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Abstract

We extend two fundamental properties of positive linearetimvariant (LTI) systems to homo-
geneous cooperative systems. Specifically, we demongtratesuch systems arB-stable, meaning
that global asymptotic stability is preserved under diajostaling. We also show that a delayed
homogeneous cooperative system is globally asymptotistdble (GAS) for any non-negative delay if

and only if the system is GAS for zero delay.

. INTRODUCTION

Positive dynamical systems, in which the state variablescanstrained to remain non-negative,
arise in numerous application areas. In fact, any situatiomhich the variables of interest only
take non-negative values gives rise to a positive dynansigeiem. Examples of this type can
be found in areas such as Ecology (population sizes), Byolggne/protein concentrations),
Economics (commodity prices) and Chemical Engineerin@rfdbal concentrations).
Essentially a positive dynamical system is one for which-negative initial conditions always
give rise to non-negative trajectories. Given their pdtimportance, it is not surprising that
a considerable deal of attention has been paid to the studyositive systems and to the
elucidation of their basic properties. At the time of wrgjnthere is a well developed theory
of positive linear time-invariant (LTI) systems, with rgoin the Perron-Frobenius theory of
non-negative matrices [6], [3]. Particular attention hasrbpaid to questions relating to positive
reachability and observability, and the existence of pasitealizations of transfer functions. As
with any system class, issues pertaining to stability amedetkistence and location of equilibria
are of fundamental importance. The work described hereskesion this aspect of the theory

of positive systems.
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In the linear time-invariant case, it is well known that ietlrigin is a globally asymptotically
stable (GAS) equilibrium of the positive LTI syster(t) = Ax(t), then it is also a GAS
equilibrium ofi(t) = DAz (t) for all diagonal matrice® with positive elements on the diagonal.
This property is commonly referred to asstability. More recently, it was shown in [8] that for a
positive linear delayed systenit) = Ax(t)+ Bz(t—7), the origin is a GAS equilibrium for any

7 > 0 if and only if it is a GAS equilibrium of the system with zerolde () = (A + B)x(t).
The two main results of the current paper will show that theege properties of positive LTI
systems naturally extend to an important class of nonlipeaitive systems.

Specifically, we shall show that these results extend to thgscof homogeneous cooperative
systems. Cooperative systems are a particularly impostantlass of nonlinear positive systems
and have been studied extensively, particularly in retattobiological applications of dynamical
systems [16], [12]. A key property of such systems, whiclo d&slds for positive LTI systems,
is that they are monotone [16], [5]. Essentially this medwad if we consider two initial vectors
o andy, wherezx, is less thany, componentwise, then the trajectory starting frogpnremains
less than that starting fromy (componentwise) for all subsequent times. Recently, rataty by
applications in Cell Biology, the basic theory of monotoyaamical systems has been extended
to consider interconnections of such systems and a cortemry of monotone systems has
been developed in the papers [2], [1]. While the result fdayled positive linear systems in [8]
was derived using Lyapunov-Krasovskii techniques, thehort adopted here are based on the
fundamental monotonicity properties of cooperative systeAs such, in addition to extending
the result in [8], we provide an alternative view on it.

Other recent work on nonlinear positive systems has beesepted in [9]. In this paper, the
stability and dissipativity properties of nonlinear, na&cessarily cooperative, positive systems
have been investigated. Further, motivated by applicationanaesthesiology, adaptive control
methods for nonlinear positive systems have been propasgdm@alysed in [10].

The layout of the paper is as follows. In the next section, neoduce notation and some
mathematical background. In Section Il we prove that hoemagpus cooperative systems possess
the D-stability property. In Section IV we consider systems sgbjto delay and present a
nonlinear extension of the result described in the prevmaragraph. Finally, in Section V we

give some concluding remarks.
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[I. NOTATION AND BACKGROUND

Throughout the papeif andR" denote the field of real numbers and the vector space of all
n-tuples of real numbers respectiveR/:*" denotes the space afx n matrices with real entries.
Forz € R* andi =1,...,n , z; denotes the' coordinate ofr. Similarly, for A € R"™", a;;
denotes the, j entry of A.

