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Abstract

This thesis provides a self-contained introduction to elliptic curves accessible

to advanced undergraduates and graduate students in mathematics, with

emphasis on the the theory of elliptic curves over finite fields.

In Chapter 1, affine and projective planes are introduced. Chapter 2

introduces the theory of algebraic curves and the Weierstrass Normal Form

of a cubic curve is derived. In Chapter 3 we define derivations on arbitrary

polynomial rings, and prove the group law for elliptic curves. Chapter 4

discusses elliptic curves over finite fields and proves some results on counting

points.
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Chapter 1

Affine and Projective Planes

The real Euclidean plane, with its constituent points and lines, is a familiar

geometric object. It is often envisioned as R2, the 2-dimensional vector space

over the real numbers. Points can then be seen as elements (x, y) of R2, and

lines as solutions to linear equations of the form ax+by = c. We have that any

two points lie on a unique line, any two lines intersect in at most one point,

and given a line and a point not on it, there exists a unique line through the

latter which does not intersect the former. It would be interesting to study

abstract structures that preserve these incidence properties of planes, while

ignoring the additional algebraic structure vector spaces such as R2 have.

1.1 Affine Planes

A point-line incidence structure is a triple (P,L, I) consisting of two sets P

and L and a relation I in P × L. We call the elements of P points, and

the elements of L lines. If P ∈ P and L ∈ L satisfy PIL, we say that P
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is incident with L, or that P lies on L.We shall now look at the conditions

under which a point-line incidence structure forms an incidence geometry

Definition 1.1. An incidence geometry is a point-line incidence structure

(P,L, I) satisfying the following axioms:

I1 Given any two points P1, P2, there exists a unique line L such that P1IL

and P2IL.

I2 Given any line L ∈ L there are at least two distinct points P1, P2 ∈ P

such that P1IL and P2IL.

A3 There exists three distinct points in P which are not all incident with

the same line.

Note that axiom I2 ensures that we cannot define lines incident with

no point, or lines incident with one point. Such lines would not add any

interesting structure to our geometry. Also note that axiom I3 excludes the

case where all lines are collinear

We call two lines L and L′ in L parallel if they are either equal or disjoint

(i.e, there are no points incident to both), and denote this by L ‖ L′. So by

axiom I1 above, if two lines L1 and L2 in L are not parallel, there exists a

unique point P ∈ P such that PIL1 and PIL2.

Definition 1.2. An affine plane is an incidence geometry, or a point line

incidence structure satisfying I1,I2,I3, also satisfying the following axiom:

A4 Given any point P and any line L1, there exists a unique line L2 such

that PIL2, and L1 and L2 are parallel.
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A4 is called the parallel postulate.

Example. Let K be a field, and K2 be the set of all ordered pairs on K.

Take P to be K2. We define a line in K2 to be the set of all solutions to an

equation aX + bY = c in K2, where a and b are both not equal to 0. Let L

to be the set of all lines in K2, for all P ∈ P and L ∈ L, define PIL if and

only if P ∈ L.

Any two points are incident with a unique line. If (a1, b1) and (a2, b2)

are two distinct points in K2, there is a unique line incident with both these

points given by the set of solutions to (b1 − b2)(X − a2) − (a1 − a2)(Y − b2) = 0.

Given any line and any point, there exists a second line incident with the

given point and parallel to the first. Let L1 be the line αX + βY = γ, and

let P be the point (a, b). Now if γ′ = αa+ βb, then (a, b) lies on the line L2,

given by αX + βY = γ′. L1 and L2 are parallel. Now assume L3, given by

the set of solutions to α′X + β ′Y = δ′, with α′, β ′ not both 0. It follows that

(α, β) and (α, β) are linearly dependent over K. Therefore L3 has equation

αX + βY = δ, for some δ ∈ K. Conversely all lines L3 which are parallel

to L1 have this form. The set of all such lines, {αX + βY = δ | δ ∈ K},

partitions K2. Therefore (a, b) will be incident with only line of this form,

and L2 is the unique line in L such that P ∈ L2 and L1 ‖ L2.

Since K is a field, 0, 1 ∈ K are distinct elements. Therefore (0, 0), (1, 0)

and (0, 1) are three points in P, which are not collinear, since (0, 0) and (1, 0)

lie on the unique line Y = 0, and (0, 1) does not lie on Y = 0. Hence there

exist 3 non-collinear points.

So (P,L, I) is an affine plane, which we denote by A2(K).
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Of particular interest are affine planes of the form A2(K), where K is a

finite field, which have interesting number theoretic as well as combinatorial

properties.

1.2 Projective Planes

Definition 1.3. A projective plane is a point-line incidence structure (P,L, I)

which satises axioms I1 and I3 and additionally

P2 Given any line L ∈ L there are at least three distinct points which are

incident with L.

P4 For any two lines L1, L2 ∈ L, there is a point P ∈ P such that PIL1

and PIL2.

Example. Let K3\{0} be the set of all “non-zero” ordered triples in K. Con-

sider the equivalence relation ∼ onK3 \ {0}, given by (x, y, z) ∼ (λx, λy, λz) ∀λ 6=

0, and let P ′ be the set of all equivalence classes in K3\{0}
∼

. We can de-

note the equivalence classes in K3\{0}
∼

by homogeneous coordinates, with

{λ(x, y, z)|λ 6= 0} written as [x : y : z]. We define L′ to be the set of all solu-

tions to equations of the form aX+ bY − cZ = 0, with all of a, b, c 6= 0. Note

that since the above equation is homogeneous, it is well defined on K3\{0}
∼

.

So we can define I ′ to be the obvious incidence relation. We can prove that

P2(K) = (P ′,L′, I ′) is a projective plane by using a similar argument to that

in the proof that A2(K) is an affine plane.
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1.3 Projective Completion

Let (P,L, I) be an affine plane. Parallelism is an equivalence relation on

the set of lines L. Symmetry and reflexivity are straightforward. All we

have to prove is transitivity. If any two or all three lines are equal, the

equivalence follows from reflexivity. If L1, L2, L3 ∈ L are distinct lines, such

that L1 ∩ L2 = φ and L2 ∩ L3 = φ, then if there exists P ∈ L1 ∩ L3, there

exists a unique line incident with P , parallel to L2. But L1 and L3 are both

incident with P and parallel to L2, and L1 6= L3. Therefore L1 and L3 are

disjoint and hence parallel.

Let  L∞ be the set of all equivalence classes in L under the equivalence

relation ‖. Let L̂ denote the equivalence class of L in  L∞. Define (P̃, L̃, Ĩ)

as follows.

We dene the relation Ĩ from P̃ to Ĩ as follows:

1. For P ∈ P and L ∈ L, P ĨL ⇐⇒ PIL.

2. For Q ∈  L∞ and L ∈ (L), QĨL ⇐⇒ Q = L̂.

3. For R ∈ P, RĨL∞ ⇐⇒ R ∈ L∞.

L∞ is called the line at infinity.

(P̃ , L̃, Ĩ) is a projective plane. It is called the projective completion of

(P,L, I).

Any two distinct points in P̃ lie on a unique line. If P1, P2 ∈ P, then

they are incident with a unique line in L, and no point in P is incident with

L∞. If L̂1, L̂2 ∈  L∞, then they are both incident with L∞, and if L ∈ L, then

L can only be incident with one equivalence class L̂ ∈  L∞. If P ∈ P and
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L̂ ∈  L∞, then there exists a line L ∈ L such that P ∈ L ∈ L̂, and we have

P ĨL and L̂ĨL.

Any two distinct lines in L̃ are coincident at a unique point. Let L1, L2 ∈

L. If L1 ‖ L2, then L̂1 = L̂2, and we have L̂1 ‖ L1 and L̂1 ‖ L2, and there is

no other common point of incidence. If L1 6‖ L2, then by the axioms for the

affine plane, there exists a unique point P ∈ P such that P is incident with

L1 and L2, and we have P ĨL1 and P ĨL2. If L ∈ L, then L̂ is the unique

point incident with L and L∞.

Theorem 1.4. The projective plane P2(K) = (P ′,L′, I ′) is isomorphic to

the projective completion of A2(K).

Proof. Recall that the point [x : y : z] in P2(K) represents the equivalence

class {λ(x, y, z)|λ ∈ K \ 0} of points in W \ 0. Thus we can choose a non-

zero homogeneous coordinate of a point and fix it to be 1. Consider the map

φ : K2 → K3\0
∼

defined by φ(x, y) = [x : y : 1]. Recall that any line parallel

to aX + bY = c in L can be written as aX + bY = c′ for some c′ ∈ K. Let

 L∞ denote the set of all parallel classes of lines in L. So we can extend φ to

P̃ = P ∪  L∞ in the following manner. If L is given by the set of all solutions

to aX+bY = c, we define φ(L̂) = [a : b : 0]. Now define ψ : L → L′ such that

if L ∈ L is given by the set of solutions to aX+ bY = c in K2, and L′ ∈ L′ is

given by the set of solutions to aX + bY − cZ = 0 in P ′, then ψ : (L) 7→ L′.

