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Abstract— In this paper we give necessary and sufficient 

spectral conditions for various notions of strict positive realness 

for single input single output, impulse free Descriptor Systems. 

These conditions only require calculation of eigenvalues of a 

single matrix. A characterization of a KYP-like lemma for 

descriptor systems is also derived, and its implications for the 

stability of a class of switched descriptor systems are briefly 

discussed.    

 

Index Terms—Descriptor systems, Kalman-Yacubovich-

Popov lemma, strict positive realness, extended strict positive 

realness. 

 

I. INTRODUCTION 

n this paper we consider the passivity properties of single-  

input single-output (SISO) linear time-invariant (LTI) 

descriptor systems of the form:                                                

                              :
T

Ex Ax bu

y c x du

 

 
                                  (1)  

where 
n nE   is a possibly singular matrix.  Such 

descriptor systems appear frequently in engineering systems; 

for example, in the description of interconnected large scale 

systems, in economic systems (e.g. the fundamental dynamic 

Leontief model), biological systems, network analysis [13], 

and in a variety of control engineering problems. Descriptor 

systems are particularly important in the simulation and 

design of (Very Large Scale Integrated) VLSI circuits. Here 

one is often interested in obtaining reduced order models of 

an original large scale model, such that certain properties of 

the original system are preserved. One such property is 

passivity. In control system design, descriptor systems are 

useful in the description of switched systems in which states 

are subject to reset. In such problems, one is interested in 

determining conditions on the switched systems such that 

stability can be demonstrated. Here, also passivity is a tool 

that can be used with some success.  
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Our objective in this paper is to obtain simple conditions to 

determine whether an LTI descriptor system is passive or not. 

Normally, passivity of descriptor system is determined by 

examining the properties of a transfer function over an 

infinite set of frequencies. Our main contribution in this 

paper is to show that passivity can be reduced to evaluation of 

the eigenvalues of an n-dimensional matrix.  

 

Our results are important for a number of reasons. 

 

1.   We obtain very compact conditions that characterize 

passivity of a descriptor system. These are new and 

have not appeared in the literature. They are directly 

obtained from the state space representation of the 

system. These methods do not involve evaluating a 

transfer function at all frequencies but only involves 

the calculation of eigenvalues of an n×n matrix. 

Importantly, they are also are valid for both strictly 

proper and proper transfer functions. An important 

application of these results is in determining the 

passivity radius of Descriptor systems, and for model 

order reductions. Although these applications are not 

given in the paper, their application is immediate; 

see [19]. 

  

2.   Our conditions lead directly to a Kalman-

Yacubovich-Popov (KYP)-like lemma for Descriptor 

systems. While other KYP-like lemmas have been 

proposed earlier for Descriptor systems, these are 

usually given under certain restrictive assumptions, 

such as extended positive realness. Our conditions 

on the other hand are relatively free of these 

assumptions and readily extend to the multiple-input 

multiple-output (MIMO) case. 

 

We note also that we restrict our attention in this paper to 

SISO systems. This is deliberate. While conditions for MIMO 

transfer functions can be readily obtained, here we exploit 

specific properties of scalar transfer functions. In the MIMO 

case, one needs to define Hamiltonian matrices that are of 

order 2n×2n, and their manipulation is considerably different 

to that in the SISO case. Also, in SISO case, the obtained 

conditions have a clear interpretation in terms of Lyapunov 

stability and this interpretation can be used to derive 
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conditions for the stability of switched descriptor systems. 

The MIMO case will be reported in future publications.  

 

We also note that the techniques presented in this paper are 

new, novel and have not appeared in the context of Descriptor 

systems elsewhere. All the derivations given, exploit 

properties of various reciprocal transfer functions, and a full 

rank decomposition of the matrix E.  While one of the authors 

(Shorten) has used the relationship between the KYP lemma, 

matrix inverses and reciprocal transfer functions, in a recent 

paper on regular systems [14], the derivations presented are 

somewhat different to [14], and are completely new in the 

context of Descriptor systems. Furthermore, the use of full 

rank decompositions, and inverting the system matrix, is also 

a very different approach to the study of Descriptor systems, 

in which the Weierstrass form is the norm.  

 

Our starting points in this paper are the necessary and 

sufficient conditions for strict positive realness (SPR) of a 

stable rational transfer function H(s), given by following two 

conditions: 

 

A. H(s) is real for real values of s. 

B.    Re ( ) 0 Re 0H s for s   

 

There exist numerous methods to test these conditions; 

however, many situations lead to a state space 

characterization of a system, rather than a transfer function 

characterization of the system.   

 

                           

:
T

x Ax bu

y c x du

 

 


                                   (1)  

where u  and y  are the scalar input and output of the system, 

respectively, 1nx   is the state variable vector, and 
1 1, , ,n n n nA b c d      . Necessary and sufficient 

conditions for the system   to be SPR have been discussed in 

[9]-[12]. 