In the interest of brevity, we shall slightly abuse notateomd refer to a system as being GAS
when the origin is a GAS equilibrium of the system. Also, as ave dealing with positive
systems throughout, when we refer to a system as GAS, it Is m&pect to initial conditions

in R}, whereR?} is the set of all vectors ifR" with non-negative entries,
RY :={z€eR":2;, >0,1<i<n}

For vectorsz,y € R", we write:x > y if x; >y, for1 <i<mn; x>y if x >y andz # y;
r>yif oz >y,1<i<n.

A matrix A € R"*" is said to be non-negative if;; > 0 for 1 < i, 5 < n. Similarly, a vector
field g : R* — R is non-negative ify(xz) > 0 for all z € R .

For a real intervala, b], C([a,b], R} ) denotes the space of all real-valued continuous functions
on [a, b] taking values inR’} . For functionsf,g € C([a,b],R}) we write f > g if f(s) >
g(s), Vs € [a, b].

Throughout the paper, for a vectore R”, ||z|| denotes the usual Euclidean normaofFor a
matrix A € R**", ||A|| denotes the matrix norm induced by the Euclidean norm. Fintalr
d=(dy,...,d,)T in R, diag(ds,...,d,) denotes the diagonal matrix R**" in which thei"

entry on its main diagonal ig;.

A. Positive linear systems

In this subsection, we recall some basic facts concernirsifipe LTI systems.
Definition 2.1: The LTI system

#(t) = Ax(t) 1)

is positiveif o > 0 = x(t,z,) > 0 for all t > 0, wherez(-, z,) denotes the unique solution of
(1) satisfyingz(0, z¢) = .
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It is well known and easily verified that an LTI system is pisitif and only if its system matrix

A satisfiesa;; > 0 for i # j. Matrices of this form are said to bdetzler Positive LTI systems

are automatically monotone due to linearity. Formallyzif < yo, thenz (¢, zy) < z(t,yo) for

allt > 0.

For convenience, we collect some standard facts concethengtability of positive LTI systems
in the following result.

Theorem 2.1:Consider the positive LTI system (1). The following statenseare equivalent:
() The system (1) is globally asymptotically stable;

(i) There is some vector > 0 such thatdv < 0;

(i) #(t) = DAx(t) is globally asymptotically stable for all diagonal matsde = diag(d;, ..., d,)

with d; > 0 for 1 < i <n.
The property described by point (iii) above is usually regdrto asD-stability.
In the recent papers [8], [14] the stability properties ofagted positive linear systems were

studied. Formally, consider the system
&(t) = Ax(t) + Bx(t — 1), 7> 0. 2)

Recall that for delay systems of this form [11], for any ialitconditions given by a function
¢ € C([—7.,0],R7}) there exists a unique solutiar{t, ¢) defined fort € [—7, c0), satisfying (2)
andz(s, ) = ¢(s) for s € [—7,0]. Typically, the history segment, : [—7,0] — R" given by
z(s) = z(t — s) for —1 < s < 0 is referred to as the state of the system at time

As with LTI systems, the system (2) is positivedf> 0 implies z(¢,¢) > 0 for all ¢ > 0. It
has been shown in [8] that (2) is positive if and onlydifis Metzler andB is non-negative. As
in the undelayed case, it follows from linearity that the fogenerated by a positive delayed
linear system are monotone meaning that ¢ implies (¢, ¢) < xz(t, 1) for all t > 0.

The following result from [8] shows that (2) is globally asptutically stable for any- > 0 if
and only if the undelayed system with= 0 is globally asymptotically stable.

