the remainder of the paper. So ¢ is a function [A] — [1,n].
We let (i,7)t be the image of (i,j) € [A] under ¢. The transpose of t
is the N-tableau t' such that (i, j)t' = (j,)t, for all (i,75) € [N]. The
group Y, acts on A-tableau by permuting the contents of the boxes in
a tableau. Thus (i, j)(tm) = ((4,j)t)m, for all (i,7) € [\] and © € %,,.
If t is a bijection, we let it denote the node of [\ occupied by i, for
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i=1,...,n. Then i(tw) = (in~1)t. If s is another bijective A-tableau,
we let sgn(s/t) be the sign of the unique permutation 7 € 3, such that
s =1tm.

Let R; be the row stabilizer, and let C; be the column stabilizer,
of t in ¥,. So R; = ¥, and C; = X, are Young subgroups of X,.
The relation ty ~ ty if ty = ty7, for some m € Ry, defines an equiva-
lence relation on A-tableau. The equivalence class of ~ that contains
t is denoted by {t} and is called a A-tabloid. The Z-span of the \-
tabloids forms a ¥,-permutation lattice M?*. So M? is isomorphic to
the induced module Zs, 1>".

The row stabilizer sum of t is R = > o, while the signed

oc€R:

column stabilizer sum of t is C; := > __. (sgn o)o. Both are elements

o€Cy
of Z¥,,. The element e; := {t}C; of M* is called a A-polytabloid. The
Z-span of all A-polytabloids forms the Specht sublattice S* of M*. Since
e = ey, for all m € £, S* is a ¥,,-submodule of M?.

The annihilator ideal of a polytabloid e; in Z3,, is generated by the
so-called Garnir elements. The following result can be used to show

that the standard polytabloids form a Z-basis for S*. Here e; is standard
if (4,7)t < (k,1)t, whenever i < k,j <l and (i,75) # (k,1) € [\].

Lemma 1. Let X and Y be subsets of the entries in two columns, u
and v respectively, of t. Suppose that |X| + |Y| is greater than the
length of each of the columns w and v. Then e, ) sgn(o)o =0, where
o ranges over the elements of a set of representatives Xx X Yy \Xxuy

for the right cosets of ¥x X Yy in Xxuy -

We say that a relation involving X and Y as above is a simple Garnir
relation if |X| = 1 or |Y| = 1. One fact about polytabloids that is

obvious from their definition, but not from the Garnir relations, is that
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es = e;, whenever s is obtained from ¢ by transposing two columns of
equal length.
We list the removable nodes in [A] as (r1,¢1),. .., (Fm,cm). So for

each u we have ¢, = A,, and r, =l or A\, > A\, +1. Set
)\lu = ()\1 > 2)\7"”71 2)\7’“_1 2)\ru+1 > Z)V)

So [A].] is obtained by removing the node (7, ¢,) from [A]. For conve-
nience we set 7 := 0 and ¢,,11 := 0. The addable nodes of [\] are then
{(ru +L,cys1+ 1) |u=0,...,m}. The residue of the u-th removable
node is the integer «, := ¢, — r, and the residue of the u-th addable
node of A is 3, := ¢, 41 —74. The p-residues are obtained by considering
these residues mod p.

As M* and S* are Z-lattices, we can define F'S,-modules Mp :=
M?* @, F and SI’} .= S* ®z F. There is a ¥,-invariant symmetric
bilinear form defined on M?* such that ({1}, {t2}) = d{4,341. 1r, for all
A-tabloids {t;} and {t5}. The restiction of this form to Sy is generally
degenerate. Given X C S*, we use X+ to denote the dual space
{y € M | (z,y) = 0,Vx € X}. Set J* = (S*)* N S* Then by
James [5] the quotient Dy := Sp/Jp is either zero or an irreducible
FY,-module. The former case occurs precisely when X is p-regular:
that is, when no part of \ is repeated p or more times. Moreover { D% |
A is a p-regular partition of n} is a complete set of representatives for
the isomorphism classes of irreducible F'>5,-modules.

The sign ¥,-module is the 1-dimensional Specht module S1". Let
t be the [1"]-tableau such that (i,1)t =4, for i = 1,...,n. The single
vector ¥ := ¢, spans Sl and Y70 = (sgno)X;, for all 0 € 5.

