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ABSTRACT 

 

Given a set of unsorted views captured in a wide area, an 

effective solution is proposed for image self-organization. 

The method starts with an initialization step where a small 

number of key frame pairs are selected to set up a global 

reference. Given a query image we automatically relate it to 

the existing key frames based on their pair-wise similarity 

evaluation. Four major enhancements are made in this step 

to achieve better performance. Firstly, a recently developed 

technique, SURF, is applied for robust feature detection. 

Secondly, an efficient coarse-to-fine matching strategy is 

implemented. Thirdly, an improved global representation is 

defined over each image for accurate and fast similarity 

evaluation. Finally, the method is constantly updated by 

adding more query images. Experiments were carried out to 

evaluate the performances of image self-organization by 

using a large number of images captured from our 

university's campus.  

 

1. INTRODUCTION 

 

Structure from Motion (SFM) is an active research topic in 

computer vision and has been extensively studied in last two 

decades [3], [5], [6]. For SFM estimation to be robust and 

accurate, at least two spatially related images are needed. In 

a time-indexed video, enough spatial continuity can be 

guaranteed due to the short time interval between frames 

(e.g. 40 ms). Unfortunately, this is not the case for a sparse 

set of images taken from arbitrary view points in a wide 

area.  

In this paper, we provide a robust technique for the self-

organization of a large number of images without spatial 

ordering. Without extra information from other sensors or 

human interaction, this is not an easy problem to solve. An 

effective solution to this problem is proposed through the 

use of Speeded-Up Robust Feature (SURF) [1]. Unlike other 

detectors (e.g. the Harris corner detector), SURF not only 

defines the position of a feature point but also provides a 64- 

dimensional descriptor which allows reliable matching and 

comparison on local basis. Given a set of SURF descriptors 

for each image, their spatial relationship is robustly 

determined based on similarity evaluation. An improved 

global representation is defined over each SURF descriptor 

set for accurate and efficient similarity evaluation in this 

step. Also, a good strategy is proposed to use fewer SURF 

features detected in a coarser level for quick image 

matching. Finally, constant query images will be utilized to 

improve the results of image self-organization. 

Our method consists of two major steps: initialization 

and image self-organization. Details of each step will be 

described in Section 2 and 3, respectively. Experimental 

evaluations are reported in Section 4. Finally, the conclusion 

and future research direction are given in Section 5. 

 

2. INIALISATION 
 

To achieve robust Structure from Motion (SFM) results, a 

sparse set of well-conditioned key frame pairs are firstly 

selected to set up a global reference. In [5], a good guideline 

was provided for key frame selection as follows: (1) 

baseline between a pair of key frames is large enough to 

recover their epipolar geometry; (2) sufficient feature 

correspondences are obtained; (3) Image-based distance 

� � ������	�	
x, x′

 is large so that the selected frames 

are not near degeneration, where H is the best fitting 

homography that transfers the first image to the second one. 

Then, Speeded-Up Robust Features (SURF) are used 

for robust feature detection in key frames. For each detected 

feature point, SURF gives a 64-dimensional descriptor 

which is invariant to scale, illumination, and rotation 

changes. It allows us to perform robust image matching and 

registration. Another impressive advantage of SURF is its 

low computational cost due to the use of integral images. In 

our evaluations, more than 2000 features and descriptors can 

be computed in a 2272×1704 image within 500ms. For 

similar amount of work, another popular feature detector, 

SIFT [4], takes more than 2 seconds. For more details about 

SURF and its evaluations, please refer to [1].  

In our work, detected SURF descriptors are used for 

pair-wise similarity evaluation and image self-organization. 

To achieve better efficiency, a coarse-to-fine strategy is 

applied for image matching. It’s noted that fewer SURF 

features are detected in lower resolution images while some 

distinctive features constantly appear in each level (see Fig. 

1). Therefore, we propose to use the fewer features detected 

in a lower resolution for fast similarity evaluation. Image 

matching is initially performed at the lowest resolution and 
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proceeds through to the higher resolution until sufficient 

similarities are found. In this way, if enough evidence is 

gathered at a lower resolution, the self-organization will 

stop there to save computational cost. The effectiveness of 

this coarse-to-fine matching scheme is evaluated in Section 

4. 

   
       (a)          (b) 

   
      (c)          (d) 

Fig.  1. Detected SURF features in images of different resolutions 

(a) 2482 points are found in the original image, (b) 886 points in 

1/2 resolution image, (c) 216 points in 1/4 resolution, and (d) 71 

points in 1/8 resolution. 

 

3. IMAGE SELF-ORGANISATION 

 
Starting from a randomly captured image, the challenge is 

how to relate it to the selected key frames. More 

specifically, we need to identify the key frames it overlaps 

with. We solve this problem using a two-step approach. 