Theorem 2.2:The time-delayed positive linear system (2) is globallyragtotically stable for

any T > 0 if and only if
©(t) = (A + B)z(t) 3)

is globally asymptotically stable.
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Remark: Theorem 2.2 is a slight rewording of Theorem 3.1 of [8]. A esponding result for
exponential stability of delay systems was subsequentigbéshed in Theorem 4.1 of [14].
The proof in [8] relies on the theory of Lyapunov-Krasovskinctionals, while the proof for
exponential stability in [14] is based on analysing the ahtaristic function of the delayed
system. The primary contribution of the present paper isterel both Theorem 2.2 and Theorem
2.1 to a class of nonlinear positive systems using differeaathods which rely directly on a
key property of the system class; namely the monotonicitgalfitions with respect to initial

conditions. As such, we also provide an alternative petspgeon the results in [8], [14].

B. Homogeneous cooperative systems

In the study of nonlinear positive systems, the class of perative systems is of particular
importance for numerous applications in Economics, Biplagd Ecology and has attracted a
considerable deal of attention in the past [16]. The definibf a cooperative vector field is as
follows.

Definition 2.2: A continuous vector fieldf : R* — R", which isC' on R"\{0} is said to be
cooperative if the jacobiagg(a) is a Metzler matrix for allz € R} \{0}.

The results presented later in the paper are concerned withecative systems whose vector
fields are homogeneous in the sense of the following defmitio

Definition 2.3: f : R* — R" is said to be homogeneous if for alle R” and all real\ > 0,
f(Az) = Af ().

Let the vector fieldf : R* — R” be continuous ofR" andC' onR"\{0}. If f is homogeneous

then it follows easily that for any € R"\{0} and any\ > 0,

Of \ oy _9f
o0x Oz

This immediately allows us to conclude the following reswhose proof we include in the

(Aa) (a) (4)

interest of completeness.
Lemma 2.1:Let f : R* — R" be continuous oiR", C' on R*\{0} and homogeneous. Then
there existsk” > 0 such that||f(z) — f(y)|| < K|l — y|| for all z,y € R".

Proof: As f is C!, it follows that there is somé’; > 0 such that

|>

—(a)|| < K,
5 W[ =
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for all a with |ja|| = 1. But (4) then implies that this inequality must hold for alk% 0. Now
pick anyx # 0 in R". It follows from the mean value theorem that for apyg R"\{tz : ¢ < 0},

1/ (@) = f)ll < Kallz =y (5)

It now follows from the continuity off that this inequality must hold for alj € R*. As z
was an arbitrary non-zero vector, it follows that (5) holds &ll x € R"\{0}, y € R". It now
follows again by continuity that the inequality must hold fdl =,y € R”. [ |

If f:R* — R" is homogeneous, the previous lemma immediately impliesettistence and
uniqueness of solutions to the systeéiit) = f(x(¢)) for any initial conditions inR".

We next collect some well-established facts concerningadyinal systems defined by coopera-
tive, homogeneous vector fields. Before stating the resate that Lemma 5.1 of [5] established
the existence of solutions to systems with cooperative, dganeous right hand sides for all
t > 0.

Theorem 2.3:Let f : R* — R" be a vector field that is continuous @* andC"' on R*\{0}

and suppose that is homogeneous and cooperative. Consider the associateaniyal system

@(t) = f(=(t)) (6)

and forz, € R, let (-, zy) denote the solution of (6) satisfying0, z¢) = x,. Then:

(i) For any real numbeh > 0 and anyz, € R, z(t, \zg) = Mz(t, zo) for any ¢ > 0;

(i) For anyzy,z, € R}, if 2y < a4, it follows thatz(t, ) < x(t, z1) for anyt > 0.

Proof: Under the hypotheses of the theorem, for agye R’ , there exists a unique solution of
(6) throughz,. This together with the homogeneity ¢gfimplies (i). The statement in (ii) was
proven in Proposition 4.3 of [5].

Finally for this section, we state a result for delayed gystehat corresponds to point (ii) of
Theorem 2.3 above. For details consult [16]. First of all, ieeall the definition of an order
preserving vector field.

