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Abstract

During the adaptive immune response, lymphocytailadons undergo a characteristic
three phase process: expansion through a sercl @livisions; cessation of expansion;
and, finally, most of the accumulated lymphocyteshy apoptosis. The data used, thus
far, to inform understanding of these processett imovitro and in vivo, is taken from
flow cytometry experiments. One significant drawlkoat flow cytometry is that

individual cells cannot be tracked, so that itas possible to investigate inter-
dependencies in the fate of cells within a fanmget This deficit in experimental
information has recently been overcome by Hawkire.€2009) who report on time
lapse microscopy experiments in which B-cells watn@ulated through the TLR9
receptor. Cells stimulated in this way do not aggte, so that data regarding family trees
can be recorded. In this article we further inigede the Hawkins et al. (2009) data. Our
conclusions are striking: in order to explain tamflial correlation structure in division
times, death times and propensity to divide, a mimn of two distinct heritable factors
are necessary. As the data shows that two digtintdrs are necessary, we develop a
stochastic model that has two heritable factorsdamdonstrate that it can reproduce the
key features of the data. This model shows thatherdable factors are sufficient. These
deductions have a clear impact upon biological tstdading of the adaptive immune
response. They also necessitate changes to themamdal premises behind the tools
developed by statisticians to draw deductions fflonv cytometry data. Finally, they
affect the mathematical modelling paradigms thatumed to study these systems, as
these are widely developed based on assumptiaredlofar independence that are not
appropriate.

Introduction
The reciprocal cellular processes of division apdposis combine to regulate biological



processes ranging from patterning body and tissapes to regulation and maintenance
of the numbers of red blood cells, platelets, mgtexand lymphocytes in the blood. As
a result of the ubiquity of this mechanism therr@snendous general interest in the
regulation and simultaneous control of division dedth. Investigators, from as early as
the 1950s, have used film and microscopy to obs@ndemeasure the kinetics of cell
divisionin vitro (Absher & Cristofalo 1984; Collyn-D'Hooghe 1977;Wson et al. 1965;
Minor & Smith 1974; Powell 1955). These studies aorariety of cell types, all report
that inter-mitotic division times show significavdriation within clones of growing cells.
Both quantitative and qualitative explanations wgiken to describe this variation. The
influential Smith and Martin model proposed thatiagon originated from a stochastic
regulator operating in an “A state” (assumed t@i¢ that governed entry into a
deterministic B phase (S, G2, and M) of the cetlley{Smith & Martin 1973).
Alternatively, size models implicated impreciseentance of cellular components
regulating growth and replication as being resgaador differences in division times
(Clifford & Sudbury 1972; Tyson & Diekmann 1986hd source of the inter-divisional
variation or its significance is still not knownCells undergoing apoptosis also show
variation in times to die that are consistent vaitstochastic internal process that is at
least partly the result of a balance of anti- araapoptotic molecules (Hawkins et al.
2007; Spencer et al. 2009). Similarly, little isdenstood about how control of division
and apoptosis is related and how this relation stgpan control of cell populations in an
immune response.

An excellent system for studying complex populasb@aping by regulated division and
death is the adaptive immune response mountedthyTband B lymphocytes. At its core
is the clonal expansion of lymphocytes of givencdpmty due to the appearance of
antigen. During this response, B and T-cell pojates undergo a characteristic three
phase process: expansion through a series ofigaiahs; cessation of expansion; and,
finally, most of the accumulated lymphocytes dieabpptosis. Advances in flow
cytometry and the discovery of non-interfering flescent dyes that act as cell labels
have enabled the collection of experimental dattherkinetics of lymphocyte division
progression and cell survival, e.g. (Lyons & PafiS84; Parish 1999). These techniques
yield high quality information at the level of pdptions. For example, use of the
fluorescent dye carboxyfluorescein succinimidyee$CFSE) can provide a time-course
for the number of live and dead lymphocytes andrihetion of cells that have
undergone any given number of cell divisions. Ta& has strongly influenced
immunological understanding. It has inspired stiaiens to develop methodologies to
study flow cytometry data, e.g. (Hyrien & Zand 2D0dhd provided information on
which modelers have based their paradigms e.g.(€@anet al. 2005; Gett & Hodgkin
2000; Hawkins et al. 2007; Leon et al. 2004).

