
National University of Ireland, Maynooth
Maynooth, Co. Kildare, Ireland.

Department of Computer Science

Benchmarking the accuracy of reverse engineering tools

for Java programs: a study of eleven UML tools.

Steven Kearney and James F. Power

Technical Report: NUIM-CS-TR-2007-01

Date: June 6, 2007.

Key words: Reverse engineering, UML class diagrams, object-oriented software metrics, benchmarking.

Benchmarking the accuracy of reverse engineering tools for Java

programs: a study of eleven UML tools

Steven Kearney and James F. Power
Dept. of Computer Science,

National University of Ireland, Maynooth

June 5, 2007

Abstract

Software evolves and changes over time. Too often this metamorphosis in the software is not captured
as feature creep, changes in client requirements and an initially complex design can all lead to the loss of
design documentation. Many organisations are starting to spend serious time and money at looking into
reverse engineering tools to recapture design documentation.

Reverse engineering is becoming increasingly important in the software development world today as many
organizations are battling to understand and maintain old legacy systems. Today’s software engineers have
inherited these legacy systems which they may know little about yet have to maintain, extend and improve.
The question addressed in this report is: How do Organisations decide which UML CASE tool to use?

This report discusses the need for reverse engineering and studies the related work in the area on reverse
engineering, XMI and Software Metrics. We present the REM4j tool, an automated tool, for benchmarking
UML CASE tools, we then use REM4j to carry out one such evaluation with eleven UML CASE tools. This
framework allows us to reach a conclusion as to which is the most accurate and reliable UML CASE tool.

Acknowledgements

We would like to thank some of the people who helped secure academic licenses for the commercial tools,
these include Jürgen Wüst the creator of the powerful SDMetrics tool, which is an essential component of the
REM4j framework. Tadas Kaselis of MagicDraw was exceptionally helpful and continually supported this work
by expressing a keen interest in its progress. Also thanks to Hannu Haven from Metamill for providing an
unlimited academic license.

Some of the results in this report were summarised in a paper presented at the Nineteenth International Con-
ference on Software Engineering and Knowledge Engineering (SEKE 2007), Boston, USA, July 9-11, 2007.

2

Benchmarking the accuracy of reverse engineering tools for Java programs: a
study of eleven UML tools

Steven Kearney and James F. Power
Dept. of Computer Science,

National University of Ireland, Maynooth

Contents

1 Introduction 4

2 Background and Related Work 4
2.1 Reverse Engineering . 4
2.2 The Unified Modelling Language (UML) . 5
2.3 Software Metrics . 5
2.4 Towards a framework . 6

3 Experimental Setup 6
3.1 Initial Research . 7
3.2 The building of REM4j . 7

4 Exploratory Analysis, finding an Oracle 11
4.1 Size Metrics . 11
4.2 Inheritance Metrics . 13
4.3 Coupling Metrics . 15

5 Determining Tool Accuracy 16
5.1 Why metrics? . 16
5.2 Control Charts . 16
5.3 Mean Deviation . 18
5.4 Mode . 19

6 Analysis of Real World Programs 19
6.1 Java Application Selection . 19
6.2 Metric Capture . 20
6.3 Results Per Tool . 21

7 Conclusions and Future Work 25
7.1 Conclusion . 25
7.2 Future Work . 26
7.3 Summary . 27

A Metric Results by Application 29
A.1 Results for pmd . 29
A.2 Results for pcj . 29
A.3 Results for java2d . 30
A.4 Results for jolden . 30
A.5 Results for xalan . 30
A.6 Results for junit . 31
A.7 Results for fop . 31
A.8 Results for hsqldb . 31
A.9 Results for jameleon . 32
A.10 Results for antlr . 32
A.11 Results for eje . 32

3

1 Introduction

Software Development is not always a “Green Field” process, and software developers often find themselves
maintaining old code. UML CASE tools provide the ability to reverse engineer source code. Software developers
may find themselves needing to reverse engineer some source code in order to understand its design. Since there
are a number of UML CASE tools available, the question many organisations face is: Which one suits our needs
best? To answer this question they will need to evaluate all the available tools, measure the results of this
evaluation and rank the tools based on the evaluation.

This report is not about metrics per se, nor is it an investigation into the reverse engineering Process. This
report aims to establish a framework for benchmarking and evaluating UML CASE tools. Many organisations
need to use reverse engineering UML CASE tools, and hence they need to know which tools are the most
accurate and reliable. This report will establish a framework to determine which UML tools are most reliable
and accurate. Later it will utilise the framework by evaluating eleven different UML CASE tools, and rank
these tools according to their accuracy.

In Section 2 we discuss the problems surrounding software maintenance such as missing or incomplete design
documents that can occur over time. Section 2 will also investigate the related work in the fields of reverse
engineering, the Unified Modelling Language and Software Metrics.

We discuss the need for an automated solution in Section 3 which explains how the process is multifaceted,
complex and repetitive. The REM4j tool is explained and a brief example of its use is shown as well as a detailed
description of REM4j’s constituent parts. For this report 11 UML CASE tools were selected for evaluation,
Section 3 lists these tools and provides information about each tool’s vendor.

An integral part of this evaluation is the use of a Java application for which all its characteristics are known.
A class diagram of this application is provided in Section 4, and from here on out is referred to as the Oracle
code. Also in Section 4 we detail the selection of the software metrics used in this application, then we examine
how accurate each UML CASE tool is at capturing each metric. Finally in Section 4 we rule out metrics that
are unsuitable for this evaluation and decide on the final metric set to be used.

With the Oracle code we knew before hand exactly what the metric value was for every metric, However,
in a real world situation, we will not know these metric values, so in Section 5 we examine three methodologies
that allow us to determine if a metric value given by a particular UML CASE tool is accurate. We discuss
control charts, mean deviation and mode and how we can apply them to this evaluation in order to judge the
accuracy and reliability of the said tools. The three methods are demonstrated by applying them to just one
metric. Then in Section 6, we use the three methodologies on all metrics.

Section 7 describes the conclusions drawn form the evaluation in Section 6. We state categorically which
tool is the most accurate and reliable. Whilst stressing that the metrics chosen for this evaluation may not suit
everyone, we now have a fair and trustworthy framework and automation tool which make it easy to swap in and
out software metrics. Section 7 also addresses areas of possible future work. We look at how we can extend the
framework adding the ability to capture information about correlating metrics as well as future improvements
to the REM4j tool.

The appendix provides information about the mean, mode and standard deviation of each of the input
applications on a per metric basis. It provides extra information on top of that already provided in Section 6.

2 Background and Related Work

In this section we look at background and related work in the areas of software metrics, reverse engineering and
the Unified Modeling Language. We also discuss related research in the metrics and reverse engineering area.

2.1 Reverse Engineering

Software engineering is not always a “Green Field” process and many organisations are battling to understand
and maintain old legacy systems. Software decays with age and it is inevitable that more functionality will have
to be added to a software system over time. For example many legacy banking systems were put in place before
the internet was born and so never anticipated the need for online ebanking [22]. Today’s software engineers
have inherited these legacy systems which they know little about and have to maintain, extend and improve.
Often legacy systems have an originally convoluted design, obsolete documentation, and the original developers

4

may have left the company. Software may have numerous patches and fixes applied over time. It can be an
arduous task to understand a legacy system [12, 18].

