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Abstract

Cancer therapy benefits today from the availability of new promising classes of drugs such as

therapeutic proteins. Due to their ability to specifically bind targets in the body they allow to

modulate specific chemical reactions and ultimately to modify the functional response of the

cell, such as cell growth or cell division. Targeting receptor systems by competitive inhibition

is the objective of various protein drugs in development and on the market. Many targeted

receptor systems also constitute a degradation mechanism for the drug via endocytosis and a

thorough understanding of the complex interplay between the drug’s pharmacokinetics and

its effect, is largely missing.

For complex diseases such as cancer, systems biology models of therapeutically relevant

cellular processes have proven valuable for identifying potent drug targets. So far, such

information about the dynamics of the targeted system is neglected in later stages of the drug

development process when pharmacokinetic modeling is used to guide dose finding and analyze

preclinical or clinical in vivo data. This is especially critical for therapeutic proteins where,

due to the degradation mediated by the targeted receptor, drug effect and pharmacokinetics

are inherently interdependent.

This thesis combines the points of view of systems biology and pharmacokinetics. We

present a detailed mechanistic model of the targeted cellular system that explicitly takes into

account receptor binding and trafficking inside the cell and that is used to derive reduced

models of drug degradation which retain a mechanistic interpretation. By integrating cell-

level models with established pharmacokinetic models, we translate biophysical properties

of protein drugs into a transient drug effect in vivo. We illustrate the approach for anti-

bodies against the epidermal growth factor receptor used in cancer therapy. The cell-level

pharmacokinetic/pharmacodynamic model identifies options and limits for future therapeutic

antibodies and links their inhibitory effect with genomic alteration of tumor cells.
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1 Introduction

1.1 Cancer drug development today

Cancer medicine is rapidly changing. Recent advances in many different disciplines like

chemotherapy, hormone therapy, radiotherapy and diagnostic imaging have improved our

understanding of cancer and the clinical practice. The current view on cancer development

envisions cells undergoing a series of genetic alterations which results in the six hallmarks of

cancer: (i) self-sufficiency in growth signals, (ii) insensitivity to antigrowth signals, (iii) eva-

sion of programmed cell death, (iv) limitless replicative potential, (v) sustained angiogenesis,

and (vi) tissue invasion and metastasis [50]. Since each of these alterations confers a growth

advantage, the progressive conversion of normal human cells into cancer cells is thought of

resembling Darwinian evolution [104]. Cancer therapy today is particularly influenced by

the ability of molecular cell biology to elucidate the detailed cellular processes involved in

each of these steps of cancer development. This is nicely illustrated by the development

of the drug Imatinib (Gleevec/Glivec) against a form of cancer called chronic myelogenous

leukemia (CML). CML is characterized by the alteration of a single gene, termed Bcr-Abl

whose expressed protein shows enhanced tyrosine kinase activity [116, 33]. This molecular

understanding of CML secondary allowed the development of Imatinib as an inhibitor to

the enzyme Bcr-Abl. Imatinib, in the majority of patients, leads to a normalization of the

blood cells within 3 weeks of initiation of therapy[33]. The high efficacy of Imatinib can be

attributed to the identification of Bcr-Abl as a fragile node in the cancer mediating signalling

cascade which only exists in target cells [65]. Imatinib and the underlying understanding of

the genetic and biochemical processes therefore “converted a fatal cancer into a manageable

chronic condition”1.

Such a success stimulated the development of many therapies guided by validated effects on

a defined molecular target [44, 27, 120, 37, 100, 103, 61]. Although different target therapies

have made it to the clinical practice, the development of good rational drugs remains extremely

difficult and the overall rate of new drug approvals has failed to keep pace with ever-increasing

spending on pharmaceutical research [29, 32, 59, 75, 70]. The story of Imatinib was probably

more an exception than a role model for the development of potent cancer drugs, or as Fishman

and Porter called it, it was “a low-hanging fruit” [38]. In other situations, instead of focusing

on a single hyperactive/underactive protein, this protein has to targeted in the context of

1The Lasker DeBakey Clinical Medical Research Award 2009

1



1.1. CANCER DRUG DEVELOPMENT TODAY

its cellular network. These signalling pathways are triggered by external stimulus, sensed by

the cell through cell-surface receptors [63]. The activation of such receptors is translated by

signalling pathways into a specific change in gene expression. Gene activation or suppression

ultimately leads then to a change in the cell’s behavior. Examples for such functional responses

of the cell to the external stimulus are changes in its ability to grow or differentiate, and to

undergo division or self-destruction. As examples, Fig. 1.1 depicts the core components of five

signaling pathways where a misregulation of several of these components is directly associated

with cancer development. The dynamics occurring in such signalling networks, including
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Figure 1.1: Receptor tyrosine kinase (RTK) receptor, E-Caherin, Frizzled, transforming growth factor-
β receptor (TGF-βR) and cytokine receptor receptor are examples for receptors which stimulate sig-
nalling pathways modulating gene expression and cell proliferation. The arrows and T-bars describe
an activation and inhibition, respectively. For simplicity, only the core elements of the pathways are
depicted here. The elements of the different pathways follow descriptions of signalling cascades in
Hanahan and Weinberg [50], Klipp and Liebermeister [66], and Kumar et al. [78].

circular dependencies (such as the negative feedback from MAPK to SOS in Fig. 1.1), differ

substantially from the current view on drug development which “ at its core, [...] seeks to

define a linear pathway, or causal chain, leading to disease, and then to interfere at one of

these steps – by inhibiting a crucial enzyme or blocking an important receptor, for example”

[126].

Hence, understanding signalling pathways is crucial in cancer research. Due to their com-
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1.1. CANCER DRUG DEVELOPMENT TODAY

plexity it becomes evident that for a successful development of cancer drugs reliable pre-

dictions of the impact of perturbations of the network are vital. When analyzing complex

systems in engineering, the use of mathematical modelling has been proven useful. Mathe-

matical models allow to connect knowledge about individual parts and formulate hypothe-

ses about the behavior of the sum of these parts. To overcome the limitations of current

drug development strategies and to increase the success rate when developing new drugs

the integration of mathematic modelling into the development process has been advocated

[17, 65, 148, 18, 26, 39, 58, 92]. Indeed, mathematical analysis can demonstrate that living

systems may exhibit an intrinsic robustness against various perturbations and hence many

potential drugs that specifically target a particular protein (which is considered to underlie a

given disease) have been found to be less effective than hoped [65].

Cell-level kinetic models are a language to analyse the robustness of a response to a drug

and therefore can identify and rank potential targets in cellular networks [65]. Hence, com-

putational models are of increasing relevance for target identification in drug discovery [58].

A recent prominent example is the use of a kinetic model to identify critical components in

the ErbB receptor family mediated signaling pathways [20], an important pathway for cancer

development. As a result, a therapeutic antibody was developed which targets the ErbB3

receptor and is currently in early clinical trials [130].

In the patient, the time trajectory of the drug concentration is a critical component of

drug efficacy [111]. Therefore, in addition to the increasing level of detail of systems biology

models, there exists a great need to place cell-level models in the context of the condition in

vivo [111, 109, 1]. Hence, the shift from a “target-centric” to a “biochemical network-centric”

view of drug development alone is unlikely to be sufficient to predict the in vivo effect in the

complex human system.

Another aspect is that after the target was identified, in the later stages of the drug develop-

ment process prior knowledge about the targeted system is invariably ignored when analyzing

preclinical or clinical data [80]. As a result, knowledge about the dynamics of the target in

vitro cannot be used in later stages of the drug development, where knowledge about drug

disposition in vivo has been obtained. Such knowledge is usually in the drug development

process described by pharmacokinetic/ pharmacodynamic models.

This thesis advocates to integrate the pharmacokinetics and pharmacodynamics of the

studied drug into the systems view on its effect. Second, we propose to use more mechanistic

information about cellular processes when analyzing clinical data in the later stages of drug

development.

Current pharmacokinetics describes absorption, distribution, metabolism, and excretion

of a drug in the body using empirical or semi-empirical models of the processes involved.

In contrast to systems biology, current pharmacokinetic modelling (with the exception of

physiologically based pharmacokinetic models discussed in section 5.1) is mostly a top down

3



1.1. CANCER DRUG DEVELOPMENT TODAY

approach, which relates observations to models, selected based on, e.g., established statistical

criteria (such as maximum likelihood), the precision of estimates of model parameters, and

in few cases on model evaluation techniques [35, 137, 135, 136]. However, being empirical in

nature, these models do not provide a mechanistic understanding of, for example, how the

different processes of receptor trafficking contribute to the overall pharmacokinetic profile.

We think, combining systems biology and pharmacokinetic models is particularly useful

for the optimization and development of a relatively new class of drugs, therapeutic proteins.

The therapeutic potential of proteins results from their ability to bind—with high affinity—to

specific targets such as cell-surface receptors.

In recent years, therapeutic proteins have been a major focus of research and develop-

ment activities in the pharmaceutical industry [93]. Currently, approximately 100 therapeu-

tic proteins have been approved for human use, most of them being biotechnology-derived

drug products and many more are under development [93]. Important classes of therapeutic

proteins are monoclonal antibodies, growth factors, and cytokines. Generally, therapeutic

proteins provide highly attractive but sometimes exceptional behavior in the body [76]. The

largest class of therapeutic proteins developed today are therapeutic monoclonal antibodies

(mAbs). Antibodies can interfere with specific cellular targets and signaling pathways and

have demonstrated their potential in therapies for cancer and other complex diseases [94].

Therapeutic antibodies are produced by immunization of a mouse with a specific antigen.

The subsequent immune reaction of the mouse leads to the production of antibody producing

B lymphocytes which accumulate in the spleen [94]. These cells are capable of producing

the corresponding antibody to the administered antigen, but for the production of larger

quantities of the antibody those B lymphocytes have to be fused with malignant myeloma

cells to form immortal cells, called hybridomas. This technique was developed by Koehler

and Milstein [69] and for this discovery they were awarded the 1984 Nobel prize for medicine.

Because the produced antibodies by those hybridoma cells are cloned from only one original

B lymphocyte, and hence are identical, they are also called monoclonal Antibodies (mAbs).

The use of rodent systems to produce mAbs however prevented their use in indications

in humans where prolonged dosing was required due to their high immunogenicity [82]. To

overcome this limitation chimeric, humanized, and fully human mAbs have recently been

developed.

Chimeric mAbs are developed by exchanging the regions of the human antibody genes

for those derived from the mouse which generates chimeric genes. These genes are then

introduced into eukaryotic cells which can produce chimeric antibodies that are about 70%

human [150]. For fully human antibodies the mouse from which the B lymphocyte is derived is

genetically engineered. First, the antibody gene clusters are inactivated which prevents those

mouse from producing antibodies and mature B lymphocytes. Subsequently, DNA segments

containing large parts of the human gene clusters are introduced into the mice which, after
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1.2. OBJECTIVE OF THE THESIS

being immunized with any target, enables them to produce high affinity antibodies [150]. Since

the antibodies are produced from the human antibody genes after fusing the B lymphocyte

with myeloma cells the resulting hybridomas cells produce fully human monoclonal antibodies.

Trastuzumab (Herceptin) was the first antibody for the treatment of cancer approved by

the Food and Drug Administration (FDA) in 1998. It created great interest in the scientific

community as well as outside 2. Trastuzumab is an anti-Her2 antibody used in the treatment

of breast cancer against tumors overexpressing the Her2 receptor. The development followed

the identification of the oncogene Her2/neu in 1984 [127] and its cloning [131, 22]. In 1986

Drebin, Link, Weinberg, and Greene demonstrated that an anti-HER-2 monoclonal antibody

is able to inhibit Her2/neu transformed cells [31] and the following clinical studies found

that this antibody, trastuzumab, halves the risk of tumor recurrence which corresponds to an

absolute increase in 4-year disease free survival (DFS) of 17% [110].

Other antibodies against receptors of the ErbB family on the market are Cetuximab (Er-

bitux) and Panitumumab, which inhibit the epidermal growth factor receptor (EGFR). Ce-

tuximab is currently approved for the treatment of colorectal cancer and squamous cell carci-

noma of the head and neck, Panitumumab for colorectal cancer. Additionally, three anti-ErbB

antibodies are in late clinical phases (Nimotuzumab, Zalutumumab, IMC-11F8) [107].

Due to their similarity to endogenous proteins, after binding to their cell surface target,

many protein drugs and especially antibodies are internalized into the cell by Receptor Medi-

ated Endocytosis (RME)[90, 141, 138]. Within the cell, the complex may be recycled to the

cell surface or intracellularly be cleaved [121, 139]. RME therefore mutually links the effect

of a therapeutic protein with its pharmacokinetics. As a consequence, the design and the

biophysical optimization of therapeutic proteins based on cell-based assays and preclinical

pharmacology, becomes a considerable challenge [111].

One example of a biophysical property of a therapeutic protein affecting both, the cel-

lular therapeutic effect and the PK, is the affinity of therapeutic antibodies to their tar-

get. Currently, mAbs on the market have a high receptor affinity in the sub-nM range,

but the traditional design criterion that “the best binder makes the best drug” has been

questioned[111, 24, 19]. To date, no model exists which predicts both, the pharmacokinet-

ics and the inhibitory effect of therapeutic proteins [109] and can guide the optimization of

biophysical properties of therapeutic proteins.

1.2 Objective of the thesis

This thesis systematically investigates the dependencies between systemic pharmacokinetic

models and cell-level kinetic models. First, we examine how pharmacokinetic models can

be improved when incorporating cell-level dynamics. This extends current pharmacokinetic

2the discovery of Trastuzumab by Dr. Dennis Slamon and others at UCLA was made into the film Living
Proof, directed by Dan Ireland.

5



1.2. OBJECTIVE OF THE THESIS

models and gives a rationale in which situations this extended model or already available

pharmacokinetic models should be used. Second, we analyze cell-level kinetic models of

antibody action under the conditions of a typical in vitro experiment. We investigate how drug

properties influence the potential of the antibody to inhibit the activation of the epidermal

growth factor receptor which mediates a variety of malicious cellular responses of cancer cells

such as proliferation, differentiation, survival, and angiogenesis [96]. As the final step, we

combine the in vivo and in vitro models into a cell-level pharmacokinetic/pharmacodynamic

model. This model allows to integrate preclinical pharmacokinetic data and to investigate the

biochemical properties of antibodies currently used in cancer therapy under in vivo conditions.

Using this model, we identify options and limits for the optimization of efficacy and tumor

selectivity of future therapeutic antibodies.

6



1.3. THESIS ORGANIZATION

1.3 Thesis organization

In a more detailed summary, we will perform three steps to mechanistically model the phar-

macokinetics and the inhibitory effect of antibodies used in cancer therapy.

In Chapter 2 we develop a detailed mechanistic models of the binding of therapeutic

proteins to targets on a cells surface as well as subsequent intracellular processes of antibody

degradation. We then reduce this mechanistic model to resemble empirical models currently

used in the analysis of clinical pharmacokinetic data. The mechanistic derivation of the

empirical models allows us to give a rationale in which situations to use the different models.

Further, the reduction of the detailed model connects the processes on a cell-level with the

effective dynamics on a whole body level usually determined in pharmacokinetic studies.

Chapter 3 investigates the inhibitory effect of therapeutic antibodies on the epidermal

growth factor receptor under the conditions of a typical in vitro experiment. The action of

the drug is studied in the presence of the natural ligand by extending an established model of

receptor activation. The model is used to translate biophysical properties of the antibody, like

the affinity, into a transient inhibitory effect and to predict tumor cell selectivity. Further,

under the in vitro conditions an analytical study of the receptor system allows to derive an

exact formula for the cumulative antagonistic effect of therapeutic antibodies and identifies

the synthesis rate of the receptor as the critical parameter of the cellular system regarding the

inhibitory effect of the drug. Also, we investigate drug action in a closed microenvironment of

a tumor cell where the exchange of molecules with the surrounding is limited. This identifies

ligand accumulation as a potential counter response to the drug action in such a closed system.

In Chapter 4, we develop a strategy to include a cell-level model into a whole body model

of drug disposition. We use the relations between the cell-level processes and the effective

dynamics on the whole body level determined in Chapter 2. This allows us to estimate

the number of target expressing cells which come in contact with the drug. This number

facilitates the integration of cell-level kinetics into a systemic pharmacokinetic model because

the impact of a single cell can be scaled up to an impact on the whole body level. As in

Chapter 3 we investigate the properties of therapeutic antibodies regarding their antagonistic

effect on the epidermal growth factor receptor, but here under conditions which reflect the

conditions in vivo more closely than the in vitro setting. This allows us, for the first time, to

study the optimization of biophysical properties of therapeutic proteins by coupling cellular

dynamics of the target with the drugs disposition in the body.

A final comment to the models the reader will find in the different chapters. The

systemic pharmacokinetic model will be the same in the different parts of the thesis. The

rationale of this is that the used two-compartment model has been found useful by many

authors for analyzing preclinical/clinical pharmacokinetic data of protein drug trials [30, 77,

101, 67, 147]. In contrast, we use different cell-level models in the different chapters.

7
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Figure 1.2: Illustration of the different cell-level models used in the thesis.

Fig. 1.2 illustrates the different cell-level models of receptor activation, inhibition and traf-

ficking used in this thesis. Model 1 is used to structurally characterize the impact of the

cell surface/intracellular processes on the pharmacokinetics. Model 2 and 3 lump different

processes of receptor trafficking. These descriptions of receptor activation and trafficking

are in correspondence with established models in the literature [158, 156, 161, 159, 133] and

provide experimentally determined parameter values [68, 53, 55, 54, 140] which allows us to

make quantitative predictions. A more detailed justification of the different cell-level models

is given in the different chapters (see section 2.5, 3.2, and 4.1) and their ability to act as an

interface to detailed models of signalling cascades is discussed in Chapter 5.
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2 The influence of cell level dynamics on
pharmacokinetics

In the Introduction we discussed the interdependence of the pharmacokinetics and the in-

hibitory effect of therapeutic proteins because of RME. In this Chapter, we develop a detailed

model of RME to study the impact of antibody binding and receptor dynamics on the phar-

macokinetics of the drug. In the following Sections 2.1–2.3 some basic concepts of current

pharmacokinetic modelling techniques for therapeutic proteins are presented. These concepts

and techniques will subsequently be used to derive reduced models of RME which still al-

low for a mechanistic interpretation of the parameters and can be used to analyse clinical

pharmacokinetic data.

