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1. An Sn−1-filtration of irreducible Sn-modules

We study the irreducible representations of the symmetric group Σn

over a field F of positive characteristic p. For convenience, but no

loss of generality, we shall assume that F is algebraically closed. Let

λ = (λ1 ≥ λ2 ≥ . . . ≥ λl > 0) be a partition of n. As usual the set

of nodes [λ] := {(i, j) ∈ Z
2 | 1 ≤ i ≤ l, 1 ≤ j ≤ λi} is called the

Young diagram of λ. We represent [λ] as a set of square boxes in Z
2,

by placing a square with opposite corners (i − 1, j − 1) and (i, j), for

each (i, j) ∈ [λ]. In accordance with the anglo-american convention, we

orient the positive direction of the Y -axis downwards. The transpose

λ′ of λ is the partition of n defined by λ′i = #{j | λj ≥ i}, for all i.

The Young diagram of λ′ is obtained from [λ] by reflection in the main

diagonal.

We use [1, n] to denote the set of integers {1, . . . , n}. We fix a λ-

tableaux t for the remainder of the paper. So t is a function [λ]→ [1, n].

We let (i, j)t be the image of (i, j) ∈ [λ] under t. The transpose of t

is the λ′-tableau t′ such that (i, j)t′ = (j, i)t, for all (i, j) ∈ [λ′]. The

group Σn acts on λ-tableau by permuting the contents of the boxes in

a tableau. Thus (i, j)(tπ) = ((i, j)t)π, for all (i, j) ∈ [λ] and π ∈ Σn.

If t is a bijection, we let it denote the node of [λ] occupied by i, for
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i = 1, . . . , n. Then i(tπ) = (iπ−1)t. If s is another bijective λ-tableau,

we let sgn(s/t) be the sign of the unique permutation π ∈ Σn such that

s = tπ.

Let Rt be the row stabilizer, and let Ct be the column stabilizer,

of t in Σn. So Rt
∼= Σλ and Ct

∼= Σλ′ are Young subgroups of Σn.

The relation t1 ∼ t2 if t2 = t1π, for some π ∈ Rt1 , defines an equiva-

lence relation on λ-tableau. The equivalence class of ∼ that contains

t is denoted by {t} and is called a λ-tabloid. The Z-span of the λ-

tabloids forms a Σn-permutation lattice Mλ. So Mλ is isomorphic to

the induced module ZΣλ
↑Σn .

The row stabilizer sum of t is R+
t :=

∑

σ∈Rt
σ, while the signed

column stabilizer sum of t is C−t :=
∑

σ∈Ct
(sgn σ)σ. Both are elements

of ZΣn. The element et := {t}C−t of Mλ is called a λ-polytabloid. The

Z-span of all λ-polytabloids forms the Specht sublattice Sλ of Mλ. Since

etπ = etπ, for all π ∈ Σn, Sλ is a Σn-submodule of Mλ.

The annihilator ideal of a polytabloid et in ZΣn is generated by the

so-called Garnir elements. The following result can be used to show

that the standard polytabloids form a Z-basis for Sλ. Here et is standard

if (i, j)t < (k, l)t, whenever i ≤ k, j ≤ l and (i, j) 6= (k, l) ∈ [λ].

Lemma 1. Let X and Y be subsets of the entries in two columns, u

and v respectively, of t. Suppose that |X| + |Y | is greater than the

length of each of the columns u and v. Then et

∑

σ sgn(σ)σ = 0, where

σ ranges over the elements of a set of representatives ΣX × ΣY \ΣX∪Y

for the right cosets of ΣX × ΣY in ΣX∪Y .

We say that a relation involving X and Y as above is a simple Garnir

relation if |X| = 1 or |Y | = 1. One fact about polytabloids that is

obvious from their definition, but not from the Garnir relations, is that
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es = et, whenever s is obtained from t by transposing two columns of

equal length.

We list the removable nodes in [λ] as (r1, c1), . . . , (rm, cm). So for

each u we have cu = λru
and ru = l or λru

> λru+1. Set

λ↓u := (λ1 ≥ · · · ≥ λru−1 ≥ λru
− 1 ≥ λru+1 ≥ · · · ≥ λl).

So [λ↓u] is obtained by removing the node (ru, cu) from [λ]. For conve-

nience we set r0 := 0 and cm+1 := 0. The addable nodes of [λ] are then

{(ru + 1, cu+1 + 1) | u = 0, . . . , m}. The residue of the u-th removable

node is the integer αu := cu − ru and the residue of the u-th addable

node of λ is βu := cu+1−ru. The p-residues are obtained by considering

these residues mod p.