Note that both a, b 6= 0. So we can extend ψ to L̃ = (L)∪{L∞} by defining

ψ : L∞ 7→ L′
∞ where L′

∞ is the line given by all solutions to z = 0. Thus

φ : P̃ → P ′ and ψ : L̃ → L′ are bijections. Also, whenever P ∈ P̃ and

L ∈ P̃ , such that P ĨL, then φ(P )I ′ψ(L). Thus the projective completion of
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A2(K) is isomorphic to P2(K).
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Chapter 2

Curves

Before we define curves, we establish two consequences of Hilbert’s Nullstellensatz??.

Let K be any field. Consider the polynomial f ∈ K[X1, X2, . . . , Xn].

Define ZK(f) to be the set of all zeroes of f in Kn.

Proposition 2.1. If f is not constant, and K is algebraically closed, then

ZK(f) 6= φ.

Proof. This is a direct consequence of the Nullstellensatz. Since f is not

constant, the ideal
√

(f) is properly contained in K[X1, X2, . . . , Xn] and

ZK(f) is a non-empty subset of Kn.

Note that K being algebraically closed is necessary in the above proposi-

tion. For example, the polynomial X2
1 +X2

2 + 1 has no zeroes in R2.

Proposition 2.2. Let K be an algebraically closed field. Let f, g ∈ K[X1, X2, . . . , Xn]

be nonconstant polynomials. Then ZK(f) = ZK(g), if and only if f and g

have the same irreducible factors.
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Proof. Let

f =

r∏

i=1

fαi

i and g =

s∏

j=1

g
βj

j

be the factorisation into irreducibles of f and g respectively. Again, by the

Nullstellensatz,
√

(f) =
√

(g), i.e,

r∏

i=1

fi =

s∏

j=1

gj .

Now since K[X1, X2, . . . , Xn] is a unique factorisation domain, irreducible

elements are prime, and for all 1 ≤ i ≤ r, we have fi = gj for some 1 ≤ s.

Similarly, each irreducible factor of g is an irreducible factor of f . Therefore

f and g have the same irreducible factors.

Again, the irreducibility of K is crucial. Consider the polynomials X2 +1

and Y 2 + 1 in R[X, Y ]. Both have zero set the empty set, but have no

irreducible factors in common.

We shall now define an affine plane curve over K.

Definition 2.3. Let K̄ be the algebraic closure of K. If f ∈ K[X, Y ] is a

nonconstant polynomial such that f is irreducible in K̄[X, Y ], then ZK(f) is

an affine plane curve.

If f is the product of two coprime polynomials, ie. f = f1f2 for some

f1, f2 ∈ K[X, Y ] \ K with gcd(f1, f2) then Z(f) = Z(f1) ∪ Z(f2), will not

be a curve, as we do not want to include the unions of distinct curves in our

definition of curves. When f = (f0)
n for some f0 irreducible, Z(f) = Z(f0)

and we can assume that the polynomial f was irreducible to start with.
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It is well known that if f has degree 1 or 2, then Z(f) is either a line or

a conic. The next simplest case is the cubic.

Before beginning to deal with the geometry of cubic curves, we shall look

at plane curves as intersections of curves in projective planes with affine

planes sitting in them.

2.1 Projective Curves

Consider the polynomial ring K[X, Y, Z]. F (X, Y, Z) = 0 takes solutions

from K3. We want the zero set of F to be well defined on P2(K), we need

F (λx, λy, λz) = 0 for all λ ∈ K \ 0 whenever F (x, y, ) = 0 and (x, y, z) ∈ K3\

0. If F is a homogeneous polynomial, then F (x, y, z) = 0 ⇒ F (λx, λy, λz) =

0.

Now,

θ : A2(K) →֒ P2(K) via θ : (x, y) 7→ x : y : 1 and

θ−1 : P2(K) \ Z(Z = 0) →֒ A2(K) via θ−1 : [x : y : 1] 7→ (x, y)

So if F ([x0 : y0 : z0]) = 0 and z0 6= 0, then F ([x0

z0

: y0

z0

: 1]) = 0. Now if

F ([x0 : y0 : z0]) = 0, then F (x0, y0, z0) = 0 and (x0

z0

, y0

z0

, 1) is a solution of

F (X, Y, Z) ∈ K[X, Y, Z]. Suppose

F (X, Y, Z) =

d∑

i=0

d−i∑

j=0

aijX
iY jZd−i−j

Letting x = X/Z and y = Y/Z we can define

f(x, y) =
1

Zd
F (X, Y, Z) =

d∑

i=0

d−i∑

j=0

aijx
iyj and we have
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F (x0, y0, z0) = 0, z0 6= 0 ⇒ f(
x0

z0
,
y0

z0
) = 0

Z(f) ⊃ θ−1(Z(F ) \ Z(Z = 0)).

On the other hand, let f(x, y) ∈ K[X, Y ] be irreducible of degree d, and

let Z(f) be the set of zeroes. Suppose

f(x, y) =

d∑

i=0

d−i∑

j=0

αijx
iyj.

If we define x = X
Z
, y = Y

Z
, and

F (X, Y, Z) = Zdf(x, y) = Zdf(
X

Z
,
Y

Z
) =

d∑

i=0

d−i∑

j=0

αijX
iY jZd−i−j,

we have F (x0, y0, z0) = 0 whenever f(x0

z0

, y0

z0

) = 0. When z0 = 1, we have

F ([x0 : y0 : 1]) whenever f(x0, y0). Therefore, when αij = aij

Z(f) ⊂ θ−1(Z(F ) \ Z(Z = 0)).

∴ Z(f) = θ−1(Z(F ) \ Z(Z = 0))

Therefore,

θ(Z(f)) = Z(F ) \ Z(Z = 0)

= θ(A2(K)) ∩ Z(F )

Now,

Z(F ) ∩ Z(Z = 0) =

{
[x0 : y0 : 0] :

∑

i+j=d

aijx
i
0y

j
0 = 0, x0 : y0 ∈ P1(K)

}

=

{
[1 : y0 : 0] :

d∑

j=0

ajy
j
0 = 0

}
∪ [0 : 1 : 0]
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Therefore,

Z(F ) = θ(Z(F )) ∪

{
[1 : y0 : 0] :

d∑

j=0

ajy
j
0 = 0

}
∪ [0 : 1 : 0] (2.1)

We have a one-one correspondence between affine and projective plane curves.

The map f(x, y) 7→ Zdeg(f)f(X
Z
, Y

Z
) described above is called homogenisation

and the inverse map is called dehomogenisation. We shall continue to make

extensive use of these maps to study curves in whichever settings suit us.

2.2 The Weierstrass Normal Form

In this section, we show that every plane cubic curve on which we can find

at least one point is birationally equivalent to the curve f(x, y) = y2 − (x3 +

ax + b) = 0, when char(K) 6= 2, 3.

Let f ∈ K[x, y], be an irreducible cubic polynomial. Let C be the cor-

responding plane curve in A2(K), and (x0, y0) ∈ C. We can “shift” C such

that (0, 0) is a point on C, by the transformations x 7→ x+x0 and y 7→ y+y0.

We shall call the corresponding irreducible cubic f1(x, y) = f(x+x0, y+ y0).

Denote

f1(x, y) =

3∑

i=0

3−i∑

j=0

aijx
iyj.

Note that a00 = f1(0, 0) = 0.

Now, we look at lines through (0, 0) in A2(K). All lines except the “ver-

tical”, ( ie. x = 0), are given by zeroes of lt = y − tx. This gives us another

way of identifying the points on C, namely by (x, t) co-ordinates. For each

t ∈ K, the points of intersection of lt = 0 and f1 = 0 are obtained by sub-

stituting y = tx. Since (0, 0) is a point on the curve, the x coordinate of the
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remaining (at most) two points will not be equal to 0. So we can divide by

x and this gives f2 ∈ K[x, t], a quadratic in x. Defining

a(t) = a30 + a21t+ a12t
2 + a03t

3

b(t) = a20 + a11t+ a02t
2

c(t) = a10 + a01t

we have

f2 = a(t)x2 + b(t)x + c(t).

Since char(K) 6= 2, for all values of t such that a(t) 6= 0 we can multiply by

4a(t) and complete squares to solve f2 = 0 for x, to get

(2a(t)x + b(t))2 = b(t)2 − 4a(t)c(t),

which gives at most two solutions for x for each value of t, corresponding to

the points of intersection of lt = 0 and f1 = 0 other than (0, 0).