Definition 2.4: g : R* — R" is order-preserving o’} if g(x) > g(y) for any z,y € R’ such
thatz >y .
As we shall only be interested in vector fields that are opteserving orR” , we shall usually

refer to such vector fields as simply order-preserving.
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Theorem 2.4:Let f, g : R* — R" be continuous ofR” andC" on R"\{0}. Further assume that
f is cooperative and homogeneous whjlés order-preserving and homogeneous. két ¢)

denote the solution of the delayed system

#(t) = f(2(t)) + g(x(t — 7)) (7)

corresponding to the initial condition € C([—7,0], R} ). Then for any¢, v € C([—7,0],R})
with ¢ < v, we have that:(¢, ¢) < x(¢,) for all ¢ > 0 for which both solutions are defined.
Comment: As in the case of undelayed systems, the existence and un@gsi®f solutions to
(7) is implied by Lemma 2.1 (see Chapter 2 of [11]). With rehtr continuation of solutions
for the delayed case, we can conclude from Theorem 2.3.21¢ftfiat if each trajectory of (7)
remains in a compact set in each finite time interval, thenstiigetions of (7) can be continued

to [0, 00). We shall make use of this fact in the proof of Theorem 4.1elo

C. A nonlinear Perron Frobenius Theorem

Many of the stability properties of positive linear systesns natural consequences of the Perron-
Frobenius theorem for non-negative matrices. Numeroumasihave considered the problem of
extending the Perron-Frobenius Theorem to nonlinearigesiystems. The appendix in [13] is
an excellent early reference on this topic (in finite dimens), while further and more general
results were subsequently reported in [15], [7], [5]. Wellsbaly require a particular case of a
recent result presented in [5] for irreducible, homogesembpperative systems.

Definition 2.5: f : R* — R is said to be irreducible o} if:

(i) 2(a) is an irreducible matrix for alk in the interior of R? ;

(i) for non-zeroa in the boundary oR" , either%(a) is irreducible ora; = 0 implies f;(a) > 0.
The paper [5] contains a variety of interesting technicaults concerning the asymptotic
properties of homogeneous cooperative systems but, forparposes, the facts collected in
the following theorem will prove sufficient.
Theorem 2.5:Let f : R* — R" be continuous, and'! on R"\{0}. Further, assume that is
cooperative, homogeneous and irreducible. Then thereésexisnique vector > 0 and a real
numbery, such thatf(v) = ~,v. Moreover the system(t) = f(x(t)) is globally asymptotically

stable if and only ify, < 0.
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[1l. STABILITY AND D-STABILITY FOR HOMOGENEOUS COOPERATIVE SYSTEMS

In this section, we shall extend Theorem 2.1 to homogeneoaperative systems. Firstly, we
shall demonstrate the equivalence of (i) and (ii) for thisteyn class. Throughout this section,
unless stated otherwise, all vector fields are continuoughemhole ofR" andC' on R"\{0}.

In proving the main result of this section, we shall need tleWwing technical lemma.

Lemma 3.1:Let f : R — R" be cooperative and homogeneous and suppose the associated

system
() = f(z(t)) (8)

is globally asymptotically stable. Then there exists somezlucible cooperative, homogeneous
vector field f; : R* — R" such that:

(i) fi(z) > f(x) for all z > 0;

(i) 2(t) = fi(x(¢)) is globally asymptotically stable.

Proof: Choose any homogeneous, irreducible, order-preserviogpréeld g : R* — R". Note
that for alle > 0, f + g is cooperative, homogeneous and irreducible. We claimftrat > 0
sufficiently small, the system(t) = (f+eg)(z(t)) will be globally asymptotically stable (GAS).
Suppose this is not true. Then we can choose a sequence t@osal numbers,, such that
€, — 0 asn — oo for which f + ¢,g is not GAS for anyn. It follows from Theorem 2.5 that

there exist vectors,, > 0 with ||v,|| = 1, and real numbers,, > 0 such that for alln