Firstly a global representation is defined over each image, 

and then image correspondences are determined based on 

the similarity evaluation of their global representations. The 

64-dimensional SURF descriptor set is a good choice to 

represent an image [1]. However similarity evaluation based 

on SURF descriptor sets has two major drawbacks. First of 

all, it’s very time consuming to search possible matches in 

two large sets of descriptors (more than 1000 descriptors are 

usually computed in an 800×600 image). Also, it’s difficult 

to find a proper distance threshold to determine correct 

matches.  

In this work an improved global representation is 

defined over an image as suggested by Grauman and Darrell 

[2]. We consider two sets of SURF descriptors �� ����, . . . , ����  and �� � ���, . . . , ����  derived from two 

images, where �� is a 64-dimensional descriptor. The global 

representation is defined over each descriptor set as: 

 

�	��
 � �
�	��
, 
�	��
… , 
�	��
� (1) 

 

where 
�  is a histogram vector that records the number of 

descriptors fall into 64-dimensional bins (corresponding to 

the 64-dimensional SURF descriptor) of side length 2
i
. The 

bins in the finest level 0 are small enough that each feature 

descriptor falls into its own bin, while all descriptors fall 

into one single bin at the coarsest level L. Then the 

similarity between two images is measured by comparing 

their corresponding histograms in different levels as: 

 

�	�� , ��
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     	2
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where  �  is the overlap of histograms at level  �, and ��  is 

the weight coefficient which gives more credits to the 

overlap found in a smaller size bin. 

Compared to the descriptor set �� , �	��
  is a better 

global representation. Firstly, it’s derived from SURF 

descriptors thus it keeps all the good features of SURF such 

as invariance to rotation, scale, and illumination. Secondly, 

it offers better computational efficiency. Two sets of 

descriptors can be inserted in parallel into some pre-

structured (not pre-created) multi-size bins, and their 

similarity is immediately obtained by counting the number 

of descriptors falling into the same bins. In this way, 

computational complexity is largely reduced from a set-to-

set matching (polynomial dependence on the descriptor 

number) to two set-to-bin matching (linear dependence on 

the descriptor number). Finally, its pyramid matching 

procedure provides a good understanding of the similarity 

evaluation results between two sets of descriptors (e.g. 

number of matches found under different selection criteria). 

We use this information to select certain query images for 

updating the self-organization scheme.   

A coarse-to-fine searching scheme is also implemented 

in our work for better efficiency as follows: 

(1)  Image is downsized to the lowest resolution (1/8 of 

the original size) and SURF features are computed; 

(2) In this level, similarity evaluations are performed 

between the query image and each key frame. The query 

image will be related with the frame which has the largest 

similarity. It’s noted that an image should always share high 

similarity with two adjacent key frames due to the spatial 

continuity. We imposed this spatial constraint to eliminate 

false results; 

(3) If the similarity variation found is below a pre-

defined threshold, we increase the image resolution and 

repeat the above steps until we reach the highest resolution. 

If the similarity variation is still too low, the query image is 

classified as an outlier (image covers sky, trees, road, or 

other buildings).  

Over time a number of query images are selected for 

updating the self-organization scheme. If a query image 

cannot be correctly organized in its lowest resolution, its 

global representation is recorded. If lots of overlaps start to 

appear in bigger size bins (it means enough similarity can be 

only found when we loose the selection criteria), we also 

take that image in account. When a large number of images 

are recorded in the scheme, we will increase the sample rate 
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based on image distribution for quick image matching and 

self-organization.  

 

4. EXPERIMENTAL RESULTS 

 

In this section we test the performance of the proposed 

methods for image self-organization. Two sets of images are 

used for evaluation. The first one is the standard Leuven 

Castle image sequence [7], which contains 27 consecutive 

frames (image resolution is 768×576 pixels) captured by a 

hand-held camera. The second data set was captured along 

the Engineering Building within the campus at National 

University of Ireland, Maynooth. Over 1000 frames 

(resolution is 2272×1704 pixels) are recorded in both indoor 

and outdoor environments. The raw inputs from camera are 

color images, while SURF implemented in our method only 

takes in the gray-level images. Some representative images 

are demonstrated in Fig. 2.  

 

 

 

 
Fig. 2. Some representative frames. Many challenging images were 

captured for testing our method (e.g. large illumination changes, 

occlusions , irrelevant images). 

 

Firstly, the method is tested in the Leuven Castle image 

sequence [7]. Frame 1, 9, 18 and 27 are selected as the 

query frames, while the rest are treated as key frames. Full-

size images are downsized twice (1/2 and 1/4) and SURF 

features are detected at each resolution. The number of 

detected SURF features for each image in different 

resolutions is shown in Fig. 3.  

 

 
Fig. 3. The number of detected SURF features in different 

resolutions.  