We can eliminate x from the above expression by substituting s = 2a(t)x+ b(t)

to get f3 ∈ K[t, s], where

f3(t, s) = s2 − (b(t)2 − 4a(t)c(t)).

Note that given t, for each of the possible values of x, we have a corresponding

s. All we are actually doing here is choosing a new system of coordinates

which is less messy than the previous one.

Define p(t) = b(t)2 − 4a(t)c(t). If the coefficient of t4 in p(t) is 0, then

p(t) is at most a cubic. If not, if p(t0) = 0, we can write p(t) = q(t)(t− t0).

Now for t 6= t0, we can let u = 1
(t−t0)

and v = s
(t−t0)2

. If q(t) = r(t − t0),
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then q(t)
(t−t0)3

= r(t−t0)
(t−t0)3

= g( 1
(t−t0)

) = g(u) is at most a cubic in u. Dividing f3

by (t− t0)4 we have f4 ∈ K[u, v] such that

f4(u, v) = v2 − g(u).

Let g2 be the coefficient of u2 in g, since char(K) 6= 3, we can send u to

u− g2

3
to get f5(u, v) = f4(u− g2

3
, v), f5 = 0 giving

v2 = h(u)

h(u) a cubic with second degree coefficient 0. The set Z(f5) of zeroes of f5

is birationally equivalent to C.

We shall henceforth assume that all cubic polynomials K[x, y], with

char(K) 6= 2, 3, with at least one zero in A2(K) are given by their Weierstrass

normal form:

f(x, y) = x3 + ax + b− y2 (2.2)

The above corresponds to the homogeneous polynomial in K[X, Y, Z] given

by:

F (X, Y, Z) = X3 + aXZ2 + bZ3 − Y 2Z (2.3)
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Chapter 3

Elliptic Curves

3.1 Derivations

We give a formal algebraic definition of polynomial differentiation. Let R be

a commutative ring with identity.

Definition 3.1. A map, or operator D : R −→ R is called a derivation or

derivative if

D(u+ v) = Du+Dv and

D(uv) = uDv + vDu

for all u, v ∈ R. We call (R,D) a differential ring.

Let (R,D) be a differential ring. Note that Du = Du+D0 for all u ∈ R

and hence, D0 = 0 and D1 = 1D1 + 1D1 giving D1 = 0.

Note that it is possible to define more than one derivation on a ring.

In particular, all R-linear combinations of derivations on R are themselves
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derivations on R, ie., if D1, D2 are derivations on R and u1, u2 ∈ R, then

u1D1 + u2D2 is a derivation.

We are particularly interested in the following maps on polynomial rings.

Proposition 3.2. Let R[X] be a polynomial ring. ThenDX : R[X] −→ R[X],

such that

DX :

d∑

i=0

aiX
i 7→

d∑

i=1

iaiX
i−1

is a derivation on R[X].

Proof. Let

u =
m∑

i=0

aiX
i and

v =

n∑

i=0

biX
i.

Then

D(u+ v) =

max{m,n}∑

i=1

i(ai + bi)X
i−1 = Du+Dv

and we expand D(uv) as

D(uv) = D

m+n∑

j=0

(
j∑

i=0

aibj−i

)
Xj

=

m+n∑

j=1

(
j∑

i=0

jaibj−i

)
Xj−1

(Changing the index of summation j to j − 1)

=

m+n−1∑

j=0

(
j+1∑

i=0

(j + 1)aibj−i+1

)
Xj

=

m+n−1∑

j=0

j+1∑

i=0

(ai(j − i + 1)bj−i+1 + iaibj−i+1)X
j

17



Splitting the sum and rearranging, we get

m+n−1∑

j=0

(
j+1∑

i=0

aiX
i(j − i+ 1)bj−i+1X

j−i +

j+1∑

i=0

iaiX
i−1bj−i+1X

j−i+1

)

=

m+n−1∑

j=0

(
j∑

i=0

aj−i+1X
j−i+1ibiX

i +

j+1∑

i=0

iaiX
i−1bj−i+1X

j−i+1

)

=

(
n∑

i=0

ibiX
i−1

)(
m∑

i=0

aiX
i

)
+

(
m∑

i=0

iaiX
i−1

)(
n∑

i=0

biX
i

)

= vDu+ uDv

Note that in the previous case Da = 0 for all a ∈ R. We now describe

partial differentiation.

Proposition 3.3. Let (R,D) be a differential ring. Then the map ∆(D) or

∆ : R[X] −→ R[X], such that

∆(D) :

d∑

i=0

aiX
i 7→

d∑

i=0

DaiX
i

is a derivation on R[X].

Proof. Let

u =
m∑

i=0

aiX
i and

v =
n∑

i=0

biX
i.

Then

∆(u+ v) =

max{m,n}∑

i=1

D(ai + bi)X
i = ∆u+ ∆v

18



and

∆(uv) = ∆
m+n∑

j=0

(
j∑

i=0

aibj−i

)
Xj

=
m+n∑

j=0

j∑

i=0

D(aibj−i)X
j

=
m+n∑

j=0

j∑

i=0

(aiDbj−i + bj−iDai)X
j

=

m+n∑

j=0

j∑

i=0

(
aiX

iDbj−iX
j−i + bj−iX

j−iDaiX
i
)

=

(
m∑

i=0

aiX
i

)(
n∑

i=0

DbiX
i

)
+

(
n∑

i=0

biX
i

)(
m∑

i=0

DaiX
i

)

= u∆v + v∆u

In the above case we have ∆X = 0 and ∆a = Da for all a ∈ R. We can

generalise as

Corollary. If (R,D) is a differential ring, R[X1, X2] is the polynomial ring

in X1, X2 over R, and ∆1 : R[X1] −→ R[X1] is the map in Proposition 3.3,

then ∆1,2 : R[X1, X2] −→ R[X1, X2] such that

∆{1,2} :
d∑

i=0

ai(X1)X
i
2 7→

d∑

i=0

∆1(ai(X1))X
i
2

is a derivation. We can inductively define derivations ∆S for any finite set S

of variables.

We can now define partial derivatives of polynomials in more than one

variable.
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Definition 3.4. Let K be a field and let K[X1, . . . , Xn] be the ring of poly-

nomials in variables X1, . . . , Xn over K. Let

Di : K[Xi] −→ K[Xi]

be as in Proposition 3.2, Si = {X1, . . . , Xi−1, Xi+1, . . . , Xn} and let

∆Si : K[Xi][Si] −→ K[Xi][Si]

be the map ∆Si(Di) defined in Propositions 3.2 and 3.3. We define the partial

derivative with respect to Xi of f ∈ K[X1, . . . , Xn] by ∆Sif .

The chain rule and rules of implicit differentiation analogous to the real

variables case hold for differential rings.

3.2 Tangents, Multiplicities and the Weier-

strass Normal Form

Now that we have defined the derivative of a polynomial in K[x, y], we can

obtain the Weierstrass normal form from a cubic in a rather more satisfying

manner than the earlier one, given just one condition on f . We shall not

prove all statements we make in this section, just the ones we need. Let

f(x, y) ∈ K[x, y], and C = Z(f) ∈ A2(K).

Let P = (x0, y0) ∈ C. P is a singular point of f if df

dx
(x0, y0) = 0

and df

dy
(x0, y0) = 0. A point not satisfying the above conditions is called a

nonsingular point.
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Let P = (x0, y0) be a nonsingular point on C. Let α = ∆xf(x0, y0) and

β = ∆yf(x0, y0). Since P is nonsingular, the set l of points (x, y) such that

α(x− x0) + β(y − y0) = 0 (3.1)

is a line, and (x0, y0) ∈ l. We call l the tangent line to E at (x0, y0).

Note that this definition of the tangent line coincides with our geometric

notion of tangent to a curve wherever a geometric picture makes sense.

If C,C ′ are two curves in A2(K), and C ∩ C ′ + D for all curves D in

A2(K) which have more than one point, we say that C and C ′ do not have a

common component. Suppose C and C ′ do not have a common component,

and P ∈ C ∩ C ′ is a nonsingular point. Let

u, v : K −→ K

be polynomial maps such thatC∩C ′ ⊂ {(u(t), v(t))|t ∈ K} and (u(0), v(0)) =

(x0, y0) = P .

parametrisation, definition of multiplicity, intersection multiplicity, in-

flection points, weierstrass form given that a cubic has at least one inflection

point

3.3 Definition of an Elliptic Curve

Let K be a field, Char(K) 6= 2, 3 f ∈ K[x, y] be an irreducible polynomial,

and let C = Z(f) ⊂ A2(K) be the curve given by the zeroes of f . Assume

that we are given a point on C, ie., we are given (x0, y0) ∈ A2(K) with

f(x0, y0) = 0.
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If all points of C are nonsingular, then C is a smooth or nonsingular curve

and we also call the associated polynomial nonsingular.