2.1 The pharmacokinetics of therapeutic proteins

Frequently, it is said that pharmacokinetics (PK) is what the body does to the drug, and

pharmacodynamic (PD) is what the drug does to the body. Pharmacokinetic is subdivided

into the absorption of the drug, its distribution in the body, metabolic processes, and the

elimination of the drug.

Therapeutic proteins are usually administered intravenously, subcutaneously, or intramus-

cularly due to gastrointestinal enzymatic degradation and poor permeability of the gastroin-

testinal mucosa [94]. Studying absorption is therefore usually not necessary in pharmacoki-

netic studies of therapeutic proteins [90]. The distribution of therapeutic proteins is deter-

mined by their biophysical properties. Due to their large size (> 1000 Da) the distribution

through membranes into peripheral tissues is limited. Protein drugs with a size above the

glomerular filtration limit (> 60 kDa) are not significantly excreted by the kidney [94], which

contributes to the large halflife of many therapeutic proteins in the body. Also their distri-

bution in the body is typically limited to the extracellular space [114]. As discussed above,

one feature of protein drugs is their highly specific binding to epitopes expressed on certain

cells in the body. Besides the proteolysis by proteases and peptidases in the blood, liver, kid-

neys and gastrointestinal tissue, uptake subsequent to the binding to target receptors plays

a major role in the elimination of protein drugs from the body [90]. Because the number of

available target receptors and therefore the capacity of the cells to clear the drug from the

body is limited, receptor binding and RME is suspected to be a major source for the nonlinear

9



2.2. PHARMACOKINETIC COMPARTMENT MODELS

pharmacokinetic behavior that is observed in clinical data for numerous protein drugs [141].

In conclusion, the pharmacokinetic of therapeutic proteins is distinct and can simply be

summarized as long halflife with nonlinear elimination kinetics. While the long halflife of

several weeks is seen as an advantage because it minimizes the occasions the drug has to

be injected into the patient, the nonlinearity is traditionally seen as complicating the dose

finding process.

2.2 Pharmacokinetic compartment models

When aiming at analyzing preclinical/clinical pharmacokinetic data of protein drug trials,

typically empirical 1-, 2- or 3-compartmental models including linear and/or nonlinear dis-

position processes have been developed. These models have been selected based on, e.g.,

established statistical criteria (such as maximum likelihood), the precision of estimates of

model parameters, and in few cases on model evaluation techniques [35, 137, 135, 136].

Compartment systems consist of a number of homogeneous, well-mixed, lumped subsys-

tems, called compartments, which exchange with each other the modelled drug. Depending

on the type of model the compartments represent specific physiological organs (like in physi-

ologically based pharmacokinetic models) or organs lumped due to e.g. their diffusibility for

the specific drug (like in empirical pharmacokinetic models) [46]. The amount of a drug in a

compartment, Ai, for a linear system with p compartments can be described by the following

equation [46]:

d Ai
dt

=

p∑
j=1,j 6=i

kijAj −
p∑

j=1,j 6=i
kjiAi − k0iAi + ui(t) , i = 1, 2, ..., p (2.1)

where Ai is the the amount of drug in the compartment i, kij is the rate constant describing

the transport to compartment i from compartment j, and k0i denotes the rate constant of

elimination of drug from the compartment i. Also the drug is administered to the compart-

ment, which is described with the flow ui(t).

Often instead of the amount, concentrations are determined and the systems has to incor-

porate the volumes of the p compartments Vp. Therefore the system changes to

d Ci
dt

=

p∑
j=1,j 6=i

QijCj −
p∑

j=1,j 6=i
QjiCi − CLiCi + ui(t) , i = 1, 2, ..., p (2.2)

with Qij = kij ·Vj , Cj = Aj/Vj , CLi = k0i ·Vi, and Ci = Ai/Vi. An illustration for the case of

linear elimination from the central compartment (p = 1) and an additional distribution into

a peripheral compartment (p = 2) is depicted in Fig. 2.1, a and b, respectively. The excretion

from the central compartment is proportional to the drug concentration in this compartment
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Figure 2.1: Pharmacokinetic compartment models. (a) One-compartment model with linear elimina-
tion. (b) Two-compartment model with distribution into a second compartment and metabolisation of
the drug. (c) Two-compartment model with linear elimination from the first compartment, distribution
into a second compartment with saturable elimination. The drug is administered into the compartment
with rate ui(t). In case of a bolus dose ui(t) is a delta distribution at t=0.

with the factor of proportionality CL called the clearance of the drug.

For therapeutic proteins the elimation capacity is often found to be nonlinear and Michaelis–

Menten terms have often been used to analyze experimental data in order to account for the

observed nonlinearity [30, 77, 102, 67, 147] (see Fig. 2.1, c).

2.3 Target-mediated drug disposition

As discussed above, protein drugs are developed to bind with high specificity to targets in

the body like enzymes, receptors, or transporters. In case that the amount of drug bound to

the target is significant compared to the given dose, the pharmacokinetics of the drug will be

influenced by the binding.

In PK/PD modeling, target mediated drug disposition (TMDD) has been proposed as a

general semi-mechanistic model for drugs that bind with high affinity to a pharmacologic

target [88]. Although originally developed to describe effects of extensive drug target binding

in tissues, TMDD has more recently gained interest as a model for saturable elimination

mechanisms for specific peptide and protein drugs, including RME [141, 87, 84, 155]. Recently,

TMDD was extended to the situation where the binding to the target happens much faster

than the other processes and therefore a quasi steady state assumption for the complex can

be assumed [89].

Although TMDD considers pharmacological target binding as the key process controlling

the complex nonlinear processes, particular features of receptor trafficking inside the cell are
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Figure 2.2: Pharmacokinetic model of target-mediated drug disposition.

not taken into account i.e., the process by which receptors and ligands are either targeted for

intracellular degradation or recycled to the surface for successive rounds of trafficking [55].

Second, whenever a drug molecule is degraded in the TMDD setting, both, a drug and a

receptor molecule are degraded. However, for many ligands, including TNF-α, degradation

of the drug does not necessarily imply degradation of the receptor, since the receptor can be

recycled [139].

2.4 Our approach to pharmacokinetic modelling of therapeutic
proteins

The presented compartment models are empirical in nature. Hence, these models do not

provide a mechanistic understanding of how the different processes of receptor trafficking

contribute to the overall pharmacokinetic profile, which is expected to guide, e.g., lead opti-

mization or the design of more efficient dosing regiments. TMDD models are semi-empirical in

the way that they include the binding of the drug but pool the different cell-level processes in

a process which happens at a whole body level. Therefore they do not provide a mechanistic

understanding of the processes as well. Equally important, there is no theoretical background

as to when to use the different existing empirical or semi-empirical models for describing the

nonlinear pharmacokinetic of therapeutic proteins.

In this Chapter, the objective is to develop a framework for RME that is specifically tailored

to the needs in PK analysis of clinical trials by bridging the points of view in pharmacokinetics

and systems biology.

The aims are (i) to develop a detailed model that takes into account the most relevant

processes in relation to receptor trafficking; (ii) to derive reduced models of RME which

retain a mechanistic interpretation and are defined in terms of a few parameters only, (iii) to

offer guidance as to when use them, and (iv) to analyze the impact of the different processes

on the extent of nonlinearity. While our approach applies to many receptor systems in general,

we will use the epidermal growth factor receptor (EGFR) signalling pathway to illustrate the

approach. The EGFR system has been intensively studied over the past 20 years and is one
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of the most important pathways for cell growth and proliferation as well as angiogenesis and

metastasis [85]. The EGFR system comprises a tyrosine kinase receptor, which is activated

by a variety of ligands such as the epidermal growth factor (EGF) or the transforming growth

factor-α (TGF-α) [152, 153, 51]. Mathematical modelling of the EGFR system has proven

to be useful for both, measurement of rate constants [158] as well as to elucidate the effects

of receptor trafficking as an input to downstream signalling cascades [161, 133]. From a

therapeutic point of view, the EGFR system has shown to be a promising target in cancer

therapy [6, 7]. Several agents, including therapeutic proteins such as monoclonal antibodies

(mAbs), have been developed to specifically target the EGFR with some already approved

for drug treatment [5, 47, 112].

2.5 A detailed cell level model of receptor mediated endocytosis

There is a considerable amount of literature about detailed mechanistic descriptions of recep-

tor trafficking systems in the systems biology literature (see, e.g., [139, 161] and references

therein). Based on these receptor trafficking systems, our approach is to build a general de-

tailed mechanistic model of RME that takes into account the most relevant kinetic processes

of drug binding and receptor trafficking inside the cell. Detailed models derived from the

underlying biochemical reaction network have the advantage of a mechanistic interpretation

of the kinetic processes and estimated parameters. In [125], a cell-level model of the cy-

tokine granulocyte colony-stimulating factor (G-CSF) and its receptor was incorporated into

a pharmacokinetic/pharmacodynamic model to allow for analyzing the life span and potency

of the ligand in vivo. However, often these advantages come along with the disadvantage

of containing more parameters which, e.g., in population PK analysis of clinical trials may

result in poorer performance in the model selection process, since models containing more pa-

rameters are usually penalized by the corresponding model selection criteria. In this Section,

we present a detailed mechanistic model of RME that explicitly takes into account receptor

binding and trafficking inside the cell. This model is in the subsequent Sections used to derive

reduced models of RME which are suitable for PK analysis and at the same time retain a

mechanistic interpretation.

In the following description the term ’ligand’ refers to both, a physiological ligand as well

as an exogenous drug ligand, since the described processes are identical for both. We propose

the following detailed model of RME of a ligand as schematically represented in Fig. 2.3.

The ligand Lex is present in the extracellular space and reversibly binds to free receptor Rm

at the cell membrane with association rate constant kon to form the ligand-receptor complex

RLm that dissociates with rate constant koff . The complex is internalized with the rate

constant kinterRL forming an endosome. The internalized ligand-receptor complex RLi is either

recycled to the membrane with the rate constant krecyRL, degraded with the rate constant
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Figure 2.3: Schematic representation of the detailed model of receptor mediated endocytosis. See text
for description.

kdegRL to RLdeg, or dissociates with the rate constant kbreak. The dissociation results in the

subsequent degradation of the ligand Ldeg and the availability of the free receptor Ri inside

the cell. Free intracellular receptor Ri is recycled to the membrane with the rate constant

krecyR and free membrane receptor Rm is internalized with the rate constant constant kinterR.

Inside the cell, the receptor Ri is produced with the rate ksynth and degraded with the rate

constant kdegR.

Based on the law of mass action, the rates of change for the various molecular species are

given by the following system of ordinary differential equations (ODEs):

dLex/dt = koff ·RLm − kon/(VγNA) ·Rm · Lex (2.3)

dRm/dt = koff ·RLm − kon/(VγNA) ·Rm · Lex + krecyR ·Ri

−kinterR ·Rm (2.4)

dRLm/dt = kon/(VγNA) ·Rm · Lex − koff ·RLm − kinterRL ·RLm

+krecyRL ·RLi (2.5)

dRLi/dt = kinterRL ·RLm − kbreak ·RLi − krecyRL ·RLi

−kdegRL ·RLi (2.6)

dRi/dt = kinterR ·Rm − krecyR ·Ri + kbreak ·RLi − kdegR ·Ri

+ksynth (2.7)

where NA is Avogadro´s number and Vγ is the volume of extracellular space per cell. In

the above equations, all variables are expressed in number of molecules. All parameters
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are first-order rate constants in units [1/time] except for ksynth, which is a zero-order rate

constant in units [molecules/time], and kon which is a second-order rate constant in units

[1/(concentration·time)]. The factor 1/(VγNA) ensures conversion of units from molar con-

centration to number of molecules. With respect to the receptor, the above equations com-

prise the following three overall processes (cf. Fig. 2.3): (1) synthesis and degradation; (2)

distribution of the different receptor species within and between the cytoplasm and the cell

membrane, and (3) ligand-receptor interaction. With respect to the ligand, its disposition

processes consist of the three overall processes: (i) binding to the receptor; (ii) internalization

of the ligand-receptor complex; and (iii) intracellular degradation.

Table 2.1: Parameter values for the EGF/EGFR system. All parameter values have been extracted
from Hendriks et al. [55, 53] and Shankaran et al. [133]. See also Section “RME for the EGF/EGFR
system”.

Parameter Unit Value

1 kon nM−1 · h−1 5.82

2 koff h−1 14.4

3 R
(SS)
m molecules 2 · 105

4 krecyR h−1 3.84

5 kinterR h−1 4.2

6 kdegR h−1 0.96

7 krecyRL h−1 1.2

8 kinterRL h−1 15

9 kdegRL h−1 1.2

10 Vγ l · cell−1 4 · 10−10

The detailed model and its subsequent derived reduced versions will be analyzed using

experimentally measured parameters for the degradation of the epidermal growth factor,

binding to the epidermal growth factor receptor and subsequent internalization [55, 53]. The

rate constants of the corresponding reactions are listed in Table 2.1.

Hendriks et al. [55, 53] explored EGF as ligand to measure rate constants of the EGFR

system. However, not all rate constants of the herein proposed detailed model of RME were

explicitly measured in [55, 53]. Since EGF is predominantly degraded from the EGF-receptor

complex [139] rather than from the free form, we set kbreak = 0 resulting in klyso = kdegRL 6= 0 .

Since the parameter ksynth was not available in literature, we used the steady state assumption

for the receptor system prior to any ligand administration and the experimentally measured

steady state number of membrane receptor R
(SS)
m [133] to determine ksynth using the relation
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ksynth = kdegR · R
(SS)
i with R

(SS)
i = R

(SS)
m · kinterR/krecyR. The initial number of receptors

are Rm(0) = R
(SS)
m , Ri(0) = R

(SS)
i , and RLm(0) = RLi(0) = 0; the initial concentration of

extracellular ligand is Lex(0) = 40 nM.

2.6 Model reduction
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Figure 2.4: Models of receptor mediated endocytosis of different resolution: Detailed model (Model
A), reduced model of saturable distribution into the receptor system with linear degradation (Model B),
and reduced model of saturable degradation (Model C). See text for details.

One objective of this study is to derive and analyze reduced models of RME that capture the

impact of receptor dynamics on the distribution and elimination of a ligand and that still allow

for a mechanistic interpretation. While during short time intervals the transient redistribution

processes between the different receptor speciesRm, RLm, RLi andRi may be of interest, these

are usually assumed to be negligible on time scales of interest in pharmacokinetics. Therefore,

our approach to reduce the detailed RME model will be based on the assumption that the

receptor species Rm, RLm, RLi and Ri are in quasi-steady state. In order to finally derive

reduced models of RME, it is necessary to make an additional assumption on the time-scale of

receptor synthesis and degradation. We distinguish the following two scenarios: (1) the time

scale of receptor synthesis and degradation is slow in comparison to the time scale of ligand

disposition. In this case, we formally set ksynth = kdegR = kdegRL = 0. As a consequence,

the total number of receptors in the system remains constant. Or, (2) the time scale of

receptor synthesis and degradation is fast, i.e., comparable to the redistribution processes

of the different receptor species. The reduced models are derived under the quasi-steady

state assumption that the receptor redistribution processes are much faster than the ligand

pharmacokinetics. This assumption is of the same type as the assumption underlying the

Michaelis- Menten model of enzyme reactions, where it is assumed that the complex formation,

dissociation and catalytic transformation are much faster than the transformation of substrate

into product. In order to finally derive reduced models, we have to make an additional

assumption on the time-scale of receptor synthesis and degradation. There are three different
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scenarios: receptor synthesis and degradation is (i) as fast as receptor redistribution (or

faster); (ii) slower than the time scale of ligand pharmacokinetics; or (iii) at an intermediate

time scale, i.e., comparable or faster than ligand PK but slower than receptor redistribution.

The first two scenarios correspond to our fast and slow scenario. Under these assumptions it is

possible to either treat receptor synthesis and degradation the same way as the redistribution

processes (in the fast scenario) or neglect it and treat the total amount of receptor as a

constant (in the slow scenario), since in the latter it would not impact the total number of

receptors on the time scale of interest.

Both scenarios will be used in the following to establish a link between the reduced and

the detailed model.

In the third scenario, however, receptor synthesis and degradation would need to be taken

into account in terms of an additional ODE. Unless further assumptions are made, this would

require to consider the full system of eqs. (2.3)-(2.7)—which is not suitable for PK parameter

estimation in clinical trials.

Reduced model of saturable distribution into the receptor system and linear
degradation (Model B)

The idea in deriving a reduced model of RME is to use the quasi-steady state assumption for

the receptor system (RS). This transforms the differential equations (2.4)-(2.7) into algebraic

equations for Rm, RLm, RLi, Ri. For a given number of extracellular ligand molecules Lex,

these algebraic equations can be solved explicitly. This allows us to compute the total number

of ligand molecules in the receptor system LRS = RLm +RLi as a function of the extracellular

number of ligands Lex. Based on LRS, the quasi-steady state number of intracellular ligand-

receptor complexes RLi can be computed, which determines the extent of elimination.