Data from these experiments are not, however, wittieir limitations. One significant
drawback of flow cytometry data is that individealls cannot be tracked, so that it is

not possible to investigate dependencies in theedhtells within a family tree. In the
absence of this information, biologists, statistid and modelers assume that all cells act
as independent entities. This deficit in experirakimformation has recently been
overcome by Hawkins et al. (2009) who report oretiapse microscopy experiments in



which B-cells were stimulated through the TLR9 moe. Cells stimulated in this way
undergo the usual population dynamics, dividingZd¥ generations, but do not
aggregate, so that extensive data regarding faneis can be observed and recorded.

In this article we detail a further investigatiointioe Hawkins et al. (2009) data. In order
to explain the familial correlation structure irvidion times, death times and propensity
to divide, a minimum of two distinct heritable fart are necessary. One factor regulates
the propensity for a cell to divide and, if it deas the time at which it divides. The other
factor relates the propensity for cell division dhd time taken to apoptosis. We then
develop a stochastic model that has two heritautofs and demonstrate that it can
reproduce the key features of the data. Thus tteeshews that two distinct factors are
necessary and the model shows that two are alfoienf. These deductions have
important implications for mathematical modellingradigms that are used to study these
systems.

Results

The B Cell Data Set

Hawkins et al. (2009) has reported a data set @erfirom visual annotation of dividing
primary naive B lymphocytes stimulated using thé Di&e receptor-9 (TLR-9) ligand,
CpG. The initial populations of cells and their geay were cultured on Terasaki plates
and followed for 120 hours using time lapse micopsc Images were taken of the cells
in 7 of the wells in each plate at a frequencyrod per two minutes. Cell division was
judged manually and cell death was judged by maolosérvation of propidium iodide
uptake as a result of loss of membrane integrignugpoptosis. Pedigrees of cells were
followed from stimulation for up to 7 rounds of dion, by which time nearly all cells
had died. In total, 107 and 89 pedigrees werevi@tbin two different experiments
(Fam2 and Fama3 respectively) and times to die andedfor related cells recorded.

The data presented by Hawkins et al. (2009) aréri$teavailable for primary
lymphocytes and the first individual cell trackiagperiments to include substantial
information concerning cell death times and divisoe@ssation. They noted a number of
trends in the average behaviour of the cell pomrighat gave some insight into cell
operation and patrticularly the extent of inheri@ndVe first summarise these features
and then report on new correlations that must beramodated into any description of
cellular inheritance. Then we present a physicad@hwith a demonstrably minimum
number of heritable factors that has the abilitygioroduce these features.

Trends and Correlations in the data set

CpG-stimulated naive B cells typically undergo aeseof between one and six division
rounds. The time to first division takes approxielaB5 h while the more rapid
subsequent divisions average 10 h, although the& tr@& increases by approximately
10-15% in the later division rounds. As noted farny other cell types, the times to
divide are highly variable and, when plotted asegdiency histogram, follow a right
skewed distribution. Hawkins et al. (2009) alstexoa high degree of correlation in
siblings’ division times. Other reported featumeduded the phenomenon of division



destiny where cells ceased to both grow and diafthr 2-6 division rounds. These cells
eventually died with the times to die also high&riable, with the mean time decreasing
by approximately 25-35% in the later division roan@he division destiny of progeny
was heritable and strongly dependent on the ofiifinender cell which Hawkins et al.
(2009) illustrated using a heatmap to display divigdestiny of cell pedigrees. This
effect comes about because the fate of siblinds ekt is, whether they divide or die) is
highly correlated. Figure 1 presents a new quantgaepresentation of this relationship.
The fate of siblings is broken down per divisiamehrly divisions it is almost always
observed that both siblings divide, while in lad@risions it is almost always the case that
neither sibling divides. Only in the middle phase¢h® response do we find siblings
having different responses and even then thislssim than 20% of cases.

Figure 2 presents the correlations in division srfa siblings and first cousins for one
experimental set of results labelled Fam2 (theradlagéa is qualitatively similar). Each is
positively correlated (Figure 3 E and F). In orttecheck that this correlation is not
simply due to the dependence of time to divide mmiper of divisions we looked at the
correlations in subpopulations of cells which hadergone an identical number of
divisions and found the same result (data not sholterestingly, the correlation
between sibling times to divide is particularlyostg at earlier division times as can be
seen in Figure 2 A, where if we exclude siblingsdndivision times sum to less than 20
hours, the Pearson correlation coefficient (Sok&@hlf 1995),r , falls from 0.71 to
0.23.