 

In this paper we discuss positive realness of descriptor 

systems namely, where the state space characterization of the 

system cannot be described in the form of (1), but rather in 

the most general characterization of a linear time-invariant 

continuous-time single-input single output system: 

 

                                :
T

Ex Ax bu

y c x du

 

 
                        (2) 

In such situations, it is of interest to obtain compact results to 

ascertain the essential dynamic properties of the system 

directly. Passivity and positive realness are equivalent for a 

linear time invariant system and the KYP lemma 

characterizes positive realness in terms of linear matrix 

inequalities. Our contribution in this paper is to establish 

similar facts for Descriptor systems, and to derive simple 

necessary and sufficient conditions for strict positive realness 

of a system characterized as in (2). These conditions may be 

viewed as natural questions that follow the work presented in 

[9-12, 14, 16].  The conditions that we obtain involve only 

eigenvalue computations of matrices derived from the given 

(A), (b), (c), d and (E).  The need to check positivity of an 

expression which depends for all frequencies, as required in 

condition B of the basic SPR conditions above, is thus 

avoided.  This is a significant advantage. More importantly, 

by relating these conditions to similar conditions for standard 

systems, a new KYP-like lemma for descriptor systems is 

obtained. This latter point is important as it gives important 

insights into the study of switched descriptor systems. 

 

The structure of the paper is as follows. The basic result 

providing the necessary and sufficient conditions for SPR of a 

system characterized as in (2), is derived and proved in 

Section II.  Here, some assumptions are made with regard to 

the class of systems which is considered. In Section III we 

derive a sufficient condition for extended strict positive 

realness (ESPR), which requires, in addition to SPR, that the 

transfer function of the system H(s) be positive as s   as 

well.  This sufficient condition is also necessary except for 

degenerate systems where a degree reduction occurs.  The 

way to derive the necessary and sufficient condition in these 

degenerate cases is also pointed out in Section III, but is too 

cumbersome to be formulated explicitly.   In Section IV the 

basic result is derived in a different way, resulting in a 

slightly modified form, and removing two of the assumptions 

made in Section II, namely that 0d   and that the matrix 

1 TM A bc
d

  is invertible.  The cost of this derivation is the 

assumption that the Descriptor system is impulse free.  In 

Section V we derive a new KYP-like lemma for descriptor 

systems. This is then in turn used to give new insights into 

the stability of switched and nonlinear descriptor systems.  

Section VI includes numerical examples, and in Section VII 

we conclude the paper. 

 

II. THE CLASS OF SYSTEMS AND THE BASIC RESULT  

 

Let  denote the real numbers and 
n n

 denote the real 

matrices. 

Let 

:
T

Ex Ax bu

y c x du

 

 


 
be a single input-single output (SISO) descriptor system, i.e., 

n nE   is a singular matrix and in addition we have  
1 1, , ,n n n nA b c d      .Assume that A is 

invertible and that  0 0j    such that 
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 0det 0j E A   , i.e.,  
1

j E A


  is well defined. Assume 

also that 0d   and that 
1 TA bc
d

 
 

 
 is invertible. Also 

assume that (2) is a impulse free descriptor system, i.e. 

rank( ) deg(det[ ]).E sE A   

 

Theorem 1:   

Denote 

                     
1

.TM A bc
d

                             (3) 

The system (2) is strictly positive real (SPR) if, and only if, 

1.   
1

0.Tc A b d


    

2.  All the eigenvalues of the matrix  1EA  should be in the   

     open left half of the complex plane (OLHP), except for an  

     eigenvalue of multiplicity at least one at the origin. 

3.  There are no real negative eigenvalues of the matrix   

      1 1EA EM  . 

 

Proof of Theorem 1 

 

The transfer function of the system in (2) is 

                  
1

.TH s c sE A b d


                                      

(4) 

This state space formulation of  H s  ensures that  H s  is a 

rational function which is real for real values of s , thus 

condition A is satisfied. Now equivalent conditions to 

condition B are: 

 

(B1)   All poles of the rational function  H s  are in the 

open   left half of the complex plane. 

 

(B2)    Re 0 .H j                                           

(5) 

 

Following in the spirit of [9, 16]. Let us consider Eq. (4) and 

write down, a useful expression for  Re H j   . 

 

     

    

1 1

1 1

1
Re

2

1
. (6)

2

T T

T

H j d c j E A b c j E A b

d c j E A j E A b

  

 

 

 

          

      
 

 

Use the matrix identity 

 1 1 1 1X Y X X Y Y       

To obtain: 

   
1 11

2
X Y

j E A j E A 
 

 
    
 
 

 

    

     

1 1

11 11

1
2

2

                                  (7)

j E A A j E A

j E A A j E A

 

 

 

 

     

    

 

Use the matrix identity 

 
1 1 1X Y Y X
     

To obtain 

 

       

   

  

11 1 11

1
1

1
1

1 1
2 1 2 1

1

2

.  (8)

j E A j E A A j E A j E A

j E A A j E A

j EA I j E A

EA E j E j E A EA E A

   

 

 

   

  







 
 

             

    

   
 

             

So that: 

   

   

1
2 1

1
2 1

Re

1
1 .                                   9

T

T

H j d c EA E A b

d c EA E A b
d

 









    

 
   

 

 

Denote the following two vectors U and V in 
n

: 

 
1

2 1 1
; T TU EA E A b V c

d



                             (10)   

and use the identity, which was also used in [16], 

   1 det .T T

nV U I UV                                           

(11) 

We obtain: 

   
1

2 11
Re det T

nH j d I EA E A bc
d

 


 
       

 
 

or 

 

2 1

2 1

1
det

Re .       (12)
det

TEA E A bc
d

H j d
EA E A










 
  

 
  

  

 

Since  1det 0A  , 

 
   
   

2 1 1

2 1 1

det det
Re .

det det

EA E M A
H j d

EA E A A






 

 

 
  

 
 

or 

 
 

 

2
2 1 1

2
2 1

det

Re .                     (13)

det

EA MA

H j d

EA I






 



 
  

  
 
  

 

 Necessity 

1.  If 

 
1

0                                       (14)Tc A b d


    

In contradiction to condition 1 of the theorem, then 

     Re 0 0                              (15)H j     
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So that (5) is not satisfied.  Thus, condition 1 of the theorem 

is necessary. 