Model B describes the evolution of the total number of ligands Ltot = Lex + LRS in form

of the following ODE:

dLtot/dt = −kdegLRS with (2.8)

LRS =
BmaxLex

KM + Lex
(2.9)

Lex =
1

2

(
Ltot −Bmax −KM +√

(Ltot −Bmax −KM )2 + 4KMLtot

)
. (2.10)

The equations comprise three parameters: the maximal ligand binding capacity Bmax of the

receptor system (in units molecules), the number of extracellular ligand molecules correspond-

ing to a half-maximal binding capacity KM (in units molecules), and the degradation rate

kdeg (in units 1/time). In this reduced model the combination of saturable distribution and

linear degradation results in the overall saturable elimination of the ligand.
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For the two scenarios of slow or fast receptor synthesis and degradation, the functional

relation between the parameters Bmax, KM and kdeg and the parameters of the detailed

model of RME can be established. In the case of slow receptor synthesis and degradation, it

is

Bmax = R0 ·
kbreak + krecyRL + kinterRL

kbreak + kinterRL + krecyRL + kinterRL · kbreak/krecyR
(2.11)

KM = KD ·
VγNA · kbreak

(
1 + kinterRL

koff
+

krecyRL

kbreak

)
kbreak + kinterRL + krecyRL + kinterRL · kbreak/krecyR

(2.12)

kdeg =
kbreak · kinterRL

kinterRL + kbreak + krecyRL
, (2.13)

where R0 is the total number of receptors and KD = koff/kon denotes the dissociation constant

of the ligand-receptor complex. In the case of fast receptor synthesis and degradation, the

relation between the parameters is

Bmax =
ksynth

kdegR
·

krecyR · (krecyRL + klyso + kinterRL)

kinterRL · (klyso + krecyR · kdegRL/kdegR)
(2.14)

KM = KD ·
VγNA · kinterR · (krecyRL + klyso + kinterRL · klyso/koff)

kinterRL · (klyso + krecyR · kdegRL/kdegR)
(2.15)

kdeg =
klyso · kinterRL

kinterRL + klyso + krecyRL
, (2.16)

with klyso = kbreak + kdegRL.

Reduced model of saturable degradation (Model C)

The proposed Model C (see Fig. 2.4C) is a further reduction of Model B. It is based on

the additional assumption that the amount of ligand distributed into the receptor system is

negligible in comparison to the total amount of ligand molecules, i.e., Ltot = Lex +LRS ≈ Lex.

More formally, Model C can be derived from Model B under the assumption

Bmax

KM + Lex
� 1, (2.17)

which implies LRS � 1 and thus Ltot ≈ Lex from eq. (2.9). Substituting Lex by Ltot in

eq. (2.9) and LRS into eq. (2.8) yields the ODE for the total number of ligand molecules:

dLtot/dt = − VmaxLtot

KM + Ltot
. (2.18)

The model comprises two parameters: the maximal elimination rate of ligand molecules Vmax

(in units molecules/time) and the number of ligand molecules KM , at which the elimination
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rate is half-maximal. Exploiting the relation

Vmax = kdeg ·Bmax, (2.19)

we obtain the functional relations between Vmax and the parameters of the detailed model

of RME (Model A). In the case of slow receptor synthesis and degradation, the functional

relationship is given by

Vmax = R0 ·
kbreak · kinterRL

kbreak + kinterRL + krecyRL + kinterRL · kbreak/krecyR
(2.20)

and KM is defined as in eq. (2.12). In the case of fast receptor synthesis and degradation, it

is

Vmax =
ksynth

kdegR
·

klyso · krecyR

klyso + krecyR · kdegRL/kdegR
(2.21)

and KM is defined as in eq. (2.15).

2.7 Integration of RME into compartmental PK models

Model C

+

kon

koff

kinterRL

krecyRL

kbreak

krecyR kinterR

RLm

RLiRi

kdegR
ksynth

kdegRL

RLdeg

C2

Vmax

KM

C1 Cllin

Model B

R +

kbreak

krecyR kinterR

RL

Ldeg

Ri

kdegR
ksynth

kdegRL

RLdeg

break

interR

RLiRLi

break

interR

Cex

CLRS

Bmax, KM

CRS

q12q21

C1 Cllin

q12q21

V1

V2

V1

V2

Figure 2.5: Two two-compartment models with linear clearance from the central compartment and
RME based on Model B (left) and Model C (right) in the peripheral compartment.

In order to facilitate the transfer of reduced models of RME into compartmental PK models

underlying PK data analysis and for use in the example of therapeutic protein receptor inter-

action, we explicitly state the system of ODEs for a two-compartment PK model. The model

comprises a central compartment (volume V1 (in units volume) and ligand concentration C1

(in units mass/volume)) from which linear elimination CLlin (in units volume/time) takes

place and a peripheral compartment (volume V2 and total ligand concentration C2), where

saturable elimination via receptor mediated endocytosis CLRS takes place (see Figure 2.5). In
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the peripheral compartment, we further distinguish between the concentration CRS within the

receptor system and the extracellular concentration Cex. The inter-compartmental transfer

flows are denoted by q12 and q21 (in units volume/time).

As in this Chapter we are interested in how to represent RME in PK models, the below

mentioned system of ODEs based on the reduced Models B and C represent the proposed

structural PK model that can be used for parameter estimation in PK data analysis of non-

clinical and clinical trials. The parameter values are determined by performing a fit of the

model to the specific in vivo data. Alternatively, the model might be used to scale-up in vitro

derived RME parameter values to the in vivo situation.

If Model B is used to describe the elimination by RME, the system of ODEs is

V1 · dC1/dt = q21 · Cex − q12 · C1 − CLlin · C1 + dosing (2.22)

V2 · dC2/dt = q12 · C1 − q21 · Cex − CLRS · CRS, with (2.23)

CRS =
Bmax · Cex

KM + Cex
(2.24)

Cex =
1

2

(
C2 −Bmax −KM +√

(C2 −Bmax −KM )2 + 4KMC2

)
, (2.25)

where dosing denotes a mass inflow (in units mass/time) of, e.g., an i.v. infusion over a given

time. The parameter Bmax denotes the total maximal ligand binding capacity in mass per

volume or mol per volume, KM denotes the concentration at which the binding capacity is

half-maximal, CLlin and CLRS denote the total elimination capacities (in units volume/time).

In terms of parameter estimation, the PK model contains eight parameters: V1, V2, q12, q21,

CLlin, CLRS, Bmax and KM , plus additional variables relating to dosing.

If Model C is used to describe the elimination by RME, the system of ODEs is

V1 · dC1/dt = q21 · C2 − q12 · C1 − CLlinC1 + dosing (2.26)

V2 · dC2/dt = q12 · C1 − q21 · C2 −
Vmax · C2

KM + C2
, (2.27)

where Vmax denotes the total maximal elimination (in units mass/ time), and all remaining

parameters are defined as above. In terms of parameter estimation, the PK model contains

seven parameters: V1, V2, q12, q21, CLlin, Vmax and KM , in addition to the parameters relating

to dosing.

If the reduced models of RME are used as part of structural PK models to estimate pa-

rameters in the course of clinical data analysis, the question arises whether or not the identi-

fied RME parameters Bmax, KM , kdeg and Vmax allow for a mechanistic interpretation, e.g.,

whether Bmax can be interpreted as the maximal RME ligand binding capacity. This question

is tightly linked to the question of identifiability of model parameters, sometimes referred to
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as the inverse problem. Identifiability has been studied in detail in the context of compart-

mental models (see, e.g., [46, Chap. 5-9]). In general, the identifiability of model parameters

depends on the structural model (number of compartments, compartment to which the RME

process is linked, existence of additional routes of elimination etc.), prior knowledge of model

parameters and the quality of the experimental design [46, Chap. 5].

2.8 Protein distribution and elimination by RME

With respect to the pharmacokinetics of therapeutic proteins, two aspects of RME are of

particular importance:

1. distribution as a consequence of the drug binding to the receptor and subsequent inter-

nalization of the complex; and

2. elimination as a consequence of endocytosis.

Unfortunately both processes typically cannot be differentiated experimentally in pharma-

cokinetics. Model B explicitly takes into account the amount of drug LRS distributed in the

receptor system and the elimination by intracellular degradation, e.g., lysosomes. While the

elimination is a linear process in terms of LRS, the distribution into the receptor system itself

is a saturable process, specified in terms of Bmax and KM . Model C is derived from model

B by assuming in addition that LRS is negligible in comparison to the extracellular amount

Lex. In view of the above two sub-processes, this is equivalent to the assumption that the

distributional aspect of RME can be neglected. Notably, even if the distributional aspect

is negligible, the receptor system could still very efficiently transport ligand molecules into

the cell, where they are subsequently degraded. This can be explained from eq. (2.19). It

states that the maximal elimination rate Vmax is the product of the maximal ligand binding

capacity Bmax and the degradation rate constant kdeg. The maximal elimination rate Vmax

may still be large due to a large kdeg, even if Bmax is small. The latter implies a negligible

amount of ligand LRS within the receptor system. The receptor system acts as a mechanism

that transports ligand molecules into the cell to eventually degrade them. Whether or not

the receptor system also serves as a distribution phase is independent from the elimination

aspect. This yields the following guidance for the usage of the two reduced models:

Model B: Elimination and distribution of ligand into the receptor system are important

processes to be considered.

Model C: The distribution of ligand into the receptor system can be neglected, only the

elimination process is important, which in this case is non-linear.

Based on Model B and the computable criterion (2.17) it can easily be checked whether the

condition for the applicability of Model C are fulfilled. This will be demonstrated for the

EGF/EGFR system in Section 2.10 (see Figures. 2.6 and 2.7).
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The elimination process of RME is specified in terms of the parameters Vmax and KM .

Noteworthy, the maximal elimination rate Vmax is independent of the processes of complex

formation (kon) and dissociation (koff) of the receptor-ligand complex. However, the param-

eters kon and koff influence the amount of extracellular ligand molecules KM , at which the

elimination rate is half-maximal.

2.9 Nonlinear PK caused by RME

In this Section, we investigate the extent of nonlinearity in the context of the Michaelis-

Menten model defined in eqs. (2.26)-(2.27). We aim to examine the effect of drug and cell

properties on the nonlinearity of the pharmacokinetics, e.g., different drug affinities to the

receptor (different kon and koff values) or different rates of internalization and recycling of the

drug in different cells.

In the chosen setting of the two-compartment PK model (cf. eqs. (2.26)-(2.27)), the total

clearance CLtot is given by

CLtot = CLlin + CLRS = CLlin +
Vmax

KM + C
, (2.28)

where C denotes the relevant ligand concentration in the RME compartment (e.g., C2 in

eq. (2.27)). While the linear clearance is constant, the clearance attributed to RME varies be-

tween Vmax/KM for small ligand concentrations and 0 for high ligand concentrations. There-

fore, we consider the quotient Vmax/KM as a measure of the extent of nonlinearity, i.e., the

increase in total clearance for small ligand concentrations.

In order to jointly analyze the slow and the fast receptor synthesis and degradation scenario,

we set

R0 = Rm +Ri =
ksynth

kdegR
·
(

1 +
kinterR

krecyR

)
(2.29)

and replace the quotient ksynth/kdegR in eq. (2.21) by R0/(1 + kinterR/krecyR) according to

eq. (2.29). Moreover, we extend the definition of klyso to the slow scenario by setting klyso =

kbreak in this case (note: for the fast scenario klyso = kbreak + kdegRL). Then, the extent of

nonlinearity for both, the fast and the slow scenario, is given by

Vmax

KM
=

R0

VγNA
· kon

koff
kinterRL

(
1 +

krecyRL

klyso

)
+ 1
·

 1(
1 + kinterR

krecyR

)(
kinterR
krecyR

)
p

, (2.30)

where p = 0 for the slow scenario and p = 1 for the fast scenario. The above equation allows

us to study in detail the influence of the various parameters on the extent of nonlinearity.

It can be inferred from Table 2.2 that ligand-specific, receptor system-specific as well as
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mixed parameters influence the extent of nonlinearity of the PK: nonlinearity increases for

higher affinity drugs (kon) and cell types, which have a higher receptor concentration at the

surface of the cell membrane (R0, krecyR) and faster degradation processes (klyso etc). In

contrast, higher values of koff , krecyRL and higher kinterR, kdegR will decrease the extent of

nonlinearity by resulting in a lower number of intracellular ligand receptor complexes, free

receptor molecules, or a smaller number of receptor molecules at the cell surface membrane.

Table 2.2: Contribution of the different parameters to the extent of nonlinearity. With increasing
value of the corresponding parameter the extent of nonlinearity will increase (N) or decrease (H). For
each parameter, it is indicated by RS or L whether it is related to the receptor system or the ligand,
respectively.

Parameter Nonlinearity RS or L

1 R0 N RS

2 krecyR N RS

3 kon N L

4 klyso N RS & L

5 kinterRL N RS & L

6 koff H L

7 kinterR H RS

8 krecyRL H RS & L

In order to more clearly highlight the contribution of the dissociation constant KD, we also

give the following alternative representation of eq. (2.30):

Vmax

KM
=

R0

VγNA
· 1

KD
· 1

1
kinterRL

(
1 +

krecyRL

klyso

)
+ 1

koff

·

 1(
1 + kinterR

krecyR

)(
kinterR
krecyR

)
p

. (2.31)

As can be inferred from the above relation, the extent of nonlinearity can be very different

for ligands with the same dissociation constant KD, but different absolute values of koff . The

difference depends on the relative magnitude of the two terms in the first denominator in

eq. (2.31), i.e., 1/koff to 1/kinterRL · (1 + krecyRL/klyso).

2.10 Case study: modelling zalutumumab (2F8) disposition

The analysis of drug-EGFR interaction are performed using data from the monoclonal anti-

body zalutumumab (2F8), as published by Lammerts van Bueren et al. [147]. Zalutumumab

is a human IgG1 EGFR antibody that potently inhibits tumor growth in xenograft mod-

23



2.10. CASE STUDY: MODELLING ZALUTUMUMAB (2F8) DISPOSITION

els and has shown encouraging antitumor results in a phase I/II clinical trial [13, 8]. We

transformed the originally published system of difference equations [147, Supplement] into

the corresponding continuous system of ordinary differential equations1 (ODEs):

d

dt
Apl = kipAint − kpiApl − kelApl (2.32)

d

dt
Aint = kpiApl − kipAint − kb

(
B̂max(Aint/Vint)

h

(Aint/Vint)h +Kh
M

−Ab

)
(2.33)

d

dt
Ab = kb

(
B̂max(Aint/Vint)

h

(Aint/Vint)h +Kh
M

−Ab

)
− k̂degAb, (2.34)

where Apl, Aint and Ab represent the amount of therapeutic protein in the plasma, interstitial

and binding compartment, respectively; Vint the interstitial volume, kpi and kip the rate con-

stants for transfer between the plasma and interstitial compartment, kb the rate constant for

binding to and dissociation from EGFR, and kel the elimination rate constant. Furthermore,

k̂deg denotes the rate constant for elimination by EGFR internalization and degradation,

B̂max the maximal binding capacity of the therapeutic protein to EGFR, KM the concen-

tration corresponding to B̂max/2, and h the Hill factor. The initial amount of drug Apl(0)

and the parameters are listed in Table 2.3. The reported value of KM = 0.5µ g/ml did not

allow us to reproduce the results in [147, Fig.1A]. Only a value of KM = 0.05µ g/ml exactly

reproduced the in silico data, hence we choose the corrected value for subsequent analyses.

Amounts are converted to concentrations by dividing by the corresponding volume.

Transforming the system of ODEs (2.32)-(2.34) from units [mg/kg] to [mg/ml] by dividing

by the corresponding volumes yields equations for Cpl = Apl/Vpl, Cint = Aint/Vint, Cb =

Ab/Vint, in terms of the following scaled parameters q12 = Vpl · kpi, q21 = Vint · kip, CLlin =

kel ·Vpl, Bmax = B̂max/Vint, CLRS = k̂deg ·Vint. The model (2.32)-(2.34) scaled to units [mg/ml]

can be directly compared to our PK model (2.22)-(2.25) with C1 = Cpl, Cex = Cint and

CRS = Cb, parameterized with the scaled parameters above. We remark that alternatively,

our compartmental PK models could have been stated in units [mg/kg].

Influence of receptor system properties on RME

We illustrate the approximation features of the two reduced models for predicting concentration-

time profiles of the ligand in comparison to the detailed model based on the EGF/EGFR

system. The initial concentration is Cex(0) = 40 nM. In Fig. 2.6 (left), the predictions of the

extracellular EGF concentration Cex is shown for the three Models A, B, & C. All models

result in very similar concentration-time profiles: Almost instantaneously, the amount of lig-

1The originally published equations in [147, Supplement] are identical to a certain discretization of the system
of ODEs (2.32)-(2.34). The advantage of stating the system as continuous ODEs is that subsequently any
numerical scheme can be used to solve them, in particular high accuracy ODE solver with adaptive step
size control.
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Table 2.3: Parameter values used by Lammerts van Bueren et al. [147]; KM has been corrected, see
text for details. Vpl represents the plasma volume.

Parameter Unit Value

1 kb h−1 0.069

2 kpi h−1 0.043

3 kip h−1 0.043

4 kel h−1 0.0055

5 Vint ml 70

6 Vpl ml 35

7 KM µg ·ml−1 0.05

8 B̂max mg · kg−1 2

9 k̂deg h−1 0.005

10 Apl(0) mg · kg−1 2 and 20

11 h 1.0

and in the RS is in equilibrium. Due to the high concentration of ligand in comparison to

the concentration of receptor, the RS is saturated and the ligand is eliminated at a constant

rate. Between approximately 40-60 h, the system undergoes a transition from saturated to

non-saturated elimination, which is manifested in the linear decline in the final phase (in the

semi-logarithmic representation). For the EGF/EGFR system, the detailed model of RME

is well approximated by Model B and also by Model C, the latter taking into account only

the apparent saturable elimination. Based on the predictions of Model B, we computed the

amount of ligand LRS in the receptor system. In accordance with eq. (2.17), LRS is negligible

in comparison to the extracellular EGF concentration (cf. Fig 2.7, solid line).

In order to study the impact of LRS on the approximation quality of Model C, we artificially

decrease kdegRL by a factor of 10. All other parameters of the detailed Model A, including the

initial EGF concentration, are identical. Parameters of Model B and C have been recalculated

according to eqs. (2.14)-(2.16) and (2.21)+(2.15), respectively, resulting in particular in an

increased maximal binding capacity Bmax. The predictions of the concentration-time profile

of the extracellular EGF concentration Cex based on the three Models A, B & C are shown

in Fig. 2.6 (right). While Models A and B give almost identical results, the prediction based

on Model C differs significantly. Model C over-predicts the extent of elimination by RME. As

shown in Figure 2.7 the over-prediction corresponds to periods in time where the assumption

(2.17) is violated: While Bmax/(KM +Cex) is small for both settings up to time 60 h, it starts

to increase thereafter, in particular for the setting corresponding to Fig. 2.6 (right).
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Figure 2.6: Concentration-time profile of the extracellular ligand concentration for the Model A ( •◦ ),
Model B ( �� ) and Model C ( �♦ ). Left: Parameter values used according to Table 2.1. Right: As in
left Figure, but decreasing kdegRL 10 fold.
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Figure 2.7: Evolution of the ratio Bmax/(KM + Cex) for the two scenarios shown in Fig. 2.6 left
( ) and right ( ).