As Mλ and Sλ are Z-lattices, we can define FΣn-modules Mλ
F :=

Mλ ⊗Z F and Sλ
F := Sλ ⊗Z F . There is a Σn-invariant symmetric

bilinear form defined on Mλ such that 〈{t1}, {t2}〉 = δ{t1}{t2}1F , for all

λ-tabloids {t1} and {t2}. The restiction of this form to Sλ
F is generally

degenerate. Given X ⊆ Sλ, we use X⊥ to denote the dual space

{y ∈ Mλ | 〈x, y〉 = 0, ∀x ∈ X}. Set Jλ = (Sλ)⊥ ∩ Sλ. Then by

James [5] the quotient Dλ
F := Sλ

F /Jλ
F is either zero or an irreducible

FΣn-module. The former case occurs precisely when λ is p-regular:

that is, when no part of λ is repeated p or more times. Moreover {Dλ
F |

λ is a p-regular partition of n} is a complete set of representatives for

the isomorphism classes of irreducible FΣn-modules.

The sign Σn-module is the 1-dimensional Specht module S [1n]. Let

t be the [1n]-tableau such that (i, 1)t = i, for i = 1, . . . , n. The single

vector Σ−n := et spans S [1n] and Σ−n σ = (sgn σ)Σ−n , for all σ ∈ Σn.

Now set Sλ∗ := Sλ′
⊗ S [1n]. Then Sλ∗ is a Σn-module with Z-basis

{et⊗Σ−n }, where t ranges over the standard λ′-tableau. Here et⊗Σ−n σ =
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(sgn σ)etσ ⊗ Σ−n , for each σ ∈ Σn. Note that each Garnir relation for

{et} gives an identical relation for {et ⊗ Σ−n }. We need the following

characterization of Jλ due to G. James:

Lemma 2. There is an ZΣn-exact sequence

0 −−−→ Sλ⊥ −−−→ Mλ θλ−−−→ Sλ∗ −−−→ 0,

such that {s}θλ := sgn(s/t) es′⊗Σ−n , for each λ-tabloid {s}. Moreover,

if λ is p-regular, taking images mod p, the above sequence restricts to

0 −−−→ Jλ
F −−−→ Sλ

F

θλ−−−→ Dλ
F −−−→ 0.

Proof. This is the substance of [5, 6.8,8.15]. Note that

esθλ = sgn(s/t) es′R
+
s′ ⊗ Σ−n , for each λ-tableau s.

�

If X(λ) is any region of [λ] then X t will denote the image of X under

t. So X t is the set of integers that occupy the nodes of X(λ) in t.

We give some names to various regions of [λ]. The rim of [λ] is

the set of nodes Rim(λ) := {(i, λi) | i = 1, . . . , l}. Fix u ∈ [1, m].

Let Rimu(λ) be the set of nodes in Rim(λ) that belong to column cu.

So Rimu(λ) = {(ru−1 +1, cu), (ru−1 +2, cu), . . . , (ru, cu)}. Also Topu(λ)

denotes the set of nodes in the top ru rows of [λ], and Rightu(λ) denotes

the set of nodes in the right columns cu+1, . . . , c1 of [λ].

Define

Mλ
u := Z-span {{t} | n ∈ Topu t}.

Then Mλ
u is a ZΣn−1-submodule of Mλ and

Mλ = Mλ
m ⊃ Mλ

m−1 ⊃ . . . Mλ
1 ⊃Mλ

0 = 0
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is a filtration of Mλ, as Σn−1-module. Moreover Sλ
u := Mλ

u ∩ Sλ co-

incides with Z-span {et | t is a standard λ-tableau and n ∈ Rightu t}.

Thus (as in [5]) Sλ↓Σn−1
has a Specht filtration

Sλ = Sλ
m ⊃ Sλ

m−1 ⊃ . . . ⊃ Sλ
1 ⊃ Sλ

0 = 0,

Each Sλ
u is an Σn−1-submodule of Sλ↓Σn−1

and Sλ
u/Sλ

u−1
∼= Sλu

.

For each u there is a Σn−1-exact sequence

0 −−−→ Sλ
u−1 −−−→ Sλ

u

θu−−−→ Sλu

−−−→ 0.

with θu calculated as follows. If et ∈ Sλ
u\S

λ
u−1 then etθu = ±es. Here s

is the λu-tableau that is obtained from t by transposing, if necessary,

n with the entry at the top of its column, interchanging this column

with column λu, and finally removing n. The sign is +1 if n was at the

top of its column in t, and −1 otherwise. For example, if λ = [32, 1]

then

e 1 7 2
3 4 5
6

θ1 = −e 1 2 4
3 5
6

.