We are now in a position to define elliptic curves.

Definition 3.5. An elliptic curve over K is a set E = Z(F ) ⊂ P 2(K) where

F is a nonsingular homogeneous cubic in K[X, Y, Z] given by the Weierstrass

form of (2.3)

An alternative characterisation of an elliptic curve E is as the set Z(f)∪O

where f ∈ K[x, y] is a nonsingular cubic given by the Weierstrass normal form

in (2.2) and O is “a point at infinity”.

If f is a polynomial in Weierstrass form, ie.

f(x, y) = x3 + ax+ b− y2,

then

∆xf(x, y) = 3x2 + a and ∆yf(x, y) = −2y.

For E to be nonsingular, for all (x1, y1) ∈ E, either 3x2
1 + a 6= 0 or y 6= 0.

In other words, if 3x2
1 + a = 0, then x3

1 + ax1 + b can not be 0. Substituting

x2
1 = −a

3
we get −2a

3
x1 6= b, which we square to get the equivalent condition

4a3 + 27b2 6= 0.

Recall that 4a3+27b2 6= 0 is precisely the condition that f(x, 0) = x3 + ax + b

does not have a double root, ie., f(x, 0) and ∆xf(x, 0) have no common ze-

roes.
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3.4 Intersections

Let E be the elliptic curve given by (2.2), and let (x1, y1) ∈ E. When

F ∈ K[X, Y, Z] is as in (2.3), E →֒ P2(K) and [x1 : y1 : 1] ∈ E

Lemma 3.6. If L is a line in P2(K), then #(E ∩ L) ≤ 3.

Proof. Let

L = αX + βY + γZ

We want all common solutions in P2(K) of

X3 + aXZ2 + bZ3 − Y 2Z = 0 and

αX + βY + γZ = 0

Substituting Z = 0 in the first equation gives X = 0, therefore Y = 1, and

[0 : 1 : 0] satisfies the second equation iff β = 0

Substituting Z = 1 in both equations gives

X3 + aX + b− Y 2 = 0 and

αX + βY + γ = 0

If β 6= 0, ie. [0 : 1 : 0] /∈ L then we can substitute −γ−αX

β
for Y in the first

equation to get a cubic in X which has at most 3 solutions.

If β = 0, ie. [0 : 1 : 0] ∈ L, α 6= 0 and we have X = −γ

α
, which we

substitute to get a quadratic in Y which has at most 2 solutions.

In the rest of this section, we shall look at how different kinds of lines

intersect E. We parametrise the line l through (x1, y1) and (x2, y2) by t. All
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points on l are given by

l = {(x1 + t(x2 − x1), y1 + t(y2 − y1))|t ∈ K} (3.2)

The points in l∩E are given by substituting (x1 + t(x2 −x1), y1 + t(y2 − y1))

into f(x, y) = 0 and expanding, which gives

(x1 + t(x2 −x1))3 + a(x1 + t(x2 −x1)) + b− (y1 + t(y2 − y1))2 = 0 (3.3)

and solving for t.

3.4.1 Tangent lines

Let P = (x1, y1) ∈ E. Since E is nonsingular, we have a tangent line

at P given by (3.1), whose coefficients are α1 = ∆xf(x1, y1) = 3x2
1 + a and

β1 = ∆yf(x1, y1) = −2y1.

Now if (x2, y2) 6= (x1, y1) is another point of l, then all solutions of (3.1)

are given by (3.2) which we substitute into (2.2) to get (3.3).

We can determine the points of intersection of E and l by expanding (3.3)

and solving the above cubic equation for t. Then the 0 degree term of (3.3)

is

x3
1 + ax1 + b− y2

1 = 0

since (x1, y1) ∈ E. The coefficient of t in (3.3) is

(3x2
1 + a)(x2 − x1) − 2y1(y2 − y1) = α1(x2 − x1) + β1(y2 − y1) = 0

since (x2, y2) ∈ l. Therefore, t = 0 is a double root of (3.3) and if x2 6= x1,

the third root is

t =
(y2 − y1)

2 − 3x1(x2 − x1)2

(x2 − x1)3
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The value of t depends on the choice of (x2, y2). But on substituting for t in

(x1 + t(x2 − x1), y1 + t(y2 − y1)), we see that the third point of intersection

(x0, y0) is given by

x0 = x1 +
(y2 − y1)

2 − 3x1(x2 − x1)2

(x2 − x1)3
(x2 − x1)

=
(y2 − y1)

2

(x2 − x1)2
− 2x1

y0 = y1 +
(y2 − y1)

2 − 3x1(x2 − x1)
2

(x2 − x1)3
(y2 − y1)

=
(y2 − y1)

3

(x2 − x1)3
− 3x1

(y2 − y1)

(x2 − x1)
+ y1 (3.4)

y2−y1

x2−x1

is the slope of the tangent line l, which is independent of the choice of

(x2, y2).

Also, the case x2 = x1 occurs if and only if the tangent line at (x1, y1)

is “vertical”, or l is the line x − x1 = 0. This in turn occurs iff y1 =

0, or x1 is a root of the polynomial f(x, 0) = x3 + ax+ b. In this case, l

and A2(K) intersect only at (x1, y1). But y1 = 0 ⇒ β1 = 0. So if L

is the projective closure of l in P2(K), then [0 : 1 : 0] ∈ L. Therefore,

[0 : 1 : 0] ∈ L ∩E ⊂ P2(K).

Coming back to our earlier observation that t = 0 is a double root of

(3.3). t = 0 in the parametrisation of l above corresponds to the point

(x1, y1) ∈ E∩ l. The natural interpretation of this is that the line l meets the

curve E at (x1, y1) at least twice. We say that the intersection multiplicity

of l with E at (x1, y1) is at least 2. Also note that the tangent line we

defined is the unique line through (x1, y1) such that t = 0 is a multiple

root. This coincides with the intuitive idea of the tangent as the best linear

approximation to a curve. Also, recall that we insisted on nonsingularity of
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E. The uniqueness of the tangent line at every point is guaranteed by the

fact that E is nonsingular.

3.4.2 Secant lines

Now, let (x1, y1) and (x2, y2) be distinct points on E \ O. Again, the line l

joining the two points can be given by (3.2).

Substituting into (2.2), we have (3.3) which we expand and solve for t.

Since (x2, y2) ∈ E and (x1, y1) ∈ E are points in l corresponding to t = 1 and

t = 0 respectively, t = 1, 0 are roots of (3.3). Cancelling out groups of terms

of the form f(x1, y1) = 0 and f(x2, y2) = 0, and dividing (3.3) by t(t − 1),

we are left with

t(x2 − x1)3 + (x2 − x1)3 + (y2 − y1)
2 + 3x1(x2 − x1)2 = 0

So when x1 6= x2,

t = −
(x2 − x1)3 − (y2 − y1)

2 + 3x1(x2 − x1)2

(x2 − x1)3

from which we calculate the third point of E ∩ l, (x0, y0) to be

x0 = x1 −
(x2 − x1)3 − (y2 − y1)

2 + 3x1(x2 − x1)2

(x2 − x1)3
(x2 − x1)

= −x2 − x1 +
(y2 − y1)

2

(x2 − x1)2

y0 = y1 −
(x2 − x1)3 − (y2 − y1)

2 + 3x1(x2 − x1)2

(x2 − x1)3
(y2 − y1)

= 2y1 − y2 +
(y2 − y1)

3

(x2 − x1)3
− 3x1

(y2 − y1)

(x2 − x1)
(3.5)
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In the case x2 = x1, l is given by x = x1 and the projective closure L ⊂ P2(K)

is given by X − x1Z = 0. Substituting in (2.3), we have

x3
1Z

3 − ax1Z
3 + bZ3 − Y 2Z = y2

1Z
3 − Y 2Z = Z(y1Z − Y )(y1Z + Y )

which means that in P2(K), E ∩ L = {[0 : 1 : 0], [x1 : y1 : 1], [x1 : −y1 : 1]}.

Looking at E as an affine curve along with O, the points of intersection of

E and l are (x1, y1), (x2, y2) = (x1,−y1) and O.

3.4.3 Lines intesecting O

Let L be the line Z = 0 in P2(K). To find L ∩ E, we substitute Z = 0 into

(2.3) to get X3 = 0, of which X = 0 is a triple root. Therefore L touches E

at O with multiplicity 3.