 

2.   If the matrix  1EA  has eigenvalues in the closed right 

half of the complex plane in contradiction to condition 2, then 

0s  with 
0Re 0s   such that  

   1

0det 0                                         16s I EA   

Therefore, for 
0 0s   there exists 

1
0

1s
s

  with 
1Re 0s   

such that 

     
1

1

1
0        (17)det I EA

s

 
  

 
 

 

and 

       1

1

1

1
1 det 0.           (18)

n ns I EA
s

 
   

 
 

Inserting   11
n ns  into the determinant, we obtain 

      1

1det 0                         (19)s EA I    

and since  det 0A  , we have 

       1

1 1det det det 0.         (20)s EA I A s E A       

Recalling Eqn. (4) and the fact that 
1Re 0s  , Eqn.  (20) 

violates condition (B1).  Thus, condition 2 of the theorem is 

necessary. 

 

REMARK 1:  Note that 0s   is an exception.  For 0s   we 

have, recalling that (E) is a singular matrix, 

     1det 0                             (21)sI EA   

so that the matrix  1EA  does have an eigenvalue of 

multiplicity at least one at 0s  . 

 

3.  Consider the denominator of Eqn. (13) 

    
22

2 1 1det det            (22)EA I I j EA     
 

 

Thus, the denominator is positive for all  , unless 

     1det 0.                            (23)I j EA    

However, for 0 , 

     1 11
det det     (24)

n
I j EA j j I EA 



  
     

 
 

Thus, the denominator becomes zero only if the matrix 

 1EA
 has a purely imaginary eigenvalue.  However, by 

condition 2 which has been proven necessary, the matrix 

 1EA
 does not have purely imaginary eigenvalues, except 

at the origin.  Thus, the denominator of Eqn. (13) is positive 

  , and sign  Re H j    is determined only by the 

sign of the numerator of Eqn. (13). Turn now to the 

numerator of Eqn. (13).  Since  1det 0AM   , we have 

 

 

 
 

2
2 1 1

2 1 1

1

det

det ,         (25)
det

d EA MA

d
EA EM I

AM





 

 



   
  

  
 

 

 

Which, for 0,  is equal to 

  
 

 

2

1 1

21

1 1
det .       (26)

det

n nd
I EA EM

AM





 



    
  
 

 

Now if the matrix  1 1EA EM   has a real negative 

eigenvalue, in contradiction to condition 3 of the theorem, 

then there exists   such that the determinant in 

expression (26) becomes zero, and thus condition (B2) for 

SPR-ness is violated.  Hence, the necessity of condition 3 of 

the theorem. 

 

REMARK 2:    Similar to Remark 1, evidently the matrix 

 1 1EA EM   does have an eigenvalue of multiplicity at least 

one at the origin. 

 

Sufficiency 

Assume that conditions 1-3 of the theorem are satisfied.  We 

will prove that conditions (B1) and (B2) for SPR-ness must 

also be satisfied. The poles of H(s) are the zeros of 

 det sE A  (see Eqn. (4)).  By condition 2 of the theorem 

we know that all the zeros of  1det sI EA  are in the open 

left half complex plane, except the zero at 0s  .  The same 

considerations as in Eqns. (16) to (20) ensure that all the 

zeros of  det sE A are also in the open left half of the 

complex plane.  Hence, condition (B1) for SPR-ness is 

satisfied. 

 

Now, recalling Eqn. (4), condition 1 of the theorem eusures 

that 

 Re 0 0.H     

Also, the denominator of  Re H j    as expressed in Eqn. 

(13) is positive   , as proved in the neccssity part of 

the proof, and the nummerator of  Re H j    as expressed 

in Eqn. (26) does not change its sign    by condition 3 

of the theorem.  Thus, condition (B2) for SPR-ness is 

satisfied, which completes the proof of the theorem. 

 

REMARK 3: Condition 2 of theorem 1 can be replaced by a 

simpler condition, as derived in the following corollary 1 
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Corollary 1 

 

The eigenvalues of  1EA  are in the open left half of the 

complex plane if, and only if, 

                            (27)Ex Ax  

is stable, i.e. the zeros of 

               det         (28)sE A  

Are in the open left half of the complex plane. 

 

Proof of Corollary 1 

 

The zeros of  det sE A  are the same zeros as those of 

         1 11 .det .det det 29
n

sE A A I sEA      

For 0s   we have 

 

   1 11
det det 30nI sEA s I EA

s

  
    

 
 

Thus, the zeros of 11
det I EA

s

 
 

 
 are in the open left half 

complex plane if, and only if,  the zeros of  det sE A  are 

in the open left half complex plane. However, the zeros of 

 1det sI EA  are in the open left half complex plane if, and 

only if, the zeros of 11
det I EA

s

 
 

 
 are in the open left half 

complex plane 

III. EXTENDED SPR 

 

We now turn our attention to the case of systems that are 

Extended Strict Positive Real. Extended strict positive 

realness requires that in addition to the conditions for SPR, 

also  

that the transfer function at infinity be positive. 