Propensity to divide of related cells is strongly correlated

In the following discussion we use the term ‘pragignto divide’ to describe the
likelihood of a cell to divide. In this experimeiour different cell outcomes are
observed: cells can be observed to undergo divisiaieath, cells can be lost from view
(around 17%) and a small number (2.5%) reach theoéthe experiment alive. We
assume that after sufficient time has elapseaedl will undergo one of two fates,
division or death. We measure the correlation tddaf sibling cells by assigning the
numberl to division and0 to death and measuring Pearsan'®r these numbers. So,
for example if siblings always had the same fdtat(is if one divided then the other
always divided or vice versa) then they would hawel. Conversely if the fate of
sibling cells was independent then they would beowelated and have=.@\fter

doing so, we find that according to this method fzg is strongly correlated between
siblings and equal to 0.81 (0.76,0.86) for Fam2 @8d (0.82,0.91) for Fam3 (95%
confidence intervals in brackets). It is also athbte property as demonstrated by the
correlation between cousins’ propensity to dividd also the clonal property whereby
all cells in a clone loose their impetus to divafter approximately the same number of
divisions (Hawkins 2009).

Propensity to divide is correlated to both time to divide and time to

die

In Hawkins et al. (2009) it was shown that a hétédactor both increases the propensity
to divide and shortens the time to divide. Here fiwe a correlation between propensity
to divide and time tadlie. Figure 4 A illustrates this by showing that selthose siblings



divide, tend to die later than cells whose siblidgs These data lead us to conclude that
a common factor influences both time to die angensity to divide. The observation
that time to die is correlated between siblings emakins (Figure 4 B)suggests that
such a factor is heritable.

One common factor is not sufficient to describe the data

If the putative common factor that regulates praitgrio divide and time to divide is the
same as the common factor that regulates propewositiyide and time to die then one
might expect to observe a consistent negative lediwa between time to die and time to
divide for related cells. We looked for this in twtaces. First of all, there is a small
subset of sibling cells which undergo differenefatData from such siblings (Figuré\5
andFigure 3 G) shows that there is a small positiveatation although, as mentioned,
the number of sibling cells with uneven fates i@nsecondly, we looked at the
relationship between mother time to divide and déeigtime to die (Figure 5 B) and
found no significant correlation (see alsigure 3H). This is strongly suggestive that at
least two independent heritable factors are necgss&xplain the data.

Modelling division times

Having established that at least two heritableoi@care necessary to explain the data, we
now demonstrate that two are sufficient for a miatiigcal model to reproduce the most
significant features of the data. The featurediefdata can be divided into three
categories: statistics describing division timéatistics describing death times and those
describing fate determination. Our approach wiltd&vork through each category in

turn, developing a minimal model that can descalbéhe features in each category. At
the end of the process we will have a unified, medimodel that can describe the
relevant features of the data using two heritabdtdrs. Our test for sufficiency will be to
identify the important criteria in the various astseof measured cell behaviour and to
show how our two factor model can satisfy each one.

We start by looking at division times. Based ondbeve discussion we seek a model
that can reproduce the following features of thiada
1) Right skewed distribution with a minimum divisiame of approximately 6
hours.

2) Atrend of increasind,,, as a function of generations.
3) Correlatedt,,, for siblings and inheritance af,,,, from mother cells.

ivide
4) Correlation oft,,,. for siblings being stronger for pairs of cellsttbavide

earlier.
We found that models that divided the cell cycl® ia series of steps with deterministic
and exponential waiting times, such as the Smithtikl&ransition probability model
(Smith & Martin 1973) had difficulty reproducingelexperimentally observed strong
correlations at early division times (data not shipvin contrast we will show that a
development of the modelling framework first propodss Castor’'s {Rate Model
(Castor 1980) and Cooper’s Continuum Model (Cod@82) can be adapted to re-create
all of the desired properties listed above. Whileeo models might be possible, we
present here a detailed elaboration of a modifiée model to illustrate a projected



underlying biological mechanism.

A modified rate-based model

The G rate model (Castor 1980) introduced the ideatti@time taken for sibling cells
to pass through Qs correlated and that this can be modelled blyidiging the rate of
passage as a bivariate normal distribution. Owsaedor adopting this distribution, as
will be revealed, is that it reproduces the obsgowahat siblings that divide early are
more highly correlated than those that divide laDeir approach will be to generalise the
distribution so that it can be applied beyond sipicorrelations and explain correlations
between different generations of cells. Castor’'sleh@also contains a stochastic
mechanism to explain the passage of cells througgtand (S+ & M) phase. We find
this to be unnecessary for our purposes and refilagth a fixed time which we call

t.... Hence we write the following form to describe theision time of a B lymphocyte:

1
nt—.