Reengineering is the examination of a subject system to reconstitute it in a new form and the subsequent
implementation of the new form [5]. While this report does not go into depth on reengineering it focuses on a
major part of the reengineering process, reverse engineering which is the process of analyzing a subject system
with two goals in mind: (1) to identify the system’s components and their interrelationships; and, (2) to create
representations of the system in another form or at a higher level of abstraction [5, 27, 16, 1].

Reverse engineering is essentially recovering lost information or even information that didn’t exist in the
first place; this is often referred to as design recovery [2]. The Y2K Bug and introduction of the Euro and the
Euro symbol are just two examples of the need to practice reverse engineering and reengineering.

However there has been much research carried out that investigates reverse engineering; one of the most
noted is RIGI a well known example of a toolset for reverse engineering [26]. Other examples are the Dali
Workbench [15], CPPX [8] and Columbus/CAN [10]. Also in recent times a plethora of UML CASE tools have
entered the market. There is an abundance of reverse engineering UML tools on the market, both commercial
and open source. These tools try to automate the process by taking classes and reengineering them back into
UML class diagrams.

2.2 The Unified Modelling Language (UML)

The Unified Modelling Language (UML) is an Object Management Group (OMG) standard for modelling soft-
ware artifacts and is the software industry’s standard for specifying, visualising, constructing and documenting
artifacts within a software system.

So in essence UML is an agreed format for representing a high level design of an application. When UML was
first launched there was no standard way to interchange UML models between different UML tools. Hence the
OMG’s XML Metadata Interchange format (XMI) was born as a vendor independent format for saving, loading
and describing UML models. The main purpose of XMI is to enable easy interchange of metadata between
modeling tools (based on the OMG UML) and between tools and metadata repositories (OMG MOF based) in
distributed heterogeneous environments [13, 25]. Meta-Object Faciltiy (MOF) is another OMG standard; it is
used to standardise how models are exported, imported, transformed and rendered into other formats including
XMI [11].

As the need for reverse engineering is so strong, an abundance of UML CASE tools capable of reverse
engineering have hit the market. As time goes by more and more UML CASE tools add the ability to reverse
engineer Java source code. One of the major challenges that reverse engineering tool vendors face is the struggle
to keep with continuously evolving UML and XMI versions [17].

XMI versions currently in use are 1.0, 1.1, 1.2, 2.0 and 2.1. The 2.x versions are radically different from the
1.x series. Even though tools support XMI, they may not support radically different versions of XMI. Another
issue with XMI is that it allows tool vendors to add their own specific attributes to it, so for instance one tool
may use a custom attribute to represent the layout of a diagram. If this XMI was to be opened by a different
tool, it would ignore the custom attributes from the previous tool[24, 19, 7].

This report will strive to see if the OMG has been successful, that is whether UML tools from diverse vendors
produce the same XMI attributes when given the same Java source code as input.

2.3 Software Metrics

You cannot control what you cannot measure. Tom DeMarco, 1982[28].

An organisation developing software applications needs to measure and use metrics to ensure that its software
is heading in the right direction, and that its goals are achievable and repeatable. Software metrics are measures
to help us make decisions. For example if we were to take the Inner Classes metric and use it against an
application, and it was to show that a class had an Inner Classes level of four, that should ring alarm bells.
This means the application contains a class which is nested in another class, that class is nested within another
class and again that class is nested within another class. Any software architect should be concerned as to why
a particular class has such a high nesting level, it suggests a possibly flawed design, it is harder to understand
and possibly less reliable.

5

The standard reference for object-oriented software metrics is generally accepted to be Chidamber and
Kemerer’s [4] article which justifies software metrics by applying principles of measurement theory. Also Briand,
Debanbu and Melo offer a “a comprehensive suite of measures to quantify the level of class coupling during the
design of object oriented systems”. [3]. Tegarden, Sheetz and Monarchi have questioned the effectiveness of
traditional software metrics [23].

Our tool REM4j is the next step in researching reverse engineering and is the centerpiece of our work, it
promotes a framework for evaluating UML CASE tools. The REM4j framework does not use metrics in the
traditional sense, where typically software metrics are used to discover disease or poor design in a piece of code
[21]. In our approach, metrics provide us with a means to collect information about the characteristics of a Java
application without having to study the code in depth. These characteristics are important, since if we reverse
engineer a Java application we would expect the characteristics exported in the XMI file to be an accurate
reflection of the application.

The REM4j framework captures the characteristics of a Java application using metrics, for example if an
application has 14 variables, we would expect a UML CASE tool to capture this characteristic. If a UML CASE
tool reported 12 or 16 variables, the tool would be inaccurate and be reporting erroneous values. REM4j allows
us to capture this loss of metadata or indeed the addition of extra data, and using the REM4j framework we
can then determine which tools accurately represent the true characteristics of the Java applications.

In Section 4, there is a comprehensive listing and explanation of each metric that was deemed to be relevant
for this report.

The Oracle We chose the term Oracle to describe a piece of Java source code, for which all its characteristics,
elements and attributes were known. The Oracle application was designed and written explicitly for this report.
In particular, all of the metric values were calculated in advance and the code was constructed to have as many
different metric scenarios as was feasible.

With the Oracle code we have a metric value that is always right, this means we can categorically state if a
UML CASE tool is accurate or erroneous. Unlike the rest of the Java applications where we have to determine
by analysis if a tool is accurate or not, is it apparent with the Oracle. The Oracle is important in that it will
highlight UML CASE tools that fail to capture a particular metric, if a particular tool returns a metric value
of 0 for the Oracle application, we can state that that tool is inaccurate, it is failing to capture information.

2.4 Towards a framework

This report is not about metrics per se, nor is it an in-depth investigation into the reverse engineering process.
This report is providing a framework that will allow anyone test the accuracy of any UML CASE tool with any
Java application’s source code. While David Cooper et al. studied the inaccuracies that occur from forward
engineering vs. reverse engineering, they stopped short at evaluation the reliability of the tool to export XMI
[6].

Juanjuan Jiang and Tarja Systä explored the differences in exchange formats between UML CASE tools,
they investigated if UML CASE tools delivered on the OMG ideal of interchangeable XMI files, they stopped
short of automating the process [14]. REM4j is the next step in researching reverse engineering as it builds
upon sound research previously carried out.

There is a wealth of information exploring the virtues of software metrics, how UML CASE tools interact
and reliability of reverse engineering. However there is a distinct lack of an automated tool that will answer
this question, Which UML CASE tools are most accurate at design recovery?. REM4j is unique in that it can
automate the reverse engineering, Metric capture and evaluation of metrics, so to provide the end user with the
answer they desire, Which tool is best for my circumstances?

3 Experimental Setup

In this section we discuss tool evaluation, we discuss the UML CASE tools that have been selected for evaluation.
We then investigate what an Oracle application is and how to utilise it in the evaluation. Finally, we present
an overview of REM4j and its constituent parts.