Influence of different cell types on RME

The detailed model A allows us to analyze the influence of processes on the overall disposition

of ligand in the extracellular space such as, e.g., the ligand receptor internalization rate

constant kinterRL. Alterations in kinterRL have been observed experimentally [154, 113] and

could be the result of a mutation of the EGF receptor. In view of eq. (2.30) we would expect

a decrease in the overall elimination capacity with decreasing internalization rate constant

kinterRL. Figure 2.8 (left) shows the impact of an altered kinterRL on the concentration-time

course of EGF with Cex(0) = 40 nM. As can be seen, cells with a reduced internalization

rate constant kinterRL/4 and kinterRL/16 show a much lower apparent elimination than the

reference cells with the rate constant kinterRL. The difference in the apparent elimination

does not only depend on the absolute magnitude of change of kinterRL, but more precisely on

the magnitude of change of 1/kinterRL · (1 + krecyRL/klyso) in relation to 1/koff , as can been
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inferred from eq. (2.31). Changes in kinterRL will have less impact, if 1/koff is large. This can

be seen in Figure 2.8 (right), which shows the same situation as in the left Figure, but with

koff decreased by a factor of 100 (we also decreased kon by the same factor in order to keep

KD constant).
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Figure 2.8: Illustration of the dependence of RME on the rate of internalization using the detailed
model of RME (Model A). Parameter values according to Table 2.1. Left: concentration-time profiles
of the extracellular ligand EGF (Lex) for three different internalization rate constants of the ligand–
receptor complex: kinterRL ( ), kinterRL/4 ( ), kinterRL/16 ( ). Right: same as before, but with
decreased association and dissociation rate constants: kon/100 and koff/100, respectively. Note that
KD is identical in the left and right graphics.

In Fig. 2.8, we studied the impact of different internalization rate constants kinterRL on

RME. An altered kinterRL could, e.g., result from a mutation in the EGF receptor, as it has

been observed experimentally [154]. Our analysis in Section 2.9 shows that the ligand elim-

ination rate is affected by various processes inside the cell. For example, the elimination

rate decreases with decreasing complex internalization rate constant, but the difference is

much less pronounced for a ligand with decreased association and dissociation rate constants

kon and koff—even though the dissociation constant KD is the same in both scenarios (see

Fig. 2.8, left vs. right). From the detailed Model A, this phenomenon is understandable: given

a ligand that forms a complex with rate constant kon, once the ligand-receptor complex is

formed at the membrane, its fate is a balance between dissociation (specified in terms of koff)

and internalization (specified in terms of kinterRL). If, e.g., koff/kinterRL � 1 then the complex

will predominantely be internalized. Based on KD alone, this property of receptor systems

can not be observed. The ratio koff/kinterRL has recently been introduced as one of two key

parameters to characterize different cell surface receptor systems (termed the consumption

parameter) [133]. In general, our analysis shows that reduced ligand elimination from the

extracellular space can be due to altered processes inside the cell other than the velocity of

internalization of the complex. The influences of the processes can be deduced from eq. (2.30)

and is summarized in Table 2.2. The nonlinearity increases with parameters that accelerate’

the processes of receptor availability at the surface (R0, krecyR) or that accelerate’ the trans-
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2.11. RME IN THE MONOCLONAL ANTIBODY/EGFR SYSTEM

port and intracellular degradation of extracellular ligand (kon, kinterRL, klyso). Counteracting

processes (related to the parameters koff , kinterR, krecyRL) decrease the extent of nonlinearity.

2.11 RME in the monoclonal antibody/EGFR system

In this Section we will illustrate how our unified theoretical approach to RME allows for

resolving seemingly contradictory statements about the performance of empirical models of

RME. In [147], Lammerts van Bueren et al. reported about a preclinical study involving a

mAb against EGFR in monkeys and their subsequent data analysis. They developed the

two-compartment pharmacokinetic model comprising a first-order elimination of the mAb

from plasma, a binding compartment (representing EGFR-expressing cells) that equilibrates

with the interstitial compartment, and a saturable internalization and degradation of bound

mAb. Lammerts van Bueren et al. concluded that the observed nonlinear decrease of mAb

concentrations in cynomolgus monkeys could not be explained by a saturable elimination in

terms of a Michaelis-Menten model and proposed an alternative model, which described the

data well. In a different study, the Michaelis- Menten model was reported to successfully

describe in vivo data for a monoclonal antibody [67].

The model proposed in [147] is comparable to the two-compartment model introduced in

the Section 2.7, eqs. (2.22)-(2.25). In order to understand the inferences made by Lammerts

van Bueren et al. [147], we simulated their model defined in eqs. (2.32)-(2.34) and compared

the results to the correspondingly parameterized Models B and C (see Fig 2.9, left). Since

the experimental data presented in [147] were not available and since model simulations and

data were reported to be in good agreement, we used the Lammerts van Bueren model as

a surrogate for the experimental data. As in [147], we choose a high and low initial mAb

input of 2 mg/kg and 20 mg/kg. While the predicted mAb plasma concentrations based on

Model B are identical to the prediction based on the Lammerts van Bueren et al. model,

predictions based on Model C deviate significantly. A closer inspection reveals that the

assumption Bmax/(KM +Cex(0))� 1 is violated for the low dose of 2 mg/kg. Consequently,

the amount of mAb inside the RS cannot be neglected and we would expect to see deviations

between predictions based on Model B and C. Hence, the use of a Michaelis- Menten based

nonlinear elimination in the interstitial compartment, which neglects the drug distributed into

the receptor system, leads to an over-prediction of drug elimination by RME (see Figure 2.9,

left).

The difference between the predictions based on Model B and C should disappear, if the

maximal binding capacity is sufficiently decreased. This is shown in Figure 2.9 (right), where

the binding capacity Bmax has been decreased to one 20th of its original value.

In summary, the inference made in [147] that a Michaelis- Menten term is not adequate

for modeling the nonlinearity present in the data is valid for the specific conditions of their
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experimental design. However, this cannot be generalized to a statement about the validity

of the Michael- Menten approximation of RME, as can be seen from Fig. 2.9 (right).
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Figure 2.9: Comparison of model predictions for zalutumumab (2F8) based on the Lammerts van
Bueren et al. model ( •◦ ) and the herein proposed compartment models (2.22)-(2.25) ( �� )and (2.26)-
(2.27) ( �♦ ). Left: parameterization as given in Table 2.3. Right: maximal receptor capacity Bmax

decreased to one 20th of the original capacity.

2.12 Summary of this chapter

Receptor mediated endocytosis plays a major role in the disposition of therapeutic protein

drugs in the body. It is suspected to be a major source of nonlinear pharmacokinetic behav-

ior observed in clinical pharmacokinetic data. So far, mostly empirical or semi-mechanistic

approaches have been used to represent RME [30, 77, 102, 67, 147, 35, 137, 135, 136]. A

thorough understanding of the impact of the properties of the drug and of the receptor sys-

tem on the resulting nonlinear disposition was still missing, as is how to best represent RME

in pharmacokinetic models. For example, a Michaelis-Menten based RME model as part of

a PK model allowed for describing data in one PK data analysis (e.g., [67]), it failed to do

so in another (e.g., [147]). Due to lack of a sound theoretical basis to understand the differ-

ent performances of empirical models, this certainly was an unsatisfactory situation. In this

Chapter, we presented a detailed mechanistic model of RME that explicitly takes into account

receptor binding and trafficking inside the cell and that is used to derive reduced models of

RME which retain a mechanistic interpretation. We find that RME can be described by an

extended Michaelis-Menten model that accounts for both the distribution and the elimina-

tion aspect of RME. If the amount of drug in the receptor system is negligible a standard

Michaelis-Menten model is capable of describing the elimination by RME. The herein pre-

sented analysis therefore gives a thorough background of RME and a clear rationale as to

when the proposed reduced models are applicable. Notably, a receptor system can efficiently

eliminate drug from the extracellular space even if the total number of receptors is small. We
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find that drug elimination by RME can result in substantial nonlinear pharmacokinetics. The

extent of nonlinearity is higher for drug/receptor systems with higher receptor availability at

the membrane, or faster internalization and degradation of extracellular drug.

The analysis of RME in this Chapter elucidates that cell-level target dynamics can have a

significant influence on the pharmacokinetics of the drug. By using the here defined functional

relations between the parameters of the detailed Model A and the reduced Models B and C

we will be able in the following Chapter 3 and 4 to use simpler models of the targeted receptor

system and interpret them as reduced models of RME with lumped parameters.
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3 The in vitro inhibitory effect of therapeutic
antibodies

In this Chapter, we will develop a mathematical framework for describing the effect of a

promising class of therapeutic proteins, therapeutic antibodies. In more detail, we develop

a receptor model which describes the action of the current therapeutic antibodies against

the EGFR and describes the time-dependent interactions of the drug, the ligand and the

receptor. We aim to develop a mechanistic model of the cell-level processes (as usually done

in systems biology) and study a transient drug concentration (as usually done in pharma-

cokinetic/pharmacodynamic modelling). We are interested in studying in silico the result of

modifying the antibodies’ biophysical properties and predicting the resulting inhibition of the

receptor system. In this Chapter we will study the system under conditions of a typical in

vitro experiment and in the closed microenvironment of a tumor cell in vivo. In the following

Chapter 4, the here developed cell-level model also will be used as the basis to couple the

pharmacokinetics of the drug with therapeutically relevant cellular processes and to study

the inhibition under general in vivo conditions.

The model focuses on receptor systems where the ligand and the receptor are internalized

by RME (which was discussed in chapter 2). RME is important for variety of receptor families

[4, 40, 57], including the therapeutically important receptor tyrosine kinase receptors which

are activated by growth factors and stimulate tumor growth.

In Chapter 2 we already developed a detailed model of RME (Model A) to derive structures

of reduced models. In this Chapter we are interested in making quantitative predictions and

therefore have to base our analysis on cell-level models which have been already validated and

for which experimentally determined parameter values are available in the literature. In the

first part of this Chapter we will present such current kinetic models of receptor activation

by ligand binding and receptor trafficking in the literature. Subsequently, we will build our

model by including the binding of the antibody to the receptor.

3.1 Mathematical models for receptor kinetics

As the basis of the following receptor trafficking models, consider the binding of a ligand L

to a receptor R, which forms a complex RL (Fig. 3.1)

Using the principles of mass action kinetics, changes in the number of receptor-ligand
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R

kon

koff

RLL+
ksynthR

Figure 3.1: The reversible binding of a ligand to the receptor results in a complex.

complexes RL can be described by Eq. 3.1.

d

dt
RL = kon ·R · L− koff ·RL. (3.1)

The association rate constant kon characterizes the velocity of the second-order interaction

between the receptor and the ligand, while the dissociation rate constant koff characterizes

the first-order dissociation of the complex.

The early mathematical models describing the activation of receptors on the cells’ surface

by polypeptide ligands were based on the well developed theory of enzyme kinetics. In this

setting, steady-state description of the dynamics of the system were developed [158]. Such

models allow to describe cell behavior and to measure parameters under more physiological

conditions. A basic model of receptor activation and trafficking based on mass action kinetics

was developed by Wiley et al. [158] and Gex-Fabry et al. [45]. The interactions between

the considered species are depicted in Fig. 3.2. A free receptor (R) and a free ligand ( L) can

R

kinterRLkon

koff

RL RLiL+

kdegR

ksynthR

Figure 3.2: A simple model of receptor activation. The binding of a ligand to the receptor results
in a complex which can be internalized by receptor mediated endocytosis. The receptor is subject to a
normal turnover described by the synthesis rate and its degradation rate constants.

reversibly form a complex on the surface of the cell (RL). This complex can be internalized

by forming an endosome (RLi). The internalized complex then can degraded by forming

a lysosome. The receptor is subject to a normal turnover, described by a synthesis rate

(ksynthR) and a degradation rate constant (kdegR). Interestingly, for many receptor systems

the endocytotic rate constant (kinterRL), which describes the velocity the complex is getting

internalized, is much higher than the normal internalization and degradation rate of the

unbound receptor (kdegR) [159]. This leads to a decrease in receptors at the cell surface in

presence of a ligand, a mechanism referred to as downregulation [3, 12, 64, 118, 134].

The developed kinetic and steady-state models of the receptor system were used to measure

the rate constants experimentally [159, 68, 86, 160] (a compressive description of the technics

can be found in [81]).
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An important feature of many receptor systems is the internalization of the receptor. Be-

cause receptors and ligands may also be internalized by the process termed endocytosis the

model was further extended by considering the internalization and recycling of the free and

bound receptor [16, 157] as depicted in Fig. 3.3. There is evidence that this dissociation and

R

kinterRLkon

koff

RL RLiL+

kdegR

ksynthR

Ri

kinterRkrecyR

krecyRL

kdegRL

Figure 3.3: A simple model of receptor activation. The binding of a ligand to the receptor results
in a complex which can be internalized by receptor mediated endocytosis. The receptor is subject to a
normal turnover described by the synthesis rate and its degradation rate constants.

the subsequent recycling of the receptor depends on the ligand bound to the receptor. For

example the epidermal growth factor (EGF) tends to remain bound to the epidermal growth

factor receptor (as described in Fig. 3.3) while transforming growth factor α dissociates from

the receptor in the endosome due to a changed pH value and the free receptor may be recycled

to the surface [139].

The receptor trafficking model can therefore be extended by the recycling of the free receptor

back to the surface (Fig. 3.4). The models discussed above describe the behavior of receptor

R

kinterRLkon

koff

RL RLiL+

kdegR

ksynthR

Ri

kinterRkrecyR

krecyRL

kdegRL

Figure 3.4: A simple model of receptor activation. The binding of a ligand to the receptor results
in a complex which can be internalized by receptor mediated endocytosis. The receptor is subject to a
normal turnover described by the synthesis rate and its degradation rate constants.

systems sharing the common feature of receptor trafficking. They can therefore be used

to compare different receptor systems and characterize their behavior by defining specific

coefficient of the defined rate constants.

Shankaran et al. recently did this by building such a described generalized kinetic model

of receptor-ligand binding and internalization [133]. A given signaling or transport receptor
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system then represents a particular implementation of this canonical model with a specific

set of kinetic parameters. They identified two parameters, which can characterize the sys-

tems as avidity-controlled, consumption-controlled, or dual-controlled. Avidity characterizes

how efficiently a receptor system can capture extracellular ligand while the consumption is

the partition coefficient quantifying the probability that a captured ligand molecule will be

internalized before it dissociates from the receptor. For a receptor system as described in

Fig. 3.2 the avidity is defined as

γ =
konL

koffL

R∗

Na · Vcell
were R∗ denotes the steady-state number of molecules of free receptor at the surface at the

cell, Na denotes Avagadro’s number, and Vcell is the volume of extracellular medium per cell.

The partition coefficient defining the consumption of the system is defined as

β =
kinterRL

koffL
.

The idea presented by Shankaran et al. is that receptors might be sensitive to either one or

both coefficients if cellular changes (e.g., due to mutations or genome alterations) leading to

a change of the corresponding coefficient also result in a different response of the receptor

to the ligand. Changes affecting a coefficient, to which the receptor is not sensitive, will be

without consequence for the receptor response.

This sensitivity of the response to changes in the two coefficients can be used to define if

the system is

• avidity-controlled – changes in the efficiency of capturing extracellular ligands lead to

strong changes in the response to a changing ligand concentration

• consumption-controlled – changes in the probability that a captured ligand molecule

will be internalized before it dissociates from the receptor lead to strong changes in the

response to a changing ligand concentration

• dual-controlled – changes in both coefficients lead to strong changes in the response to

a changing ligand concentration

Interestingly they concluded that changes in the avidity modulates the behavior of the trans-

ferrin receptor and low-density lipoprotein receptor systems, whereas the consumption coef-

ficient has a high control over the function of the the vitellogenin receptor. The epidermal

growth receptor shows a dual-sensitivity to the coefficients.
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3.2 Our mathematical model for the inhibitory effect of
therapeutic antibodies

The following analysis of this Chapter is based on a cell-level model which we build by com-

bining the established receptor activation models described in Section 3.1 (Fig. 3.2) with a

kinetic model of the mechanism of action of anti-EGFR mAbs. While the drug-ligand inter-

action together with the experimentally derived parameter values have been inherited from

Fig. 3.2, the interaction with the antibody instead of the detailed description of the RME

processes used in Chapter 2 has been described by a simpler model. The model corresponds

to the mechanism of action of the anti-EGFR mAbs on the market or in clinical development

(Zalutumumab, Panitumumab, Cetuximab, IMC-11F8, and Nimotuzumab) [163]. In detail,

the reactions included in the model represent the binding of the drug to the receptor and

the formation of the drug-receptor complex. All the intracellular distribution processes are

lumped into a single net internalization rate of the drug-receptor complex. The extension of

the model therefore closely follows the discussed target-mediated drug-disposition models [87].

While the experimentally determined parameter values for receptor activation and traffick-

ing allow to make quantitative prediction, the processes of antibody internalization without

experimentally measured rate constants available have been lumped into one downregulation

rate. The influence of this downregulation rate on the inhibitory effect will be studied in this

Chapter. An important difference between TMDD and the here used submodel is that the

receptor dynamics in our model are described on a cell-level instead of the whole body scale.