In addition, as we noted in Lemma 3.6, [0 : 1 : 0] belongs to a line L iff L

is given by

αX + γZ = 0

If L is any line other than the line at infinity, then α 6= 0, and we can fix

α = 1. Then we substitute X = − γ

α
Z in (2.3) and setting Z = 0 gives O,

and Z = 1 gives Y 2 = f(γ, 0), which, if it has one root, has two (counting

multiplicities). If [x0 : y0 : 1] is one of these roots, the other is [x0 : −y0 : 1].

Another consequence it that the “tangent at infinity”, the only line in P2(K)

that intersects O with multiplicity greater than one, is Z = 0.

Observe that all that we have established so far is a consequence of the

fact that if a cubic equation in one variable over any field has two roots,

then it has all three. This guarantees that if a line intersects E twice, it
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also intersects E a third time, either in A2(K) or at O. We have also seen

that a line containing O intersects E \ O only at pairs of points (x1, y1) and

(x1,−y1).

3.5 The Group Law

The remarks at the end of the previous section point to there being some

structure to the set of points on an elliptic curve E. Given two points P,Q ∈

E, R, the third point of intersection of E with the line joining P and Q (or

with the tangent at P if P = Q), is a well-defined binary operation on E.

We shall denote it by ∗, or say that P ∗Q = R.

Definition 3.7. Let P,Q ∈ E ⊂ P2(K), and let LPQ be the line in P2(K)

containing P and Q (or the tangent line to E at P if P = Q). Let R be the

third point of intersection (counting multiplicities) of E and LPQ. Then the

binary operation ‘∗’ is defined as

∗ : E × E −→ E

∗ : (P,Q) 7−→ R

We write P ∗Q = R for ∗(P,Q).

It is also clear from (3.4) and (3.5) that the coordinates of the third point

belong to K, so E is closed with respect to ∗. Also, for a given choice of

coordinates, O acts like a distinguished element of E. Altogether, it is not

implausible that E could have a group structure.
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If E can be made into a group, then O is the most likely candidate for the

identity element. Also, by the commutative nature of the binary operation

that we are motivated by, it is reasonable to assume that our group is abelian.

Also, if P = (x1, y1) ∈ E, then P ′ = (x1,−y1) is a natural candidate for the

inverse element −P .

If we fix O to be the identity element, then ∗ cannot be the group oper-

ation, since

O ∗ P = P ′

which is not equal to P in general. But if we define P ′ = −P , we have

O ∗ P = −P , or O + P = P = −(O ∗ P ).

Proposition 3.8. If E is an elliptic curve, then + : E × E −→ E, such

that P +Q = −(P ∗Q) is a binary operation, with P + Q = Q + P for all

P,Q ∈ E.

The above follows from the fact that (P,Q) 7→ P ∗ Q and P 7→ −P are

well defined binary (and respectively unary) operations, and E is closed with

respect to both. Also + commutes because ∗ does.

The definition P +Q = −(P ∗Q) makes E into a group. All axioms other

than associativity are straightforward.

Proposition 3.9. Let P ∈ E. Then O + P = P + O = P .

Proof. O + P = −(O ∗ P ) = −(−P ) = O ∗ −P = P

P + O = O + P = P by 3.8.

Proposition 3.10. Let P ∈ E. Define −P = O ∗ P . Then

P + (−P ) = (−P ) + P = O.
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Proof. Note that −O = O ∗ O = O.

∴ P + (−P ) = −P + P = −(P ∗ −P ) = −O = O.

3.5.1 Associativity of Addition

Proving the associativity of + is a lot more difficult. We can derive addition

formulae in terms of the coordinates of points of E and use these to verify

associativity. But we shall give a geometric argument which will prove as-

sociativity in the case where the points involved are “in general position”.

First, we prove special cases of some important results about projective plane

curves. For the rest of this section, we allow a projective plane cubic C to be

the zero set of any homogeneous cubic polynomial in K[X, Y, Z], ie., we do

not insist on irreducibility. So C may be a product of 3 lines, or the product

of a line and a conic. In such cases, we call the irreducible curves included

in C the components of C.

Our first result is Lemma 3.6 for any cubic.

Lemma 3.11. (Special case of Bezout’s Theorem, I) Let C be a cubic and L

a line in P2(K). If C and L have no common components, then #(C∩L) ≤ 3.

Proof. Let C = Z(F ), where F ∈ K[X, Y, Z] is homogeneous of degree 3.

Let L = Z(H), where H = αX + βY + γZ. One of the coefficients of H is

nonzero, since otherwise, we get H(P2(K)) = 0. Say γ 6= 0. Then we can

substitute Z = −αX+βY

γ
in F to get a homogeneous degree 3 cubic in two

variables. Say

F [X, Y,−
αX + βY

γ
] = a30X

3 + a21X
2Y + a12XY

2 + a03Y
3
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Now if a30 = 0, substituting Y = 0 gives [1 : 0 : 0] as a solution, and

substituting Y = 1 gives a quadratic in X which gives at most two solutions.

If a30 6= 0, there are no solutions corresponding to Y = 0, and at most three

solutions corresponding to Y = 1.

A conic in P2(K) is the zero set of a homogeneous polynomial of degree

2 (or quadratic form) in K[X, Y, Z]. Recall that if Char(K) 6= 2, then all

quadratic forms can be expressed as symmetric K-bilinear forms K3 −→ K.

A conic is nondegenerate if the associated bilinear form can be expressed by

an invertible matrix in GL3(K). We can also use projective transformations

on K3 to effect a change of basis, and hence a change of variables.

Let D be a nondegenerate conic, given by the zero set of the quadratic

form

G(X, Y, Z) = aX2 + bY 2 + cZ2 + 2dXY + 2fXZ + 2eY Z.

We shall prove that, given at least one non-zero solution to G(X, Y, Z) = 0

there exists a basis {e1, e2, e3} such that G(x1e1 +x2e2 +x3e3) = x1x3 −αx
2
2

for some α ∈ K \ 0 and all x1, x2, x3 ∈ K. Note that the symmetric bilinear

form associated with G is

ϕ : K3 ×K3 −→ K,

ϕ : (v1,v2) 7→ v1Mv′
2

where the matrix M is given by

M =




a d f

d b e

f e c



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Let e1 ∈ K3 \ 0 such that ϕ(e1, e1) = G(e1) = 0. Since G is nondegenerate,

there exists e3 ∈ K3 such that ϕ(e3, e3) = 0 and ϕ(e1, e3) 6= 0. We can

multiply e3 by a suitable constant to get 2ϕ(e1, e3) = 1. Now the span

< e1, e3 > of e1 and e3 is a vector subspace of K3 of dimension 2, and

since M is invertible, so is < e1M, e3M >. So there exists e2 ∈ K3 \ 0 such

that ϕ(e1, e2) = ϕ(e3, e2) = 0. Let < eM >⊥:= {v ∈ K3|eMv′ = 0}. Now,

if ϕ(e2, e2) = 0, then e1, e2, e3 ∈< e2M >⊥. Since < e2M >⊥ has dimension

2, and e2 ∈< e1M >⊥ \ < e1 >, we have e3 ∈< e1, e2 >=< e1M >⊥, which

is a contradiction. Therefore, ϕ(e2, e2) 6= 0, and for

K3 ∼=< e2M >⊥ ⊕ < e2 >∼=< e1 > ⊕ < e2 > ⊕ < e3 >

Now, ϕ(e1, e1) = ϕ(e3, e3) = ϕ(e1, e2) = ϕ(e3, e2) = 0 and ϕ(e1, e3) = 1
2
.

Let ϕ(e2, e2) = −α. So

G(x1e1 + x2e2 + x3e3) = ϕ(x1e1 + x2e2 + x3e3, x1e1 + x2e2 + x3e3)

= x2
1ϕ(e1, e1) + x2

2ϕ(e2, e2) + x2
3ϕ(e3, e3)

+2x1x2ϕ(e1, e2) + 2x1x3ϕ(e1, e3) + 2x2x3ϕ(e2, e3)

= x1x3 − αx2
2

So any conic in the projective plane is equivalent to G = XZ − αY 2 for

some α ∈ K \ 0. Moreover, we can apply the transformation X 7→ αX, to

get G = XZ − Y 2. We shall from now on assume that any conic D in the

projective plane is the zero set of G = XZ − Y 2.

Lemma 3.12. (Special case of Bezout’s Theorem, II) Let C be a cubic

and D a conic in P2(K). If C and D have no common components, then

#(C ∩D) ≤ 6.
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Proof. If D is degenerate, points of D lie either on a line or on the union

of two lines. Since C and D cannot have common components, and since

#(C ∩ L) ≤ 3 for any line L, we have #(C ∩D) ≤ 6. If D is nondegerate,

we can choose co-ordinates such that D = XZ−Y 2. Let fi(X,Z) ∈ K[X, Y ]

be homogeneous of degree i, with 0 ≤ i ≤ 3, such that

C = f0(X,Z)Y 3 + f1(X,Z)Y 2 + f2(X,Z)Y + f3(X,Z).