 

 

Theorem 2 

 

A strict positive real function is also extended strict positive 

real if 

     ad .trace ad 0Tc E b d A E                               (31) 

where adjugatead . 

 

 

To prove Theorem 2 we need the following lemmas: 

 

Lemma 1 

Consider the expression  det sE A .  The coefficients of ns  

and 1ns   in  

 det sE A  are 

       det E                                                      (32) 

and 

     trace adA E                                                 (33)  

respectively. 

 

Proof of Lemma 1 

 

Let  

     1
1 1 0det ...n n

n nsE A s s s   
              (34) 

Then, 

  

  1 1 01

1 1 1 1
det ...

1
det

n nn n n
sE A

s s s s

E A
s

    
     

 
  

 

      (35) 

Denote 
1

p
s

, then 

     1 0

1
det det ... n

n nn
sE A E pA p p f p

s
        

                                                                                         (36) 

The Taylor expansion of    detf p E pA   around 0p  , 

is 

         
2

2

2

1
det 0 0 0 ...

2!

df d f
f p E pA f p p

dp dp
                  

                                                                                          

(37) 

Comparing (37) and (36) we have 

      0 detn f E                                               (38) 

   
   

 

1

0

0 det

trace ad

n

p

df d
E pA

dp dp

A E

 



    

    

                 (39) 

Lemma 2 

Consider the expression  adTc sE A b   , the coefficient of 

1ns   in this expression is  ad Tc E b  

Proof of Lemma 2 
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For   s   

   ad adT Tc sE A b c sE b         

and since  ad sE  is an    1 1n n    matrix, we have for 

s   

   1ad adT n Tc sE A b s c E b          

Proof of Theorem 2 

By continuity, if the function is SPR, then at infinity  

       Re 0                                       (40)H s H s                                         
 

Hence, for extended strict positive realness,  Re 0H s     at 

infinity should be prevented.  In other words,  H s  should 

not be a strictly proper function. 

 

   
   

 
1 ad det

det

T

T
c sE A b d sE A

H s c sE A b d
sE A

    
   


                  

                                                                                       (41) 

by lemma 1, and since  E  is singular in our case, the degree 

of the denominator is at most  1n  , and the coefficient of 

1ns   in the denominator is 

         trace adA E                                        (42) 

By Lemma 1 and Lemma 2, the degree of the numerator is at 

most  1n   and the coefficient of 1ns   in the numerator is 

      ad trace adTc E b d A E                              (43) 

In order to prevent  H s  from being a strictly proper 

function, it is sufficient that  

   ad trace ad 0Tc E b d A E            

REMARK 4: Note that Theorem 2 is also a necessary 

condition for extended SPR in all cases which are not 

degenerate, i,e, when not both 

     adTc E b                                                        (44) 

and 

           trace adA E                                                  (45) 

become zero simultaneously. Only in the above case, where 

both (44) and (45) are zero, there is a degree reduction in 

both the numerator and denominator of (41).  In this case the 

condition (31) is replaced by a second order condition by 

similar reasoning as in the proof of Theorem 2, and so on 

with the cases requiring a third order condition, fourth order 

condition, etc. 

 

IV. CONSISTENCY WITH THE KALMAN-YACUBOVICH-POPOV 

LEMMA  

In the previous section it was assumed that the constant term 

d was non zero, and that the matrix 
Tbc

A
d

 
 

 
is invertible. 

In fact, both of these assumptions are non necessary and the 

principal result holds in situations where either or both of 

these assumptions fail. This can be easily established using 

the reciprocal system as in [21,14]. Rather than presenting 

this derivation now, we focus on a formulation that leads to 

the same result, and also leads to a new formulation of the 

KYP-like lemma for descriptor systems. 

 

In the control and systems theory literature a slightly 

modified definition of strict positive realness is often 

discussed. This definition, which dates back to the book by 

Narendra and Taylor [1], is made so as to make the notion of 

a strictly positive real transfer function consistent with the 

classical Kalman-Yacubovich-Popov lemma. We now revisit 

some of our previous results with this new definition in mind. 

As we shall see, many of the results in Sections II and III can 

be recovered in a slightly different way, and some of the 

assumptions relaxed.  To be consistent with results already in 

the literature [18, 19, 20], we now assume that the system (1) 

is impulse free; namelydeg(det[ ]) ( )sE A rank E p   . 

Further, to make this new definition of strict positive realness 

distinct from that discussed above we call this new version 

KYP strict positive realness (KYP-SPR). More formally we 

say that the transfer function H(jω) is KYP-SPR if and only 

if: 

 

                0  such that   ( )H s                         (46) 

 

is positive for some positive ε. This definition is equivalent to 

the following conditions on ( )H jω for proper and strictly 

proper transfer functions. The second condition only applies 

in the strictly proper case where Re[ ( )] 0H j  [1]: 

 

 

 2

(i)   Re ( ) 0   

(ii)  lim Re ( ) 0 

H j

H j


 

 


  


                         (47) 

This definition of SPR is consistent with KYP lemma for a 

regular system. We make no such claim here for Descriptor 
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systems; rather we include this version of SPR for 

completeness. 

 

REMARK 5: Note that the standard (frequency domain) 

conditions of SPR and KYP-SPR coincide everywhere except 

at ω=∞.  

 

We now have the following result. 