6

UML CASE Tool Vendor Version Short Name
ArgoUML Tigris 0.22 AR

MagicDraw Magicdraw 12.0 MD
Bouml Bouml 2.17 BO

Metamill Metamill 4.2 MM
Visual Paradigm Visual Paradigm 3.1 VP

Jude Change Vision Prof. 6.0 JU
Enterprise Architect Sparx Systems 6.5 EA

UModel Altova 2006 rel. 2 UM
ESS-Model Ess-Model 2.2 ES

Ideogramic UML Ideogramic 2.3.3 IC
Poseidon for UML Gentleware 4.2 PO

Table 1: The 11 UML CASE tools we have chosen for our study. This table lists the tool names, the
vendors, and the version number of each UML CASE tool that was used. The final column gives a ‘Short Name’
for each tool that we use in later tables.

3.1 Initial Research

From the initial research it became apparent the software engineering community needed a clear, unambiguous
and unbiased framework to benchmark the reliability and accuracy of UML CASE tools. The first step in this
experiment was to choose the UML CASE tools, where the only requirements were that they were capable of
reverse engineering Java source code back to Class Diagrams and exporting the same diagrams in XMI format.
The tools chosen are listed in Table 1. It is worth noting that ArgoUML, Bouml and ESS-Model are non
commercial tools, i.e. they are available for use, free of charge.

Initially the experiment started out with six tools and started running the experiments against those six
tools, as time progressed more qualifying tools were found. As REM4j is a framework, it is trivial to add new
UML CASE tools to it for evaluation, hence an additional five tools were added to this evaluation. Any tool that
can reverse Java source code and export to XMI can be used with REM4j. The next logical step was to decide
which Java applications to reverse engineer. The applications chosen for this report, and a brief explanation of
why they were chosen is outlined in section 6.

3.2 The building of REM4j

This section will outline how the REM4j (Reverse Engineer Metrics 4 Java) tool was designed and built, as
well as describing its various components. REM4j a modular tool, that establishes a framework for testing and
benchmarking any UML tool against its competitors. The separate components that come together to make
REM4j work are listed below.

REM4j Justified The UML CASE tool benchmarking process is complicated and multifaceted. We need to
open a UML CASE tool, import Java source code, reverse engineer it, export it to XMI, pipe the XMI into a
metric calculation engine and gather and collate the results into one readable CSV file. Then repeat this for
the 11 UML CASE tools for each input application to be evaluated.

Later we will select Java applications to evaluate with, we will select 11 Java applications which will mean
for this report alone we would need to repeat the process 121 times! This is a framework for benchmarking, so
it must be repeatable. That is why REM4j was created: it automates the highly repetitive, error prone and
mundane tasks necessary in the benchmarking process. REM4j will allow anyone add a new UML CASE tool
or Java applications to the benchmarking process.

As Figure 1 outlines, REM4j takes two inputs when starting. The first step is to select the root directory or
directories of the Java source files you would like to reverse. There is no upper limit on the number of directories
you can enter. See Figure 2, which shows Java source directories being added to REM4j.

Next you must point REM4j at the AutoHotKey (AHK) directory, depicted as “AHK Macro Directory”,
this can be set in the Properties tab. Once the AHK Macro Directory has been set, you can browse to the

7

Figure 1: The work-flow of our REM4j framework.The main components are the Java source directory
which holds the Java programs to be reverse engineered, and the UML CASE tool under examination. Auxiliary
components include the AutoHotKey (AHK) macro tool and the SDMetrics metric calculation engine. Finally,
the results of the metrics tool, stored as a CSV file, are depicted at the bottom of the figure.

Select UML Tools tab. REM4j will now scan the AHK Macro Directory of available UML tools. In order for a
UML tool to be available it must have an associated AHK Macro script in the AHK Macro Directory.

Figure 2 shows The Select UML Tools tab, this tab allows you to select which tools you wish to benchmark.
At this point REM4j now enters the loop section shown in Figure 1. If for example three source code

directories are selected and then three UML tools are selected the loop would execute nine times, each source
code directory would be reverse engineered and exported to XMI then piped into the metric calculation engine
tool where the metric calculations would be extracted and returned to REM4j and the loop starts again.

When the REM4j automation tool has finished executing it generates a Master CSV File, this can be further
manipulated by REM4j or you can open it in another application if you choose to do so. Another feature of
REM4j is the ability to produce charts and graphs to help visualise the results. Figure 4 shows a sample screen
shot of the REM4j Charting functionality.

REM4j works in a very modular approach and the user can choose to run parts of the test or run the whole
test from beginning to end. REM4j utilises a number of open-source applications that are freely available, over
time these tools may be updated or replaced with different tools. Since it is built in a modular fashion it can
also evolve over time.

The next three sections discuss the tools encapsulated in REM4j.

SDMetrics The SDMetrics tool is a powerful commercial application that is capable of analysing XMI and
computing metrics based on that XMI. One of the failings of OMG’s XMI standards is that there are so many
of them, with XMI standards ranging from 1.0 to 2.1, and different tool vendors supporting different versions, It
was not fair to compare like for like in the XMI files. That is why SDMetrics was chosen for the metric calculation
engine. SDMetrics is available under commercial and academic licence from http://www.sdmetrics.com

Figure 5 shows the SD metrics work-flow diagram, giving the main files used by the tool. As well as the
XMI source file for the reverse engineered program, and the CSV metrics output, there are three additional files
used:

• The Meta-model definition file defines what SDMetrics knows about the meta classes, their attributes and
relationships, it maps the OMG UML meta-model to a simplified meta-model for SDMetrics.

8

http://www.sdmetrics.com

Figure 2: REM4j - Selecting Source Code.This is a screen shot of the REM4j tool in action, showing two
windows that allow the user to select the source code to be reverse engineered.

Figure 3: REM4j - Selecting UML CASE tools. This is a screen shot of the REM4j tool in action, showing
the window that allows the user to select the UML CASE tool to be evaluated.

9

Figure 4: Rem4j - Charting Example. This is a screen shot of the REM4j tool in action, showing the
charting ability of the tool. This allows the user to get a visual view on the Master CSV file created.

Figure 5: SDMetrics Work-flow Diagram.This figure shows the various parts of SDMetrics, the XMI Source
File which is taken from the UML CASE tool is the main input, it also shows the three configuration files which
control which metrics and how metrics are calculated. It also shows that SDMetrics exports its results to a CSV
file.

10

• The XMI Transformation file informs SDMetrics on how to extract information about the model from
the XMI files, it provides a mapping from the UML as per the XMI file to SDMetrics meta model.

• The Custom Metrics Definition file provides the ability to add new metrics, or alter how the existing
metrics are calculated. This file is what makes SDMetrics so powerful, it is easy to add new metrics at
any time.

Auto Hot Key AutoHotKey is a macro utility for Microsoft Windows. It has the ability to record keystrokes
and mouse clicks, it can also execute logical statements such as if/then and loops. AutoHotKey provides the
ability to write a macro for a particular CASE tool and then compile it to a .exe file which could be executed on
any Microsoft Windows system. The .exe can accept command line parameters, which makes the macro very
portable, as it can be used over and over again for different source directories. An AutoHotKey script only has
to be written once per UML CASE tool.

AutoHotKey was chosen as it was the fastest to create and deploy macros. REM4j is capable of starting
an AutoHotKey file and terminating it as well as passing any parameters that may be necessary. In the
future we intent to add this functionality directly into the REM4j tool, i.e. use Java scripting and macro
recording instead. AutoHotKey is freely available under The GNU General Public License (GPL) for download
at http://www.autohotkey.com

Chart2D Chart2D is the Java graphing package used by REM4j. It is an open source charting class li-
brary, freely available under The GNU General Public License (GPL) for download at http://www.chart2d.
sourceforge.net

4 Exploratory Analysis, finding an Oracle

In order to make a preliminary judgement whether a tool is accurate in its XMI output we use a metrics-based
Oracle application. With the Oracle application we know without doubt what the metric count is for each
metric.