Now set S := SV ® Sl Then S™ is a ¥,-module with Z-basis

{e;®% }, where t ranges over the standard X'-tableau. Here ¢, % 0 =
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(sgno)e, @ X, for each o € ¥,,. Note that each Garnir relation for
{e;} gives an identical relation for {e; ® ¥ }. We need the following

characterization of J* due to G. James:

Lemma 2. There is an ZX,-exact sequence

0 SM g

S)\* O,
such that {s}0, = sgn(s/t) ey @3, for each A-tabloid {s}. Moreover,
if X\ 1s p-regqular, taking images mod p, the above sequence restricts to

0x

0 7 53 D 0.

Proof. This is the substance of [5, 6.8,8.15]. Note that
eshy = sgn(s/t)es R, ® X, for each A-tableau s.
O

If X(A) is any region of [A] then X ¢ will denote the image of X under
t. So Xt is the set of integers that occupy the nodes of X(\) in t.

We give some names to various regions of [A]. The rim of [)] is
the set of nodes Rim(\) = {(i,\;) | i = 1,...,l}. Fix u € [1,m].
Let Rim,(\) be the set of nodes in Rim(\) that belong to column c,.
So Rimy,(A) = {(ru—1+ 1, ), (ru—1+2,¢4), .., (u, cu) b Also Top,, (X)
denotes the set of nodes in the top r, rows of [\], and Right, (\) denotes
the set of nodes in the right columns ¢, 1, ..., ¢ of [A].

Define
M) := Z-span {{t} | n € Top, t}.

Then M is a ZY,,_;-submodule of M* and

M =MAD>M)  D...M}> My =0
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is a filtration of M*, as X,_;-module. Moreover S3 := M} N S* co-
incides with Z-span {e; | t is a standard A-tableau and n € Right,, t}.
Thus (as in [5]) S*|s,_, has a Specht filtration

SA=82D58  D...D8DS)=0,

Each S is an ¥,,_;-submodule of S*|5 _, and S3/S) | = S*".

n—1

For each u there is a >3, _j-exact sequence

0 —— S, Sy e, g 0.

u

with 6, calculated as follows. If e; € S{)\Sﬁ‘_l then e;0,, = +e,. Here s
is the \,-tableau that is obtained from ¢ by transposing, if necessary,
n with the entry at the top of its column, interchanging this column
with column \,, and finally removing n. The sign is +1 if n was at the
top of its column in ¢, and —1 otherwise. For example, if A\ = [32, 1]

then

7201:—6
415

214])
5

[o]w]~
‘an.’u—t

Suppose now that X is p-regular. Identify D* with S*d,. The re-

stricted module D* |y, has a filtration
D*=D)DD) D...2D}2D}=0,

where D) = S20,. Thus D}/D} | = (S} + J)/(S}_, + J*). Notice
that this coincides with S/(S? , + J* N S)), which is a quotient of
the Specht module S**. While the filtration {S}} of S is strictly
decreasing, the filtration {D}} of D? is generally only non increasing.

Set L, :=(1,n)+(2,n) +...4+ (n—1,n) as the n-th Jucys-Murphy
element in ZY,,. Then L, commutes with every element of ¥, ;. It

follows that L, acts as ¥,,_j-endomorphism on every F'Y, i-module,

in particular on the Specht module S* and on the radical J* of the
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bilinear form on S*. If ) is p-regular, then L, acts on the irreducible
S,-module D*. We aim to show that in this case L,, generates the ring

Endg,_,(D*) of all ¥,_;-endomorphisms of D*.

2. SYMMETRIC FUNCTIONS

We begin with some results on symmetric functions. These will be
required in order to evaluate some inner product expressions obtained
in later sections of the paper. The most complicated result is Theorem
5. The proof was emailed to me by Grant Walker. Our original proof
was by defining an involution on certain monomials, and cancellation.

Fix positive integers u > v. We use the following notation:

(%) is the collection of subsets of [1,u] of size v;

() is the collection of multi-subsets of [1, ] of size v.

We regard (:f) as the collection of decreasing functions, and <:f> as the
collection of nonincreasing functions, [1,v] — [1,u].