(f + eng)vn = TnUn- 9

As f and g are continuous andv,|| = 1 for all n, it follows that there is some positive
constantdM such that|(f + €,9)v,|| < M for all n. Hence the sequencg, is bounded. As the
sequences, and~, are bounded, by passing to subsequences if necessary, vessiame that
v, — v for somev > 0, ||v]| = 1 and thaty, — ~ for some~ > 0. This together with the
continuity of f andg implies thatf(v) = yv. This implies that the solution(-, v) of the system
x(t) = f(x(t)) with 2(0) = v cannot tend to the equilibrium &@tast — oo, which contradicts
our assumption that this original system is GAS. This shdvas there must be some > 0 for
which z(t) = (f + e19)(z(t)) is GAS. It follows immediately thaf; = f + ¢, ¢ satisfies (i) and

(ii). m
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From Theorem 2.1 we know that a positive LTI systefm) = Ax(¢) is globally asymptotically
stable if and only if there is some > 0 such thatAv < 0. Theorem 2.5 shows that for
irreducible homogeneous cooperative systems, global pfim stability is equivalent to the
existence of an eigenvector with negative eigenvalue. énniéxt result we show that the result
of Theorem 2.1 extends to homogeneous cooperative systéimsuivrequiring irreducibility.

Theorem 3.1:Let f : R* — R" be cooperative and homogeneous. Then the system

#(t) = f(x(t)), (10)

is globally asymptotically stable if and only if there is sem>> 0 such thatf(v) < 0.
Proof: Suppose that > 0 satisfiesf(v) < 0. We shall first show that the trajectomyz, v)
starting from the initial state tends to the equilibrium at zero asends to infinity. Asf(v) < 0

U0 o < 0
dt , U t=0

and hence there is some> 0 such that

it follows that

z(t) < z(0) =v forallt e (0,4]. (11)

In particular, z(6,v) < v and thus there exists a real numbermwith 0 < o < 1 such that
z(d,v) < aw.

Now as asf is cooperative it follows from Theorem 2.3 that
z(26,v) = x(d,z(0,v))
< z(0, av).
Further, asf is homogeneous this in turn implies that
z(26,v) < z(6, aw)
= ax(é,v) < a*v.

Moreover, we can also conclude from the cooperativityfodnd (11) thatx(¢) < «v for all

t € (0,20). Iterating, we see that fgr = 2,3, . ..
z(pd) < aPu

z(t) < ofwforte ((p—1)68pd).
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and hencex(t,v) — 0 ast — oo as claimed.

Now, let zy € R} be given. Asv > 0, we can always choose some positive real numier
such thatry < Kwv. As f is assumed to be cooperativeli, it follows from Theorem 2.3 that
z(t,xo) < x(t, Kv) = Kx(t,v) for all ¢t > 0. But it now follows from the above argument that
x(t, zg) — 0 ast — oo. Hence, the system (10) is globally asymptotically stalslelaimed.
Conversely, suppose that (10) is globally asymptoticaifpke. By Lemma 3.1, we can choose

some irreducible, homogeneous, cooperative mapgindgR” — R", satisfying
fi(z) > f(z) for all z € RY,

such that the syster(t) = f;(x(t)) is GAS. Theorem 2.5 then implies that there is some vector
v < 0 such thatf;(v) < 0. But f(v) < fi(v) and hencef(v) < 0 as well. This completes the
proof. [ |
Comment: In [4], a result similar to Theorem 3.1 for discrete-timetsyss has been presented.
The authors of this manuscript have shown, under the assamtpatf : R” — R” is irreducible
and order-preserving, thatk+1) = f(z(k)) is GAS if and only if there is no non-zero € R’}
satisfying f (w) > w. Note that Theorem 3.1 combined with Proposition 3.1 esthé$ that in
the continuous-time case, GAS is equivalent to there bemgon-zerow € R} satisfying
f(w) > 0.

Example 3.1:Consider the system(t) = f(z(¢)) defined onR* where

2Ty — 11 — /2% + 13
21, — 2@y — \/ 2% + 22

A phase portrait of this system is given in Figure 2 below. Twaectories of the system are

f(mla $2) =

also illustrated, starting from the respective initial diions 2V := (2", z{") = (0.2,0.8)
(solid line) andz® := (z?, z{) = (0.8,0.2) (dashed line). Note that(z(?)) £ 0 for i = 1, 2.
However, it is clear from the figure that there exist, z,) such thatf(z;,zs) < 0 (take for
instancezr; = z, = 3). Hence by Theorem 3.1, the system-= f(z) is GAS.