 

Theorem 3 

Consider the stable, impulse free, descriptor system (2) with 

transfer function    
1TH s c sE A b d


   .  Assume that 

the pencil  det sE A  is regular and that the matrix A is 

invertible.  define the matrix 

 
1

1 1 1 1 1                      (48)T TM A A b d c A b c A


         

Let the matrix E have rank p n . Then, 

(i)  H s  is KYP-SPR if, and only if, 1Td c A b  is 

positive and the matrix product 1 1EA EM   has no real 

negative eigenvalues, and at most 1n p   zero eigenvalues. 

(ii)  H s  is ESPR if, and only if, it is SPR with exactly 

n p  zero eigenvalues. 

REMARK 6: Note that if 0d   and the matrix M which is 

defined in (3) is invertible, then the inverse of M is 1M   as 

defined in (48).  However, the definition of 1M   in (48) is 

valid for 0d   and M (or 1M  ) singular, as well. 

Proof of Theorem 3 

The proof consists of four distinct parts. (A) First we show 

that a certain matrix, obtained from a full rank 

decomposition of E is Hurwitz stable. (B) Then, we replace 

the original representation of transfer function H(jω) with 

another more convenient one. (C) Using this representation 

we determine spectral conditions for system to be KYP-SPR. 

(D) Finally, we relate these conditions back to spectral 

conditions on the original representation of H(jω). 

PART (A): The matrix A is invertible, and the matrix E is of 

rank p. Let X, Y be a full rank decomposition of E;
TE XY , 

, n pX Y  . Then, the matrix 
1TY A X

 is Hurwitz stable and 

consequently invertible. To see this note that 

deg(det[ ]) ( )sE A rank E p    since the descriptor system 

is impulse free. This implies that 
1deg(det[ ]) ( )nsEA I rank E p     since the matrix A is 

invertible. But this implies that the matrix 
1TXY A
 has 

exactly n-p eigenvalues at the origin and p eigenvalues in the 

open left half of the complex plane. Now consider the matrix 
1T n nXY A  . This matrix shares its non-zero eigenvalues 

with the matrix 1T p pY A X  . Since there are exactly p of 

these, and since this matrix is of dimension p p , it follows 

that 1TY A X  is Hurwitz stable (and invertible).  

PART (B):  We now present an alternative representation of 

the descriptor system transfer function. Let 

   
1TH j c j E A b d 


   . Then, this transfer function 

can be written: 

1

1 1 1 11
( ) T T T T

pH jω d c A b c A X Y A X I Y A b
jω



    
    

 

                                                                           (49-a) 

Thus the corresponding reciprocal system is:  

                11
( )T

pH d c j I A b
j




 
   

 
       (49-b) 

1 1 1where ,  ,    andT T Td d c A b c c A X A Y A X       

1Tb Y A b  . To see this, simply apply the matrix inversion 

lemma to   
1

sE A


  everywhere this matrix inverse exists. 

Note that this transfer function is well defined everywhere 

since 1TY A X  is Hurwitz stable. Thus, if ( )H jω  exists at 

ω   , then it is equal to 
1 1 1 1 1( ) ( )T T T TH j d c A b c A X Y A X Y A b        . In this case 

the notion of ESPR reduces to positivity of this quantity. 

PART (C):  Now we recall the recently derived result (which 

we give with proof for completeness) [14]. This result states 

the following. Suppose that A is a Hurwitz matrix. Then, the 

following statements are equivalent.  

(a) The transfer function 1( ) ( )TH jω d c jωI A b   is 

KYP-SPR; 

(b) 1 0Td c A b   and the matrix product 
1 1 1 1 1 1( ( ) )T TA A A b d c A b c A         has no negative 

eigenvalues and at most one zero eigenvalue.  

The proof of these statements is given in full in [14]. Here we 

give merely an outline (although our statement is more 

general than that in [14] as there only the case where d=0 is 

considered). Note first that
1(0) TH d c A b  ,  since  H j , 

is assumed to be KYP-strictly positive real it follows that 
1(0) TH d c A b   is necessarily positive. Now we use the 

fact that conditions for KYP-SPR of  H j  can be rewritten 
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in terms of conditions on 
1

,H
j

 
 
 

 as in done in [14]. We 

have 11
( )Td c j I A

j
bH 



  
 

 

, with 1A A , 

1b A b  , 1T Tc c A , and 1Td d c A b  . This follows 

from the well known formula on reciprocity of transfer 

functions [17]. Now suppose that 
1

H
j

 
 
 

is not KYP-strictly 

positive real. By continuity, either there exists (i) a finite 

1



  such that [ ( )] 0Re H j   or (ii) 

0
lim


2 [ ( )] 0Re H j   .  Using the results in [14, 15, 16], and 

assuming 1 0Td c A b  , we can write 

2 2 1

2 2 1

2 2 1 2 2

1
[ ( )] 2 det 1 ( )

1
                 2 det ( )

1
                 2 det ( ) .det

[ ]T

T

T

Re H j d c I A Ab
d

d I I A Abc
d

d I A I A Abc
d

 



 







  

 
   

 

 
      

 

 

Thus, 
2

2 2

2 det[ ]
[ ( )]

det

d I G
Re H j

I A









  

 where 

1 1
1 1

1
: .