The class diagram for the Oracle application is sown in Figure 6. The Oracle application is written in Java
with a 0-1-2 (ZOT) metric policy in place. For example, the Oracle application had at least one class with no
Public Methods, at least one class with exactly one Public Method and at least one class with more than one
Public Method.

In the next three sections we will break down the metrics that this report investigates into Size Metrics,
Inheritance Metrics and Coupling Metrics. We will consider each metric in turn in the context of the Oracle
application, and discuss how accurate each UML CASE tool was at capturing the correct metric value.

4.1 Size Metrics

Size metrics measure the size of design elements. These are simply a count of the elements that are contained
within an application.

Number of Variables (NoV) The Number of Variables metric refers to sum of the number of variables in
all classes regardless of type, visibility, changeability or scope, it does not count inherited variables, or variables
that are members of an association [20].

As shown in the class diagram the Oracle application clearly has 12 variables or attributes. However 4 of
the 11 tools produced a figure other than 12. Both Jude and Bouml had the lowest total as they reported the
Oracle application having only 7 variables, while Poseidon reported 8 and Ideogramic UML reported 9.

Number of Methods (NoM) The Number of Methods metric has a value that is the sum of the number
of all methods in all classes regardless of type, visibility, changeability or scope, it does not count inherited
methods, but it does count abstract methods [20].

The Oracle code contains exactly 23 methods, so any derivation from this total would suggest an inaccurate
tool. All UML CASE tools with the exception of Bouml which reported 20, produced the correct total of 23.
This is to say that Bouml was the only tool that didn’t report the metric as being 23.

11

http://www.autohotkey.com
http://www.chart2d.sourceforge.net
http://www.chart2d.sourceforge.net

Figure 6: Oracle Class Diagram. This is a Class Diagram showing the 11 classes of the Oracle application,
it also shows the variables and methods of the application. Overlapping classes are inner classes. Dotted lines
represent an implements relationship. A solid line represents an extends relationship.

12

Number of Public Methods (NoPM) The Number of Public Methods metric has a value which is the
sum of the number of methods in all classes that have public visibility [20]. This metric is similar to Number
of Methods except that it only counts methods that are public, so this metric should never be greater than the
Number of Methods metric.

The Oracle application was written with exactly 20 public methods, all of the tools agreed with this total
except one, Bouml, which reported 18. This is not surprising as Bouml only reported a total of 20 methods
when there was actually 23 methods in the application. When we combine this metric with Number of Methods
we can see that Bouml is under reporting the number of methods regardless of visibility.

Number of Setters (NoS) The Number of Setters metric counts any Method that begins with ‘set’, this
may yield inaccurate results as methods like ‘settleBalance’ may also be counted [29]. However as this problem
will occur in all tools, it negates the problem as all tools are equally effected, so this metrics is still useful for
evaluating the UML tools.

The Oracle application contains five methods that begin with ‘set’. For this metric all tools agreed and all
tools produced a metric value of 5.

Number of Getters (NoG) This metric counts any Method that begins with ‘get’, ‘is’ or ‘has’, this metric
may yield inaccurate results for methods like ‘isolateTag’ [29]. As with the Number of Setters metric, this issue
affects all tools equally and does not impact on the reliability of this metric.

This metric operates in a similar fashion to Number of Setters, the Oracle application contains 9 methods
that either begin with ‘get’, ‘is’ or ‘has’ and all tools agree with the metric value being 9.

Inner Classes (IC) This metric will return the total number of inner classes nested within an application.
The Oracle application contains the class RFIDAntenna which has an inner class RandomKeyClass which in

turn has an inner class Randomiser. So the nesting count for Randomiser is 0, the count for RandomKeyClass
is 1, as it contains one inner class and the count for RFIDAntenna is 2 as it contains a class that contains a
class. The Oracle application also has one other class containing an inner class. So the Inner Classes metric
count for the Oracle application is 4.

Ideogramic UML, Bouml, Enterprise Architect and ESSModel all reported 0 Inner Classes, while MagicDraw
UML Reported 7, these tools are incorrect. ArgoUML, Metamill, Poseidon, Visual Paradigm and Jude reported
the correct number of Inner Classes, 4.

Total Number of Classes This is a count of the total amount of classes that the UML CASE tool exported
in its XMI document.

The class diagram clearly shows 11 classes however none of the UML CASE tools reported this total, they
all reported totals of between 9 and 53. This error has most likely occurred due to the fact that different tools
treat imported packages differently, such as the java.util.String class, while not part of the Oracle application
it is used by it. Some tools count classes like the java.util.String class in the Total Number of Classes metric,
Thus making the metric unreliable. The Total Number of Classes metric will not be evaluated further.

Size Metrics Summary As we know the correct value for all the size metrics, we can state if the tools passed
or failed.

As table 2 shows Argo UML, Metamill and Visual Paradigm were the only tools to be correct on all evaluated
metrics. The table displays the actual metric value, if a tool reported an incorrect value, the difference between
the reported and the correct value is displayed.

4.2 Inheritance Metrics

Inheritance metrics deal with polymorphism, depth and width of the inheritance tree, the number of ancestors
or descendants of a class.

13

UML Size Metrics
Tool NoV NoM NoPM NoS NoG IC ToC
AR 0 0 0 0 0 0 +2
MD 0 0 0 0 0 +3 +4
BO -5 -3 -2 0 0 -4 -5

MM 0 0 0 0 0 0 -3
VP 0 0 0 0 0 0 -2
JU -5 0 0 0 0 0 +42
EA 0 0 0 0 0 -4 +1
UM 0 0 0 0 0 -4 +5
ES 0 0 0 0 0 -4 +4
IC -3 0 0 0 0 -4 -2

PO -4 0 0 0 0 0 +2
Actual 12 23 20 5 9 4 11

Table 2: Size Metrics Results. This table shows, for each UML CASE tool, the difference between the actual
expected value and the value calculated for the Oracle application. The actual correct value for each metric is
shown in the last row.

Interfaces Implemented (II) The total number of Interfaces that are implemented within an application.
A single class may implement several interfaces.

The Oracle application contains two interfaces, both of these interfaces are implemented by RFIDAntenna
and Tag. As both interfaces are implemented twice, the total number of interfaces implemented in the Oracle
application is 4. Ideogramic, ArgoUML, Jude, Metamill and Bouml returned 0 as the metric value, all other
tools agreed and returned 4.

Number of Children (NoC) This is a measurement of how many classes are going to inherit methods of
the parent class, its the number of immediate subclasses subordinated to a class in the class hierarchy [4].

In the Oracle application, two classes, Object and RFIDObject are extended by another class, RFIDObject
extends Object and Tag extends RFIDObject. The value of this metric for the Oracle application is 2. All of
the UML CASE tools agreed that it was 2, with the one exception of Enterprise Architect, which stated that it
was 3.

Inheritance Tree (IT) This metric represents the sum of the ancestors or descendants of each class within
the application. The Oracle application has two instances where a class has a inheritance depth of greater than
0, this is the Tag class which has a depth of 2 and the RFIDObject class which has a depth of 1.