Suppose now that λ is p-regular. Identify Dλ with Sλθλ. The re-

stricted module Dλ↓Σn−1
has a filtration

Dλ = Dλ
m ⊇ Dλ

m−1 ⊇ . . . ⊇ Dλ
1 ⊇ Dλ

0 = 0,

where Dλ
u = Sλ

uθλ. Thus Dλ
u/Dλ

u−1 = (Sλ
u + Jλ)/(Sλ

u−1 + Jλ). Notice

that this coincides with Sλ
u/(Sλ

u−1 + Jλ ∩ Sλ
u), which is a quotient of

the Specht module Sλu

. While the filtration {Sλ
u} of Sλ is strictly

decreasing, the filtration {Dλ
u} of Dλ is generally only non increasing.

Set Ln := (1, n) + (2, n) + . . . + (n− 1, n) as the n-th Jucys-Murphy

element in ZΣn. Then Ln commutes with every element of Σn−1. It

follows that Ln acts as Σn−1-endomorphism on every FΣn−1-module,

in particular on the Specht module Sλ and on the radical Jλ of the
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bilinear form on Sλ. If λ is p-regular, then Ln acts on the irreducible

Sn-module Dλ. We aim to show that in this case Ln generates the ring

EndSn−1
(Dλ) of all Σn−1-endomorphisms of Dλ.

2. Symmetric functions

We begin with some results on symmetric functions. These will be

required in order to evaluate some inner product expressions obtained

in later sections of the paper. The most complicated result is Theorem

5. The proof was emailed to me by Grant Walker. Our original proof

was by defining an involution on certain monomials, and cancellation.

Fix positive integers u > v. We use the following notation:
(

u

v

)

is the collection of subsets of [1, u] of size v;
〈

u

v

〉

is the collection of multi-subsets of [1, u] of size v.

We regard
(

u

v

)

as the collection of decreasing functions, and
〈

u

v

〉

as the

collection of nonincreasing functions, [1, v]→ [1, u].

Let X := {x1, x2, . . .} and Y := {y1, y2, . . .} be sets of variables that

are finite. Recall the elementary and complete symmetric functions of

degree n are

En(Y ) :=
∑

µ∈(|Y |
n )

yµ1
· · · yµn

;

Hn(X) :=
∑

µ∈〈 |X|
n 〉

xµ1
· · ·xµn

.

We define the symmetric function HEn by

HEn(X; Y ) :=
n
∑

i=0

(−1)i Hn−i(X) Ei(Y ).

Then the generating function for HEn is

∑

k≥0

HEk(X; Y )tk =
∏

i=1,2,...

(1− xit)
−1

∏

j=1,2,...

(1− yjt).
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Lemma 3. Let n, i, j > 0. Then

HEn(X; Y ) = (xi − yj)HEn−1(X; Y \{yj}) + HEn(X\{xi}; Y \{yj}).

Proof. Considering the generating function of HEn, this follows from

(1− yjt)

(1− xit)
=

t(a− yj)

(1− xit)
+ 1.

�

Let u, v be integers. There is a bijection
〈

u

v

〉

↔
(

u+v−1
v

)

that sends

µ ∈
〈

u

v

〉

to µ̃ ∈
(

u+v−1
v

)

, where µ̃i := µi + i − 1, for i = 1, . . . , v. This

is the basis of the following lemma.

Corollary 4. Suppose that |X| < |Y |. Set n := |Y | − |X|+ 1. Then

HEn(X; Y ) =
∑

µ∈〈 |X|
n 〉

n
∏

i=1

(xµi
− yµi+i−1).

Proof. For each u, v define f(u, v) :=
∑

µ∈〈u

v 〉
∏v

i=1(xµi
− yµi+i−1). Set

m := |X|. The µ ∈
〈

m

n

〉

with µn = m contribute (x|X|−y|Y |)f(m, n−1)

to f(m, n). The µ ∈
〈

m

n

〉

with µn < m contribute f(m − 1, n) to

f(m, n). Thus

f(m, n) = (x|X| − y|Y |)f(m, n− 1) + f(m− 1, n).

The result now follows by induction from the previous lemma. �

Let X, Y be sets of indeterminates, as before, and let Z = {z1, z2, . . .}

be another set of indeterminates. Suppose that 0 < n ≤ m and that

µ ∈
〈

m

n

〉

. Set µ0 := m, and for i ∈ [1, n] define

(1) δµ,i :=







yµi
, if µi−1 < µi;

zi, if µi−1 = µi;

So δµ keeps track of the places where µ decreases.
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Theorem 5. Suppose that |X| = |Y |+ 1. Set n := |Z|. Then

HEn(X; Y ∪ Z) =
∑

µ∈〈 |X|
n 〉

n
∏

i=1

(xµi
− δµ,i).