r
If r is distributed normally and with a positive lowszund (justified below on physical
grounds) then this gives a right skewed distributdath some minimum division time,
t., » assumed to be constant for all cells. The cati@i between time to divide and
propensity to divide suggests that the quantiig somehow associated with the ability to
enter into division. Consequently we adopt a singigsical interpretation for due to
Cooper (1982) and postulate thats proportional to the rate of synthesis of atiating
factor within each cell which, upon reaching a éhiad level, triggers initiation of cell
division (Figure 6 B). Events subsequent to thggr can be thought of as taking

timet_.. . If the concentration of this initiating factor s then we can write

f(t) = mrt

wheremis a constant that converts to units of conceminadindt is the time since
division. For the purpose of notational convenieincthe equations and discussion that
follow we setm= l1and refer only ta , which has units of inverse time. Since
represents a rate of synthesis it must be postivksince the observetd has an upper
boundr must be bounded from below. We speculate thebrresponds to an ensemble
of contributing elements such as enzymes involuezignalling cascades and
transcription factors regulating expression of eagproteins for growth. While the
contributions from such elements may fluctuate akercourse of the cell cycle, in order
to keep our model as simple as possible, we tak®be constant during the
accumulation of the initiating factoff, , but allow it to fluctuate at other times (that is

between whenf initiates division and when division actually ocgur

t =t

mi

In order to introduce the correlations betweendivesion times of two siblings and
between the mother and daughter cells we mustidledtre manner in which each new
cell takes on its value of . Itis clear from our conclusions above that ¢hisra degree

of sharing between siblings that is inherited fritn@ mother, and that the inherited level
is predominantly dictating division times of theatwiblings, given the high level of
correlation. We note that there is less correlatietween mothers and daughters than
there is between siblings suggesting that subseédqoelivision time being decided upon,
but prior to division occurring, the value ofin the mother undergoes fluctuations which



are then passed on to both daughter cells. Timsasntrast to fluctuations inthat occur
subsequently in each daughter cell which contribai@ifferences in sibling division
times. The process is illustrated in Figure 6 Ae Ploint in the cell cycle where division
time is decided is marked with an X. Fluctuatioms ibeyond this point do not affect
division time for the cell, only its daughters. TWedue ofr available at X is equal to the
sum of three parts: (i) the amount that was avialedbthe mother at Xr,, , (divided in
two since it is split equally between daughteri)sgii) variations inr that occurred in
the mother after this point, _, (also divided in two) plus (iii) independent védioa in r

in each daughter cell up to this point, andr, . We can write this formally as follows:

1
tl :tmin + 1
5 (rm R ) + rdl
1
t2 :tmin +

;(rm + r.m—d ) + r.dz

wheret andt, are the division times for sibling cells angdis the portion ofr that

contributed to the division time of the mother c&hat is,t, =t .. + 2L :

r

m

wheret,, is the division time for the mother cell angdis responsible for the inherited

component of division time since it contributeghe division times of both mother and
daughters.

r_, is a normally distributed random number, ,~ N (s, g@so) |t gives the
difference between mother and daughters whichnsneon to both siblings.

ry, andr, are normally distributed random numbers with zeean, generated

division

independently for each cell accordingrto,r, ~ N(0,0,"). These are responsible for

the difference between sibling division times.
For the initial generation of cells we choaseto be normally distributed according to

r ~N(u2"s™", g4°")  On rare occasions total can be very small or negative, resulting

m
in unphysical division times. To prevent this, thstribution is truncated (see
supplementary information for details).

We observe that cells with a large+r, _, tend to divide earlier. For such cells the noise
from r, andr, will be proportionately less, hence they will bemacorrelated,

satisfying our initial criterion that siblings daing earlier be more highly correlated. The
fact that siblings are more correlated than motterghter pairs suggests that

division division

gy " <o 7" (see Table 1). In other words most of the noise ¢and hence the

physical quantity that it represents) is pickecbepveen when division time is decided
and when division actually occurs. One can speewatthe source of the noise, but
suffice it to say that if the physical quantitiésitt determine are produced and subject to
imperfect regulation then one would expect it toueulate fluctuations over time (Sigal
et al. 2006).



If g5 and gJ"s™ are tuned to give agreement with correlations betwmother —
daughter and sibling-sibling correlations then \aa predict the observed cousin-cousin
correlations (Figure 3 D). This demonstrates thatrhodel for division times captures

salient features of the data.

Modelling death times
The above modified rate-based model recreateddapedrrelations in division times
transmitted through generations. As noted, coiiaiat albeit weaker, are also found in
death times through generations. Using the sammagip, we seek the simplest model
that can reproduce the key features of the daddimglto the inheritance of death times.
These features are as follows:

1) Right skewed distribution.

2) Atrend to decreasing;, in later generations.