Let X :={z1,x9,...} and Y := {y;,¥s, ...} be sets of variables that
are finite. Recall the elementary and complete symmetric functions of

degree n are
En(Y) = Z Yur " Yuns
ue(5))
Ho(X) = Y 2y,
ne(l0)
We define the symmetric function HE,, by

HE,(X;Y) := i(_wHM(X) E,(Y).

i=0
Then the generating function for HE,, is
S CHE(X;V)t = ] —ait)™ (1 —y;t).

k>0 i=1,2,... j=1,2,...
6



Lemma 3. Let n,t,7 > 0. Then
HE,(X:Y) = (2; — y;) HE, 1 (X; Y\ {y;}) + HE, (X \{z:}; Y\{y;}).

Proof. Considering the generating function of HE,,, this follows from

(I—yt) _ tla—y,)
(—zt) -zt "

U

Let u, v be integers. There is a bijection <:f> — (“+5_1) that sends
pe "y tofie ("), where ji; == p; +i— 1, for i = 1,...,v. This

is the basis of the following lemma.

Corollary 4. Suppose that | X| < |Y|. Setn:=|Y|—|X|+ 1. Then

HE,(X;Y) = Z H("Euz ~ Ypuiti-1)-
pe(1X1Y =1
Proof. For each u,v define f(u,v) := Zué(ﬁ) [T (zu; — Ypizrio1). Set
m = |X|. The p € (™) with p,, = m contribute (2x|—y)y)) f(m,n—1)
to f(m,n). The p € (™) with p, < m contribute f(m — 1,n) to
f(m,n). Thus

f(m> n) = (x|X\ - y\Yl)f(m>n - 1) + f(m - 1,71).

The result now follows by induction from the previous lemma. O

Let X, Y be sets of indeterminates, as before, and let Z = {21, 23, ...}
be another set of indeterminates. Suppose that 0 < n < m and that

pe (™). Set pg :=m, and for i € [1,n] define

Yuir i g < pg;
(1) 5M7i = . )
Ziy if pio1 = p;

So 0, keeps track of the places where p decreases.
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Theorem 5. Suppose that |X|=|Y|+ 1. Set n:=|Z|. Then

HE,(X;YUZ) = ) me i)

pe(1X1y i=
Proof. For each w,v define f(u,v) := Zu6<ﬁ> [ (zy — 6,4). Set
= |X|. We compare f(m,n) and f(m —1,n). The g € (") with
fn < m— 1 contribute the same term to f(m,n) and f(m —1,n). The
p€ (™) with p, =m — 1 contribute (z,—1 — Ym—1)f(m —1,n —1) to
f(m,n) and (zpy—1 — 2,)f(m —1,n — 1) to f(m — 1,n). The p € (")
with p, = m contribute (z,, — 2z,)f(m,n — 1) to f(m,n) and nothing

to f(m — 1,n). Thus we have a recursion relation

f(m> n)_f(m_lv n) = (Zn_ymfl>f(m_17n_l)—i_(:l:m_zn)f(ma n_l)'

But HE,(X;Y U Z) satisfies the same recursion relation and initial
conditions, as follows from examination of its generating function and
the equality

(1= ymat)(1 = 2nt)

Hzm — 2n) (1 — Ypm_1t)
(1 —zpt) '

(1 — zpt)

—(1=znt) = t(zn—Ym-1)+

t

Corollary 6. Suppose that | X| = |Y|+ 1 and that Z is a subset of X

of size n. Then
E.(X\Z:Y) = ), H T, = O
()
Proof. 1t follows from Theorem 5 that
HE,(X;YUZ) = ) me i)

The result now follows from Lemma 3. OJ
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3. THE ACTION OF L, ON A SPECHT FILTRATION OF SAlsn_l

Let u be the largest index such that n € Right,. Equivalently n
occupies a column of length r, in ¢t. Set ay := ¢, — r, as the residue of
the u-th removable node of t. Define a transitive relation — on [1,n],
such that ¢ — j if ¢ occupies a longer column than j in t. G. E. Murphy

proved the next result for standard polytabloids in [8, 3.3].

Lemma 7.

erL, = oue; + Z ei(n,w).
n—w

In particular if m > u > v > 1 then S ﬁ 1<Ln — ) € SM

w=v+
Proof. Let u be the largest index such that n &€ Right, and sup-
pose that n occupies column ¢ in £. Then ¢ < ¢,, and column ¢
has length r,. Let 1 < d < ¢, with d # ¢. Then column d of [}]
has length > r,. By a simple Garnir relation we have > {e;(n,w) |
w belongs to column d of t} = e;. There are ¢, — 1 such columns. Now

ei(n,w) = —ey, if w belongs to column ¢ in ¢ and w # n. There are

ry — 1 such integers w. Combining these facts we get

Z{et(n, w) | n A wand n#wh = aue.

n—1

The first statement now follows from the fact that e, L, = > e;(n,w).
w=1

The last statement follows from the first by induction. O

We define a t-cycle to be any cyclic permutation in ¥, of the form

(n,w,z,...,y), where
n—w—r—...—71.