Comment: For positive LTI systems it is well known that if(t) = Az(t) is globally asymptot-
ically stable, theni(¢) = Bz(t) will also be GAS for all Metzler matrice®? with B < A.
The above result allows us to immediately draw the corredipgn known, conclusion for

homogeneous cooperative systems.
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To —

Fig. 1. Phase portrait of (z1,z2) := (222 — 21 — /22 + 22,221 — 229 — /22 + 22)7.

Corollary 3.1: Let f,¢g: R* — R" be cooperative, homogeneous vector fields suchghagt <
f(z) forall z € R} . If

is also globally asymptotically stable.

Proof: As i(t) = f(x(t)) is GAS, it follows from Theorem 3.1 that there is some> 0 with

f(v) < 0. But then,g(v) < f(v) < 0 and hence from Theorem 3.%(t) = g(z(t)) is GAS

also. [

For a positive LTI systemni(t) = Ax(t), it is well known that global asymptotic stability implies
that the diagonal entries of are all negative. The following simple corollary can be sasran
extension of this fact to homogeneous systems.

Corollary 3.2: Let f : R" — R" be cooperative and homogeneous and suppose the system
& = f(z) is globally asymptotically stable. Then there exigtsuch that%é§> < 0 for all

E=w

i
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Proof: Suppose the system is GAS; that is, suppose there exist$) such thatf(v) < 0. Then

by Euler's Homogeneous Function Theorem we have that

afi(€) af;(€) .
<; ¢, g:vvj>+ 0¢; gzvvi = fiv) (12)

Note that the first term on the left hand side of (12) is nontiegdy assumption of cooperativity.

Ofi
Now suppose% .

This completes the proof.

> 0 for all w . Then it follows thatf;(v) > 0, which is a contradiction.

Comment: Theorem 3.1 provides a test for the global asymptotic stglof a homogeneous
cooperative system; If we can demonstrate the existenceweictorv > 0 with f(v) < 0,
then the associated system is GAS. Conversely if no suclowvesgists, then the system is not
GAS. However, it is typically much harder to show conclugibat no vector > 0 satisfying
f(v) < 0 exists. The following result, which can be thought of as alinear theorem of the
alternative for our situation, provides a way of demonsitathat a system is definitely not
GAS.

Proposition 3.1:Let f : R* — R” be homogeneous and cooperative. Then exactly one of the
following statements is true.

(i) There is somes > 0 with f(v) < 0;

(i) There is some non-zere > 0 with f(w) > 0.

Proof: We first show that at most one of these statements can be tyu@ai of contradiction,
assume that there is some> 0 such thatf(v) < 0 and some non-zere > 0 with f(w) > 0.
Now let A = mazi<;<n(w;/v;). AS w # 0, A > 0. Moreover, if we define’ = Av, it follows

that f(v') < 0, v' > w and that there is some indexfor which w, = v;. Then for thisp,

B =) = [ s+ (0= s

— /0 (Z %f’;(sv’ +(1- S)w)(v; _ wj)> ds

7j=1
> 0,

where the final inequality follows from the cooperativity ¢f v' > w and w, = v,. But the
above implies that
0> fp(v) = fyp(w) 20,

which is a contradiction.
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Theorem 3.1 established that condition (i) is equivalent(td = f(x(¢)) being GAS. Suppose
that #(t) = f(xz(t)) is not GAS. The proof will be complete if we can show that untles
assumption, there is some non-zero> 0 with f(w) > 0. Let g : R* — R” be an irreducible,
homogeneous, order-preserving vector field. Then it fadlammediately from Corollary 3.1
that for anye > 0, the systemi(t) = (f + €g)(x(t)) is not GAS. Now applying Theorem 2.5
and suitably adapting the argument of Lemma 3.1, we can adadhat there must exist some
non-zerow > 0 with f(w) > 0. [ ]
Comment: The previous result provides a means of demonstrating thanageneous cooper-
ative system is not GAS by showing the existence of a non-zero0 with f(w) > 0.