3) Correlatedt,, for siblings and inheritance as demonstrated bsetation of

cousin death times.

4) Unlike t 4, t4e 1SN't Strongly correlated at small values.

5) t,.. IS independent of,.. While Figure 5A and B show some correlation
between division and death times, the magnitudenall and, the signs are
conflicting. This suggests that the two may be nledeas independent processes.

Here again we postulate that components makingeigurvival machinery of the cell
are partly inherited from the mother, and partlydemadependently arde novo, in each
new cell. We propose as the simplest case, aallsance of further information, that the
guantity of the factor controlling time taken tocogposis is directly proportional to the
time to die of the cell. Thus, we chose a minigetieralisation of the Cyton model
mechanism for death (Hawkins et al. 2007).

death _ 4 death
t1 - tm kd1
death _ 4 death
t2 - tm kd2

wheretr‘f]ealh is the death time carried by the mother cell, wighidentify as proportional

to the level of our second common factor. Cleaflthis was passed on, the mother did
not die. For undivided cells we assume a lognouistibution in the population of the
factor and therefore, lognormally distributed tinbeslie as advocated in (Hawkins et al.

2007), that is
Iog(tdealh) ~N(ytimth,qimth) .

m

ky, andk, are components which produce independent variafmmsach daughter and
are distributed according fog(k,, ,I))g(kdz) ~ N, o)

The parametey,™" was chosen to give the correct trend in deathstiwith generation

while g

data (see Figure 3 E). In contrast to division Eme note that we require no analogue to
r._q Suggesting that for time to die, all of the vada in t,, subsequent to division

arises independently in the daughter cells.

was selected to match the correlation betweemgibthat is observed in the



Linking fate determination to division time

In developing a model to explain the connectiomieen fate determination and division
time we need to keep in mind the growth data fretfawkins 2009) that suggests that
cell fate is determined at, or soon after, celision. The early determination of cell fate,
plus the high correlation of cell fate as previgu$tscribed here, suggests that perhaps
only inherited material from the mother, +r__,, need be used. Even so, approximately
10% of cells undergo different fates, so a furtia@dom component specific to each
sibling is required. One option would be to inclugeandr, , that is select cell fate
based on the total value of But this would lead to a sharp cut off in thetidsitions

for division time, which is something the data daessupport. We propose a stochastic
process acts on cells to produce uneven fates.ihgai the division times for cells
whose sibling died (Hawkins 2009) suggests thattiechanism acts only on cells with
long division times, that is when cells are onc¢hsp of being able to divide. To
summarise, ifr,, +r,_, is more tharr, ., then both siblings divide. If +r__; is less

thanr,, , then both siblings die. If  +r _, is in betweer,,, andr,,, then each cell

has a stochastic outcome dependent on valuetioét it has associated with it. In this
intermediate region we propose that the probalulitglivision increases linearly with
r, + g 10 effect a smooth transition. Thus, we modelgrabability of division of each

cell as:

0, r.m + r.m—d < r.Iow
.. r +r =T
— m m-d low
Pr(dIVI des) = #, r|0W < rm + rm—d s rhigh
high low
1; r.m + r.m—d > r.high

Supplementary Figure 1 B, C shows that this modkesgthe correct qualitative
relationship between propensity to divide dggl,. Furthermore, because only the
inherited component and not the individual compesiefir (r, andr, ) are used to
decide whether a cell can divide, the propensityisiers to divide can have a similar
correlation to time to divide, as is observed ia tlata. Because only half ofis passed
onto the daughter cells at division and becaysgcan, on average, be negative the
averager of a population of cells is depleted over suceaesgenerations. As this
depletion occurs the distribution offor the overall cell population will pass throutjte
region between,,, andr,, . As it does so the proportion of cells dividinglghe

correlation between fates for sisters both havetingect qualitative form. That is, early
in the response most cells divide; uneven cellifataost likely to occur mid-response
and late in the response, most cells die (see &i§@,D). Finally, the distribution af

in the founder population and the subsequent prasen of relative levels in
descendents that arises from the proposed mechégasisito the strong founder effect
for division destiny (Hawkins 2009).