Clearly if m is a t-cycle and 79 is a tmi-cycle then w7y is a t-cycle.
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We set ¢ as the A-tableau got by reversing the rows of ¢ i.e.

h
t

(i,5)t = (i, —j+ 1)t, for (i,7) € [A.

Let ¢; denote the number of parts of A that equal :. G. James proved
that S*/J* # 0 if X is p-reqular, by observing that

n

(2) (erne) = [ ()"

i=1
Lemma 8. Suppose that n € Rimt, and let © be a t-cycle. Then
sgn (e, e ), if T fizes each integer not in Rimt;
<€tn>€‘7> =
0, otherwise.
Proof. Suppose that m fixes each integer not in Rim¢. Then 7 is a
permutation of the first column of % and e = sgn(m) e=. We conclude
from (2) that (e4r,es) = sgnm (e, e5).

Conversely, suppose that wm # w, for some integer w ¢ Rimt. Let
w belong to a column of length r, in ¢. Set X ¢ := {n}URight, NRim ¢.
Now 7 fixes each integer in Rim, ¢ and Right, ;¢ C Right, tr, as 7 is a
t-cycle. It follows that X ¢ C Right,, tm. Let p be a column permutation
of tm and let ¢ be a column permutation of T, The ry + 1 integers
in X¢ are constrained to the first r, rows of ¢tmp. So two or more of
them belong to the same row of tmp. However the first column of T
coincides with Rim ¢, and thus contains Xt. So the elements of X ¢
belong to different rows of {?a}. This shows that {?a} # {tmp}. We
conclude that (e, eq) = 0. O

We call a t-cycle 7 wisible if (eir, e) # Op. Lemma 8 implies that 7
is visible if and only if 7 is a permutation of Rim¢. Any t-cycle that is

not visible is said to be inwvisible.
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Lemma 9. Suppose that w is invisible. Then e;wL, is a sum of poly-

tabloids e;o, where each o is invisible.

Proof. This follows from Lemma 7 and the observation that if p is a

tm-cycle then 7p is an invisible t-cycle. O

We now set S7 as the Z-span of all ey, where 7 is a t-cycle. Also
set I} as the sum of the following two subspaces of S;: the first is
the Z-span of all e;;, where 7 is an invisible ¢-cycle; the second is the
Z-span of all (sgnm)e;m; — (sgnmy)e;ma, where m; and m are visible
t-cycles such that n € Rim, tr;, for i = 1, 2, for some v.

Suppose that n belongs to Rim,t¢. Set t, := t and e, := ¢;. For
i=1,...,u—1, define e; :== —ey(n, (r;, ¢;)t). Clearly

(3) €us€u_1,---,€ form a basis for S} modulo I}
Now identify each e; with its image in S;/I}.

Lemma 10. There is a well-defined action of L,, on S}/I}. The matrix

of L, with respect to e,, €, 1,€y_o,...,€2,€1 1S
-Oéu (ay—1 — Bu—1) (ay—g — Puz) ... (2 —F2) (a1 — ﬁ1)-
0 Q1 (au—Z - ﬁu—Q) e (Oéz - ﬁz) (041 - ﬁ1)
0 0 Oy—2 o (g = B2) (oq = Br)
0 0 0 e 2 (a1 — Bh)
L 0 0 0 . 0 (e7] ]

Proof. Fix i =1,...,u. It follows from Lemma 7 that

i—1
e;L, = a;e; + Z Z e;(n, w;), modulo 7.
Jj=1 wj

11



Here w; ranges over all integers in Rim;¢. But Rim; contains 7; —
rji—1+1 = B; — o nodes. The result now follows from the fact that

ei(n,w;) = —e; modulo I}, O

Let v be a positive integer. Specialize sets of variables X and Y
such that z; := a;, for i € [1,u] and y; := §;, for j € [1,u — 1]. Let
Z :={z1,..., %} be a set of variable scalars, and define 9, as in (1).