T

T

A bc A
G A A

d c A b

 
 



 
  

  
  Since A  is Hurwitz, all the 

real eigenvalues of  2 2A A  are positive which implies that 

2 2det[ ] 0I A    for all . Noting that 
2 2det 0I A     

for   sufficiently large, it follows from continuity arguments 

that 2 2det[ ] 0I A    for all . Recalling that 0d  , 

conditions for KYP-SPR are equivalent to 
2det[ ] 0ω I G  for all , 0,ω ω   and 

2

20

1
lim det 0 [ ]I G





  (see [14]). Note the latter condition 

need only be checked when Re[ ( )] 0H j  .  From [14] the 

above conditions are equivalent to et[ ] d 0I G    for all 

, 0    and 
0

1
lim det 0. [ ]I G





  The first of these 

conditions is equivalent to requiring that G has no negative 

eigenvalues. The second condition is equivalent to a zero 

eigenvalue being of maximal multiplicity one [14].  

PART (D): Parts (A) and (B), KYP-SPR of ( )H j  of (2) 

can be checked with a spectral condition derived from (49-b). 

Since, by assumption, the system is impulse free, the matrix 
1TY A X

is Hurwitz. Consequently, from PART (C) KYP-

strict positive realness of ( )H j  is equivalent to the 

condition that the matrix product  

1 1 1 1 1 11
( ) ( )( ( ) )T T T T T TA A bc Y A X Y A X Y A b d c A b c A X

d

           

                                                                                  (50) 

has no negative eigenvalues and at most one zero eigenvalue. 

Now we use the fact that the non-zero eigenvalues of 
TRS  

and TS R coincide for any two matrices of compatible 

dimension. This means that 
1 1 1 1 1 1( )( ( ) )T T T T TXY A XY A XY A b d c A b c A        has at 

most 1n p  zero eigenvalues, and no negative real 

eigenvalues. But .TE XY  So the above product is 
1 1EA EM   and the assertion of item (i) of the theorem is 

proven. Recall that if ( )H j  is extended SPR then,  

   

 

1 1 1 1 1

1 1 1 1 1

1
1 1 1 1 1 1

1

1
1 1 1 1 1

( ) ( ) 0

( ) 0

1 ( ) 0

as  0,    ( ) 0

1 ( ) 0

det

T T T T

T T T T

T T T T T

T

T T T T

n

H j d c A b c A X Y A X Y A b

d c A b c A X Y A X Y A b

d c A b d c A b c A X Y A X Y A b

d c A b H j

d c A b c A X Y A X Y A b

b
I

    

    


     




    

    

   

     
  

    

   
  

 
 

1 1 1 1

1

( )
0

T T T

T

c A X Y A X Y A

d c A b

   



 
  
 
 

 

 

1 1 1 1

1

( )
det 0

T T T

r T

Y A bc A X Y A X
I

d c A b

   



 
   
 
 

 

 

  

1 1
1 1 1

1

1
1 1 1 1 1 1

det ( ) .det ( ) 0

det ( ) ( ) 0

T T
T T

T

T T T T T

Y A bc A X
Y A X Y A X

d c A b

Y A X Y A b d c A b c A X Y A X

 
  




     

 
       
 

     
  

 

So 1 1 1 1 1 1( )( ( ) )T T T T TY A X Y A X Y A b d c A b c A X         

cannot have any zero eigenvalues and consequently the 

product 
1 1EA EM 

 must have precisely n p zero 

eigenvalues. 

 

REMARK 7: Note that our condition involves the 

matrices
1EA
and

1EM 
. By assumption 1det[ ] 0sI EA  has 

roots at the origin and otherwise in the left half of the 

complex plane. In view of the necessary conditions for strict 

positive realness, for d>0, the pencil 
1

1
det 0TsI E A bc

d

  
    

   

 cannot have any roots in the 

open right half of the complex plane. In fact, the polynomial 

cannot have roots anywhere on the imaginary axis except at 

the origin as the following argument demonstrates. Suppose 
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that the pencil 1det[ ] 0sI EM    has purely imaginary 

roots (other than at the origin). Then, the matrix 1EM   must 

also have purely imaginary eigenvalues. Call these j . 

Now note that 1EA and 1EM   differ by a rank-1 matrix. 

Then the product 1 1EA EM  can be written 
2( )T TX X yz X Xyz   where X  is a matrix with purely 

imaginary eigenvalues. Now note that 2X must have a real 

negative eigenvalue 2 of geometric multiplicity two 

(corresponding to the purely imaginary eigenspace of the 

matrix X. Also, TXyz  has a kernel of dimension at least n-1. 

Thus it follows that 2  is an eigenvalue of 1 1EA EM  and 

by the main theorem the system cannot be SPR. A similar 

argument was used also in [14]. 

V. A KYP -LIKE  LEMMA FOR IMPULSE-FREE DESCRIPTOR 

SYSTEMS AND STABILITY OF SWITCHED DESCRIPTOR SYSTEMS  

We now use the results in the previous section to obtain a 

KYP-like lemma for SISO descriptor systems [18, 19 and 

20]. For convenience we recall the classical KYP lemma for 

SISO systems. There are many extensions of this lemma (for 

example, relaxing the observability/controllability 

assumption) and the following arguments can be modified to 

obtain a relaxed version of these for descriptor systems of the 

form that we have considered in this paper. 

Strict positive realness of a transfer function matrix and the 

existence of quadratic Lyapunov functions are closely related. 