Proof. For each u, v define f(u, v) :=
∑

µ∈〈u

v 〉
∏v

i=1(xµi
− δµ,i). Set

m := |X|. We compare f(m, n) and f(m − 1, n). The µ ∈
〈

m

n

〉

with

µn < m− 1 contribute the same term to f(m, n) and f(m− 1, n). The

µ ∈
〈

m

n

〉

with µn = m− 1 contribute (xm−1 − ym−1)f(m− 1, n− 1) to

f(m, n) and (xm−1 − zn)f(m− 1, n− 1) to f(m− 1, n). The µ ∈
〈

m

n

〉

with µn = m contribute (xm − zn)f(m, n− 1) to f(m, n) and nothing

to f(m− 1, n). Thus we have a recursion relation

f(m, n)−f(m−1, n) = (zn−ym−1)f(m−1, n−1)+(xm−zn)f(m, n−1).

But HEn(X; Y ∪ Z) satisfies the same recursion relation and initial

conditions, as follows from examination of its generating function and

the equality

(1− ym−1t)(1− znt)

(1− xmt)
−(1−znt) = t(zn−ym−1)+

t(xm − zn)(1− ym−1t)

(1− xmt)
.

�

Corollary 6. Suppose that |X| = |Y |+ 1 and that Z is a subset of X

of size n. Then

HEn(X\Z; Y ) =
∑

µ∈〈 |X|
n 〉

n
∏

i=1

(xµi
− δµ,i).

Proof. It follows from Theorem 5 that

HEn(X; Y ∪ Z) =
∑

µ∈〈 |X|
n 〉

n
∏

i=1

(xµi
− δµ,i).

The result now follows from Lemma 3. �
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3. The action of Ln on a Specht filtration of Sλ↓Sn−1

Let u be the largest index such that n ∈ Rightu. Equivalently n

occupies a column of length ru in t. Set αt := cu − ru as the residue of

the u-th removable node of t. Define a transitive relation → on [1, n],

such that i→ j if i occupies a longer column than j in t. G. E. Murphy

proved the next result for standard polytabloids in [8, 3.3].

Lemma 7.

etLn = αtet +
∑

n→w

et(n, w).

In particular if m ≥ u ≥ v ≥ 1 then Sλ
u

u
∏

w=v+1

(Ln − αw) ⊆ Sλ
v .

Proof. Let u be the largest index such that n ∈ Rightu and sup-

pose that n occupies column c in t. Then c ≤ cu, and column c

has length ru. Let 1 ≤ d ≤ cu with d 6= c. Then column d of [λ]

has length ≥ ru. By a simple Garnir relation we have
∑

{et(n, w) |

w belongs to column d of t} = et. There are cu−1 such columns. Now

et(n, w) = −et, if w belongs to column c in t and w 6= n. There are

ru − 1 such integers w. Combining these facts we get

∑

{et(n, w) | n 6→ w and n 6= w} = αuet.

The first statement now follows from the fact that etLn =
n−1
∑

w=1

et(n, w).

The last statement follows from the first by induction. �

We define a t-cycle to be any cyclic permutation in Σn of the form

(n, w, x, . . . , y), where

n→ w → x→ . . .→ y.

Clearly if π1 is a t-cycle and π2 is a tπ1-cycle then π1π2 is a t-cycle.
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We set
←−
t as the λ-tableau got by reversing the rows of t i.e.

(i, j)
←−
t = (i, λi − j + 1)t, for (i, j) ∈ [λ].

Let εi denote the number of parts of λ that equal i. G. James proved

that Sλ/Jλ 6= 0 if λ is p-regular, by observing that

(2) 〈et, e←−t 〉 =

n
∏

i=1

(εi!)
i.

Lemma 8. Suppose that n ∈ Rim t, and let π be a t-cycle. Then

〈etπ, e←−
t
〉 =







sgn π 〈et, e←−t 〉, if π fixes each integer not in Rim t;

0, otherwise.

Proof. Suppose that π fixes each integer not in Rim t. Then π is a

permutation of the first column of
←−
t and e←−

t
= sgn(π) e←−

tπ
. We conclude

from (2) that 〈etπ, e←−
t
〉 = sgn π 〈et, e←−t 〉.