The total Inheritance Tree metric value is 3. With the exception of Enterprise Architect which reported 4,
all tools agreed on 3 being the correct metric value.

Class to Leaf Depth (CLD) With this metric we take a look at the longest path from a class to a leaf in
the inheritance hierarchy. For example the Object class has a depth of 2 in order to reach its longest leaf the
Tag class. Whereas the RFIDObject has a depth of 1 to reach its most far away leaf. These Class to Leaf Depth
metrics are then summed for each class in the application giving a metric value of 3.

All of the UML CASE tools agreed that the Class to Leaf Depth was 3 with one exception again, the
Enterprise Architect tool.

Methods Inherited (MI) This metric is the sum of the number of methods inherited by each class. This is
calculated as the sum of Number of Methods taken over all ancestor classes of the class [20, 29].

The RFIDObject class in the Oracle application extends the Object class, therefore it inherits the two
methods in the Object class. The Tag class extends the RFIDObject class, so it inherits the one method in the
RFIDObject class and it also inherits the two methods from the Object class. The Methods Inherited metric
value is 5. All of the tools reported a value of 5.

14

UML Inheritance Metrics
Tool II NoC IT CtLD MI VI
AR -4 0 0 0 0 0
MD 0 0 0 0 0 0
BO -4 0 0 0 0 0

MM -4 0 0 0 0 0
VP 0 0 0 0 0 0
JU -4 0 0 0 0 0
EA 0 +1 +1 +1 0 0
UM 0 0 0 0 0 0
ES 0 0 0 0 0 0
IC -4 0 0 0 0 0

PO 0 0 0 0 0 0
Actual 4 2 3 3 5 2

Table 3: Inheritance Metrics Results. This table shows the actual expected value for each of the six inheri-
tance metrics. It then shows, for each UML CASE tool, the difference between the expected value and the value
calculated for the Oracle application.

Variables Inherited (VI) This is the sum of the number of variables each class in the application has
inherited. It works in much the same manner as Methods Inherited. The Oracle application produces a metric
value of 3. All the UML CASE tools agree on this total.

Inheritance Metrics Summary As the table, 3 shows, the UML CASE tools were in agreement most of
the time, with the exception of Enterprise Architect, which frequently over rated the metric value by 1.

4.3 Coupling Metrics

Coupling metrics are used to investigate how the different elements in an application are connected.

Associated Elements in the same scope This metric counts all associations including plain, aggregate,
composite and bidirectional associations that are in the same scope or namespace as the class itself. i.e.
associations within the same package.

Only Jude, Poseidon and Ideogramic UML produced a total other than 0. They did agree that the total
is 4, which is correct. However as only three tools able to capture this metric, it will not be used for further
evaluations of the UML CASE tools reliability.

Associated Elements in the same scope branch For a class that is defined in a package, pack, this metric
will only count model elements that are in pack itself, in packages that pack contains and in packages contained
by pack.

Like Associated Elements in the same scope only Jude, Poseidon and Ideogramic UML produced a total
other than 0. The correct total is 4 and Jude, Poseidon and Ideogramic UML reported 4.

External Class Use as Type The External Class Use as Type metric represents the number of attributes
in other classes that have this class as their type. This metric will not be evaluated as the diverse tools differ on
how to calculate it. For example in the application is it correct to count the number of times the java.util.String
class is used as a Type? The java.util.String class is not part of our Oracle application, however it is used eleven
times.

As there is no definitively right or wrong way to calculate the use of the java.util.String class this metric
won’t be evaluated further. In order to use this metric, we would need to need to break this evaluation down
into a per class not per application evaluation.

15

Interface Class Parameters The sum of the parameters in the application that have a different class or
interface to the class they are being used in [3].

This metric suffers from the same fate as External Class Use as Type, in order to evaluate it fairly it needs
to be taken on a per class basis. This metric will not be evaluated further.

Coupling Metrics Results Due to the nature of this evaluation, it was deemed unfair to benchmark the
various UML CASE tools using Coupling Metrics, as they need to be evaluated on a per class basis. This issue
is discussed in a later section on possible future work.

5 Determining Tool Accuracy

While the Oracle application gives us an estimate of the variability in the metrics calculated, it is also interesting
to see how this impacts the study of real applications. When working with larger applications we need to be
able to calculate the “correct” value of the metrics. We use a voting approach, where we evaluate each metric
based on the total votes of each tool.

This section will look at three different formulas that can aid us in determining which metric values are
correct. As a running example, we apply each approach to the Number of Public Methods metric to demonstrate
how the formula works.

5.1 Why metrics?

Before we go any further we must appreciate exactly what a metric is. In short it can be defined as the mapping
of a particular characteristic of a measured entity to a numerical value [21].

We can measure everything, but where is the benefit in that? We need to measure specific characteristics so
we can draw useful conclusions, In the next section we will try to quantify and qualify the quality and reliability
of reverse engineering and exporting to XMI a Java application.

We can use these measurements as a means to control quality. The question that needs to be answered
is is this UML CASE tool reliable and accurate? In order to answer this question we must set boundaries or
thresholds, we must know when a numerical value mapped to a metric is too high or too low. We need control
limits.

5.2 Control Charts

The first method we will investigate is control charts. The control chart or Shewhart chart was devised by
Walter A. Shewhart while working for Bell Labs in the 1920s. Shewhart devised a chart with five horizontal
lines running across it, they are:

• Center Line This is the middle line and it reflects the mean value of the metric.

• Upper Control Limit This is three standard deviations above the Center Line, any value above this line
is untrustworthy.

• Lower Control Limit This is three standard deviations below the Center Line, any tool that outputs a
metric below this line is unreliable.

• Upper Warning Limit This is two standard deviations above the Center Line if a metric falls between
this line and the Upper Control Limit it will need further investigation, it may be a good idea to cross
reference it against other metrics to ascertain its reliability.

• Lower Warning Limit This is two standard deviations below the Center Line it behaves the same as the
Upper Warning Limit

Shewhart devised the limits to be used in the context of physical equipment tests, three standard deviations
can be quite a distance from the Mean of the metric.

Michele Lanza and Radu Marinescu suggest thresholds [21]:

16

Number of
UML CASE Tool Public Methods

ESSModel 3918
Visual Paradigm 2610
Altova UModel 2445

Enterprise Architect 2445
Jude 2445

Magic Draw 2445
Metamill 2445
Poseidon 2445

Bouml 2257
Ideogramic 2168
ArgoUML 0

Table 4: Public Methods Metric Table. This table shows the actual metric values returned for the NoPM
metric for the hsqldb program, for each UML CASE Tool

• Lower Margin This is one standard deviation below the mean or center line.

• Higher Margin This is one standard deviation above the center line.

They also suggest thresholds of 1.5 deviations above and below for the very high and very low margins or
Upper Control Limit and Lower Control Limit.

Illustrative Example To illustrate the use of these techniques, we take, as an example, the calculation of
the Number of Public Methods for the hsqldb benchmark program. We use this as a running example for the
rest of this section.

By examining Table 4, two lines immediately draw our attention, the most alarming line is that for ArgoUML,
it captured no Public Methods, on further inspection we find that ArgoUML actually failed in the reverse
engineering process. ArgoUML did not produce and XMI output for the hsqldb application. ArgoUML will
be excluded when calculating the accuracy of the tools. That is to say when we calculate the mean we will not
include the 0 value reported by ArgoUML.