Substituting Y 2 = XZ and rearranging, we have

(XZf0(X,Z) + f2(X,Z))Y = −(XZf1(X,Z) + f3(X,Z)).

So D(X, Y, Z) = 0 and C(X, Y, Z) = 0 only if

XZ(XZf0(X,Z) + f2(X,Z))2 − (XZf1(X,Z) + f3(X,Z))2 = 0 (3.6)

Now if Z = 0, thenD = 0 gives Y = 0, X = 1. C = 0 gives f3(1, 0) = 0. Since

f3 is homogeneous of degree 3, the last condition amounts to the coefficient

of X3 being 0. In this case, substituting Z = 1 in (3.6) gives at most a

quintic in X, which has at most 5 solutions.

Substituting Z = 1 in (3.6) gives at most a sextic in X, which has at

most 6 solutions. For each value of X such that Xf0(X, 1) + f2(X, 1) 6= 0,

we have

Y =
Xf1(X, 1) + f3(X, 1)

XZf0(X,Z) + f2(X,Z)
.

which gives one value of Y corresponding to each value of X.

If X = a is a solution of Xf0(X, 1) + f2(X, 1) = 0, then it is also a

solution of Xf1(X, 1) + f3(X, 1) = 0. Therefore, if Xf0(X, 1) + f2(X, 1) =

(X − a1)(X − a2), then Xf1(X, 1) + f3(X, 1) = (X − a1)(X − a2)p(X),

33



where p(X) is at most linear in X. So for Z = 1, from (3.6) we have

(X − a1)2(X − a2)2(p(X)2 −X) = 0. Substituting X = a1, a2 in D = 0 gives

at most 2 solutions each. So we again have a total of at most 6 points in the

intersection.

A similar argument goes through to show that two conics D1 and D2

with no common component intersect in at most four points in the projective

plane. Moreover, any five points P1, . . . , P5 ∈ P2(K) lie on a conic. To see

this, if three of the points lie on a line L, and if M is the line joining the other

two, then {P1, . . . , P5} ⊂ LM . So suppose no three points are collinear, and

let L12 = P1P2, L34 = P3P4, L13 = P1P3, and L24 = P2P4. Then P5 is not on

any of the above lines, ie. L12(P5)L34(P5)L13(P5)L24(P5) 6= 0. So if

γ = −
L13(P5)L24(P5)

L12(P5)L34(P5)
,

then {P1, . . . , P5} ⊂ γL12L34 +L13L24. So P1, . . . , P5 lie on a unique conic in

P2(K).

We can think of the set C of all homogeneous cubics in K[X, Y, Z] ,(or

cubic curves in P2(K)), together with the 0 polynomial, as a 10 dimensional

vector subspace of K[X, Y, Z] generated by the monomials of degree 3 in

X, Y and Z. Since Z(F [X, Y, Z]) = Z(αF [X, Y, Z]) for all α ∈ K, we have

C ∼= P9(K). The set C(P1) of all such curves passing through a given point

P1 ∈ K3 \ 0, is a hyperplane of this projective space. If P2 6= P1, then

the set C(P1, P2) of cubics passing through both P1 and P2 is a hyperplane

in C(P1). Each further point which the set of cubics has to pass through

imposes a further linear condition on the coefficients of the cubic. If the linear
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conditions are independent, each extra point brings down the dimension of

the subspace of cubics passing through these points by 1. The next result

shows that if these points are added “in general position”, we can add up to

8 points such that the corresponding linear conditions imposed are indeed

independent.

Lemma 3.13. Let P1, . . . , P8 be eight points in the projective plane such that

no four are collinear, and no seven lie on a conic. Then there is a cubic that

contains P1, . . . , P7 but not P8.

Proof. It is enough to show construct a cubic C which contains P1, . . . , P7

but not P8. C can be constructed as the product of a conic and a line, or

the product of three lines depending on the configurations of the points.

Case 1. No three points in {P1, . . . , P7} are collinear.

The lines P4P7, P5P7, P6P7 are distinct and intersect only at P7. Hence

at most one of these can contain P8. Say L = P5P7, and L′ = P6P7 do not

contain P8. Let K and K ′ respectively be the conics through P1, . . . , P5 and

P1, . . . , P4, P6. If both K and K ′ contain P8, then they would intersect in five

points P1, . . . , P4, P8, and we would have K = K ′ ⊂ {P1, . . . , P6, P8}. But

this is impossible since seven points of the given eight cannot be contained in

a conic, so one of K,K ′, say K cannot contain P8. Then KL′ = 0 contains

P1, . . . , P7.

Case 2. There is exactly one set of three collinear points in {P1, . . . , P7}.

Assume the collinear points are P1, P2, P3 ∈ L, where L is a line. Then no

three points in P4, . . . , P7 are collinear, and the lines M = P4P5, M
′ = P4P6,

N = P6P7, N
′ = P5P7 are all distinct. The line pairs MN and M ′N ′ do not
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both contain P8, else either M ′ or N ′ would intersect one of M,N in two

points. Assume MN does not contain P8. Then LMN = 0 is a cubic which

contains P1, . . . , P7 but does not contain P8.

Case 3. There are two distinct sets of three collinear points in P1, . . . , P7.

Let L,M be lines such that P1, P2, P3 ∈ L and P4, P5, P6 ∈M . Then the

lines N = P1P7 and N ′ = P2P7 are distinct, and cannot both contain P8.

Say P8 /∈ N . Then LMN = 0 is a cubic containing P1, . . . , P7 but not P8.

These are all possible cases and the lemma is proved.

It follows that if the points P1, . . . , P8 are sufficiently general, then the

set C(P1, . . . , P8) � C({P1, . . . , P8} \ Pi) for all 1 ≤ i ≤ 8.

Corollary. Let P1, . . . , P8 be eight points in the projective plane such that no

four are collinear, and no seven lie on a conic. Then C(P1, . . . , P8) ∼= P1(K).

Lemma 3.14. Let C1 and C2 be any two projective plane cubics, with no

component in common, that intersect in exactly 9 distinct points in P2(K).

Also suppose P1, . . . , P8 are points in the intersection such that no four are

collinear and no seven lie on a conic. Then any cubic C0 ∈ C(P1, . . . , P8)

also passes through the ninth point P9.

Proof. Consider the cubic C = Z(F ), where

F (X, Y, Z) = a300X
3 + a030Y

3 + a003Z
3 + a210X

2Y + a201X
2Z + a120XY

2

+a102XZ
2 + a021Y

2Z + a012Y Z
2 + a111XY Z. (3.7)

If {P1, . . . , P8} ⊂ C, then for each point Pn = [xn : yn : zn] ∈ P2(K), F (Pn)

is a linear equation in 10 variables aijk.
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By Corollary to Lemma 3.13, F (Pn) = 0, 1 ≤ n ≤ 8 are linearly indepen-

dent equations. Therefore, the set of all cubics passing through {P1, . . . , P8}

is isomorphic the solution set of a system of 8 linearly independent equations

in 10 variables. Then all cubic passing through {P1, . . . , P8} can be expressed

as a linear combination of any two independent solutions of (3.7). Therefore,

if Ci = Z(Fi), 0 ≤ i ≤ 2, then F0 = ν1F1 + ν2F2 for some constants ν1, ν2.

Now since F1(P9) = F2(P9) = 0, we have F0(P9) = 0, ie. P9 ∈ C0.

Proposition 3.15. Let A,B,C ∈ E. Let A+B = P , B+C = Q, P+C = R,

and A+Q = R′. If S = {A,B,C, P,−P,Q,−Q,O} is a set of eight distinct

points, and −R,−R′ /∈ S, then (A+B) + C = R = R′ = A+ (B + C).

Proof. It is enough to prove that −R = −R′. Let L1, L2, L3 be lines such

that A,B,−P ∈ L1, O, P,−P ∈ L2, and P,C,−R ∈ L3. Let M1,M2,M3

be lines such that B,C,−Q ∈ M1, O, Q,−Q ∈ M2, and A,Q,−R′ ∈ M3.

Since each of the above lines intersect E in three points each, and these three

points are different for each line, Each of the lines L1, L2, L3,M1,M2,M3 are

distinct. Define C1 = L1M2L3 and C2 = M1L2M3. Now

C1 ∩E ⊇ {A,B,C,O, P,−P,Q,−Q,−R}

C1 ∩ E ⊇ {A,B,C,O, P,−P,Q,−Q,−R′}

C1 ∩ C2 ⊇ {A,B,C,O, P,−P,Q,−Q} = S

Suppose S is a set of eight distinct elements.