Conversely, suppose that wπ 6= w, for some integer w 6∈ Rim t. Let

w belong to a column of length ru in t. Set X t := {n}∪Rightu ∩Rim t.

Now π fixes each integer in Rimu t and Rightu−1 t ⊆ Rightu tπ, as π is a

t-cycle. It follows that X t ⊆ Rightu tπ. Let ρ be a column permutation

of tπ and let σ be a column permutation of
←−
t . The ru + 1 integers

in X t are constrained to the first ru rows of tπρ. So two or more of

them belong to the same row of tπρ. However the first column of
←−
t

coincides with Rim t, and thus contains X t. So the elements of X t

belong to different rows of {
←−
t σ}. This shows that {

←−
t σ} 6= {tπρ}. We

conclude that 〈etπ, e←−
t
〉 = 0. �

We call a t-cycle π visible if 〈etπ, e←−
t
〉 6= 0F . Lemma 8 implies that π

is visible if and only if π is a permutation of Rim t. Any t-cycle that is

not visible is said to be invisible.
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Lemma 9. Suppose that π is invisible. Then etπLn is a sum of poly-

tabloids etσ, where each σ is invisible.

Proof. This follows from Lemma 7 and the observation that if ρ is a

tπ-cycle then πρ is an invisible t-cycle. �

We now set Sλ
t as the Z-span of all etπ, where π is a t-cycle. Also

set Iλ
t as the sum of the following two subspaces of Sλ

t : the first is

the Z-span of all etπ, where π is an invisible t-cycle; the second is the

Z-span of all (sgn π1)etπ1 − (sgn π2)etπ2, where π1 and π2 are visible

t-cycles such that n ∈ Rimv tπi, for i = 1, 2, for some v.

Suppose that n belongs to Rimu t. Set tu := t and eu := et. For

i = 1, . . . , u− 1, define ei := −et(n, (ri, ci)t). Clearly

(3) eu, eu−1, . . . , e1 form a basis for Sλ
t modulo Iλ

t .

Now identify each ei with its image in Sλ
t /Iλ

t .

Lemma 10. There is a well-defined action of Ln on Sλ
t /Iλ

t . The matrix

of Ln with respect to eu, eu−1, eu−2, . . . , e2, e1 is



























αu (αu−1 − βu−1) (αu−2 − βu−2) . . . (α2 − β2) (α1 − β1)

0 αu−1 (αu−2 − βu−2) . . . (α2 − β2) (α1 − β1)

0 0 αu−2 . . . (α2 − β2) (α1 − β1)
...

...
...

...
...

...

0 0 0 . . . α2 (α1 − β1)

0 0 0 . . . 0 α1



























Proof. Fix i = 1, . . . , u. It follows from Lemma 7 that

eiLn = αiei +
i−1
∑

j=1

∑

wj

ei(n, wj), modulo Iλ
t .
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Here wj ranges over all integers in Rimj t. But Rimj contains rj −

rj−1 + 1 = βj − αj nodes. The result now follows from the fact that

ei(n, wj) = −ej modulo Iλ
t . �

Let v be a positive integer. Specialize sets of variables X and Y

such that xi := αi, for i ∈ [1, u] and yj := βj, for j ∈ [1, u − 1]. Let

Z := {z1, . . . , zv} be a set of variable scalars, and define δµ as in (1).

Define FZ :=
∏v

i=1(Ln − zi).

Corollary 11. 〈etFZ , e←−
t
〉 =

∑

µ∈〈u

v 〉

v
∏

i=1

(xµi
− δµ,i).

Proof. Lemma 10 and an inductive argument show that

etFZ =
u
∑

j=1

∑

µ∈〈u
v 〉

µv=j

v
∏

i=1

(xµi
− δµ,i)ei, mod Iλ

t .

Then Lemma 8 implies that

(4) 〈etFZ, e←−
t
〉 =

∑

µ∈〈u
v 〉

v
∏

i=1

(xµi
− δµ,i).

�

As an immediate consequence of Theorem 5 and Corollary 11, we

get

Corollary 12. 〈etFZ , e←−
t
〉 = HE|Z|(X; Y ∪ Z).

4. A lower bound on the degree of the minimal

polynomial of Ln acting on Dλ

It is known that the p-block of Σn that contains Sλ is determined

by the multiset of p-residues of the nodes in [λ]. Thus for all u, v, the

Specht modules Sλu

and Sλv

belong to the same p-block of Σn−1 if and

only if αu ≡ αv modulo p. Given u ∈ [1, m] we use Bu to denote the
12



primitive idempotent in the centre of FΣn−1 that acts as the identity

on Sλu

. Note that the image of Bu is a primitive idempotent in the

centre of EndΣn−1
(Sλ).