The next line of concern is the ESSModel, it appears to be excessively larger than the other lines. To
determine if this total is acceptable or an outlier we’ll use the Control Chart to see where its values fall.

The mean of the Number of Public Methods metric is:

x̄ =
1
n
·

n∑
i=1

xi (1)

x̄ = 2562 (2)

For our control lines we need to find the standard deviation, this is defined as the square root of the variance.
It is the root mean square deviation from the average, thus it gives us a non negative number and has the same
units as the data.

The Variance is
var(X) = E((X − µ)2). (3)

We can determine the the variance of Public Methods metric for the hsqldb to be 241270, and the standard
deviation to be

√
241270 = 491. With the standard deviation calculated we can set the control limits:

Center Line = 2562
Upper Control Limit = (2562 + (491 ∗ 1.5)) = 3299
Lower Control Limit = (2562− (491 ∗ 1.5)) = 1826

Upper Warning Limit = (2562 + 491) = 3053
Lower Warning Limit = (2562− 491) = 2071

17

Figure 7: hsqldb - Control Chart. Deep blue and red signifies the Lower and Upper Control Limits respec-
tively. Light blue and orange signify the upper and lower warning limits respectively. The black line plots the
metric value for each tool

If any metric falls above the Upper Control Limit or below the Lower Control Limit, we can rule it out and
state that it is an outlier and doesn’t accurately reflect the true metric value. If the metric value falls between
an Upper Control Limit and an Upper Warning Limit or falls between a Lower Control Limit and a Lower
Warning Limit, we will tentatively accept the metric, however further investigation to rule it an outlier may be
required.

Figure 7 contains a chart that plots the value of the Number of Public Methods metric for each of the reverse
engineering tools, when applied to the hsqldb benchmark program. The black line plots the metric value for
each tool; the two blue lines below it plot the lower warning and control limits, and the two lines above it plot
the upper warning and control limits. From this chart, we can see that all reverse engineering tools calculate
a value for the metric that is within all limits, apart from ESSModel, whose calculated metric value exceeded
both the upper warning and upper control limit for the hsqldb application.

5.3 Mean Deviation

Another statistical analysis tool that can be used to check the correctness of the reported metric value is mean
deviation, this is a measure of dispersion that gives the average absolute difference (i.e. it ignores ‘-’ minus
signs) between each individual tools metric and the mean. It is sometimes referred to as the average deviation.

The mean deviation is calculated as follows:

md =
1
n

n∑
i=1

|xi − x| (4)

With the mean deviation calculated we can see how many tools produced a metric that is greater than the
mean deviation above or below the mean.

Two vertical lines have been applied to Figure 8, the lines represent one mean deviation above and one
mean deviation below the mean value, which is 281. Figure 8 clearly shows that the ESSModel tool produced a
metric value that is above one mean deviation from the mean. In fact the ESSModel’s metric is nearly 5 mean
deviations away from the mean.

18

Figure 8: hsqldb - Mean Deviation Chart. This chart shows two red lines that signify one mean deviation
above and below the mean. The black line plots the metric value for each tool.

5.4 Mode

So far we have looked at the Mean, Standard Deviation and Mean Deviation to decide how accurate the UML
CASE tools are, another statistical tool we have at our disposal is Mode, this is the value that occurs most
often, it has the largest frequency. The purpose of XMI is to provide a standard for interoperability, that is to
allow XMI files to be transferred between different UML tools, so it is reasonable to expect that tools should
produce the same metric count. Therefore the mode may prove to be interesting.

We can see that six out of ten UML CASE tools output 2445 as the Number of Public Methods metric, with
a further 3 being within one standard deviation and one mean deviation. It is a reasonable assumption that
2445 is in fact the correct metric count. The other three tools were tentatively accepted as being correct while
the ESSModel tools metric value is an outlier and its results are unreliable.

6 Analysis of Real World Programs

In this section we discuss the Java applications chosen and investigate each tool’s effectiveness at reporting each
metric for all the applications.

6.1 Java Application Selection

When selecting Java applications to use in this evaluation, diverse applications were sought as well as ran-
dom applications. When selecting these tools, much inspiration was drawn from the DaCapo Benchmarks [9],
available at http://www.dacapobench.org/.

• antlr, ANother Tool for Language Recognition, was chose from the DaCapo benchmark suite, it parses
one or more grammar files and generates a parser and lexical analyzer for each.

• fop, Formatting Objects Processor, it is a Java application that reads a formatting object tree and
renders the resulting pages to a specified output, typically a PDF. Again it was chosen from the DaCapo
benchmark suite.

19

http://www.dacapobench.org/

UML Test Suite Applications
Tool eje antlr jam hsqldb fop junit jolden java2d xalan pmd pcj % P
AR P P P F P P P P P P F 81.8
MD P P P P P P P P P P P 100
BO P P P P P P P P F P F 81.8

MM P P P P P P P P P P P 100
VP P P P P P P P P P P P 100
JU P P P P P P P P F P P 90.9
EA P F P P P P P P P P F 81.8
UM P P P P P P F P P P P 90.9
ES P P P P P P P P P P P 100
IC P P P P P P P P P F P 90.9

PO P P P P P P P P P P F 90.9
% P 100 90.9 100 90.9 100 100 90.9 100 81.8 90.9 63.6

Table 5: Pass/Fail results for each tool.This table lists the test suite applications in the top row and the
UML tools down the leftmost column. Each cell records either “P” for pass or “F” for fail, indicating whether
or not the UML tool exported valid XMI for this test suite program.

• hsqldb, is a database written purely in Java, it also forms part of the DaCapo suite.

• pmd, is a Java application than scans through Java source code and analyzes it for potential problems, it
is part of the DaCapo Benchmark suite.

• xalan is an XSLT processor for transforming XML documents into HTML, text, or other XML document
types. It was selected from the DaCapo Benchmark suite.

• junit is a well known and trusted simple framework to write repeatable tests. It is available on source-
forge.net

• jolden is a benchmark test application written in Java.

• pcj, Primitive Collections for Java, is a set of collection classes for primitive data types in Java. It was
randomly selected from sourceforge.net

• jameleon is an automated test framework written in Java, it was also selected from sourceforge.net

• Azureus implements the BitTorrent protocol using java language, at the time of running this experiment
it was to most popular download on sourceforge.net

• eje, Everyone’s Java Editor, is a simple editor for the Java programming language, it was randomly
selected from sourceforge.net

• java2d is a java 2d graphics package, it was selected from the SPECjvm98 benchmark suite.

We can refer to these Java applications collectively as the test suite from now on.

6.2 Metric Capture

Table 5 summarises the pass/fail results for each tool when run over the test suite. The top row in Table 5 lists
the 11 benchmark programs (test suite), and the leftmost column lists the 11 reverse engineering tools under
study. Each cell records either “P” for pass or “F” for fail, indicating whether or not the reverse engineering
tool exported valid XMI for this benchmark program. For example, we can see that the Argo tool, represented
by the row labelled “AR”, exported valid XMI for all benchmark programs other than hsqldb and pcj.