The so-called D-stability property of positive LTI systerasserts that the global asymptotic
stability of such systems is preserved under positive diabscaling. Theorem 3.1 allows us to
immediately show that this property extends to homogeneoogperative systems.

Theorem 3.2:Let f : R* — R" be cooperative and homogeneous. The system

@(t) = f(z(t)) (13)

is globally asymptotically stable if and only if

@(t) = Df(x(t)) (14)

is globally asymptotically stable for every diagonal matf? = diag(d, ...,d,) with d; > 0
for1 <i<n.

Proof: Suppose that (13) is globally asymptotically stable andthet diagonal matrixD =
diag(dy, ..., d,) with d; > 0 for 1 <i < n be given. Then by Theorem 3.1 it follows that there
is somev > 0 such thatf(v) < 0. But it is immediate thaD f(v) < 0 and asDf : R* — R" is
also homogeneous and cooperative it follows from Theorehttgat the system (14) is globally

asymptotically stable also. The converse direction is ihiate.

V. STABILITY OF DELAYED COOPERATIVE SYSTEMS

In this section, we shall focus on extending the property adifive LTI systems described in
Theorem 2.2 to cooperative homogeneous systems. As inghedation, unless explicitly stated
otherwise, all vector fields are assumed to be continuouR"oand C'! on R"\{0}.

The next result, which is the main result of this section isiraai extension of Theorem 2.2

to homogeneous systems. As it also immediately applies sttip® linear systems, it provides
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an alternative view on the result of [8], which was estal@déhusing a Lyapunov-Krasovskii
functional. Our argument is based on the fundamental monoty property of the trajectories
of the system.

Theorem 4.1:let f : R* — R"” andg : R* — R" be homogeneous and assume tliais

cooperative and is order-preserving. Then the time-delay system

#(t) = f(2(t)) + g(x(t — 7)) (15)

is globally asymptotically stable for any> 0 if and only if the undelayed system

#(t) = f(x(t)) + g(x(t)) (16)

is globally asymptotically stable.
Proof: If the system (15) is globally asymptotically stable (GA8) anyr > 0 then obviously
it is GAS for r = 0.
Conversely, suppose that (16) is GAS. let> 0 be given and for any) € C([-7,0],R%}),
let (-, ¢) denote the solution of (15) corresponding to the initialdion ¢. It follows from
Theorem 3.1 that there is some vectos> 0 such that(f + ¢)(v) < 0. Let v denote the element
of C([-7,0],R?}) given by

v(s)=vfor —7<s<0.

The first step in the proof is to show that the solutidin, ©) of (15) corresponding to the initial
conditionv converges asymptotically to the equilibrium poinast — oco.
Now as

d

%(x(ta @)) |t=0 < O’

as in the proof of Theorem 3.1, it follows that there is saine 0 such thatc(¢, v) < v for all

t € (0, 4]. Further, if we writez;; for the element inC'([—, 0], R} ) given by
Ts5(s) =2(0 —s,0) for —7 <s<0,

we can conclude that;; < .
Now as f is cooperative ang is order-preserving, it follows from Theorem 2.4 and thevabo

observations that for ali € (0, d]

(s 4 0,0) = x(s,255) < x(8,0) K 0. 17)
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Repeating this process, we can conclude that:fer 2,3, ... and for all s € (0, 4],
x(s + k6, 0) < 0. (18)

If we choosek large enough to ensure that= ké > 7, then it follows thatz(s,v) < v for

s € [ty — 7,t1]. Hence, ast; — 7,t;] is compact, there is some with 0 < o < 1 such that

z(s,0) < aw (19)

for all s € [t; — 7,%1]. In other words,z;, ; < av. Moreover,z(s,v) < ¢ for all s € [0,1].