Linking fate determination to death time
The model has many of the features sought, howaset,presently stands, it will not



show any dependence between times to die and Bibpsmdivide as shown in Figure
4. One reasonable way to include this is to makeptibability of division dependent on
a functional combination daf;;,, andt,, (or components thereof). Unfortunately this
tends to lead to unphysicg|,,, andt,,. Removing such unphysical subpopulations by

fiat leads to unintended correlations betweenwetimes (data not shown). To avoid
these two problems we instead make a minor chantfeetstochastic cutoff procedure

above to incorporate the inherited component oftdiéme, t*" . The fate of cells with
intermediate values of +r,,, thatis, where,,, <1, +r , <r,,, now depends on the
value of this second common factor. Cells with thtermediate amount afcan be
thought of as being on the cusp of being assigoe&ither death or division. Such cells
are sensitive to a second signal to decide cel| tasignal (in the form of a higt{™")

that causes them to both die. Alternatively, ifrsaells are not sufficiently committed to
death (by having a low™") then they are assigned different fates as befaenally,

0, Fn ¥ Teg < Tow
ro+r_ —r
o death death

L. - m_ o, Mow < M + Mg < rhigh and tm ka—d = tmin
Pr(divides) =< Tigh ~ iow

death
min

death
) Now < T+ Toeg < Thigh andt " [k, <t

r.m + r.m—d > r.high

We find that setting

death _ ,,desth _ _death
tmin ™ Jtm

gives us the correct qualitative dependence of tortie on propensity to divide
(Supplementary Figure 1A) while preserving the aelemce of time to divide on
propensity to divide (Supplementary Figure 1 BJCalso points to the existence of a
subpopulation of cells on the verge of not beinig & progress further through
divisions, which are sensitised to other signalsitmer fate selection.

Discussion

The recent data of Hawkins et al. (2009) recortedcorrelation in times to divide and
die in B cells following stimulation with CpG thietads to proliferation, eventual
cessation after a varying number of division royrah&l then death. Striking familial
correlations were observed that we reasoned cooldde a unique insight into the
source of shared and randomised components diatelin this system. To facilitate this
goal we sought a minimal model that could reprodheamportant features of the data.
We found that a minimum of two different heritafdetors were necessary to explain the
correlation structure in the data. We then showetl tivo heritable factors were
sufficient by constructing a model postulating tveeitable factor that controls a cell’'s
time to divide and another which regulates timagoptosis. In our model both factors
play a role in determining cell fate. We find tih&ta is consistent with a mechanism
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where the value of the first factor varies the @ftaccumulation of downstream cellular
mediators(s) that trigger cell division when a #iiveld is reached. Stochastic variation in
parts of this mechanism, either in the level ofititeerited factor, the level of
accumulated mediators or selection of the threskewiel for triggering division
contributes to deciding cell fate (either divisimndeath). While we make no
presumptions about the particular physical mechamsolved, if we assume the second
factor also modulates this stochastic fate seled¢hen we can correctly describe the
regulation and correlation between all three aspeictell number regulation without the
need for any further heritable components.

One of the striking features of the Hawkins e{2009) data is the extreme correlation of
propensity to divide. On average this is more gjlpoorrelated than any other quantity
between siblings. In order for propensity to dividdbe more strongly correlated than
time to divide, it had to be derived from the conmoomponent influencing time to
divide inherited from the mother cell. This fe&ulid not include the additional random
component of time to divide that contributed indegently to division times of each
sibling. In other words, time to divide picked upm randomness at or after division
whereas division and propensity to divide did fdtis is consistent with the hypothesis
that cell fate is decided at, or soon after, donsas was suggested by examination of cell
size in (Hawkins 2009).

The tracking of cell lineages was undertaken by Kasvet al. (2009) to highlight the
source and nature of variation in lymphocyte rejoie Numerous prior models have
been proposed to describe lymphocyte proliferagioe survival, although few
accommodate such strong lineage affiliations asaied in this new data set.
Furthermore, most models interleave cell divisiod death by assuming an age-
independent time to die that is inconsistent whin pattern of death observed in these
data. An earlier paper by Hawkins et al. (2000ppised the cyton model based on the
hypothesis that times to divide and die were inddpat, and acted in competition, with
each being clocked from their last division anddwing some skewed right probability.
Here, our minimal model also assumes that diviaioh death are clocked from mitosis.
However, in contrast to the cyton model, we assoetis decide their fate, either division
or death, early after a division, and that timé® chosen fate, is then regulated. This
simpler model is possible because we recordedstarnine of cells dying during a growth
phase leading to a cell division. Rather, onlyscat lost the impetus to grow went on
to die. The cyton model is capable of reproducimg behaviour by having a distinct time
to die distribution for cells that have undergomnasibon destiny (Subramanian et al.
2008). The generality of this and other methodsrfoorporating death in useful
biologically relevant mechanisms will only beconpparent when additional regulated
cell systems are followed in a similar manner ® @pG stimulated B cells studied here.