A. Kleshchev defines the normal and good removable nodes of λ as fol-

lows. Fix u. Consider the sequence Su := (αu−1, βu−1, αu−1, . . . , α1, β1)

that alternates between the residues of the addable and removable

nodes of [λ] above the u-th removable node. Let Tu = (t1, t2, . . .) be

the sign sequence that is obtained from Su by removing those terms

not congruent to αu modulo p, and replacing each remaining αi by +1

and each remaining βi by −1. Then the u-th removable node is normal

if
∑j

i=1 ti ≥ 0, for each j ≥ 1. The u-th removable node is good if it is

the lowest normal node with p-residue αu.

Now set εu as the number of i ∈ [1, u−1] such that the i-th removable

nodes of [λ] is normal and αi ≡ αu modulo p.

Lemma 13. If the u-th removable node of [λ] is normal then

Dλ
u(Ln − αu)

εuBu 6= 0.

Proof. We claim that Eu :=
u−1
∏

i=1

αi 6≡αu

(Ln−αi) is a unit in EndΣn−1
(Sλ

u)Bu.

For, Eu annihilates Sλ
u(1−Bαu

), as this module has a Specht series with

successive quotients Sλi

on which (Ln − αi) acts as zero. Moreover by

[4], the subalgebra F [Ln] of EndΣn−1
(Sλ) is unital and local. The claim

now follows from the fact that Eu is not nilpotent, as it acts as the

nonzero scalar
u−1
∏

i=1

αi 6≡αu

(αu−αi) on the quotient Sλ
u/Sλ

u−1. So it is enough

to show that Dλ
u(Ln − αu)

εuEu 6= 0.

Assume that n occupies the u-th removable node in t. Let σ be the

set of indices i ∈ [1, u − 1] such that either the i-th removable node

of [λ] is normal or its p-residue is different to αu. Suppose that σ has
13



cardinality v. So σ ∈
(

u−1
v

)

. Now specialize sets of variables X, Y and

Z such that xi := αi, for i ∈ [1, u] and yj := βj, for j ∈ [1, u − 1]

and zk := ασk
, for k = [1, v]. Then (Ln − αu)

εuEu coincides with

ZF , in the notation of Corollary 12. Now that Corollary implies that

〈etFZ , e←−
t
〉 = HEv(X; Y ∪Z). We complete the proof by showing that

HEv(X; Y ∪ Z) 6≡ 0 modulo p.

As the u-th removable node is normal, there is a bijection between

the addable nodes with p-residue αu above the u-th removable node

and the non-normal nodes with p-residue αu above the u-th removable

node. Let i ∈ [1, u− 1]. If the i-th removable node is non-normal and

of p-residue αu, then xi ≡ yj ≡ αu, where the j-th addable node is the

corresponding one of p-residue αu. Otherwise there exists k so that

σk = i and xi = zk. In this way we get an injective map f : X\{xu} →

Y ∪Z such that xi ≡ f(xi), modulo p. Now Y ∪Z\f(X\{xu}) consists

of the v elements Y1 of Y whose values do not equal xu ≡ αu. Applying

Lemma 3 repeatedly, and working modulo p, we can remove the v equal

pairs in the graph of f from HEv(X; Y ∪ Z). Thus

HEv(X; Y ∪ Z) ≡ HEv({xu}; Y1) ≡
∏

yi∈Y1

(xu − yi) 6≡ 0 modulo p.

�

5. An upper bound on the degree of the minimal

polynomial of Ln acting on Dλ

Let Rt,1 be the group of permutations in Rt that fix each entry in

the row of t that contains n and let Rt,2 be the group of permutations

in Rt that fix each entry not in this row. So Rt is the internal direct

product

Rt = Rt,1 × Rt,2.
14



We write →t if we need to point out the dependence of the relation

→ (defined in Section 3) on t. Define a subrelation ⇒ of → on [1, n]

by i ⇒ j if i → j and if i and j occupy the same row of t. The

motivation for the following lemma comes from considering the images

of polytabloids under the map θλ : Sλ
F → Dλ

F , when λ is p-regular.

Compare it with Lemma 7.

Lemma 14. et R+
t,1 Ln =

(

αtet +
∑

n⇒i

et(n, i)

)

R+
t,1.

Proof. As each π ∈ Rt,1 fixes all entries in the same row as n in t, ⇒

has the same meaning for t and tπ. Moreover, if n⇒ i then π(n, i) =

(n, i)π. Lemma 7 gives

et R
+
t,1 Ln = αtetR

+
t,1 +

∑

π∈Rt,1

∑

n→tπi

etπ(n, i).