This allows us to study the impact of specific alteration of cells on the inhibitory effect of

therapeutic antibodies. The developed model is depicted in Fig. 3.5. In the model, both lig-

L D
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koffD

kR kdegR

+

konL

koffL

kdegRL kdegRD

Cells’ functional responses

Initializes 

downstream 

signalling

RL R RD

kdegL

kL
fdose(t)

Figure 3.5: The proposed model of receptor-ligand-drug interaction. The natural ligand and the drug
compete for the receptor binding.

and L and drug D are present in the extracellular space (with volume V ). The ligand enters

the extracellular space at rate kL, and is cleared with rate constant kdegL. The drug enters

the extra-cellular space at rate fdose(t). The free membrane receptor R is produced at rate
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kR and internalized with the rate constant kdegR. Both ligand and drug reversibly bind to

free receptors R with association rate constant konL and konD, respectively, and a dissociation

rate constant koffL and koffD, respectively. The resulting ligand-receptor complex RL and

drug-receptor complex RD are internalized by forming an endosome with the rate constant

kdegRL and kdegRD, respectively.

Based on the law of mass action, the rates of change for the molecular species are given by

the following system of ordinary differential equations (ODEs):

dL

dt
=

kL
V Na

− konL
V Na

R · L+
koffL
V Na

RL− kdegLL,

dD

dt
= fdose(t)−

konD
V Na

R ·D +
koffD
V Na

RD,

dR

dt
= kR − konLR · L− konCR ·D + koffLRL

+ koffDRD − kdegRR, (3.2)

dRL

dt
= konLR · L− koffLRL− kdegRLRL,

dRL

dt
= konDR ·D − koffDRD − kdegRDRD.

The species L and D are expressed in [M]; R, RL and RD are in units [# molecules]. Division

by the product of Avogadro’s constant Na and volume V ensures conversion from units [#

molecules] to [M]. The non-negative drug dosing rate is given by fdose(t) = f(t) · dose, with∫ ∞
0

f(t) dt = 1. (3.3)

Different dosing regimes can be modeled by choosing f(t) appropriately. Prior to any drug

administration, the system is assumed to be in steady state, resulting in some number of

active receptor RL = RL∗. The effect of the drug results from the inhibition of receptor

activation, i.e., from the change in the number of active receptor RL over time.

Parameters

For numerical simulations, we used experimentally determined parameter values [55, 115] for

the EGFR system. All receptor system parameters are listed in Tab. 3.1. The association rate

constant konD was set to be similar to the one of EGF while the dissociation rate constant

koffD was calculated by koffD/konD = KD accordingly to KD,drug as stated in Tab. 3.1, which

is the affinity of the drug zalutumumab for the EGFR[107]. For the beginning no downreg-

ulation was assumed to take place by the antibody (the internalization rate constant of the

drug-receptor complex kdegRD was set equal to the internalization rate constant of the free

receptor kdegR). Both, affinity and downregulation will be changed to investigate the optimal

biophysical properties of an anti-EGFR antibody.
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3.2. OUR MATHEMATICAL MODEL FOR THE INHIBITORY EFFECT OF THERAPEUTIC ANTIBODIES

Table 3.1: Parameter values for the EGF receptor system. In the absence of ligand the cells were
set to have 2 · 105 cell surface receptors (R∗) corresponding to the EGFR level of human mammary
epithelial cells [133].

Parameter Unit Value

1 kdegR min−1 0.02 [115]

2 R∗ 2 · 105 [133]

3 ksynthR min−1 kdegR ·R∗

4 KD,ligand nM 2.47 [55]

5 koffL min−1 0.24 [55]

6 konL nM−1 ·min−1 koffL/KD,ligand

7 kdegRL min−1 0.15 [115]

8 KD,drug nM 7 [107]

9 koffD min−1 koffL

10 konD nM−1 ·min−1 koffD/KD,drug

11 kdegRD min−1 kdegR

For the in vitro situation (see Fig. 3.6) the drug is given as a bolus-dose of 10 µg/ml [48] at

time t = 0 which is represented by choosing f as a delta-distribution at t = 0. Also the ligand

concentration was 10 ng/ml [48] and assumed to be constant over the time of the experiment

by setting kL and kdegL much faster than the other processes. The volume of liquid in the

petri dish was set to 4 · 10−10 l/cell [133].

Ligand

Antibody

Target cells

Figure 3.6: In vitro conditions of cell culture experiments investigating the inhibition of EGFR sig-
nalling pathways by antagonistic mAbs

Inhibitory effect measures

One advantage of the cell-level PK/PD model is its ability to study the interaction of drug and

cell properties, like drug-receptor affinity, drug induced receptor internalization. Since we are
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3.3. TRANSLATING BIOPHYSICAL PROPERTIES INTO AN INHIBITORY EFFECT

investigating a transient inhibitory effect we consider the three following quantitative measures

of the response of the number of activated receptors over time (see Fig. 3.7). Following the
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Figure 3.7: The cellular model of receptor activation and inhibition links an extra-cellular drug con-
centration (right) to the inhibitory effect on receptor activation (left) and allows for studying three
different characteristics of the inhibitory effect: the integral, the peak, and the duration of inhibition.

administration of the drug the number of active receptors is decreasing because of the drugs

inhibitory effect on ligand binding. Subsequently, the drug concentration decreases either

because of the internalization of the drug bound to the targeted receptor or target independent

metabolization/excretion. Due to the production of receptor we assume that after the drug

disappeared, the receptor system goes back to its steady-state activation level from before

the treatment. This is the basis of the three transient measures of drug effect presented here

and the following mathematical derivation of the effect.

In the following we assume that after the drug The peak inhibition is defined as the minimum

number of active receptors relative to the steady state, that is,

peak =
RL∗ −min {RL(t)}

RL∗
, (3.4)

The duration of inhibition is the time it takes for the active receptors to recover back to 99%

of the steady-state level. The integral of inhibition is the area under the curve of the active

receptors with respect to their steady state, i.e.,

E =

∫ ∞
0

(RL∗ −RL(t)) dt. (3.5)

3.3 Translating biophysical properties into an inhibitory effect

The cellular model of the mechanism of action of therapeutic antibodies is used in the following

to predict the transient response of the receptor system to the presence of the drug in the

cells’ surrounding. The model generates a trajectory of the receptor species and the drug

concentration. This translates the biophysical properties of the drug into a transient change

in the number of activated receptors and therefore allows to tune these properties in silico

for the optimal perturbation of the receptor system of the target cell.
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Figure 3.8: Transient inhibition of receptor activation for the drug cetuximab. The number of active
receptors ( , right axis) is reduced by the drug ( , left axis). Due to the high affinity of the drug,
this inhibition happens immediately after administration of the drug. When the drug concentration is
reduced by to RME the activation of the receptor system recovers to the original steady-state.

As the first step we will investigate the transient inhibitory effect resulting from the drug

present in the surrounding of the cell. The system is set to be in steady-state when at

t=0 the drug is administered. As can be seen from Fig. 3.8 the number of active receptors

drops when the drug is competing with the natural ligand for the binding to the receptor.

At the same time the drug concentration decreases in the medium due to the binding to the

receptor and the subsequent internalization and degradation. This steady decrease of the drug

concentration leads to a recovery of the number of active receptors to the same steady-state

as prior to drug administration.

3.4 Impact of affinity and dose on inhibitory effect

As the next step, we studied the inhibitory effect of different drug affinities (KD) and doses

on the transient activation of the receptor (see Fig. 3.9). Our study reveals that a higher

drug-receptor affinity amplifies the peak inhibition and shortens the duration of inhibition

(see Figure 3.9, a). Higher doses of the inhibitor amplify both, the peak and the duration of

inhibition (Figure 3.9, b).

As can be seen from Fig. 3.10 (a), in vitro, the cumulative inhibitory effect does not depen-

dent on the affinity of the mAb to the receptor. Thus, we found that under the conditions of

a typical in vitro experiment (i) the cumulative inhibitory effect is the same for mAbs with

different affinities; (ii) the peak inhibition is amplified for antibodies with higher affinities and

(iii) the duration of inhibition is shorter for high affinity mAbs. In general, we found that

there is a trade-off between cumulative inhibition, peak inhibition and duration of inhibition:
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Figure 3.9: Transient inhibitory effect of a change in the drug properties. (a) Warmer color cor-
respond to higher affinities. The curve marked in ( ) corresponds to the affinity of zalutumumab.
The different affinities result in different shapes of the inhibition curves, with a higher peak inhibition
and a lower duration of inhibition for antibodies with high affinity. (b) Warmer colors correspond to
higher doses of the antibody which increase all three measurements of the inhibitory effect.
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Figure 3.10: Prediction of in vitro drug efficacy. (a) The cumulative inhibitory effect in vitro does
not dependent on the affinity (KD) but it does increase with the dose. (b) High affinity drugs show a
higher peak inhibition and a shorter duration of inhibition (c).

mAbs with higher affinity exhibit a higher peak inhibition, but this comes at the cost of a

shorter duration of inhibition, resulting in identical cumulative inhibitions. A higher cumu-

lative inhibitory effect can therefore only be achieved by increasing the dose but not by an

optimizing of the affinity of the drug.

3.5 Impact of receptor downregulation

Enforcing receptor downregulation by mAbs is argued to be an important part of the drug

inhibitory effect [96]. This analysis of the in vitro model shows that the cumulative inhibitory

effect is independent from the drug-receptor affinity and its downregulation potential. The

same dependency is found with respect to the downregulation potential. An increase of the

downregulation rate constant lead to a shorter duration of the inhibition and an amplified

peak inhibition as denoted in Fig. 3.11. The cumulative inhibitory effect is again invariant

for changes of the endocytic downregulation rate.

The downregulation of the receptor by the drug may allow the development of an antibody

with lower affinity as the current anti-EGFR antibodies, because a lower affinity together
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Figure 3.11: Transient inhibitory effect of different downregulation rate constants. Warmer color
correspond to higher downregulation rates. The blue curve represents a downregulation rate constant
of the drug-receptor complex which is equal to the rate constant of the free receptor.

with a higher downregulation results in very similar trajectories of the active receptor (see

Fig. 3.12).
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Figure 3.12: The relationship between downregulation and affinity. The response to zalutumumab is
marked in ( ). The transient response to an inhibitor with 5-fold lower affinity and higher downreg-
ulation than zalutumumab is shown in ( ) and ( ), respectively. The response to an inhibitor with
5 fold lower affinity and 5 fold higher downregulation rate constant is shown in ( ).

In conclusion the numerical solutions obtained with the experimentally obtained parameter

values for the EGFR system demonstrate that tuning drug parameters can shape the tran-

sient inhibitory response, but there is a trade-off between its duration and peak amplitude.

The integral of the inhibition can only be increased by increasing the dose and not by tuning

the biophysical properties of the antibody. Experimental results suggest that the affinity of

the antibody cannot determine their biological activity. Diaz Miqueli et al. [98] examined

the biological activities of three monoclonal antibodies (Ior egf/r3, Nimotuzumab, and Ce-

tuximab) in vitro and found no difference in their inhibitory effect despite different affinities

to the EGFR. Goldstein et al. [48] found also no differences between Cetuximab and a lower
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3.6. DERIVATION OF AN EXACT FORMULA FOR THE INHIBITORY EFFECT

affinity variant anti-EGFR antibodies in vitro.

Our analyses suggests that the invariance of the inhibitory effect despite different affinities

may either be a consequence of the in silico determined invariance of the integral of inhibition

to changes in the affinity or the dose of the antibody was to high to see differences in the

peak inhibition due to the different antibody affinities.

3.6 Derivation of an exact formula for the inhibitory effect

The invariance of the inhibitory effect integral was demonstrated above by using parameter

values experimentally determined for the EGFR system. To prove that this is a inherent

feature of all receptor systems with such a structure and does not depend on the specific

parameter values we demonstrated that the exact formula for the inhibitory effect integral

can be derived. The derivation of the cumulative inhibitory effect is following the draft

“Receptor synthesis is the most important process for the cumulative effect of anti-EGFR

antibodies” by Krippendorff, Oyarzún & Huisinga [73]. The mathematical derivation of the

formula can be found in the Appendix 6.1. The relative inhibitory effect of an antagonistic

therapeutic antibody in the system of ODE’s denoted by Equations 3.2 is hence given by the

simple formula

Er =
dose

tendkR
. (3.6)

Since dose is the number of drug molecules given to the system and tend · kR corresponds to

the number of receptor molecules synthesized in the treatment period (see Appendix 6.1),

the ratio of these two numbers defines the percent inhibition of the receptor system during

the treatment. Following our theoretical analysis, by measuring only the synthesis rate of

the receptor, the dose needed for a desired percent inhibition of the receptor system can be

calculated.

3.7 Impact on cells with increased receptor levels

Upregulation of EGFR expression and aberrant activation of EGFR has been shown in many

human epithelial cancers, including those of the colon, lung, kidney, head and neck, breast,

prostate, brain and ovary [124, 105, 122, 149, 56, 142]. The extent of overexpression also

correlates with poorer clinical outcome [106, 95, 49]. Receptor levels as measured by im-

munohistochemical methods are therefore investigated as a potential predictor of response

to receptor inhibitors like mAbs [123, 128, 144]. The cell-level model (Eq. (3.2)) suggests

that elevated receptor levels of R∗ and RL∗ can be a consequence of not only an increased

receptor expression (increased ksynthR), but also of a reduced internalization of the receptor

(decreased kdegR and/or kdegRL). Alterations in cells influencing those rate constants are
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3.7. IMPACT ON CELLS WITH INCREASED RECEPTOR LEVELS

for example gene amplification, increased gene copy numbers, and mutations of the receptor

gene which influence receptor internalization. Reddy et al. [113] reports about such an alter-

ation of EFGR where a truncated cytoplasmic domain exhibits a decreased ligand-induced

internalization rate constant.

Following the developed kinetic model the steady-state total receptor number on the surface

of the cell can be calculated. The steady state of the receptor system is defined by[
− (kdegRL + koffL) konL

koff − (kdegR + konL)

][
RL

R

]
=

[
0

−ksynthR

]
(3.7)

and hence

R∗ = ksynthR ·
kdegRL + koffL

(kdegRL + koffL)(kdegR + konL ·  L)− koffL · konL ·  L
(3.8)

RL∗ = ksynthR ·
konL ·  L

(kdegRL + koffL)(kdegR + konL ·  L)− koffL · konL ·  L
. (3.9)

For analysing the inhibitory effect of a alteration of the rate constants ksynthR, kdegR, and

kdegRL we developed a cell model representing tumor cells with different alterations (Fig. 3.13).

We changed the rate constants of tumor cells to ksynthRc = ksynthR · α or kdegRc = kdegR · α

receptor

syntheses

receptor

internalization

receptor

syntheses

receptor

internalization

receptor

syntheses

receptor

internalization

a b c

Figure 3.13: Cells with different alterations of receptor trafficking we analysed for their response to
mAbs. In difference of (a) the normal cell the tumor cells have either a higher synthesis of the receptor
(b) or a decreased internalization of the receptor (c).

and kdegRLc = kdegRL · α, which corresponds to a α−fold alteration of receptor synthesis or

internalization of the free and bound receptor, respectively.

Using Eq. 3.9 it follows in the case of an alteration of the synthesis rate

RL∗,c

RL∗
=
ksynthRc

ksynthR
= α (3.10)

and hence the number of bound receptor is changed α−fold when the synthesis rate is changed

α-fold. In case the internalization rate of both, the free and the bound receptor is changed,
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the inhibitory effect on the receptor level is depending on the value of other rate constants:

RL∗,c

RL∗
=

1 + koffL
kdegRL

+ konL· L
kdegR

α2
(

1 + koffL
kdegRL

)
+ konL· L

kdegR

(3.11)

These alterations hence result in changes steady-state activation levels of the receptor system

and activate signalling pathways more strongly.

Figure 3.14 shows the transient inhibition time-curve for cells with different levels of the

receptor due to the two discussed alterations. In the case of a higher synthesis rate of the
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Figure 3.14: Transient inhibition dynamics for cells with overexpressed receptor proteins. (a) Marked
areas denote the cumulative inhibitory effect of the antibody. Warmer colors correspond to higher
synthese rates of the receptor, (b) and higher reductions in the internalization rate of the free and
activated receptor.

receptor the absolute cumulative inhibition is the same for all levels of receptor expression

(Figure 3.14, a). Since the same number of receptors on the tumor cell is inhibited over

time compared to cells with a normal expression, cells with increased expression are not more

susceptible to the treatment with mAbs than normal cells.

However, in the case of reduced internalization of the free or the activated receptor, the

cumulative inhibitory effect is increased (Fig. 3.14, b), which suggests that such cells are more

susceptible to the treatment than normal cells, in terms of the cumulative inhibition.

As shown above, a change in the biophysical properties of the antibody (like the affinity)

does not allow to change the cumulative inhibitory effect. Duration and peak inhibition

however can be changed. Fig. 3.15 shows the inhibitory effect of a change in the affinity

of the antibody on the duration of the inhibition and the peak inhibition. Cells with a

higher expression show the same relative peak inhibition as normal cells and a lower affinity

reduces this peak for the same amount (Fig. 3.15, a). Cells with a decreased internalization

demonstrate a shifted curve. Here an intermediate affinity of the antibody allows to optimize

the difference between the peak inhibition in normal and tumor cells. The duration in general
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increases for lower affinities (Fig. 3.15, b). Cells with a higher expression show the same

change of the duration in case of a modified affinity. An optimization of the affinity in terms

of a higher difference between normal and tumor cells is therefore not possible. Cells with

decreased inhibition show a longer inhibition than normal cells when a high affinity antibody

is used. If the affinity is decreased the duration of inhibition is longer in normal cells.

In conclusion, when aiming to optimize the difference between the inhibitory effect on tumor

and normal cells by adjusting the affinity a success depends on the nature of the alteration

and not at the number of receptors on the cells surface. This number is just a description of

the steady state while the alteration determine the dynamics of the system in the response

to a treatment with mAbs.
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Figure 3.15: Impact of a change in the affinity for the duration of inhibition and the peak of inhibition.
(a) The peak inhibition changes in a normal cell ( ) in the same way as in a cell with higher receptor
expression ( ) when changing the affinity of the antibody (KD). Cells with decreased internalization
of receptor ( ) have a shifted curve. (b) This is also the case for the duration of the inhibition.
A change of the affinity has the same result on normal cells and cells with a higher expression and
no optimization is therefore possible. Cells with decreased internalization show a different reaction to
changes in the affinity. For these cells a high affinity antibody maximized the difference between tumor
and normal cells.