The precise relationship is given by the Kalman-Yacubovich-

Popov lemma [15]. Roughly speaking, the Meyer version of 

the KYP lemma can be stated as follows. Let  n nA   be a 

Hurwitz matrix. Let 1 1,   n T nb c    and d be a non 

negative scalar. Let ( , ),( , )A b A c  be controllable/observable 

pairs respectively. Then, there exists a positive definite 

matrix  , 0T n nP P P    such that [17] 

0 0
0,

0 0

T

T T

A b P P A b

c d I I c d

       
        

          
 

0TA P PA  , if and only if 1( ) ( )TH jω d c jωI A b   is 

KYP-SPR.  

 

An important alternative statement of the KYP lemma for 

SISO systems (b,c vectors) is that strict positive realness of 

( )H jω  is equivalent to the existence of 0TP P  satisfying 

either: 

(i) 0TA P PA  and 
1 1

0

T

T TA bc P P A bc
d d

   
      

   
 

when d is strictly positive;  

(ii)  or ( ) ( ) 0T T Tbc P P bc   when 0.d   

Thus KYP strict positive realness is equivalent to the 

existence of a positive definite matrix P that simultaneously 

satisfies a pair of Lyapunov equations. When such a P exists 

the function ( ) TV x x Px  is said to be a common quadratic 

Lyapunov function (CQLF) for the dynamic systems 

x Ax and 
1

( )Tx A bc x
d

   (re.
Tx bc x  ). 

With this version of the KYP lemma in mind, and in view of 

the results in [14], we now consider the implications of the 

results in Section IV. It follows from Part (C) and Part (D) of 

the proof of Theorem 3, that the descriptor system is KYP-

SPR iff there exists a CQLF (in the weak sense) for the 

following dynamic systems 

1( )  Tx Y A X x ;                                       (51) 

1 1 1 1 1( ( ) )T T T Tx Y A X Y A b d c A b c A X x        .   (52) 

provided that 1 1( , )T TY A X Y A b   is a controllable pair and 

1 1( , )T TXc A Y A X  is observable.  

REMARK 8: Our controllability and observability conditions 

require that two matrices must be of dimension p.  By 

exploiting the fact that the product of two invertible matrices 

is itself invertible, a test for controllability/observability that 

is independent of (X,Y) may be obtained by multiplying the 

controllability matrix by the observability matrix from the 

left. 

Suppose such a common Lyapunov function exists for (51) 

and (52). We have: 

1 1( ) ( ) 0T T TY A X P P Y A X    

By pre and post multiplying by Y and 
TY respectively we 

have                       1 1( ) 0.TA E P PA E    

where .TP YPY  The same operation can be carried out for 

the second Lyapunov equation. Thus a KYP-like lemma for 

Descriptor systems may be stated as follows.  
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Consider the impulse free and stable descriptor system (2). 

Let E be rank p, and TE XY  be a full rank decomposition 

of E. Then, the following statements are equivalent 

 

(i)  ( )H jω  is KYP-SPR. 

(ii) There exists a positive semi-definite   

      matrix , , 0,  n n T T p pP P YPY P P P       such    

       that 1 1( ) 0TA E P PA E      and 

              1 1( ) 0TM E P PM E  
2 

(iii) An equivalent LMI can also be written down. 

 

Thus strict positive realness of a descriptor system is 

equivalent to the joint quadratic stability of a pair of lower 

dimensional systems that can be defined easily from 

, , ,E A b c and d . This observation is entirely consistent with 

the intuition arising from elimination of the constraint. 

 

REMARK 9: An important consequence of the above results 

is that they can be used to obtain conditions for a certain 

SISO descriptor system to be quadratically stable. Consider 

the following time-varying descriptor systems. 

( ) ( ) ,
Tbc

Ex A t x A t A
d

A
 

   
 

 

where both systems described by  ,E A  and 

,
Tbc

E A
d

 
 

 
are stable and impulse free and we further 

assume that continuity of Ex is preserved across the switches. 

We wish to determine whether or not a quadratic Lyapunov 

function exists for the above descriptor system. Let us try to 

find a Lyapunov function of the form ( ) T TV x x YPY x . Note 

that V(x)=0 if x lies in the kernel of E and is positive 

otherwise. By taking derivatives with respect to time and by 

substituting for x in the Lyapunov equation we require that  

 

 

 

1 1 1

1

1 1

2

( ) ( ) 2 ( 0;

( ) ( 0

)

)

T T T T

T T

TXQ x x A E P PA E x x YP Y A x

Q x x M

Y

EE P PM x

  

 

   

  
 

Note that both of the above functions are zero when the 

derivative of x is in the Kernel of E. Thus, the existence of 

such a Lyapunov fuction implies that both x and its derivative 

approach the Kernel of E, and consequently that the switched 

 
2
Note that P matrix in item (ii) should satisfy 

1 1( ) ( ) 0T T TY A X P P Y A X   and

1 1( ) ( ) 0T T TY X P P Y M XM     (for Re[ ( )] 0H j  ) or 

1 1( ) ( ) 0T T TY X P P Y M XM    (for Re[ ( )] 0H j  ). This is 

implicitly stated in the text of Remark 8. 

 

descriptor system is stable3. But the existence of such a P is 

guaranteed from the KYP-like lemma for descriptor systems 

given above.  It should noted from PART (A) of Theorem 3 

that both the matrices 1( )TY A X  and 1( )TY M X  are 

Hurwitz. For the case when one of these matrices is 

marginally stable with one eigenvalue at origin, the results 

on quadratic stability cannot be extended directly as in [14]. 