Our proof is completed by showing that those polytabloids etπ(n, i)

such that n and i belong to different rows of tπ cancel in pairs. Fix

π ∈ Rt,1 and suppose that n→tπ i but n and i belong to different rows

of tπ. Let j be the integer in tπ in the same column as n and the same

row as i. Then j 6= i, n, and π(i, j) ∈ Rt,1 and n →tπ(i,j) j. Since

etπ(i, j)(n, j) = etπ(n, i)(i, j), and (i, j) is a column permutation of

tπ(n, i), the sum etπ(i, j)(n, j) + etπ(n, i) is zero. The Lemma follows

from this. �

Now set τu as the number of i ∈ [1, u] such that the i-th removable

nodes of [λ] is normal and αi ≡ αu modulo p. So τu = εu + 1, if the

u-th removable node of [λ] is normal.

Lemma 15. Dλ
u(Ln − αu)

τuBu = 0.

Proof. Adopt the notation and assumptions of Lemma 13. In particular

n occupies the u-th removable node of t. We change the definition of
15



σ so that σ ∈
(

u

v+1

)

is the set of indices i ∈ [1, u] such that either the

i-th removable node of [λ] is normal or its p-residue is not αu. Recall

that θλ is a Σn-homomorphism Sλ → Sλ′
⊗ S [1n] whose image is the

irreducible module Dλ. Now specialize the values of Z as zk := ασk
,

for k = [1, v +1]. Set FZ :=
∏v+1

i=1 (Ln−ασi
). We will show that, in the

notation of Corollary 12, etFZθλ = 0.

Since Ln is a sum of permutations in Σn, it commutes with θλ. More-

over, the permutations are odd. So

etFZθλ = etθλFZ =
(

et′R
+
t′ ⊗ Σ−

)

v+1
∏

i=1

(Ln − ασi
)

= et′R
+
t′

v+1
∏

i=1

(−Ln − ασi
)⊗ Σ−.

So it is enough to show that et′R
+
t′

∏v+1
i=1 (−Ln − ασi

) = 0.

Now n occupies the cu-th row and ru-th column of the transpose t′

of t. Considering the dimensions of [λ′], given π ∈ Rt′ , the symbol n

occupies a column of length r1, r2, . . . , ru−1 or ru in t′π.

Let i, j ∈ [1, u], with i < j, and let π ∈ Rt′ be such that n occupies a

column of length rj in tπ. Suppose that k is a symbol in the cu-th row

of t′π and in a column of length ri. So π(n, k) ∈ Rt′ . Then n occupies

the same row as k in tπ(n, k), but a column of longer length. So et′π is

one of the polytabloids that occurs in the expansion of et′π(n, k)R+
t′,1Ln

given by Lemma 14. Moreover, this is the only way that et′π can occur

in the expansion of et′ηR+
t′,1Ln, for any η ∈ Rt′ . Note that there are

(βi − αi) choices for k, as [λ′] has βi − αi columns of length ri.

For i ∈ [1, u], let fi denote the sum, in Sλ′
, of all polytabloids et′π,

where n occupies a column of length ri in t′π. Note that αt′π = −αi,

for each such π. Set ti := t(n, (ri, ci)t), and let
←−
ti be the row reversal

of ti.
16



Lemma 14 and the previous paragraph implies that

fi(−Ln) = αifi +

u
∑

j=i+1

(αi − βi)fj.

Now et′R
+
t′ = f1 + . . . fu and we have

(f1 + . . . + fu)(−Ln) =

u
∑

i=i+1

(

αi +

i−1
∑

j=1

(αj − βj)

)

fi.

Using Corollary 11 and induction, it can be seen that

(f1 + . . . + fu)
v+1
∏

i=1

(−Ln − ασi
) =

n
∑

i=1

〈etiFZ, e←−
ti
〉fi.

For i ∈ [1, u], we get from Corollary 12 that

〈etiFZ , e←−
ti
〉 = HEv+1({αi, . . . , α1}; {βi−1, . . . , β1} ∪ Z).

Arguing as in the proof of Lemma 3, there exists an injective map

fi : {αi, . . . , α1} → {βi−1, . . . , β1} ∪ Z such that fi(αj) ≡ αj, modulo

p, for all j. Thus HEv+1({αi, . . . , α1}; {βi−1, . . . , β1} ∪ Z) ≡ 0, modulo

p. The lemma follows from this. �

Corollary 16. Suppose that there are no normal removable nodes of

p-residue αu at or above the u-th removable node of [λ]. Then Dλ
u = 0.