Now, no four points in S ⊂ E are collinear. We claim that no seven

points in S are on the same conic. To prove this, note that a line intersects
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a conic in at most two points. So if T ⊂ S is a set of seven points lying on a

conic, then not all three of O, P,−P ∈ L2 or O, Q,−Q are in T . Therefore,

O /∈ T , or T = S \O. But then A,B and −P would be contained in L1 ∩ T .

So we can apply Lemma 3.14.

But by Lemma 3.14, −R ∈ C2, and −R′ ∈ C1. So

C1 ∩ C2 ⊇ S ∪ {−R,−R′}

Also assume −R,−R′ /∈ S. But since C1, C2 are products of three lines,

#(C1 ∩ C2) ≤ #(L1 ∩ C2) + #(M2 ∩ C2) + #(L3 ∩ C2) ≤ 3 + 3 + 3 = 9

The only possibility is −R = −R′, which gives R = R′.

Now all that is left is to verify associativity where duplicates are involved,

ie. when S = {A,B,C,O, P,−P,Q,−Q} has less than eight elements, or

when −R,−R′ ∈ S.

The above results can be summed up as follows.

Theorem 3.16. Let E be an elliptic curve. Let O be the point at infinity

on E, and ∗ be as in Definition 3.7. Let + be the binary operation given by

P +Q = O ∗ (P ∗Q) for all P,Q ∈ E. Then (E,+) is an abelian group.

Proof. By Proposition 3.8, the operation + is well defined and commutative

on E × E. By Proposition 3.9, O is the identity element. For all P ∈ E,

−P described in Proposition 3.10 is the inverse element. Associativity is

established in Proposition 3.15 and the ensuing discussion.
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Chapter 4

The Elliptic Curve E(Fq)

Let E be the elliptic curve given by (2.2) over a field k of characteristic 6= 2, 3.

Let us recall the formulae we derived as coordinates of intersection in Section

3.4.

Theorem 4.1. Let P = [x1 : y1 : 1], Q = [x2 : y2 : 1] be points on the elliptic

curve E with x2 6= x1. Let λ = y2−y1

x2−x1

. Then the coordinates of P +Q = [x0 :

y0 : 1] are

x0 = λ2 − x2 − x1

y0 = y2 − 2y1 + λ3 + 3x1λ

= (y2 − λx2) − 2(y1 − λx1) − λx0

Let y1 6= 0, and λ1 =
3x2

1
+a

2y1

. Then the coordinates of 2P = [x′1 : y′1 : 1] are

x′1 = λ2
1 − 2x1

y′1 = −λ3
1 + 3x1λ1 − y1

= −(y1 − λ1x1) − λ1x
′
1
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Proof. Follows from (3.5) and (3.4).

The first of the above formulae is called the addition formula while the

second is called the duplication formula.

We can also answer the following question, which is in some sense an

inverse of the duplication formula. When is a point P on an elliptic curve

twice another point? Though not necessarily all points on an elliptic curve

E are of the form 2Q for some Q ∈ E, we can prove that such a point exists

if we extend the curve to contain points given by solutions to (2.2) over some

field extension.

Theorem 4.2. If P is a point on an elliptic curve E(k), then there exists a

point P ∈ E(k̄) such that P = 2Q

Proof. Let P = (x0, y0). By the duplication formula, any point Q = (x, y)

such that P = 2Q satisfies

(
3x2 + a

2y

)2

− 2x = x0

We can substitute (2.2) and rewrite this as

(3x2 + a)2 − 4(x3 + ax + b)(2x+ x0) = 0

=⇒ x4 − 4x0x
3 − 2ax2 − (8b+ 4ax0)x + (a2 − 4x0b) = 0

This is a quartic in x and has roots in some algebraic extension of k. If x1 is

a root, the y-coordinates are given by solutions to

(x2
1 − a)2 − 8bx1 = 4x0y

2

, which also exist is an extension field of k.
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4.1 Points of small order

Coordinates and number of the points of small orders in E are easy to cal-

culate from Theorem 4.1 above.

If (x0, y0) = P ∈ E is a point of order 2, then P = −P , and hence y0 = 0.

Therefore x0 is a root of x3 + ax + b = 0. Conversely, if x3
0 + ax0 + b = 0,

then (x0, 0) ∈ E is a point of order 2. Also note that E has either 0, 1 or 3

points of order 2, depending on the number of roots of x3 + ax + b.

If (x0, y0) = P ∈ E is a point of order 3, then 2P = −P . The tangent to

E at P meets E only at P . Substituting in the duplication formula above

gives

x0 =

(
3x2

0 + a

2y0

)2

− 2x0

which, on substituting y2
0 = x3

0 + ax0 + b simplifies to

3(x2
0 + a)2 − 4(a2 − 3x0b) = 0 (4.1)

The above quartic equation in x0 has 0, 1, 2 or 4 solutions. When char(F) 6= 2,

each x-coordinate corresponds to 0 or 2 y-coordinates, since y0 6= 0. So the

number of points of order 3 in E is 0, 2, 4, 6 or 8, and hence at most 8.

But the points of order 3, along with the identity O forms the kernel of the

homomorphism P 7→ 3P , and hence a subgroup of the finite abelian group E,

which we shall call E3. Therefore E3 is trivial, cyclic, or elementary abelian

of rank 2, i.e, isomorphic to <>, C3, or C3 × C3. Therefore E has 0, 2, or 8

points of order 3.

If (x1, y1) = Q ∈ E is a point of order 4, then 2Q is a point of order 2.
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Let 2Q = P = (x0, 0). Then the duplication formula gives

x0 =

(
3x2

1 + a

2y1

)2

− 2x1

0 =
3x2

1 + a

2y1
(x0 − x1) + y1

We can substitute y2
1 = x3

1 + ax1 + b, then expand and simplify the second

equation as

0 = (3x2
1 + a)(x1 − x0) − 2(x3

1 + ax1 + b)

= x3
1 − 3x0x

2
1 − ax1 − ax0 − 2b

= (x1 − x0)3 − 3x2
0(x1 − x0) − a(x1 − x0) − 2(x3

0 + ax0 + b)

= (x1 − x0)3 − (3x2
0 + a)(x1 − x0) (4.2)

since x3
0 + ax0 + b = 0. So we have x1 = x0, and x1 = x0 ±

√
(3x2

0 + a) if

3x2
0 + a is a square in K. But the solution x1 = x0 is redundant. So for

each of the three possible points P of order 2, there exists at most 4 points

Q such that 2Q = P . So we have a total of at most 12 points of order 4 in

E. This tells us that the subgroup formed by elements of order dividing 4 is

a subgroup of C4 × C4.

4.2 The curve Eq2

Let Eq be the curve given by the equation x3 + ax+ b = y2, where a, b ∈ Fq.

We assume that f(x) = x3 + ax+ b does not have a multiple root in F̄q, and

that if char(Fq) = p, then p 6= 2, 3.
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Define Eq2 to be the curve given by the same equation as above, but the

x and y coordinates take values from Fq2. Our assumptions on f(x) ∈ Fq2[x]

and p still hold.

4.2.1 The Frobenius Map

The Frobenius automorphism φ on Fq2, defined as

φ : Fq2 → Fq2

φ : x 7→ xq

which restricts to the identity map on Fq, induces a map

Φ : E → E

Φ : (x, y) 7→ (xq, yq)

Since φ is a field automorphism, and formulae for sums and inverses of ele-

ments of E are all rational expressions, Φ is a group homorphism from E to

E and also from Eq to Eq for all Eq < E

Note that Φ2 = I, the identity automorphism on Eq2 . Also, restricting

Φ to Eq gives the identity map. More specifically, Φ(P ) = P if and ony if

P ∈ Eq ∀ P ∈ Eq2 .

4.2.2 The Sturucture of 2Eq2

Consider 2Eq2 := {2P | P ∈ Eq2}, the image of Eq2 under the group homo-

morphism

ϕ : Eq2 → Eq2

ϕ : P 7→ 2P
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which has ker(ϕ) = {Q ∈ Eq2 | 2Q = O}, ie., O and the points of order 2

in Eq2 . Let #{Q ∈ Eq | 2Q = O} = d1 and #{Q ∈ Eq2 | 2Q = O} = d2.

d1, d2 ∈ {1, 2, 4}, d1 ≤ d2. In fact, we can say more.