It now follows from Theorem 2.4 and the homogeneityfond g that for s € [0, ¢;],

~ A~

z(s +1t1,0) = x(s, 24, 5) < (s, a0) = ax(s, v).
Hence,zy, » < axy, ; < o*0. lterating, we get that fop = 2,3,4,. ..
Tpty,o < a’v, (20)

and hence a8 < «a < 1, it follows thatz(¢, 0) — 0 ast — oc.
To complete the proof, suppose we are given an initial camdip € C*([—7,0],R? ). As ¢
is continuous and hence bounded [efr, 0], by choosingM sufficiently large, we can ensure
that ¢ < Mv. As f is cooperative and is order-preserving, it follows from Theorem 2.4
that z(¢, ) < z(t, Mv). Moreover asf and g are homogeneous;(t, M0) = Mz(t,0). It now
follows immediately from the argument in the previous paapd thatz(t, ¢) — 0 ast — oc.

[
Note that the argument given above also establishes thaydtem (15) is GAS if and only if
there is some vectar > 0 such that(f + g)(v) < 0. In analogy with the undelayed case, this
allows us to conclude the following.
Corollary 4.1: Let f,f; : R* — R* andg,¢; : R — R" be homogeneous vector fields.
Assume thatf and f; are cooperative and that g; are order-preserving. Further assume that
(fi + g1)(z) < (f + g)(z) for all z € R}. Then if the system

#(t) = f(2(t)) + g(x(t — 7))

is globally asymptotically stable, then the system

2(t) = fi(z(t) + g1 (x(t = 7))

September 5, 2008 DRAFT
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To —

@r=1 (b) =2

Fig. 2. Trajectories of the system (21) for different staigdries and different values of the delay parameter

is globally asymptotically stable also.

Example 4.1:Consider the delayed system:
p(t) = [flz@®) +g(x(t — 7)), (21)

wherer > 0 is a delay parameter,

-3 6 T 3
flxr, @) = ) _\/x%WLfU% ] (22)

2 2 T
and
12
2 2
g(x1,29) VEitrs (23)
12
\/ 2mf+3x%

It is straightforward to verify that this system satisfies ttonditions of Theorem 4.1. Moreover,
(f+9)(1,1) < 0. Hence, we can conclude the the origin is a GAS equilibriunthef system
for any r > 0.

Several sample trajectories of the system (21) are showrguré- 2.
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Fori=1,....6, let the initial conditionst® " andz® ) be defined as follows:

1.1cos(%i) + 0.1 cos(2m(t + 3) — Zi)

2@ 0(s) = ., s€e[-1,0] (24)

1.1sin(&4) — 0.1sin(2m(t + 3) — i)

1) +0.1s5(s+2
2®0(s) = oStz S , s €[=2,0]. (25)
sin(£4) — 0.1s (s +2)?

The panel on the left shows 6 trajectories of the system (dit) w= 1, corresponding to the
initial conditions given by (24). The panel on the right slso@trajectories of the system (21)
with 7 = 2, corresponding to the initial conditions given by (25). #ncbe seen from the the

figure that all trajectories converge to the origin as exgabct

V. CONCLUSIONS

In this paper we have presented a number of results that gexXtewdamental properties of
positive linear time-invariant (LTI) systems to a signifitalass of nonlinear positive systems.
Specifically, we have shown that for homogeneous, cooperatistems, the D-stability property
of positive LTI systems also holds. In addition, we have desti@ted that a homogeneous
cooperative system subject to delay is globally asymptyistable (GAS) for any non-negative
delay if and only if it GAS for zero delay. This extends a résoincerning the stability properties
of delayed positive LTI systems recently published in [8hi& the result in this previous paper
was derived using Lyapunov-Krasovskii arguments, our @g@g reveals the key role played by
the monotonicity properties of the system trajectoriesaarigles have been presented to illustrate
the main results. Future work will focus on extending theultsshere to broader classes of

nonlinear positive systems.
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