We do not rule out the possibility that there maigeother common factors than the
ones proposed. Nor do we rule out the possibiia & model with more degrees of
freedom might give outcomes that agree more closgtyobservations. For example,
the model could be extended to give better agreewiéim correlations between distantly
related cells in a pedigree. However in order tol@r a subset of the observed
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correlations in our data we already require a ficamt number of degrees of freedom;
each correlation needs to be parameterised, asgddosi®n linked behaviour. The
decision on how far to go down the path of incnegsnodel complexity to fit data is
based on whether doing so adds insight into theesysr utility. In this case formulating
a model to describe the operation of two commotofadeads to the discovery that one
of the common factors only acted on cells that veergsitised to respond. That is the
common factor for death could only affect a suloée¢he total cell populatiorBeyond

the insight gained, a question that remains unareshis “do we need to use these
multivariate models to analyse population experitsi®hln responses that are limited to
relatively few division cycles, existing univariateodels are sufficient for the purposes
of reproducing the mean population sizes. Howea®the number of division cycles
increases, the effect of correlations in divisiome between parents and their progeny
on the mean population dynamics increases, aretdrbhes necessary to use a model that
accounts for this correlation (Wellard et al. 200®)rthermore, studies using branching
process analyses (Crump & Mode 1969; Duffy & Sulaaman 2009; Wellard et al.
2009) suggest that correlation in time to dividd ancell fate necessarily leads to
increased variability of total cell numbers. Fanslation of small populations of cells
this can impact on the results. For example fluabna in the numbers of a small clone
of lymphocytes could result in its extinction. AiIdy using a model that incorrectly
implements correlation between cell fates wouldibable to capture this behaviour. The
conclusion to be drawn from this is that the cha@tenodel depends on the application.
Utility would suggest that for systems of thousamndells the simplest univariate model
as measured by ease of solution and goodnessstidiitid be used. For clones of tens of
cells, as can exist at the beginning of an immeseanse, the model needs to capture
correlated behaviour and the solution method neelds able to able to calculate the
fluctuations about the expected mean behaviour.

Finally, our modelling approach leads to testalidéolgical hypotheses and suggests
directions for future investigation. Our study sagts that it would be fruitful to search
for cell surface, cytoplasmic or nuclear proteiflgtthg and varying from generation to
generation that are involved in triggering bothision and death. This could be
achieved by proteomic analysis, which makes nomapsans, or a candidate
investigation of likely cell cycle and cell deattgulators. As the expression of putative
factors appears to be required primarily in thstfdivision, and less so in subsequent
divisions, high throughput sequencing of RNA (Maetai et al. 2008) might be used to
compare RNA expression levels for cohorts of detin consecutive divisions to
identify candidate transcripts with these featur€3nce the diluting elements controlling
the division and death times are identified, exgicesas fluorescent tagged fusion
molecules would allow further time lapse microscepperiments to correlate and
monitor the stochastic inheritance and re-synthiasesch generation predicted here.
The existence of heritable factors regulating tteppnsity to divide with times to divide
and die raises the prospect that there may exis¢ heritable factors, changing with
division, that regulate other aspects of the immasponse. It has been shown that
differentiation decisions for both B lymphocytesianlymphocytes alter with successive
division rounds (Bird et al. 1998; Gett & Hodgki@98; Hodgkin et al. 1996). We
speculate that a similar quantitative approachia@b following alternative fates may
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be able to provide further insight into regulatargchanisms of the immune response
and the control of the rapid emergence of cellb&terogeneity.

Tables

parameter value | parameter | value
,Llr(rj]ivis'on 0.9 Mcrj:aath 20
o.r(:]ivision 0.02 o.tdmealh 15
Hins " 0.03 1 4 0.9
T 0.04 1 o™ 0.3
Uc(ﬁmgon 0.02 bresnola 10
Thigh Viz |t 25
ow 1/22 Mnitiaiceits 40
Uive 4

Table 1 Quantities used to generate simulated data from multivariate model
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Figure captions

Figure 1 Trendsin cell fate broken down per division for experiments fam2 and fam3. In
both cases the proportion of siblings undergoing different fates is a maximum mid-
response.

Figure 2 Correlation of timesto divide for related cells (fam2). (A) Timesto divide for
siblings are more highly correlated than for first cousins (B). Sbhlings whose division
times sum to more than 20 hours (above and to theright of thered linein (A)) areless
correlated (r=0.23) than the population as a whole (r=0.71).

Figure 3 Measured correlation (Pearson r) from experiment compared with simulation.
lllustration shows the correlations being measimgteavy dashed lines. Figures within
brackets show the 95% confidence interval obtaussdg a bootstrapping method as
described in supplementary information.