In such a case, the sub-system corresponding to marginally 

stable matrix would not be an impulse free system and 

arbitrary switching between such subsystems would lead to 

impulsive behavior. This case would be reported in future 

publications. 

VI.  NUMERICAL EXAMPLES 

 

We now present a number of examples to illustrate our 

results. 

 

Example 1   (SPR function) 

Let 
1 2 1 1

; ; ; 1
3 7 1 1

A b c d
     

        
     

 

 
1 2

; 1.
2 4

E rank E p
 

   
 

 

Using Theorem 1 or Theorem 3, we have  

 

Condition 1 

   
1 7 2 1

1 1 1 14 0
3 1 1

Tc A b d
    

        
   

 

Condition 1 is satisfied. 

 

Condition 2 

1
1 2 7 2 13 4

2 4 3 1 26 8
EA

        
      

        
 

 1det 21sI EA s s      
Condition 2 is satisfied. 

Alternatively, by Corollary 1,  det 21 1sE A s   .  Thus 

condition 2 is satisfied. 

 

Condition 3 

1 1
18 7.5

36 15
EA EM   

  
 

 

 
3
 Switched descriptor system is stable since the consistency space and the 

kernel of E intersect only at the origin. This follows from an involved argument 

arising from the implications of the fact that solutions of an impulse free 

Descriptor system Ex Ax ; lie in the subspace S defined by 

{ : Im( )}nS z R Az E     and Ker( ) {0}S E  . A full detailed 

argument is given in “On dimensionality reduction and stability of a class of 

switched descriptor systems” Sajja; Corless; Zeheb; Shorten. This paper was 

formerly titled as “Stability conditions for a class of switching descriptor 

systems”, Provisonally accepted, Automatica, 2011. 
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 1 1det 33sI EA EM s s       

Condition 3 is satisfied.   

Hence the system in Example 1 is SPR. 

 

Using Theorem 3 (ii), 2 1 1n p    , thus the system is also 

ESPR.  

Alternatively, using Theorem 2, 

   

 

4 2 1
1 1 1

2 1 1

8 4
21

26 13

Tc adE b

trace Aad E trace

   
    

   

 
   

 

 

Thus 

   . 22 0.Tc ad E b d trace Aad E    

Which ensures again that the system is ESPR. 

 

Example 2   (Non SPR function) 

Let 

1 2

3 4
A

 
  
 

 

And b ,c ,d, E as in Example 1. 

Using Theorem 1 or theorem 3, we have  

 

Condition 1 

   
1 2 1 1

1 1 1 1 0
1.5 0.5 1

Tc A b d
    

        
   

 

Condition 1 is satisfied. 

 

Condition 2 

1
1 2 2 1 1 0

2 4 1.5 0.5 2 0
EA

     
      

     
 

 1det 1sI EA s s      

Thus, condition 2 is violated. 

Alternatively, by Corollary 1, 

   det 2 1sE A s    

Which leads again to the conclusion that condition 2 is 

violated. Hence, the system in Example 2 is not SPR.  

(Condition 3, though, is satisfied). 

 

Example 3  0d   

Let A, b, c, E be as in Example 1, but 0d  .  The descriptor 

system is stable and impulse free. 

Then, using (48), 

1
1 11

1 113
M 

 
  

 
 

Using Theorem 3, we have 
1 13 0.Td c A b    

and 

1 1
21 211

42 4213
EA EM 

 
  

 
 

1 1 21
det

13
sI EA EM s s   
     

 
 

Thus, the eigenvalues of the matrix product 1 1EA EM   are 

0s   and 21 13s   , which leads to the conclusion that the 

system in Example 3 is SPR. 

Also, since 2 1 1n p    , and there is exactly one zero 

eigenvalue, the system is also ESPR. 

 

Example 4 

 

 Let E, A, b, c, d, be defined as follows:  

1 1 1 1 1

1 0 0 1 0 0 1 1

0 1 0 ,  0 2 0 ,  1 ,  1 ,  0

0 0 0 0 0 1 0 1

The given system's is not ESPR because 

( ) ( ) 0T T T T

E A b c d

H j d c A b c A Y A X c A b    

       
       

            
       
       

    

 

   Alternatively      .

1 0 0 0 1

1 0 0 0 1 0.

1 0 0 1 0

T

T

c a d E b d trace Aad E 

    
    

    
    
    

 

1

However, the system is KYP- SPR and a Lyapunov function 

can be found for the Descriptor system as:

1.5 0

1 3 2 1 2

Td c A b

n p

  

     

 

1 1 1 1

0.5

( ) 0 ,   has no real negative eigenvalues 

0

and has exactly 1  zero eigenvalues. Hence the system is 

KYP- SPR

eig EA EM EA EM

n p

   

 
 

  
 
 

   

VII.    CONCLUSION 

 

In this paper we have considered SISO Descriptor systems 

that are strict positive real. Three types of strict positive 

realness was considered; finite frequency strict positive 

realness; extended strict positive realness; and a notion of 

strict positive realness that is consistent with the KYP lemma 

for regular systems. In each case simple, easy to check, 

spectral conditions are given that are both necessary and 

sufficient for strict positive realness. Finally, a new KYP-like 

lemma for SISO descriptor systems is given and this result is 

then used to obtain a solution to the stability problem for a 

class of switched Descriptor systems. Future work will focus 

on extending our results to the MIMO case, and to the case of 

uncertain Descriptor systems. 
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