3.8 Inhibition of receptor activation in the microenvironment of
tumor cells

In this Section we will study the inhibition of receptor activation in a microenvironment of a

tumor cell. For this we make the following assumption: In the close proximity of a tumor cell

the local ligand concentration is affected by RME. In the last sections we assumed the ligand

concentration to be constant and therefore unaffected by the inhibition of the receptor system.

Although in general this is a reasonable assumption, (e.g EGF concentration is usually tightly

controlled by other mechanisms) there exist situations, where the endocytic machinery acts

to regulate growth factors. For example in the development of Drosophila melanogaster local
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concentrations of growth factor in tissues are controlled by endocytosis [34]. The system of

ODE’s is described by the equations (3.2) with the ligand concentration changing according

to

dL

dt
=

kL
V Na

− konL
V Na

R · L+
koffL
V Na

RL− kdegLL. (3.12)

This is in contrast to the preceding in vitro situation, where we set kL and kdegL much

faster than the other processes and resulted effectively in a constant ligand concentration.

We will see that for the case that RME has an influence on the ligand concentration in

the microenvironment, therapeutic inhibition is counteracted by ligand accumulation. This

indicates that the processes and concentrations in a microenvironment of tumor cells may

not only have a crucial influence on the success of radiotherapy [151], but it also potentially

influences antibody based therapies. This Section follows closely [72].

Response to drug administration

Single bolus dose. In the following we consider the response of the receptor system to a

single bolus dose of the inhibitor. Figure 3.16 shows the time course of the drug concentration

in the microenvironment and the resulting number of active receptors RL for different values

of the ligand clearance rate kdegL. Following the bolus dose at time t = 0, the number of

activated receptors drops rapidly to a much lower level. Inhibition of active receptors is due to

the competition for free receptors between the natural ligand and the drug. Since binding to

receptor implies internalization and degradation, the drug concentration decreases over time

such that eventually the number of active receptors recovers to its unperturbed steady-state

level (dashed line).

Two phases in Fig. 3.16 can be identified: In a first phase the number of active receptors

decays below its steady-state level, resulting in an inhibition of the receptor system; in a second

phase, however, the active receptors are above their steady-state, resulting in an induction

of the receptor system. The extent of inhibition and induction depends on the clearance

kdegL. For kdegL = 0.01/min, the induction phase is almost absent, whereas for kdegL = 0

the induction phase is the highest. The inset in Fig. 3.16 shows the increase and decline

of the ligand concentration in the microenvironment of the cell. The ligand accumulation

is the consequence of the drug binding to the receptor resulting in less ligand bound and

degraded. For low values of kdegL, the extracellular ligand accumulates considerably, while

for high values of kdegL it is cleared by the receptor-independent route.

To further understand the relation between inhibition and induction, it is useful to quantify

the drugs’ inhibitory effect in a precise way. As a measure of the drugs’ inhibitory effect we
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Figure 3.16: Dynamic response of the number of active receptors (lines with •◦) and drug concentra-
tion (lines without marker) after bolus dose for different ligand clearance rates kdegL. Inset: Ligand
accumulation in the microenvironment of the cell over time.

define:

E =

∫ ∞
0

(
RL∗ −RL(t)

)
dt. (3.13)

Thus, E measures the net inhibition as the sum of the inhibition and induction. Fig. 3.16

shows that small values of kdegL increase the induction phase and decrease the inhibition

phase, implying a lower net inhibition according to eq. (3.13). Moreover, in the case of

kdegL = 0 we numerically observe a zero net inhibition (E = 0), which suggests that ligand

accumulation totally counteracts the drugs’ inhibitory effect.

Multiple bolus dose. A dosing strategy to prevent the induction phase, could be to ad-

minister a follow-up dose before the induction phase starts. As can be inferred from Fig. 3.17,

this first prevents the induction, but comes with the cost of a larger induction phase after

the final dose. This is due to a longer ligand accumulation phase (see inset in Fig. 3.17). For

kdegL = 0, numerical computations show a zero net inhibition as in the previous case.

Theoretical analysis of net inhibition

In the following we analytically show that in the limiting case when kdegL = 0, the net

inhibition vanishes and this impact is independent of the parameter values. Therefore, in this

scenario the extent of ligand accumulation and the resulting induction phase do not depend on

the model parameters, which suggests that it is a structural property of the studied receptor

system.

It is convenient to express eqs. (3.2) in terms of the deviations of the species from their
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Figure 3.17: Dynamic response of the number of activated receptors (lines with •◦) and drug concen-
tration (lines without marker) after multiple bolus doses for kdegL = 0. Inset: Ligand accumulation in
the microenvironment of the cell over time.

steady-state values. We define these incremental variables as

L̄(t) = L∗ − L(t), R̄D = RD∗ −RD(t),

R̄(t) = R∗ −R(t), R̄L = RL∗ −RL(t),

D̄(t) = D∗ −D(t).

The resulting system of ODEs in terms of

x̄(t) =
[
L̄(t) D̄(t) R̄(t) R̄L(t) R̄D(t)

]T
is then given by

d x̄

dt
= Ax̄(t) + BRLR̄(t)L̄(t) + BRDR̄(t)D̄(t)−Bf(t), (3.14)

with x̄(0) =
[
0 −D(0) 0 0 0

]T
, and where A is the Jacobian of the right hand side of

(3.2) evaluated at the steady state (given in eq. (3.15)). The vectors BRL, BRD and B are

given by

BRL =
[
konL
V Na

0 konL −konL 0
]T
,

BRD =
[
0 konD

V Na
konD 0 −konD

]T
,

B =
[
0 1 0 0 0

]T
.
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A =


−konLR

∗

V Na
0 −konLL

∗

V Na

koffL
V Na

0

0 −konDR
∗

V Na
− kdegD 0 0

koffD
V Na

−konLR∗ −konDR∗ −konLL∗ − kdegR koffL koffD
konLR

∗ 0 konLL
∗ −koffL − kdegRL 0

0 konDR
∗ 0 0 −koffD − kdegRD

 .
(3.15)

Integration of (3.14) from t = 0 to infinity gives

x̄(∞)− x̄(0) = A

∫ ∞
0

x̄(t) dt+ BRL

∫ ∞
0

R̄(t)L̄(t) dt

+ BRD

∫ ∞
0

R̄(t)D̄(t) dt−B

∫ ∞
0

f(t) dt. (3.16)

Under the biologically reasonable assumption that when the drug disappears the receptor

system goes back to its old steady-state activation level (described in Section 3.2), the stability

of the system implies that x̄(∞) = 0, and using the initial condition yields∫ ∞
0

x̄(t) dt = A−1B ·Dose

−A−1BRL

∫ ∞
0

R̄(t)L̄(t) dt

−A−1BRD

∫ ∞
0

R̄(t)D̄(t) dt. (3.17)

We notice that E =
∫∞

0 [x̄(t)]4 dt and moreover,

[
A−1B

]
4

=
[
A−1BRL

]
4

=
[
A−1BRD

]
4

= 0, (3.18)

which finally implies E = 0. Hence, in absence of receptor-independent ligand clearance, the

inhibition and subsequent induction phase are identical, resulting in a zero net inhibition.

Since this phenomenon is independent of any drug- and receptor- specific parameters, it is

suggested that it is a structural feature of the considered receptor class.

3.9 Summary of this chapter

In this Chapter, we extended a systems biology model of receptor activation by the mechanism

of action of mAbs (section 3.2). This allowed us to study the impact of changed biophysical

properties of mAbs on the inhibitory effect (section 3.4 and 3.5).

We numerically studied large perturbation of the system and translated this transient effect

of the antibody into three different measures of inhibitory effect. We further derived an exact
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formula for the effect of mAbs in vitro (Eq. (6.17)), which has two advantages: (i) It describes

the exact effect following big perturbations of the network and (ii) needs only a subset of the

parameter values. Our theoretical analysis identifies only one parameter value of the cell-level

model which is important for the inhibitory effect, the synthesis rate of the receptor.

Another advantage of building a kinetic model of the EGFR is the ability to include cell

alteration found in tumor cells (section 3.7). We demonstrated that when tumor cells are

characterized by their number of receptor at the cell surface using immunohistochemistry,

this only describes a steady state of the system. More interesting for the response to a

treatment with mAbs is their dynamic response and this can be remarkably different for

different cell alterations, although the cells might present similar numbers of receptors on the

surface. A tumor cell with a higher expression of the receptor is harder to inhibit with mAbs

due to the change of the before identified most important parameter of the system, ksynthR.

Tumor cells with decreased internalisation of the receptor show a stronger response to mAbs

and, in contrast to cells with a higher expression, may allow to optimize the antibody for a

stronger selectivity for tumor cells.

The inhibitory effect of antibody-based therapeutics for targeting tumors is therefore influ-

enced by cell-level kinetic processes. In the last part of this Chapter (section 3.8) we identified

another kinetic mechanism with the potential to compromise the inhibitory effect, namely the

accumulation of ligands in the microenvironment of tumor cells. Receptor trafficking can have

a critical influence on the ligand concentration in the cells’ environment as was shown for the

EGF-EGFR system in vitro [113]. We therefore analyzed the inhibitory effect of inhibiting

such a receptor system, and found that the response of the receptor system to the drug in

this case can have two counteracting phases: An initial inhibitory phase and a second in-

ductive phase. The latter is due to extracellular accumulation of the ligand, which is larger

for environments where receptor-independent ligand clearance is slow. In such situations the

inhibitor only postpones the activation, until the local concentration of the drug has suffi-

ciently declined, acting as a memory of the prevented activation. In the limiting (theoretical)

case when there is no receptor-independent ligand clearance, the induction of active receptors

totally offsets the inhibitory response and renders a nil total inhibitory effect. The dosing

function can be regarded as an external input signal that is applied to the receptor system

to control its activation. The phenomenon of counteracting ligand accumulation constitutes

a “fundamental limitation” in the inhibition of the receptor system, which is independent of

the parameter values and resembles those that typically arise in Control Engineering [132].

The study of fundamental limitations is an extensive field of research [41] that addresses the

question how the structure of the system limits certain characteristics of every possible re-

sponse to a class of inputs. Our analysis suggests that this kind of limitations can also play

a role for antibody based cancer treatment.
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4 The in vivo effect of therapeutic antibodies

As shown in the preceding chapters, the identification of targets for protein drugs against

complex diseases benefits today from the availability of systems biology models of therapeu-

tically relevant cellular processes. One practical example is the successful development of

MM-121, a previously unidentified anticancer therapeutic designed using a systems approach

[130]. So far, such information about the dynamics of the targeted system is neglected in

later stages of the drug development process when pharmacokinetic modeling is used to guide

dose finding and analyze preclinical or clinical in vivo data. As shown in Chapter 2, this is

especially critical for therapeutic proteins, where drug effect and pharmacokinetics are in-

herently interdependent. In this Chapter, by integrating cell-level models with established

pharmacokinetic models, we translate biophysical properties of protein drugs into a transient

drug effect in vivo. As before, we illustrate the approach for anti-EGFR antibodies in cancer

therapy. Here we combine in vitro determined parameters (as used in Chapter 3) with phar-

macokinetic data from cynomolgus monkeys (as used in Chapter 2). The primary objective

of this Chapter is to develop a strategy to integrate cell-level kinetic models into systemic

pharmacokinetics models and secondary to translate biophysical properties of protein drugs

into in vivo efficacy. We combine the traditional modeling approaches of systems biology and

pharmacokinetics while importantly retaining the single-cell as the fundamental unit of the

model.

4.1 Our model of the inhibitory effect of therapeutic proteins

The pharmacokinetic part of the model is represented by a two-compartment model as used

in chapter 2 and described in section 2.2. For the cell-level submodel we use a description

of RME whose complexity lies between the very detailed description of the model used in

Chapter 2 and the reduced model used in Chapter 3 corresponding to the TMDD description

of antibody disposition. As before, due to the lack of experimentally determined parameters

for the antibody, we lumped the distribution of the antibody inside the cell into one internal-

ization rate (as described in Chapter 3). In contrast to the model in Chapter 3, we explicitly

considered the internalization and recycling of the free receptor (which was part of the de-

tailed model). Only this allowed us to accurately describe the measured plasma concentration

of zalutumumab in cynomolgus monkeys (see section 4.2). A rationale for this change of the

model is given in the discussion in Chapter 5
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4.1. OUR MODEL OF THE INHIBITORY EFFECT OF THERAPEUTIC PROTEINS

The developed cell-level PK/PD model is shown in Fig. 4.1(b) and (c). Based on the law of

mass action, the rates of change for the molecular species are given by the following system

of ordinary differential equations (ODEs):

Compartment model:

Vc
dDc

dt
= −qcpDc + qpcDp − CLlinD ·Dc,

Vp
dDp

dt
= +qcpDc − qpcDp

+Nh · koffD · SF ·RD −Nh · konD · SF ·R ·Dp

+Nt · koffD · SF ·RDt −Nt · konD · SF ·Rt ·Dp,

(4.1)

Normal cells:

dR

dt
= kRh − konLR · L− konDR ·Dp

+ koffLRL+ koffDRD − kdegR ·R+ krecyR ·Ri,

dRi

dt
= kdegR ·R− krecyR ·Ri − kexit ·Ri,

dRL

dt
= konLR · L− koffLRL− kdegRLRL,

dRD

dt
= konD ·R ·Dp − koffDRD − kdegRD ·RD,

(4.2)

Tumor cells:

dRt

dt
= kRt − konLRt · L− konDRt ·Dp

+ koffLRLt + koffDRDt − kdegR ·Rt + krecyR ·Rit,
dRit
dt

= kdegR ·Rt − krecyR ·Rit − kexit ·Rit,

dRLt

dt
= konLRt · L− koffLRLt − kdegRLRLt,

dRDt

dt
= konD ·Rt ·Dp − koffDRDt − kdegRD ·RDt.

(4.3)

The model describes two compartments with volumes of Vc and Vp. The drug is present

in concentrations Dc and Dp, respectively. The parameters qcp and qpc denote the transport

rate constants from the central compartment to the peripheral, and vice versa. The drug is

cleared from the central compartment with rate constant CLlinD. The drug in the peripheral

compartment interacts with the receptors of normal cells (Fig. 4.1 a), or normal and tumor

cells simultaneously (Fig. 4.1 b), expressed by equations (4.2) and (4.3). R, Ri, RL, and
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Figure 4.1: Schematic illustration of the cell-level pharmacokinetic/pharmacodynamic model for an-
alyzing the inhibitory effect on receptor activation of anti-EGFR antibodies. (a) Cell-level receptor
model of receptor activation and inhibition. The cellular model describes the transient inhibitory effect
of a therapeutic antibody (D) on the formation of active ligand(L)-receptor complexes (RL) through
the binding to the free receptor (R) and the formation of a antibody-receptor complex (RD). Left:
We studied three different transient measures of the reduction in the number of active receptors: the
integral, the peak, and the duration of inhibition. Right: The receptor dynamics, at the same time,
effect the antibody concentration in the body, since the binding of the drug constitutes a target-mediated
clearance mechanism. (b) Cell-level pharmacokinetic/pharmacodynamic model. The model describes
the observed pharmacokinetics of therapeutic antibodies and includes a target independent linear clear-
ance mechanism (CLlinD) from the central compartment and an exchange of drug described by the flux
(qpc and qcp). The central and the peripheral compartments have a volume of Vc and Vp, respectively.
The cell-level model depicted in (a) is integrated in the peripheral compartment. This cell-level phar-
macokinetic model is used to study the trajectory of the drug concentration and the optimal biophysical
properties of anti-EGFR antibodies. (c) Extended cell-level pharmacokinetic/pharmacodynamic model
including tumor cells with elevated EGFR levels due to different alteration of receptor dynamics. The
extended cell-level pharmacokinetic model is used to compare the inhibitory effect of therapeutic anti-
bodies on tumor cells and normal cells to optimize tumor specificity.
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4.1. OUR MODEL OF THE INHIBITORY EFFECT OF THERAPEUTIC PROTEINS

RD are the numbers of free receptors, free internalized receptors, ligand–receptor complexes,

and drug–receptor complexes per normal cell, respectively. Similarly, Rt, Rit, RLt, and RDt

denote the respective numbers in the tumor cells.

Both ligand (L) and drug (Dp) reversibly bind to the free receptors with association rate

constants konL and konD, and dissociate with rate constants koffL and koffD. The free membrane

receptors are internalized with rate constant kdegR and recycled with rate constant krecyR or

degraded with rate constant kexit. The drug–receptor complex and ligand–receptor complex

are internalized with rate constant kdegRD and kdegRL, respectively. All molecular species are

in number of molecules per cell, except L, Dc and Dp which are in mg/ml. In equation (4.1),

the factor SF = MW ·103

Na
ensures conversion from units number of molecules to mg.

For numerical simulations, we used the parameter values given in Table 4.1 and 4.2. The

comparison of the different therapeutic antibodies against the EGFR are based on the affinity

values stated in Table 4.3.

Table 4.1: Parameter values for the EGF receptor system. NCalculated in Section 4.2

Parameter Unit Value

1 konL M−1 · s−1 2.9 · 106 [68]

2 koffL h−1 0.24 [68]

3 kdegR h−1 0.0172 [68]

4 kdegRL h−1 0.8460 [68]

5 kRh cell−1 · h−1 1.3824 · 104 [68]

6 krecyR h−1 3.4800 [140]

7 kexit h−1 0.1320 [140]

8 konD M−1 · s−1 konL

9 kdegRD h−1 0.005 [147]

10 Nh 2.9434 · 1010 N

11 MWmAbs dalton 148000

The parameter konD in units 1
mg
ml
·h is converted from the traditionally used konD in units

1
nM ·h by multiplying with 1

10−9·MWmAbs
. It was assumed that concentration of all EGFR

ligands is five times the concentration of EGF, L = 5 · 0.35 ng/ml [15].
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4.2. INTEGRATING IN VITRO DETERMINED CELL-LEVEL RECEPTOR DYNAMICS INTO
WHOLE-BODY PHARMACOKINETIC MODELS

Table 4.2: Pharmacokinetic parameters determined in vivo by [147].