Define F = [[;_, (L, — z).

v

Corollary 11. (e,Fz,ex) = > [l[(zn — 0u)-
()

Proof. Lemma 10 and an inductive argument show that

A

e’y = E E me dpui)ei, mod I}
=T () =
Ho=j

Then Lemma 8 implies that

v

(4) (eefz,e5) = Z U Ty, —

ne(y)

g

As an immediate consequence of Theorem 5 and Corollary 11, we

get
Corollary 12. (e;Fz,e) = HEjz(X;Y U Z).

4. A LOWER BOUND ON THE DEGREE OF THE MINIMAL

POLYNOMIAL OF L, ACTING ON D>

It is known that the p-block of ¥, that contains S* is determined
by the multiset of p-residues of the nodes in [A\]. Thus for all u, v, the
Specht modules S** and S*" belong to the same p-block of ¥,,_; if and

only if v, = «, modulo p. Given u € [1,m] we use B, to denote the
12



primitive idempotent in the centre of F'Y, ; that acts as the identity
on S**. Note that the image of B, is a primitive idempotent in the
centre of Endy, _, (S?).

A. Kleshchev defines the normal and good removable nodes of A as fol-
lows. Fix u. Consider the sequence S, := (qy_1, Bu_1, Xu_1, .- -, 1, 1)
that alternates between the residues of the addable and removable
nodes of [A] above the u-th removable node. Let T,, = (¢,t,...) be
the sign sequence that is obtained from S, by removing those terms
not congruent to a,, modulo p, and replacing each remaining «; by +1
and each remaining (3; by —1. Then the u-th removable node is normal
if Zle t; > 0, for each j > 1. The u-th removable node is good if it is
the lowest normal node with p-residue .

Now set €, as the number of ¢ € [1,u—1] such that the i-th removable

nodes of [A] is normal and «; = a,, modulo p.

Lemma 13. If the u-th removable node of [A] is normal then
DML, — a,)™B, #0.

u—1
Proof. We claim that E, := [] (L, —q) is a unit in Ends, _, (S))B,.
i=1
ai?—au
For, E, annihilates S(1—B,, ), as this module has a Specht series with
successive quotients S on which (L, — a;) acts as zero. Moreover by

4], the subalgebra F'[L,] of Endy, ,(S*) is unital and local. The claim

now follows from the fact that E, is not nilpotent, as it acts as the
u—1
nonzero scalar ] (o, — ;) on the quotient S/S>» |. So it is enough
=1
a;FEoy

to show that D)L, — o, ) E, # 0.
Assume that n occupies the u-th removable node in t. Let o be the
set of indices ¢ € [1,u — 1] such that either the i-th removable node

of [A] is normal or its p-residue is different to «,. Suppose that o has
13



cardinality v. So o € (“;1) Now specialize sets of variables X, Y and
Z such that z; = a;, for ¢ € [1,u] and y; := G}, for j € [1,u — 1]
and zj, = a,,, for k = [1,v]. Then (L, — o) E, coincides with
Zr, in the notation of Corollary 12. Now that Corollary implies that
(etf'z,e¢) = HE,(X;Y UZ). We complete the proof by showing that
HE,(X;Y U Z) # 0 modulo p.

As the u-th removable node is normal, there is a bijection between
the addable nodes with p-residue «, above the u-th removable node
and the non-normal nodes with p-residue a,, above the u-th removable
node. Let ¢ € [1,u — 1]. If the i-th removable node is non-normal and
of p-residue a,, then z; = y; = «,, where the j-th addable node is the
corresponding one of p-residue a,,. Otherwise there exists k so that
or =1 and x; = z;. In this way we get an injective map f : X\{z,} —
Y UZ such that z; = f(x;), modulo p. Now Y UZ\ f(X\{z,}) consists
of the v elements Y7 of Y whose values do not equal =, = «,. Applying
Lemma 3 repeatedly, and working modulo p, we can remove the v equal

pairs in the graph of f from HE,(X;Y U Z). Thus

HE,(X;Y U Z) = HE,({z,}; Y1) = H (ry —y;) Z0 modulo p.