 

Given SURF descriptor set, image self-organization 

was performed using the method described in Section 3. The 

results were compared with the ones based on SURF 

descriptor set and Nearest Neighbour (NN) matching [4]. As 

shown in Fig. 4 , all the query frames can be correctly 

organized into the image sequence based on similarity 

evaluation even in the lowest resolution (e.g. query frame 2 

(frame 9 in the sequence) has the highest similarities with 

key frames 7 (the 8
th

 frame in the sequence) and 8 (the 10
th
 

frame in the sequence)). This is a quite good result, 

especially taking into account that displacements between 

consecutive frames are very insignificant. The accuracy of 

our method is better than the one based on SURF and 

Nearest Neighbour matching (see Fig. 4 (e) and (f) for 

comparison). Tab. I shows the processing efficiency. Since 

the implementations were run in Matlab, we set the 

processing time of our method for the lowest resolution 

image as the reference T. Significant computational costs 

were saved due to the coarse-to-fine matching scheme and a 

better global representation used in the method.  

 
           (a)         (b) 

 
          (c)          (d) 

   
          (e)          (f) 

Fig. 4. Similarity evaluation results comparison. Fig. 4 (a), (c), (e) - 

results of our method at resolution 768×576, 384×288 and 

192×144, Fig. 4 (b), (d), (f) - results of the method based on SURF 

and Nearest Neighbour matching (NN)  at resolution 768×576, 

384×288 and 192×144. 

 

                 Res. 

Method 
768×576 384×288 192×144 

Our method ~25T ~10T T 

SURF + NN ~200T ~50T ~1.4T 

Tab. I. Processing time of similarity evaluation based on our 

method and SURF+NN at different image resolutions. 

 

Next, we tested the method for realistic images captured 

in the campus. Full-size images (2272×1704 pixels) are 

downsized three times (1/2, 1/4, and 1/8) and SURF features 

are detected at each level. Three different experiments were 

organized as follows: 

(1) Accuracy test without update. 500 inlier frames (images 

covering the Engineering Building) were captured at 
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different times during the day. Many images contained 

occlusions such as trees, vehicles, and pedestrians. Ground 

truth about where the images were taken is obtained through 

human observation and prior knowledge. Based on the 

criteria described in section 2, another 30 key frames were 

manually selected to set up a global reference. Then image 

self-organization was performed using the method described 

in Section 3. In this experiment the test was performed 

without any updating (no additional images were recorded 

during the test). Results are reported in Tab. II.  

 
              Res.  

Result 
284×213 568×426 1136×852 2272×1704 

Number of 

Positive  
56 278 87 44 

Correct 

Detection 
50 253 75 40 

Detection 

Percentage  
11.2% 55.6% 17.4% 8.8% 

Note: Accuracy rate =83.6%, False positive = 35 (7%) 

Tab. II.  Image organization results without updating 

 

(2) Accuracy test with update. This time we used same 

image dataset in the Test 1 for image organization, while 

allowing the method automatically store new images for 

updating. We divided 500 query frames into 2 subsets (250 

frames each) and processed them sequentially to 

demonstrate the effect of updating. The result is shown in 

Tab. III. Obvious improvements were noticed after more 

images were saved for updating. 

 
First 250 Images  

              Res.  

Result 
284×213 568×426 1136×852 2272×1704 

Number of 

Positive  
78 97 44 21 

Correct 

Detection 
72 91 40 20 

Detection 

Percentage 
31.2% 38.8% 17.6% 8.4% 

Note: 53 query images were recorded   

Accuracy rate =89.2%, False positive = 10 (4%) 

 

Second 250 Images 

              Res.  

Result 
284×213 568×426 1136×852 2272×1704 

Number of 

Positive  
103 90 37 17 

Correct 

Detection 
99 87 35 17 

Detection 

Percentage 
41.2% 36% 14.8% 3.8% 

Note:  26 query images were recorded 

Accurate rate =95.2%, False positive = 3 (1.2%) 

Tab. III. Image organization results with updating 

 

(3) Robustness test in presence of outliers (images covering 

trees, sky, other buildings, and indoor scenes). 100 outlier 

frames were recorded, which contains images of trees (25 

frames), road and vehicle (25 frames), indoor office and 

people (25 frames), other buildings (25 frames). The 

updated image self-organization method from the Test 2 was 

used for this evaluation. The result is reported in Tab. IV. 

 
             Type  

Result 
Tree 

Road/ 

Vehicle 

Indoor/ 

People 

Other 

buildings 

Correct 

Detection 
25 25 23 20 

Tab. IV. The result of robustness test in presence of outliers 

 

5. CONCLUSIONS AND FUTURE WORKS 

 

In this paper, we propose an effective self-organization 

method for a large set of unsorted images taken over a wide 

area. Several useful improvements were undertaken in the 

method and encouraging results were reported in terms of 

accuracy and efficiency. Next step we plan to further 

consider the constraint imposed by the epiploar geometry [3] 

to improve the robustness. Then we will evaluate the 

method in some more complex and larger scale 

environments. Finally the method will be applied as an 

important component in applications such as SFM recovery, 

intelligent navigation, and augmented reality. 
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