Parameter Unit Value

1 kb h−1 0.067 [147]

2 kpi h−1 0.043 [147]

3 kip h−1 0.043 [147]

4 kel h−1 0.0055 [147]

5 Vi ml 70 [147]

6 Vp ml 35 [147]

7 KM mg ·ml−1 0.5 · 10−3 [147]

8 Bmax mg · h−1 2 [147]

9 CLlinD ml · h−1 kel · Vp

Table 4.3: Affinities and Isotypes of the considered therapeutic antibodies against the EGFR. Values
taken from [107].

Antibody Affinity (M) Isotype

1 Panitumumab 5 · 10−11 IgG2

2 Cetuximab 4 · 10−10 IgG1

3 IMC-11F8 3 · 10−10 IgG1

4 Nimotuzumab 1 · 10−9 IgG1

5 Zalutumumab 7 · 10−9 IgG1

4.2 Integrating in vitro determined cell-level receptor dynamics
into whole-body pharmacokinetic models

To analyze preclinical or clinical pharmacokinetic data of protein drugs, empirical compart-

mental models (see Chapter 2 and described in section 2.2) have been typically used[30, 77,

102, 67, 147].

In these models, the interaction of the drug with its target is represented by an empirical

or semi-mechanistic term, accounting for the saturable degradation capacity of the target

system.

Our approach of integrating cell-level kinetics into systemic pharmacokinetic models is a

two step process: Starting with the compartment model, we first replace the empirical or
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semi-mechanistic term with a kinetic model at the single cell level, and then secondly scale

the effect of this cellular level on the pharmacokinetics with the number of relevant cells. We

define relevant cells as those cells expressing the target and coming in contact with the drug.

Below, we illustrate the construction of such a cell-level pharmacokinetic model for the in

vivo effect of the antibody zalutumumab.

Zalutumumab (2F8) is an IgG1 antibody against EGFR that potently inhibits tumor growth

in xenograft models and has shown promising results in phase I/II clinical trials[13, 8]. Lam-

merts van Bueren et al.[147] have developed an empirical pharmacokinetic model of zalu-

tumumab in cynomolgus monkeys which accurately describes experimental plasma data for

high and low doses (Chapter 2). The model does however not allow the in vivo inhibitory

effect of zalutumumab to be predicted. Hence, the impact of the biophysical properties of the

drug on its effect can not be addressed using such a model.

In the empirical model, the interaction of zalutumumab with its target is represented by

an Michaelis-Menten term representing the saturable drug-receptor binding and subsequent

degradation. This term is the key to link pharmacokinetics and target dynamics, since (as

demonstrated in Chapter 2) it represents the degradation capacity of the relevant cells. To

describe the cell-level kinetics we use a canonical model of ligand-receptor activation and

trafficking[133, 68, 140] which is parameterized using rate constants that have been experi-

mentally determined in human fibroblast cells[68, 140] (Fig. 4.1, a). The number of relevant

cells was then estimated by comparing the degradation capacities of all relevant cells to the

degradation capacity of the single-cell model, which was determined by model reduction:

In quasi-steady state the number of drug-receptor complexes is given by:

RD∗ =

kRh
kdegRD

·Dp

kdegRD+koffD

kdegRD·konD
· ( kexitkdegR

kexit+krecyR
+ L · konL·kdegRL

koffL+kdegRL
) +Dp

. (4.4)

The maximal binding capacity of the cell level model is therefore described by

Bmax,cell =
kRh

kdegRD
. (4.5)

The number of relevant cells can be estimated by comparing the maximal in vivo binding

capacity to the in vitro binding capacity of a single cell

Nh =
Bmax

SF ·Bmax,cell
=
Bmax · kdegRD

SF · kRh
, (4.6)

where SF ensures scaling of units.

This finally allowed us to replace the empirical term in the compartment model by the

scaled kinetic model of a single target cell (see Fig. 4.1, b and Section 4.1).

Importantly, our approach does not involve the refitting of parameters; all parameter values
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4.3. OPTIMIZING DRUG CHARACTERISTICS

are either inherited from the original compartment model or have been determined in vitro.

The proposed approach to build cell-level pharmacokinetic models is applicable to various

therapeutic proteins where the target dynamic has an definable impact on the pharmacoki-

netics.

To assess the integration of the single cell kinetic model and how it feeds back on the

pharmacokinetics, we compared our model with the original empirical compartment model.

The predicted time-courses of the drug concentration showed good agreement for both, a

high 20 mg and low 2 mg dose (Fig. 4.2(a)). At the same time, the cell-level pharmacokinetic

model was used to predict the dynamics of the receptor system upon drug administration

(Fig. 4.2(b)). Our model correctly predicted that the saturation in monkey tissue which

expresses normal receptor levels was established at doses between 2 and 20 mg/kg[147] (see

Fig. 4.2(b), inset).

The cell-level pharmacokinetic/pharmacodynamic model then was used to predict the num-

ber of activated receptors over the duration of the treatment, which is in vivo difficult to

examine. Our model predicted that the low dose (2 mg) of antibody reduces the number of

active receptors by about 35%. It is then followed by a recovery period secondary to a slow

reduction of drug concentration (Fig. 4.2(b)). On the other hand, the higher dose (20 mg)

almost completely inhibited receptor activation for a period of around 20 days. The start of

the recovery period coincided with the transition from saturated to linear pharmacokinetics

between days 20 and 25. Thus, the model suggests that changes in pharmacokinetics might

act as a biomarker for changes in the inhibitory response. Further, we have compared re-

ceptor drug saturation with the inhibition of receptor activation. Both only corresponded

initially, while at later points in time the receptor saturation underestimated the inhibitory

effect of the antibody. This highlights the importance of adopting an integrated kinetic model

to translate the binding of the drug into its actual inhibitory effect on receptor activation.

The model only allowed to reproduce the zalutumumab time-curve when an internalized

free receptor was included in the model which can be recycled to the surface. For models

which lack such a pool of receptor, there was a poor agreement between our model and the

zalutumumab time-curve.

4.3 Optimizing drug characteristics

One important advantage of the cell-level pharmacokinetic/ pharmacodynamic model is its

ability to study the impact of drug properties such as the dose, drug-receptor affinity, and

drug induced receptor internalization on the inhibitory response under in vivo conditions.

Since we investigated a transient inhibitory effect we again consider the three quantitative

measures of the response defined in section 3.2(see also Fig. 4.1(a)):
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Figure 4.2: Pharmacokinetics of zalutumumab in cynomolgus monkeys and prediction of the inhibitory
effect on a cellular level using the model depicted in Fig.4.1(b). (a) Predictions of zalutumumab in the
central compartment ( ) and the peripheral compartment ( ) for a high dose of 20 mg and a low
dose of 2 mg by the cell-level pharmacokinetic model. The model predictions are in good agreement with
the empirical pharmacokinetic model of Lammerts van Bueren[147] ( and ). The experimentally
validated profiles from Lammerts van Bueren are marked with a �♦. (b) Predictions of the residual
EGFR activation per cell based on the cell-level pharmacokinetic model (Fig. 4.1 (b)) for the high
dose ( ) and the low dose ( ). The inset depicts the corresponding relative number of drug-bound
receptors at the membrane. This predicted saturation corresponds for both doses with the experimentally
measured receptor saturation in Lammerts van Bueren[147].

Affinity and dose.

We studied the inhibitory effect for a range of affinities, including those of anti-EGFR mAbs on

the market or in clinical development: zalutumumab, panitumumab, cetuximab, IMC-11F8,

and nimotuzumab. All these antibodies act antagonistically [163]. Our analysis focused on

optimizing the direct inhibitory effect, i.e., reducing the number of activated receptors at

the cell membrane. Since all the analyzed antibodies are either IgG1 or IgG2, their target-

independent clearance was assumed to be identical [99]. The percentage of active receptors

over time is shown in Figure 4.3(a). Despite 20-fold differences in target affinities (see Table

4.3 in Supplement), the transient inhibition pattern were similar. As seen in Figure 4.3(b)-

(d), this phenomenon is a consequence of an effect plateau in the inhibitory responses. For

high affinity drugs located in the plateau range, an increased affinity does not translate into

a stronger inhibition. For the integral effect our theoretical analysis (Appendix 6.2) suggests

that this a structural feature of the system that does not depend on specific parameter values.

Shankaran et al. [133] identified the ratio between the dissociation and downregulation rate

constants (kdegRD/koffD, termed the “consumption parameter”) as a key parameter to char-

acterize cell surface receptor systems. As discussed in section 3.1, it quantifies the likelihood

that a drug is internalized rather than dissociated upon binding the receptor. We found that

this is also an important parameter for antagonistic mAbs, since those with a high consump-
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Figure 4.3: Inhibitory effect of different antibodies using the cell-level pharmacoki-
netic/pharmacodynamic model shown in Fig.4.1(b). (a) Predicted transient inhibitory effects
of five antibodies on the market or in clinical development with different affinities (see Table 4.3) for
a 20 mg dose ( ) and a 2 mg dose ( ). The different mAbs show a similar transient inhibitory
effect despite their affinities vary 20-fold. (b)-(d) Inhibitory effect resulting from different affinities
(KD = 1/affinity = koffD/konD) and downregulation rates (kdegRD). The antibody is quantified by the
three different measures defined in Fig.4.1(a): (b) the integral of inhibition, (c) the peak inhibition,
and (d) the duration of inhibition, for the 20 mg dose ( ) and 2 mg ( ) dose. The shaded area
indicate the affinity range of the five considered anti-EGFR antibodies on the market or in late stages
of the development. The different affinities were realized in silico by altering the dissociation rate
constant koffD, while the association rate constant was kept constant. For low affinity drugs, the
inhibitory effects can be increase by increasing the affinity to the target. For high affinity drugs (such
as those in the shaded area), the existence of a plateau region does not allow for further optimization
of the direct inhibitory effect.
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tion parameter are located on the effect plateau and their direct inhibitory effect could not be

further increased (Appendix 6.2). For lower affinity drugs the target independent clearance

is more dominant such that RME (and therefore drug effect), decreases for lower affinity.

Receptor downregulation.

Enforcing receptor downregulation by mAbs is argued to be an important part of the drugs’

effect[96]. For anti-EGFR antibodies, we found that endocytic downregulation only con-

tributes to a negligible extent to the direct inhibitory effect of high-affinity antibodies (Fig. 4.3(b)-

(d)) on the market or in late development. For medium affinity antibodies, however, an

increased downregulation could increase the direct inhibitory effect.

4.4 Tumor cell specificity

As a next demonstration of the benefit of the cell-level pharmacokinetic/ pharmacodynamic

model we predicted the effect on cells with different alterations to determine how to optimize

the specificity of antibodies against tumor cells.

Upregulation of EGFR expression and aberrant activation of EGFR has been shown in

many human epithelial cancers, including those of the colon, lung, kidney, head and neck,

breast, prostate, brain and ovary[124, 105, 122, 149, 56, 142]. The extent of overexpression

also correlates with a poorer clinical outcome[95, 49].

To compare the response of normal and tumor cells to anti-EGFR antibodies, we extended

our model by integrating a kinetic cellular model representing tumor cells with elevated EGFR

levels (see Fig. 4.1(c)). The cellular model for the tumor cells was chosen to resemble the

characteristics of A431 cells, a human squamous carcinoma cell line with high EGFR levels

[91, 83, 145]. The overexpression in A431 cell is due to amplification of the EGFR gene[97] and

correlates with increased EGF receptor mRNA levels[83]. A431 cells express about 1.8 · 106

EGFR at the cell surface[91]. In vivo experiments are typically designed in a way that the

A431 tumors do not influence the pharmacokinetics of the mAbs (e.g., Bleeker et al.[13] in

mice). We therefore set the number of tumor cells to 1% of the normal cells, which had little

impact on the pharmacokinetics. The tumor cell model represents those tumor cells exposed

to drug concentrations equivalent to the exposure of cells with normal EGFR levels.

The extended cell-level pharmacokinetic/pharmacodynamic model was also used to study

whether cells with higher receptor levels are more susceptible to antibody treatment than

normal cells. Figure 4.4 (a) illustrates the predicted inhibitory effect in tumor and normal

cells in cynomolgus monkeys. For tumor cells with elevated receptor levels, the inhibitory

effect is seen to be stronger than for those cells with normal EGFR levels.
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Figure 4.4: The mechanism underlying increased receptor levels influences tumor specificity of mAbs.
(a) Predicted transient inhibition based on the extended cell-level pharmacokinetic model shown in
Figure 4.1(c) for normal cells ( ), tumor cells with a 10-fold increased receptor expression ( ), and
tumor cells with a 10-fold decreased internalization of the free and bound receptor ( ). Profiles are
shown for a high dose of 20 mg ( ) and a low dose of 2 mg ( ). Both scenarios show similar steady-
state activation levels of the receptor, but their response to drug treatment is substantially different.
(b) Antibody specificity as ratio of effect in tumor cells compared to cells with normal levels of EGFR
for the three effect characteristics. Cells with a decreased receptor internalization have a much longer
duration of inhibition and therefore a higher integral of inhibition than tumor cells with an increased
receptor expression.

Elevated receptor levels as potential biomarkers

The cell-level model (Fig. 4.1 (a)) suggests that elevated receptor levels can be a consequence

of not only an increased receptor expression, but also of a reduced internalization of the

receptor. Reddy et al.[113] reports about an alteration of EFGR where a truncated cyto-

plasmic domain exhibits a decreased ligand-induced internalization rate constant. Figure 4.4

(a) compares the predicted transient inhibition for both alterations, increased synthesis rate

and reduced internalization. Although both cell alterations resulted in similar steady-state

activation levels, their responses to mAbs are remarkably different.

For a quantitative comparison of the inhibitory effect in normal and tumor cells, we defined

the tumor specificity S as the ratio of the inhibitory effect on tumor cells relative to normal

cells. Thus we have

Speak =
peakt

peak
, (4.7)

Sduration =
durationt

duration
, (4.8)

SE =
Et

E
. (4.9)

We compared the tumor specificity tumor:normal, S for both types of alterations for a 20 mg
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dose of a high affine mAb (Figure 4.4(b)).

A 10-fold receptor overexpression in tumor cells resulted in the same amplification of the

integral of inhibition. Although the initial decrease is stronger in tumor cells overexpressing

the receptor, at the same time, due to the increased receptor expression, the recovery was

considerably faster and in total leads to the same duration of the inhibition as in normal cells.

In the case of overexpression, mAbs are selective only in terms of the integral of inhibition. As

supported by a theoretical analysis (Supplementary Material Section 6.3), mAbs specificity

holds independently of the model parameterization, mAbs target affinity, downregulation

constant and dose. Our findings therefore suggest that when considering the direct inhibitory

effect, the specificity of therapeutic antibodies against tumor cells overexpressing the receptor

cannot be improved by tuning the drugs properties.

Cells with decreased receptor internalization, in contrast, showed a higher integral and

duration of inhibition compared to normal cells. Also, since tumor specificity of mAbs for

cells with decreased internalization rates depends on the affinity and dose of the mAbs, further

optimization of their tumor specificity can be achieved by lowering affinity and/or dose.

4.5 Summary and Conclusions of this chapter

Mechanism-based pharmacokinetic and pharmacodynamic models constitute a scientific basis

for understanding drug efficacy and safety. Such models contribute to improving efficiency in

the drug development process and to reduce attrition rates [109]. In cynomolgus monkeys,

our cell-level pharmacokinetic/pharmacodynamic model predicts almost identical direct in-

hibitory effects for a range of antigen-binding affinities. Supporting theoretical analysis of the

model suggests that the existence of an effect plateau is a generic feature of this drug-target

system and does not depend on specific parameter values. Current anti-EGFR antibodies are

located on the effect plateau which relativizes the affinity amongst the properties that can

be further tuned to optimize antibody efficacy. In view of our findings, the recent assertions

that panitumumab, due to its very high affinity, can compete more effectively with ligands

for binding to EGFR compared to high affinity mAbs [61]; and that nimotuzumab, due to

its intermediate affinity, relies on the high number of receptors as present on tumor cells for

efficient binding [24], should be revisited.

Based on the existence of an effect plateau in the direct inhibitory effect, the clinically

observed differences among mAbs are likely to arise from indirect effects, such as the action

of immune effector functions (such as antibody dependent cell mediated cytotoxicity or com-

plement dependent cytotoxicity), rather than the direct antagonistic effect. This is consistent

with a study of Bleeker et al. showing that effects in vivo of zalutumumab and cetuximab

differed only by their ability to trigger such indirect effect and not by their direct inhibitory

effect [13].
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Regarding optimization of tumor specificity, we find that antibody specificity depends on

the tumor cell type, i.e., the alterations underlying elevated receptor numbers. Tumor cells

with an increased receptor expression seem to recover from the drug treatment faster than

those with reduced internalization rates, despite potentially presenting similar receptor num-

bers. Our analysis suggests that biophysical properties cannot be tuned regarding the speci-

ficity of the direct effect on tumor cells overexpressing the receptor (such as A431 cells). In

contrast, for tumor cells with a decreased receptor internalization, the specificity is increased

for lower affinity and/or dose. This increased specificity, however, comes along with a lower

absolute effect.

Using cutaneous toxicities—the most common side effects of anti-EGFR antibodies, affect-

ing 45–100% of patients [79]—as a marker of drug efficacy and clinical outcome was proposed

[108]. Clinical experience, however, has shown that EGFR levels, as measured by immuno-

histochemistry, do not predict clinical benefit [25, 21]. Our finding regarding the dependence

of drug efficacy on tumor type suggests that the unsatisfactory correlation between elevated

receptor levels and drug efficacy may be improved by a genotypic determination of the un-

derlying cellular alterations.
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5 Conclusions and Extensions

Mathematical modelling has become a widely used methodology in preclinical drug discovery,

early clinical development, and later stage clinical development [2, 62, 162, 148, 80, 58, 18].