The rightmost column in Table 5 summarises the results for each reverse engineering tool, by recording the
percentage of benchmark programs that passed. From this column, we can see that 7 of the 11 tools achieved a
score of under 100%, failing for at least one benchmark program. The bottom row of Table 5 summarises, for

20

each benchmark program, the percentage of the 11 reverse engineering tools that recorded a pass. From this
row, we can see that five benchmark programs scored 100% by recording a pass for all tools, but that the pcj
program had a particularly poor rate, passing for only 7, or 63.6%, of the tools.

MagicDraw UML, Metamill, ESSModel and Visual Paradigm succeeded in reverse engineering every Java
application in this evaluation, this however, does not inform us of their accuracy.

6.3 Results Per Tool

The following section details the results of each tool. It is useful to cross reference the charts presented in
Figures 9 and 10 with the application result tables in the appendix.

Figures 9 and 10 contain a set of 11 bar charts, where each bar chart shows the results for a single tool. In
each chart, the vertical axis is numbered from 0 up to 11, and each point on this axis represents an application
from our test suite. The horizontal axis displays each metric, and the corresponding bar represents the accuracy
of the UML CASE tool for this metric. Ror example the leftmost bar in the chart in Figure 9(a) shows the
Number of Variables (NoV) metric was captured for 9 applications by the Bouml tool.

The bars in the chart are colour coordinated:

• deep blue represents metric values that are under the control limit

• deep red shows metric values that are above the control limit

• light blue representes metric values in the lower warning zone

• orange represents metric values in the upper warning zone

Metric values shaded with deep blue or deep red are considered to be outliers and unreliable. Metric values
that are shaded light blue or orange are not outliers, but they may be inaccurate; we can say that these metric
values are “somewhat reliable”.

White coloured metrics values are accurate and reliable, and these metrics can be trusted. The larger the
white shading in the charts of Figures 9 and 10, the more accurate that tool is. For each UML tool there is thus
a maximum of 132 possible opportunities for a white shading (11 applications being evaluated with 12 metrics).

Bouml Results In chart in Figure 9(a) we can clearly see that Bouml only reverse engineered and exported
valid XMI for 9 out of 11 applications, or approximately 82% of the Java applications. For the 9 applications
Bouml did produce an output for, it failed to capture the Inner Classes (IC) and the Interfaces Implemented
(II) metric.

The chart in Figure 9(a) also shows the trend of Bouml underestimating size metrics, while overestimating
Inheritance metrics. The Methods Inherited (MI) metric is the only metric that Bouml produced that was
completely accurate, with the Class to Leaf Depth (CLD) being slightly overestimated but acceptable.

Out of 132 individual metric values, Bouml captured 64 metrics that were correct or reported 48% of the
metric values correctly. If we allow metrics that are in the warning or monitor zones Bouml was correct 76
times or 58%.

UModel Results The chart in Figure 9(b) shows that UModel captured metrics for 10 out of 11 applications.
That is to say that UModel successfully reverse engineered and exported to XMI 91% of the applications it was
evaluated with.

The 9(b) chart, shows a lot of white shading, it shows a trend of being correct a large proportion of the
time. UModel failed to capture one metric Number of Getters(NoG) for one application. It also shows that
none of UModel’s metric values were outliers, with only one metric value being in the warning zone.

Out of 132 possible correct metric valuations, UModel reported 114 to be correct, or 86% of metric values
captured by UModel were correct. If we consider the warning zones to be acceptable we can say that UModel
was correct 119 times out of 132, or 90%.

21

(a) Bouml (b) Umodel

(c) Visual Paradigm (d) Argo UML

(e) Metamill (f) Enterprise Architect

Figure 9: Results for the first six tools. Each chart in this figure corresponds to the results for a single
UML CASE tool. Each of the 12 bars in the chart corresponds to a particular metric, with the total height of
the bar reflecting the number of applications (up to 11) for which this tool calculated the corresponding metric.
The bars reflect the accuracy of the metric value, and are colour coded as follows:

Deep blue = under the control limit
Light blue = lower warning zone
White = accurate and reliable
Orange = upper warning zone
Deep red = above the control limit

22

(b) ESSModel (c) MagicDraw

(d) Poseidon (e) Jude

(f) Ideogramic UML

Figure 10: Results for the last five tools. Each chart in this figure corresponds to the results for a single
UML CASE tool. Each of the 12 bars in the chart corresponds to a particular metric, with the total height of
the bar reflecting the number of applications (up to 11) for which this tool calculated the corresponding metric.
The bars reflect the accuracy of the metric value, and are colour coded as follows:

Deep blue = under the control limit
Light blue = lower warning zone
White = accurate and reliable
Orange = upper warning zone
Deep red = above the control limit

23

Visual Paradigm Results The chart in Figure 9(c) shows that Visual Paradigm was able to reverse engineer
and export valid XMI for all of the Java applications used in this experiment. Visual Paradigm failed to
capture metrics for 5 of the Inheritance metrics and reported metric values below the Lower Control Level for
3 Inheritance metrics.

The chart appears to show that Visual Paradigm was highly accurate with size metrics but struggled a little
with Inheritance metrics. Visual Paradigm correctly reported 119 out of 132 metrics, i.e. it correctly reported
90% of metrics. If we allow warning zones to be considered, Visual Paradigm correctly reported 91% of metrics.

ArgoUML Results Studying the chart in Figure 9(d), we can see that ArgoUML failed to reverse 2 of the 11
Java applications, leaving just 9 for further evaluation. Within the 9 applications ArgoUML failed to capture
5 metrics for one application.

The chart 9(d) shows that the tool has both under and over estimated many of the metrics, with a clear
trend showing, the tool under-estimating the size metrics while over-estimating the inheritance metrics. We
deem 80 of ArgoUML’s reported metrics to be correct that is ArgoUML was correct for 61% of the cases. If the
warning limits were to be accepted we could say that Argo is correct for 73% of the metric values captured.

Metamill Results As chart in Figure 9(e) shows Metamill was able to reverse engineer and export to XMI
all 11 Java applications. It failed to capture the Interfaces Implemented metric for all the applications, it also
failed to capture the Inner Classes (IC) metric for one application.

The chart clearly shows mainly white shading, with some deep blue signifying a metric value below the Lower
Control Limit. Out of 132 possible metric values, Metamill captured 120, or 91% of the metrics. Metamill has
no metric values in the warning zones, and just 2 outside the Control Limits. Metamill captured 118 metrics
correctly, that is to say Metamill was correct for 89% of the metric values captured.

Enterprise Architect Results If we take a look at Figure 9(f) we can see that Enterprise Architect only
succeeded in reverse engineering and exporting XMI for 9 out of the 11 applications. Enterprise Architect also
failed to capture Inner Class (IC) and Interfaces Implemented (II) metrics for any of the applications.

Investigating the results further, a trend becomes apparent, Enterprise Architect consistently under-estimates
all the metrics. Enterprise Architect reported 7 metric values that were outside the Control Limits and will be
discarded, When we add this to the 42 metrics that it failed to capture, we can say the Enterprise architect was
correct 71 out of 132 times. If we accept warning zone values we can state that Enterprise Architect is correct
in 63% of the cases.

ESSModel Results As we can see from Figure 10(b), ESSModel captured metrics for all 11 applications,
but failed to capture the Inner Classes (IC) metric. ESSModel captured 92% of the available 132 metrics.
ESSModel both over and under estimated metrics for a variety of different metrics, there was no noticeable
trend.