Figure 4 Correlation of timesto die for related cells (fam2) (A) When both siblings die,
they tend to do so earlier than cells whose sibling divide (p<0.0001 for median value, see
supplementary information for details). (B) Timesto die for sisters are more highly
correlated than for (C) cousins.

Figure 5 Correlation between times to divide and die (fam2). (A) Ssters which undergo
different fates show a small amount of positive correlation between their respective times
to dieand divide. (B) Thereis no significant correlation (refer Figure 3 G) between when
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a cell divides and when its offspring die.

Figure 6 (A) Time line showing mechanism for inheritance of division time. Division time
is determined by the value of r, shown hereas r, , at the times marked X. For the mother

cell thisis r,, and soitsdivisontimeisgivenby t,, =t +i . Between thistime and
division occurring, the mother cell increasesits value of r by an amount, r_,_,. At
division, the total valueof r, r_ +r,_,, isassumed to be split evenly between the
daughter cells. Some time between division and the point marked X, each daughter cell
acquires a further independent contributiontor called r, where n=1,2. Aswith the

mother cell, the daughters now have division times determined by their value of r at X
1

whichisnow t, =t +
E (rm * ld ) + r.dn

(B) Right skewed distribution arises from a rate-and-comparator model for replication.
The quantity f isaccumulated according to f (t) = mrt, where mis some constant of
proportionality with unitsof f and r isarate with unitsinverse time. Upon reaching a

threshold value, f, .4 » division machinery isinitiated. At this point t, .gqq = Tuvenog
mr

and so thereis an inverse relationship between the value of r and the variable component
of division time, t,,.qq - If r isdistributed normally according to N(r) as showninthe

vertically oriented distribution then t,, .4 IS distributed with an inverse-normal pdf,

drawn horizontally. The shaded areas show a cohort of cellswith a particular range of
values r and t, 4,4 (C) Thevalueof r atfirst divisionishigh and so nearly all cells
divide. As cells go through consecutive division cycles the quantity r gradually
diminishes until they are unable to divide further. (D) Mid-response, the value of r
passes through a narrow region in which stochastic fate selection can occur. Here, a
second factor controlling cell death is also able to influence the probability of division.
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Supplementary Information

Bounding division time
With the scheme described it is still possible that afew cells with small or even negative
r will be assigned to division, leading to negative or large t,. . We correct for this by
using alogistic function to compress values at small r so that it is bounded from below
(and hence t,,4 isbounded from above). Before using r to find t,. we apply the
following mapping:
_ 1 E _:kL(r = +b,r, <a

Fow =4 Koue 1€

r,,l,=a
with

1

in?

a=
tthreshold

_ 1

t

max

ko= 1
out 2 [q a- b)
kin =4 |](out
where t, ...0q 1Sthe point at which r_,

is effectively a cutoff on the maximum allowed time to divide

beginsto deviate from .

in?
tmax

a and b are chosen so that % is continuous. Thislogistic function is applied
r

n

selectively to r when it is smaller than 1

tthreshold

Agent based simulations of the proposed model

Our models were implemented using an agent-based approach with the parametersin
Table 2. Simulations were repeated 500 times and results with 95% confidence intervals
plotted in Table 1.

Approximation for loss

During the time lapse microscopy experiments some cells were lost during tracking
(Hawkins 2009). Mostly this occurred soon after division. In our simulations we have
approximated loss by eliminating the same proportion of cellsin each division as were
lost in the experiments. Cells are modelled as being lost at division. No attempt is made



to simulate the distribution of times at which cells arelost.

Confidence intervals

In all scatter plots, the reported correlations were cal culated using the function corr()
from MATLAB Version 7.5.0.342 (R2007b) from the Mathworks company.

Confidence intervals on experimental quantitiesin all figures and tables unless stated
otherwise are at the 95% level and computed using 500 bootstrap replicants formed by
selecting pedigreef cells. Asin (Hawkins 2009) it is assumed that pedigrees are
independently and identically distributed.

The p-value in Figure 4 was cal cul ated using a permutation test drawn from 10° re-
sampled data sets.



Simulated Data Experimental Data (fam2)
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Supplementary Figure 1 Simulated data generatengusimodel with two common
factors reproduces the correct relationship betwpsrpensity to divide and times to die
and divide. (A) Cells whose siblings die tend ®ehrlier than cells whose siblings
divide. (B) Cells whose siblings divide tend taabwearlier than cells whose siblings die.
(C) Cells divide earlier when more of their daugbtdivide. (D), (E) and (F) show the
corresponding experimental data for fam2. (E) aRgréproduced from (Hawkins 2009),
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