Mechanistic models of cell-level kinetics are of increasing importance for target identification

and validation [130]. Mechanistic models can describe the causal path between the drug

and the effect and also make an explicit distinction between drug specific and organism

specific parameters. A main challenge today is to integrate data and knowledge from different

sources such as clinical PK data, in vitro data, genomic studies, and bioinformatics to link

the exposure of a drug (or combination of drugs) and the modulation of pharmacological

targets, physiological pathways and ultimately disease systems [162]. This is the objective

of the arising field of systems pharmacology by considering targets in the context of the

biological networks in which they exist. In this thesis we developed an approach of combining

empirical pharmacokinetic and mechanistic cell-level models to bring the different areas closer

together. The model can act as a quantitative framework which allows to accumulate and

pool the knowledge over the different stages of the drug development pipeline.

Following the lessons we learned from modelling the nonlinear pharmacokinetics of thera-

peutic proteins, we want to raise the question if the nonlinear pharmacokinetics of therapeutic

proteins is a curse or a gift for analyzing clinical data and adjust dosing of the drug. Tra-

ditionally the nonlinearity is seen as a factor which complicates dose finding, and although

this might be true, we would argue that the nonlinearity can be well described and predicted

using nonlinear pharmacokinetic models, if the physiological reasons and mechanism are un-

derstood. Additionally, we are convinced that nonlinear pharmacokinetics occurring because

of the interaction of the drug with the target gives precious information about the action of

the drug, which can be further enriched by mechanistic modelling of cellular processes.

In a way, therapeutic proteins blur the traditional distinction between pharmacokinetics

and pharmacodynamics. Processes, such as the binding of the drug to the receptor, cannot

be classified either as only controlling the disposition or the effect of the drug, but influence

both at the same time. The development of modelling concepts like TMDD is a first step to

include cell-level processes like receptor binding and trafficking into pharmacokinetic models.

Nevertheless, we argue that defining the cell as the fundamental unit of the model, as is

done in systems biology, is for many applications an advantage over pooling processes on a

whole body level. As demonstrated in this thesis, a cellular model allows to mechanistically

describe processes, compare alterations in different cell types, and the global optimization
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of drug properties. Another aspect is that TMDD describes only processes such as target

turnover, drug binding, and the internalization of the drug-target complex. We learned in

Chapter 4 these processes alone might not allow to describe the pharmacokinetics of ther-

apeutic antibodies. As we saw for zalutumumab, the existence of an intracellular pool of

receptor (dynamically described by the internalization and recycling of the free receptor) can

be important. Only this pool in addition to the turnover of the receptor explained the ini-

tial decrease of drug concentration right after drug administration as well as the clearance

velocity in the terminal phase. This demonstrates how processes according to the knowledge

of the cellular level can be added to the pharmacokinetic model and might allow a better

explanation of data determined in clinical trials.

In the following, we will discuss possible extensions to the model. A limitation of the

proposed cell-level pharmacokinetic/ pharmacodynamic model is that predictions of EGFR

inhibition on tumor cells are limited to those malignant cells which are exposed to similar

concentration than normal cells, such as avascular metastases embedded in healthy tissue

[143]. In solid tumors, due to heterogeneous drug distribution, only malignant cells close

to capillaries might be exposed to such concentration. A more physiological description of

the pharmacokinetic model may allow to distinguish between the drug concentrations in the

different tissues or the tumor. One possible extension we identify, is therefore the use of

physiologically based pharmacokinetic models (PBPK).

The difference of PBPK compared to the empirical compartment models described in sec-

tion 2.2 is that compartments and volumes of PBPK models correspond to discrete tissues,

organs and other physiologically identifiable spaces. Further, the distribution of the drug in

the body is described by fluxes corresponding to the blood flows connecting the organs or

organ groups (see Fig. 5.1). In the different organs the distribution process is modelled in

terms of so called partition coefficients which describe the steady-state concentration within

the tissue compared to the blood concentration. Additionally to the physiologically based

“wiring” of the organs by the bloodstream each organ can be further divided into submodels

representing different subcompartments like the interstitial space or the cytosol of cells (see

Fig. 5.2). Using this framework, the tumor can be described as a single compartment or be

subdivided in different parts which are differentially accessible to the drug.

For describing the disposition of antibody drugs, PBPK models should incorporate the

particularities associated with antibody disposition such as convective movement of antibodies

into tissues, lymphatic circulation, RME, and catabolism in the different tissues [84, 141].

Several PBPK models for antibodies have been developed [10, 23, 36, 9, 42, 60, 164, 165, 43,

28, 52, 146]. In contrast to PBPK models for small molecules these models should include the

lymphatic system and usually also a submodel which describes the flux of macromolecules

from the blood capillaries to the interstitial space of the organs [117]. A two-pore model which
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Figure 5.1: Schematic structure of a physiologically based pharmacokinetic model (PBPK). The mod-
elled organs or organ groups are connected by the blood flow.
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Figure 5.2: A submodel in a PBPK model which describes the processes involved in the distribution
of antibodies inside a tissue.
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Figure 5.3: Schematic illustration of the two pore model describing the extravasation of antibodies.

describes this is depicted in Fig. 5.3. Another exceptional aspect of antibody disposition in the

body is binding to the neonatal Fc receptor (FcRn). FcRn contributes to effective humoral

immunity by recycling IgG and extending its half-life in the circulation [119]. FcRn binds

tightly to the Fc portion of IgG at acidic pH 6.0 in endosomes, but not at physiological pH

7.4 and therefore can recycle IgG back the circulation secondary to internalization by RME.

Because of its important role for the pharmacokinetics usually the FcRn is incorporated into

PBPK model for mAbs.

Because of their mechanistic nature, PBPK models in the future probably will play a key

role when aiming to include mechanistic pharmacodynamic models of mAbs [111]. PBPK

models together with mechanistic pharmacodynamic models of cellular processes have the

potential to account simultaneously for processes such as systemic distribution, extravasation

into tissue, lymphatic drainage, target binding, target dynamics, and metabolisation of mAbs.

The advantage of a more detailed description of the pharmacokinetics comes with the

need for many parameters and detailed drug concentration data from different compart-

ments/tissues for a validation of the model. This limits the use of PBPK models in the

analysis of sparse clinical data where usually only drug concentrations in plasma are deter-

mined. This was the reason why we used empirical compartment models to describe the

pharmacokinetics in this thesis. Moreover, it is known that the main space of antibody dis-

tribution is the plasma and the interstitial space. Hence, the used two-compartment model

seems physiologically and pharmacokinetically motivated. Nevertheless, in the cases where

detailed measurements of drug concentrations from different organs are available (like it might

be the case for preclinical studies in animal models) PBPK models might be a rational basis

for the integration of cellular models such as the ones described in this thesis.

A further limitation of the current cell-level pharmacokinetic/ pharmacodynamic model is

that it predicts decrease in receptor activation instead of the actual biological response of the

cell. While Knauer et al. [68] reported a linear dependence between the number of activated

EGFR at steady-state and the cellular responses of fibroblasts and epithelial cells, other
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models describe a more complex relationship between receptor activation and downstream

signaling [129]. A possible extension of the cell-level pharmacokinetic/ pharmacodynamic

model is therefore the integration of more detailed cell-level models.

Additionally to the receptor activation models discussed in Section 3.1, many very detailed

systems biology models of receptor activation, trafficking and downstream signalling have been

developed. Schoebel et al. [129] derived and validated a comprehensive model of 94 ordinary

differential equations with 95 parameters connecting the activated EGFR to the downstream

kinase ERK (Extracellular signal–Regulated Kinase). The model provides insight into the

high robustness of the downstream signalling of EGFR, where over a range of 100 fold ligand

concentration the activation of ERK seems to be remarkably stable. The important parameter

for signal efficacy is the initial velocity of receptor activation and this is mainly determined

by the affinity of the ligand.

Studying the input-output behavior of the EGFR signalling network became even more

detailed when Birtwistle et al. [11] and Chen et al. [20] included also the activation and

signalling of the other cell surface receptors of the ErbB/Her family. Birtwistle found that the

overexpression of the receptor ErbB2 leads to change in the activation of ERK over time. The

overexpression transformed a transient activation of the cell-surface receptors into a sustained

activation of the ERK. Chen et al. eluminated the dependence of the signalling behavior on the

conditions (which ligand binds to the cell surface receptors) and the feature (the downstream

effector kinase which gets activated). Very recently, the model of the signalling of the ErbB

family has been further extended to study the crosstalk between the signalling downstream

of the EGFR and the Insulin receptor [14].

Our approach to couple systems biology models with pharmacokinetic models in general

allows for integrating such detailed models of downstream signalling into systemic pharma-

cokinetic models. To couple such detailed downstream signalling models, the cell-level model

has to provide the species which act as an interface between the signalling inside the cell and

the receptor dynamics on the cell surface. For example, models which describe the activation

of the different receptors of the ErbB family[11, 20] would need a more detailed receptor ac-

tivation and inhibition model than the ones we developed in this thesis. On the other hand,

models of EGFR downstream signalling where the free EGF receptor at the cell membrane

is already part of model (like, e.g., the comprehensive model of Schoeberl et al. [129]), may

allow a direct coupling with our developed cell-level PK/PD model.

In conclusion, we propose that detailed cell-level models combined with pharmacokinetic

models will prove valuable in the emerging field of systems pharmacology. Further, the use of

more detailed systems biology models describing downstream signaling processes relevant to

human diseases [20, 14, 63] may allow to translate a drugs’ plasma concentration into receptor

activation and ultimately into a biological responses of tumor cells.
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6 Appendix

6.1 Derivation of an exact formula for the inhibitory effect

We consider the model defined in Eq. (3.2) and define the steady state as R∗, RL∗, RD∗ and

D∗ = 0. The integral of the inhibitory effect is defined as

E =

∫ ∞
0

RL(t)−RL∗ dt. (6.1)

We rewrite model (3.2) in terms of the deviations of the species from their steady state values.

We define these deviation variables as

R̄(t) = R(t)−R∗, D̄(t) = D(t)−D∗,

R̄D(t) = RD(t)−RD∗, R̄L(t) = RL(t)−RL∗,

and the state vector as

x̄(t) =
[
D̄(t) R̄(t) R̄L(t) R̄D(t)

]T
. (6.2)

A taylor expansion around the steady state x∗ gives

dx(t)

dt
= Nv(x, t) |x=x∗ +N

d

dx
v(x, t) |x=x∗ x̄+

1

2
x̄TN

d2

d2x
v(x, t) |x=x∗ x̄ (6.3)

Because

d x̄

dt
=

dx(t)

dt
− d x̄

dt
=

dx(t)

dt
(6.4)

and

Nv(x, t) |x=x∗= 0 (6.5)

it follows that the resulting system of ODEs in terms of the new state variable is given by

d x̄

dt
= Ax̄(t) + Bx̄1x̄2, (6.6)
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where the matrix A = N d
dxv(x, t) |x=x∗∈ R4×4 is the Jacobian of the right hand side of (3.2)

evaluated at the steady state

A =


−konDR

∗

V Na
0 0 koffD

V Na

−konDR
∗ −konLL− kdegR koffL koffD

0 konLL −koffL − kdegRL 0

konDR
∗ 0 0 −koffD − kdegRD

 , (6.7)

and

B =
[
konD
V Na

konD 0 −konD

]T
. (6.8)

Integration of (6.6) from t = 0 to infinity gives

x̄(∞)− x̄(0) = A

∫ ∞
0

x̄(t)dt+ B

∫ ∞
0

x̄1(t)x̄2(t)dt. (6.9)

For a bolus dose C at t = 0 the initial condition for (6.6) is

x̄(0) =
[
C 0 0 0

]T
. (6.10)

Under the biologically reasonable assumption that when the drug disappears the receptor

system goes back to its old steady-state activation level (described in Section 3.2), the stability

of the system implies that x̄(∞) = 0. Substitution in (6.9) yields∫ ∞
0

x̄(t)dt = A−1x̄(0) + A−1B

∫ ∞
0

x̄1(t)x̄2(t)dt. (6.11)

From (6.1) and (6.2) we notice that E =
∫∞

0 x̄3(t)dt, that is,

E =
[
A−1B

]
3

+
[
A−1x̄(0)

]
3
. (6.12)

Computing A−1 it can be shown that
[
A−1B

]
3

= 0 and (6.12) leads to

E = V NaC
konLL

LkonLkdegRL + kdegRkoffL + kdegRkdegRL
. (6.13)

From model (3.2) the steady state concentration RL∗ is given by

RL∗ =
konLkRL

LkonLkdegRL + kdegRkoffL + kdegRkdegRL
. (6.14)
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Combining (6.14) with (6.13) finally yields a simple formula for the cumulative effect

E =
V NaRL

∗

kR
C. (6.15)

Assume tend to be the length of the treatment period and sufficiently large so that

E =

∫ ∞
0

(RL∗ −RL(t)) dt ≈
∫ tend

0
(RL∗ −RL(t)) dt. (6.16)

Then the relative inhibitory effect can be expressed as

Er =

∫ tend

0 (R∗L −RL(t)) dt∫ tend

0 R∗L dt
=
V NaCR

∗
L

tendkRR
∗
L

=
V NaC

tendkR
=

dose

tendkR
. (6.17)

6.2 Quantification of the integral of effect in vivo

The steady state of model (4.1)-(4.3) is

x∗ =
[
D∗p D∗c R∗ R∗i RL∗ RD∗ R∗t Ri∗t RL∗t RD∗t

]
,

and we know that D∗p = D∗c = RD∗ = RD∗t = 0. We assume that the steady state is

exponentially stable, which for any realistic scenario is trivially satisfied. This guarantees

that the integral of the inhibition

E =

∫ ∞
0

(RL∗ −RL(t)) dt, (6.18)

is a finite number. The deviations of the model variables with respect to the steady state are

R̄ = R∗ −R R̄t = R∗t −Rt D̄p = −Dp

R̄i = R∗i −Ri R̄it = Ri∗t −Rit D̄c = −Dc

R̄L = RL∗ −RL ¯RLt = RL∗t −RLt

R̄D = −RD ¯RDt = −RDt

We define a state vector as

x̄ =
[
D̄p D̄c R̄ R̄i R̄L R̄D R̄t R̄it ¯RLt

¯RDt

]T
. (6.19)

The model is linearized around the steady state. This leads to the following linear system of

ODEs

d x̄

dt
= Ax̄. (6.20)
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The matrix A ∈ R10×10 is given in (6.7) and corresponds to the Jacobian of the right hand

side of (4.1)-(4.3) evaluated at the steady state. Integration of (6.20) from t = 0 up to t =∞
gives

x̄(∞)− x̄(0) = A

∫ ∞
0

x̄(t)dt. (6.21)

For a bolus dose C at t = 0 the initial condition for (6.20) is

x̄(0) =
[
−C 0 0 · · · 0

]T
. (6.22)

As before, the return to the old steady-state activation level of the receptor after the drug

disappears implies that x̄(∞) = 0, which upon substitution in (6.21) yields∫ ∞
0

x̄(t)dt = −A−1x̄(0). (6.23)

From (6.19) we notice that the integral of inhibition E is the 5th entry of the vector in (6.23).

Hence

E =

∫ ∞
0

x̄5(t)dt = −
[
A−1x̄(0)

]
5
. (6.24)

Computing the inverse A−1 we get

E =
αRL∗

β + γ 1
konD

(
1

CP + 1
) , (6.25)

with the constants:

α = VcR
∗qcpC

kdegR

konLL

(
koffL + kdegRL

krecyR + kexit

)
, (6.26)

β = kRhSF(qcp + CLlinD)(NhR
∗ +NtR

∗
t ), (6.27)

γ = kRhCLlinDqpc. (6.28)

The parameter KD = 1/affinity and the “consumption parameter” defined by Shankaran et

al. [133] are given by

KD =
koffD

konD
CP =

kdegRD

koffD
. (6.29)

The effect E is a decreasing function of koffD and shows little variations for the values of KD

for the mAbs in Table 4.3. All these mAbs are located in a plateau region of the effect E.

This linear analysis suggests that the effect plateau is a structural feature of the system and

does not depend on the parameter values.
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6.3 Effect of receptor overexpression on the drug specificity

From the model (4.2)-(4.3), the ODEs for the free and bound receptors in the tumor cells are

dRt

dt
= kRt − konLRt · L− konDRt ·Dp + krecyRRit

+ koffLRLt + koffDRDt − kdegR ·Rt,

dRit
dt

= kdegR ·Rt − krecyR ·Rit − kexit ·Rit,

dRLt

dt
= konLRt · L− koffLRLt − kdegRLRLt,

dRDt

dt
= konD ·Rt ·Dp − koffDRDt − kdegRD ·RDt.

(6.33)

We assume that the tumor cells have a receptor synthesis rate that is α times higher than

in normal cells, i.e., kRt = αkRh. Since the equilibrium values R∗t , Ri∗t , RL∗t and RD∗t are

proportional to kRt, we have that

R∗t = αR∗, Ri∗t = αR∗i , (6.34)

RL∗t = αRL∗, RD∗t = αRD∗. (6.35)

Substituting kRt = αkRh in (6.33) and dividing by α yields

d

dt

(
Rt

α

)
= kRh − konL

Rt

α
· L− konD

Rt

α
·Dp + krecyR

Rit
α

+ koffL
RLt

α
+ koffD

RDt

α
− kdegR ·

Rt

α
,

d

dt

(
Rit
α

)
= kdegR ·

Rt

α
− krecyR ·

Rit
α
− kexit ·

Rit
α
,

d

dt

(
RLt

α

)
= konL

Rt

α
L− koffL

RLt

α
− kdegRL

RLt

α
,

d

dt

(
RDt

α

)
= konD ·

Rt

α
·Dp − koffD

RDt

α
− kdegRD ·

RDt

α
.

. (6.36)

By comparing the ODES in (6.36) with those for the normal cells in (4.2), we see that receptor

overexpression translates into scaled responses in the tumor cells (note that according to

(6.34)-(6.35) the initial conditions are also scaled), i.e.,

Rt(t) = αR(t), Rit(t) = αRi(t),

RLt(t) = αRL(t), RDt(t) = αRD(t).
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The definitions of Speak, Sduration and SE in Section 4.4 lead to

Speak = 1, (6.37)

Sduration = 1, (6.38)

SE = α. (6.39)
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