Yi€Y1

5. AN UPPER BOUND ON THE DEGREE OF THE MINIMAL

POLYNOMIAL OF L, ACTING ON D*

Let R;; be the group of permutations in R, that fix each entry in
the row of ¢ that contains n and let R, 5 be the group of permutations
in R; that fix each entry not in this row. So R; is the internal direct

product

Rt = Rt,l X Rt72.
14



We write —; if we need to point out the dependence of the relation
— (defined in Section 3) on t. Define a subrelation = of — on [1,n]
by i = j if ¢+ — 7 and if ¢ and j occupy the same row of t. The
motivation for the following lemma comes from considering the images
of polytabloids under the map 6 : Sp — D7, when )\ is p-regular.
Compare it with Lemma 7.

Lemma 14. € R;rl Ln = (Oétet + Z €t<n,i)) R;rl

n=-i

Proof. As each m € R, fixes all entries in the same row as n in ¢, =
has the same meaning for ¢ and tw. Moreover, if n = i then 7(n,i) =
(n,i)w. Lemma 7 gives
e R Ly = awe R+ Z Z erm(n,i).
TER; 1 N—tri

Our proof is completed by showing that those polytabloids e;m(n, 1)
such that n and 7 belong to different rows of t7 cancel in pairs. Fix
m € R, and suppose that n —, ¢« but n and ¢ belong to different rows
of tw. Let j be the integer in ¢ in the same column as n and the same
row as i. Then j # i,n, and 7(i,5) € Ry1 and n —yj) j. Since
em(i,7)(n,j) = em(n,i)(i,j), and (7,7) is a column permutation of
tm(n,i), the sum e;w (i, j)(n,j) + e;m(n, i) is zero. The Lemma follows

from this. O

Now set 7, as the number of ¢ € [1,u] such that the i-th removable
nodes of [A] is normal and «; = «, modulo p. So 7, = ¢, + 1, if the

u-th removable node of [\] is normal.

Lemma 15. D)L, — a,)™B, = 0.

Proof. Adopt the notation and assumptions of Lemma 13. In particular

n occupies the u-th removable node of t. We change the definition of
15



o so that o € (Uil) is the set of indices ¢ € [1,u| such that either the

i-th removable node of [)] is normal or its p-residue is not «,. Recall

that 6, is a ¥,-homomorphism S* — S @ S!"l whose image is the

irreducible module D*. Now specialize the values of Z as 2, := g,y s
for k = [1,v+1]. Set Fy := [["}] (L, — ;). We will show that, in the

notation of Corollary 12, e; F'z60, = 0.
Since L, is a sum of permutations in X,,, it commutes with 6. More-

over, the permutations are odd. So

v+1
erFz0y = e0rFz = (ey Ry @ S7) [ [(Ln — a)
1=1
v+1
=es RS | |(—Ln —ap) @57,

i=1
So it is enough to show that ey R;) Hf;l(—Ln —a,,) =0.

Now n occupies the ¢,-th row and r,-th column of the transpose '
of t. Considering the dimensions of [\'], given m € Ry, the symbol n
occupies a column of length ry,ry,...,7r,_1 or r, in t'm.

Let 4,7 € [1,u], with ¢ < j, and let m € Ry be such that n occupies a
column of length r; in tw. Suppose that k is a symbol in the ¢,-th row
of ' and in a column of length r;. So m(n, k) € Ry. Then n occupies
the same row as k in t7(n, k), but a column of longer length. So ey is
one of the polytabloids that occurs in the expansion of e, m(n, k:)R;an
given by Lemma 14. Moreover, this is the only way that ey 7 can occur
in the expansion of et/nR;{an, for any n € Ry. Note that there are
(B; — «;) choices for k, as [N'] has ; — a; columns of length ;.

For i € [1,u], let f; denote the sum, in SV, of all polytabloids ey,
where n occupies a column of length r; in ¢'7. Note that oy, = —a,
for each such 7. Set t; := t(n, (14, ¢;)t), and let % be the row reversal

of tl
16



Lemma 14 and the previous paragraph implies that

fil=Ly) = aifi + Z (i = Bi) -

j=it1
Now ey R = f1 + ... f, and we have

u

(fi+ o+ fu)(=Ln) = Z <%+Z_:(%‘ _ﬁj)> fi

=141

Using Corollary 11 and induction, it can be seen that

v+1 n
(it A+ L) [0 = 00) =D (enFzex) fi
=1 =1

For i € [1,u], we get from Corollary 12 that

(etiFZ,€‘5> = HEUH({%‘, e ,041}; {ﬁi—la e 751} U Z)'

Arguing as in the proof of Lemma 3, there exists an injective map
fi i {as,...,a1} = {Bi1,..., 01} U Z such that f;(a;) = a;, modulo
p, for all j. Thus HE, . ({c, ..., a0} {Bi—1, ..., 1} U Z) = 0, modulo
p. The lemma follows from this. O

Corollary 16. Suppose that there are no normal removable nodes of

p-residue o, at or above the u-th removable node of [\]. Then D} = 0.