Proof. Our hypothesis is that τu = 0. Now apply the previous lemma.

�

Our main result here is

Theorem 17. Suppose that the u-th removable node of [λ] is good.

Then (x− αu)
τu is the minimal polynomial of Ln acting on DλBu.

Proof. By definition, the u-th removable node is the lower normal re-

movable node of [λ] that has p-residue αu. So τu = εu + 1. Thus
17



Dλ
uBu(Ln − αu)

τu−1 6= 0, by Lemma 13. But τu equals the num-

ber of normal removable nodes of [λ] that have p-residue αu. So

DλBu(Ln − αu)
τu = 0, by Lemma 15. �

6. Additional remarks, unfinished section

The next result is well known, being a special case of results of Carter

and Payne [2]. Recently several authors [7], [4] have shown that in this

situation HomΣn
(Sα, Sβ) is 1-dimensional. Here we prove existence and

give a simple algorithm to compute the image of a polytabloid under

the One-Box Shift homomorphism.

Theorem 18. Suppose that α and β are partitions of n such that [β] is

obtained by removing a node from [α] and adding it back on in a lower

row, so that the removed and added positions have the same p-residue.

Then HomΣn
(Sα, Sβ) 6= 0.

Proof. Note that α and β have the same p-core. Also, there exists

positive integers u > v, and a partition λ of n + 1 whose diagram can

be obtained by adding a node to the end of row u of [α] or to the end

of row v of β.

We use the notation for the residue of λ and the Specht filtration

{Sλ
u} of Sλ↓Σn

as described above, noting that here λ is a partition

of n + 1, and not n as before. For integers i > j define θi,j :=
∏u

i=v+1(Ln+1 − αi) Then θu,v = θu−1,v−1, as αu = αv. So by the previ-

ous corollary, we have Sλ
uθu,v ⊆ Sλ

v and also Sλ
u−1θu,v ⊆ Sλ

v−1. Moreover

Sλ
uθu,v 6⊆ Sλ

v−1 by a result in [3]. Thus θu,v induces a non-zero Σn-

homomorphism, denoted fu,v, from Sα = Sλ
u/Sλ

u−1 into Sβ = Sλ
v /Sλ

v−1.

As HomΣn
(Sα, Sβ) is 1-dimensional, fu,v must be a nonzero multiple of

the homomorphism defined in [2].
18



Recall that there is a short exact sequence of FΣn-modules

0 −−−→ Sλ
u−1 −−−→ Sλ

u

θu−−−→ Sλu

−−−→ 0.

Let θ−1
u be a F -retraction of θu. Then fu,v = θ−1

u θu,vθv, by the previous

paragraph. �

Example 19. For p = 5 there is a one-box shift f : S [4,2] → S [3,2,1].

Here λ = [4, 2, 1] has removable residues α1 = 3, α2 = 0 and α3 = 3.

Using the previous theorem, and Lemma 7 we compute

e
1 2 3 4
5 6

θ−1

3
(L9 − 3)L9θ1 = e

1 2 3 4
5 6
7

(L9 − 3)L9θ1

= (e
1 7 3 4
5 6
2

+ e
1 2 3 4
5 7
6

+ e
1 2 7 4
5 6
3

+ e
1 2 3 7
5 6
4

)L9θ1

= (e
1 3 7 4
5 6
2

+ e
1 4 3 7
5 6
2

+ e
1 2 7 4
5 3
6

+ e
1 2 3 7
5 4
6

+ 3e
1 2 7 4
5 6
3

+ 3e
1 2 3 7
5 6
4

)θ1

= e
1 3 4
5 6
2

+ e
1 4 3
5 6
2

+ e
1 2 4
5 3
6

+ e
1 2 3
5 4
6

+ 3e
1 2 4
5 6
3

+ 3e
1 2 3
5 6
4

Theorem 20. Suppose that 1 ≤ v < u ≤ m are such that av = αu, but

none of αv, αv+1, . . . , αu−1 equals αu. Then Du = Du−1.

Proof. The elements {et ∈ Sλ
u\S

λ
u−1} generate Sλ

u as Sλ
u−1-module.

Moreover Lemma 7 implies that et

∏u

i=v(Ln − αi) ≡
∏u

i=v(αu − αi)et

(mod Sλ
u−1), for each et ∈ Sλ

U\S
λ
u−1. As

∏u

i=v(αu − αi) 6= 0F , it is

enough to show that et

∏u

i=v(Ln − αi) ∈ Jλ = ker(θ). �
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