If f is irreducible over Fq, then f is irreducible over Fq2 . Also, if f has

one root in Fq, then f has three roots in Fq2 .

d1 = 1 =⇒ d2 = 1,

d1 = 2 =⇒ d2 = 4

d1 = 4 =⇒ d2 = 4

Observe that ∀ P ∈ Eq2 , 2P = P + Φ(P ) + P − Φ(P ).

Let R := {P + Φ(P ) | P ∈ Eq2} and S1 := {P − Φ(P ) | P ∈ Eq2}. Then

2Eq2 ⊆ R + S

Also

Φ(P + Φ(P )) = Φ(P ) + Φ2(P ) = P + Φ(P )

=⇒ ∀ P ∈ Eq2 , P + Φ(P ) ∈ Eq

and ∀ P ∈ Eq P + Φ(P ) = 2P

Also, since Eq is an abelian group, P +Φ(P )+Q+Φ(Q) = P +Q+Φ(P +Q),

so R is additively closed, and we have Eq ≥ R ≥ 2Eq and |R| = |Eq|
d0

d1

for

some d0 | d1.

Let S ′ = {Q ∈ Eq2 |Φ(Q) = −Q}.

∀P ∈ Eq2 , Φ(P − Φ(P )) = Φ(P ) − Φ2(P ) = −(P − Φ(P ))

So we have S ⊆ S ′. Also, Q ∈ S ′ ⇐⇒ (xq, yq) = (x,−y), which implies

that x ∈ Fq. Also, if α is a solution to yq + y = 0, then all other solutions
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are given by αz, where z ∈ Fq. Since αq = −α, we have (α2)q = α2, ie.

α2 ∈ Fq. Thus α ∈ Fq2 , and the set of non-zero y-coordianates of elements of

S ′ is the set of all square roots of values of x3 + ax + b which are quadratic

non-residues in Fq. Therefore, ∃ α ∈ Fq2 \ Fq, with α2 ∈ Fq such that

∀ Q ∈ S ′, Q = (x, αy), x, y ∈ Fq.

Now Q ∈ S ′ =⇒ Φ(Q) = −Q, and we have Q−Φ(Q) = Q−(−Q) = 2Q.

Thus Q ∈ S ′ =⇒ 2Q ∈ S and we have 2S ′ := ϕ(S ′) ⊂ S. Also, it is clear

from the addition and duplication formulas that S ′ is closed under elliptic

curve addition and taking inverses, therefore S ′ < Eq2 , and hence 2S ′ < Eq2 .

Note that P − Φ(P ) = O ⇐⇒ P ∈ Eq. Also, (I − Φ) is a group

homomorphism from Eq2 to itself, since (I−Φ)(P+Q) = P+Q−Φ(P+Q) =

P − Φ(P ) +Q − Φ(Q). The image of this homomorphism is S. So we have

S < Eq2 .

Combining the two arguments above, we have 2S ′ ≤ S ≤ S ′. Recall that

|S ′| = d1|2S
′|. So we have |S| = |S ′|

d′
1

d1

, for some d′1 | d1.

We can now count the number of points in Eq2 given the number of points

in Eq.

Theorem 4.3. Let |Eq| = q + 1 + π(f). Then |Eq2 | = (q + 1)2 − π(f)2

Proof. First, observe that

S ′ = {O} ∪ {x ∈ Fq|x
3 + ax + b = 0} ∪ {x ∈ Fq|x

3 + ax + b = α2y2}

where α is as above. So

|S ′| = d1 + 2#{x ∈ Fq|x
3 + ax + b = α2y2, α ∈ Fq2 \ Fq, α

2 ∈ Fq}

45



Similarly we have

|Eq| = d1 + 2#{x ∈ Fq|x
3 + ax + b = y2, y ∈ F∗

q}

Therefore,

|S ′| + |Eq| = 2d1 + 2#{x ∈ Fq|x
3 + ax+ b 6= 0}

= 2 + 2#{x ∈ Fq}

= 2(q + 1)

So if |Eq| = q + 1 + π(f), then |S ′| = q + 1 − π(f) Also, we have

2Eq2 ⊆ Eq + S ′ ⊆ Eq2, (4.3)

since 2Eq2 ⊆ R + S. We have the following three cases.

Case 1: x3 +ax+b has no roots in Fq, ie. d1 = 1. Then Eq2 = 2Eq2 = R+S.

But d0 = d1 = d′1 = 1, so R = Eq and S = S ′, Eq ∩ S ′ = {O}. So we have

|Eq2| = |Eq||S
′| and we are done.

Case 2: x3 + ax + b has three roots in Fq, ie, d1 = d2 = 4. Here we have

|2Eq2| = 1
4
|Eq2 |, and |Eq∩S

′| = 4. So it is enough to show that 2Eq2 = Eq+S ′.

We know that 2Eq2 ⊆ Eq +S ′. To show that 2Eq2 ⊇ Eq +S ′ it is enough

to show that 2Eq2 ⊇ Eq and 2Eq2 ⊇ S ′.

Let P ∈ Eq. We need to show that P = 2Q for some Q ∈ Eq2 . Now

by Theorem 4.2, if Ē = E/F̄q, ∃Q ∈ Ē which satisfies 2Q = P . Now,

2Q = P = Φ(P ) = Φ(2Q) = 2Φ(Q), which implies 2(Q− Φ(Q)) = O. Now

if Q /∈ Eq, Φ(Q) 6= Q, so Q− Φ(Q) has order 2, ie Φ(Q) = Q + T , where T

is an involution in Eq. But

Φ2(Q) = Φ(Q + T ) = Φ(Q) + Φ(T ) = (Q+ T ) + T = Q
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Therefore Q ∈ Eq2 , which is what we wanted. The exact same argument

shows that S ′ ⊆ 2Eq2 .

The remaining case is slightly more complicated.

Case 3: x3 +ax+b has one root in Fq, ie. d1 = 2. In this case the irreducible

quadratic factor of f(x) splits in Fq2 . Let T0 be the point of order 2 given by

the root of f(x) in Fq, and let the two involutions in the extended curve be

T1 and T2 . So |S ′| ∩ |Eq| = #{O, T0} = 2, which gives |Eq + S ′| = |Eq||S′|

2
.

Now as |2Eq2| = 1
4
|Eq2 |, if we show that both inclusions in (4.3) are proper,

we will have

|Eq + S ′| =
1

2
|Eq2 |

which will give the desired result.

To prove that 2Eq2 ( Eq +S ′, it is enough to show that for some P ∈ Eq,

we have P 6= 2Q ∀Q ∈ Eq2 . Let P be any element of Eq such that P 6=

2Q ∀Q ∈ Eq, ie. P is not twice an element of Eq. (Such a P exists since Eq

is finite of even order.) If P = 2Q for some Q ∈ Eq2, as in the previous case,

we would have 2(Q− Φ(Q)) = O. Since Q− Φ(Q) ∈ S ′, we have Q− Φ(Q)

is the involution Eq ie Q− Φ(Q) = T0. But 2(Q+ T1) is also equal to P . So

repeating the above argument for Q + T1, we have

Φ(Q + T1) = Q + T1 + T0 and also

Φ(Q + T1) = Φ(Q) + Φ(T1)

= Q + T0 + Φ(T1)

=⇒ Φ(T1) = T1

which contradicts T1 /∈ Eq. So we cannot have P = 2Q for P ∈ Eq \ 2Eq and
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Q ∈ Eq2 .

Now we need to show that Eq + S ′ ( Eq2 . We know that T1, T2 ∈

Eq2 \ (Eq ∪ S ′. It is enough to show that one of T1, T2 can not be written as

U + V where U ∈ Eq and V ∈ S ′. Suppose T1 = U1 + V1 and T2 = U2 + V2,

where Ui ∈ Eq and Vi ∈ S ′ for i = 1, 2.

Now Φ(T1) = T2 and also Φ(T1) = Φ(U1) + Φ(V1) = U1 − V1. Therefore

T0 = T1 + Φ(T1) = 2U1andT0 = T1 − Φ(T1) = 2V1

Similarly, since Φ(T2) = T1, and Φ(T2) = Φ(U2) + Φ(V2) = U2 − V2, we have

T0 = T2 + Φ(T2) = 2U2andT0 = T2 − Φ(T2) = 2V2

Now since U1, U2 ∈ Eq, we have U1 + U2 ∈ Eq. But 2(U1 + U2) = 2T0 = O.

Therefore U1 + U2 = T0, which is also equal to 2U1. So U1 = U2. Also,

since V1, V2 ∈ S ′, we have V1 + V2 ∈ S ′, but as 2(V1 + V2) = O, we have

V1 + V2 = T0 = 2V1, ie., V1 = V2. But U1 + V2 = T1 6= T2 = U2 + V2, which is

a contradiction. So at least one of T1, T2 /∈ Eq2 .

This completes our proof.
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