Proof. Our hypothesis is that 7, = 0. Now apply the previous lemma.
O

Our main result here is

Theorem 17. Suppose that the u-th removable node of [\ is good.

Then (x — )™ is the minimal polynomial of L, acting on D*B,,.

Proof. By definition, the u-th removable node is the lower normal re-

movable node of [A] that has p-residue «,. So 7, = &, + 1. Thus
17



DB, (L, — a,)™ ! # 0, by Lemma 13. But 7, equals the num-
ber of normal removable nodes of [A] that have p-residue «,. So

D*B,(L, — a,)™ = 0, by Lemma 15. O

6. ADDITIONAL REMARKS, UNFINISHED SECTION

The next result is well known, being a special case of results of Carter
and Payne [2]. Recently several authors [7], [4] have shown that in this
situation Homy,, (S, S?) is 1-dimensional. Here we prove existence and
give a simple algorithm to compute the image of a polytabloid under

the One-Box Shift homomorphism.

Theorem 18. Suppose that a and 3 are partitions of n such that [] is
obtained by removing a node from [«] and adding it back on in a lower

row, so that the removed and added positions have the same p-residue.

Then Homy, (5%, SP) # 0.

Proof. Note that o and 3 have the same p-core. Also, there exists
positive integers u > v, and a partition A of n + 1 whose diagram can
be obtained by adding a node to the end of row u of [@] or to the end
of row v of 3.

We use the notation for the residue of A\ and the Specht filtration
{S2} of S*|x, as described above, noting that here A is a partition
of n + 1, and not n as before. For integers ¢ > j define 0;; =
Il ii(Lns1 — ;) Then 6, = 6,101, a8 @y = . So by the previ-
ous corollary, we have S20,, C S and also S} ,60,., C S} |. Moreover
Sy € S»; by a result in [3]. Thus 6,, induces a non-zero 3,-
homomorphism, denoted f,,, from S = S}/S> | into S° = S}/S» |
As Homg, (5%, 59) is 1-dimensional, f, , must be a nonzero multiple of

the homomorphism defined in [2].
18



Recall that there is a short exact sequence of F'>,,-modules

O

0 —— S, SA SN 0.

Let 6! be a F-retraction of 6,. Then f,, = 6,0, .0,, by the previous
paragraph. O

Example 19. For p = 5 there is a one-boz shift f : S*3 — SB21],
Here A = [4,2,1] has removable residues oy = 3,5 = 0 and a3z = 3.

Using the previous theorem, and Lemma 7 we compute

3‘4|33_1(L9 —3)Lgb1 = ¢ 374](Lo — 3) Lot

®
—
[\
[\

ot

o
[w]e]=

o

JFC JFC JFC L@
| 3[4] 714] 37 Lod

3[4 1 1 1
5|7 5|6 5|6
6] 3] 4]

[\
[\
[\

[o23EN]

=

[\
[\

7[a) T4ila3]7] T 91]2]7]4]) T ¢ 3[7)%

[e2] |4V
YIS
(o211 ]

[ro]en]=

1
5
2]

|®<‘_ﬂ>—l
w

|®<‘_ﬂ>—l
S~

|OJ<‘_H>—l

= € 4‘+c 3|+c +3c

N
[\

W

O [

[po]en]—
=

1
5|3
6]

‘ODOTH
L

‘CAJO")—‘
=)

‘»&OT»—A
=)

Theorem 20. Suppose that 1 < v < u < m are such that a, = «,, but
none of au,, i, ..., 0,1 equals a,. Then D, = D, ;.

Proof. The elements {e; € S)\S,_;} generate S; as S;_;-module.
Moreover Lemma 7 implies that e, [[:_ (L, — ;) = [[i_,
(mod S2_,), for each e, € SH\S> ;. As [\, (v — i) # Op, it is
enough to show that e, []_ (L, — a;) € J* = ker(6). O

(v — a;)ey
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