ESSModel reported 109 metric values that were deemed to be correct, this represents 83% of metric values.
Another 9 metric values were within the warning zones and if we accept them as correct we can state that
ESSModel has correctly reported 118 out of 132 metrics or 89%.

MagicDraw Results Investigating the chart in Figure 10(c), we find that MagicDraw captured all metrics
for all applications with only one exception, the Inner Classes (IC) metric for one application.

We can see that MagicDraw over and under reported the Inner Classes (IC) metric, the majority of the tools
struggled to report this correctly, with many tools failing to capture it at all. MagicDraw captured 131 out of
132 metrics, that is a 99% capture rate. We can see that MagicDraw correctly reported 117 metric values, that
is to say MagicDraw was correct in 89% of the cases. If the acceptance criteria is widened to include metric
values in the warning zone we can say that MagicDraw is correct 95% of the time.

Poseidon Results Poseidon failed to reverse engineer and export valid XMI for one of the Java applications
as shown in Figure 10(d). Out of the 10 applications it did report metrics for, it failed to capture 2 metrics for
one application, so in total Poseidon captured 119 metric values.

24

(a) Absolute tool ranking, based on EQUAL

UML
Tool LCL LWL EQUAL UWL UCL
VP 7 1 119 (90%) 0 0

MM 2 0 118 (89%) 0 0
MD 2 0 117 (89%) 9 3
UM 0 0 114 (86%) 5 0
ES 2 0 109 (83%) 9 1
PO 7 8 98 (74%) 5 0
JU 5 0 92 (70%) 0 0
AR 4 3 80 (60%) 14 2
EA 7 12 71 (54%) 0 0
BO 12 1 64 (49%) 11 2
IC 53 1 23 (17%) 0 0

(b) Tool ranking, allowing warning zones

UML LWL+UWL
Tool LCL +EQUAL UCL
MD 2 126 (95%) 3
VP 7 120 (91%) 0
UM 0 119 (90%) 0
MM 2 118 (89%) 0
ES 2 118 (89%) 1
PO 7 111 (84%) 0
AR 4 97 (73%) 2
JU 5 92 (70%) 0
EA 7 83 (63%) 0
BO 12 76 (58%) 2
IC 53 24 (18%) 0

Table 6: Tool Rankings. These tables list the UML CASE tools in the leftmost column. Each column measures
the number of metrics falling into a given metric level. The rows are ranked by the values in the middle column,
which are also expressed as a percentage of the total possible metric values (132).

Figure 10(d) shows that for approximately half the metrics, Poseidon under reported them, with it only
over reporting for the Interfaces Implemented (II) metric. Poseidon correctly reported 98 metric values, which
equates to 74%, if we accept the warning zones we can include another 13 metrics bring our accuracy level to
84%.

Jude Results The chart in Figure 10(e) shows how Jude captured metrics from 9 of the Java applications,
it also highlights how Jude failed to capture the Interfaces Implemented (II) metric.

Out of the metrics that were captures it appears that Jude was quite accurate, with only 2 metrics reporting
values in outside the Control Limits. Jude reported no metrics within the warning zones, so we can state that
Jude was 70% accurate.

Ideogramic UML Results Ideogramic UML reverse engineered and exported valid XMI for 10 out of 11 of
the Java applications, however it failed to capture the Interfaces Implemented and Inner Classes metric. In the
majority of metrics Ideogramic UML failed to capture a metric for each tool, in fact it only captured all the
metrics values for 33% of the metrics. The chart in Figure 10(f) shows this trend.

Ideogramic UML captured 58% or 77 metric values. It captured 23 metrics that were deemed to be correct.
Ideogramic UML reported 17% of the metrics correctly. If the scope is widened to include metric values in the
warning zones, we add 1 additional metric value and bring the level of correct metrics captured to 18%.

7 Conclusions and Future Work

In this section we will present our findings, explaining how we arrived at them. We also discuss areas of possible
future work and then rank the UML CASE tools by their accuracy.

7.1 Conclusion

Figure 11 sums up our findings on the eleven reverse engineering tools we have studied, and have presented
in Figures 9 and 10. However, unlike the previous section where a chart was displayed for every tool showing
the results of each individual metric, we have now summed the metric values and show only one chart with all
eleven tools.

As with charts in the previous Section 6, the higher the proportion of white shading the higher the reliability
of the tool. We can see that all tools over reported every metric at some stage, all the tools also under reported
at some stage with the exception of UModel, which didn’t under report.

25

Figure 11: Summary of findings for all tools. In this chart, each bar corresponds to a single UML CASE tool.
The vertical axis shows the total number of metric values available for capture (12 metrics × 11 applications).
The horizontal axis lists the UML tools evaluated. As for Figures 9 and 10, the shading of the bars measures
the accuracy of the metric values.

Tool Ranking Table 5(a) ranks the tools on their accuracy and reliability, this table excludes metric values
in the warning zone. That is to say that this table deems metric values that fall into the Lower Warning Level
or Upper Warning Level to be erroneous and only counts metrics that are correct (EQUAL). Table 5(a) shows
Visual Paradigm to be the most reliable tool, that is to say the Visual Paradigm tool reported metric values
that were accurate 90% of the time. It was closely followed by Metamill, MagicDraw and UModel. The worst
performing tool was the Ideogramic UML tool, it reported just 17% of the metric values correctly.

Table 5(b), ranks the UML CASE tools, but it includes the warning zones. i.e. it accepts the warning zones
as being accurate. This table places MagicDraw in the first row as the most reliable UML CASE tool, being
correct 95% of the time. Again Ideogramic fills the bottom row of the table with it only reporting 18% of the
metric values correctly.

7.2 Future Work

The REM4j framework was designed to be extensible, and there are a number of additions that could usefully
be made to the approach.

Correlating Metrics There are numerous metrics we can calculate for each application, in future the metrics
could be categorised into three groups:

• Metrics that are only available for design classes, for example the number of diagrams a class occurs, this
metric is irrelevant when studying an implementation.

• Metrics that are only available for implementation classes, an example of this is the lines of code metric.
If we’re dealing with a UML diagram in which no code has been written yet.

• Metrics that are available in both design and implementation, take the Number of Methods metric. In
both design and implementation it is possible to calculate the Number of Methods.

26

In the future, further study is needed on how these different metrics correlate. Do design and implementation
metrics correlate? One would also expect their to be a high correlation between the third category of metrics,
those that are available in both implementation and design.

Per Class not Per Application As we found out REM4j in its current state is somewhat limited at
calculating metrics for coupling. This was due to the limitations of examining metrics on a per application
rather than a per class basis. Perhaps in the future REM4j should be modified so it can fairly capture the
coupling metrics.

Tool Scripting Currently REM4j uses the Autohotkey macro facility to automate parts of the reverse engi-
neering process, in the future the ability to do the macro recording should be built into the REM4j tool.

7.3 Summary

We have ranked the tools by the metrics we have chosen to evaluate them with, however every organisation is
different, to some organisations, size metrics may be of the up most importance, so they may choose to ignore
all other metrics. Likewise another organisation may decide to add a completely different suite of metrics, which
may yield a different ranking for the tools. By design, REM4j is modular and its easy to add a new metrics
suite at any time.

We set out to establish not just a tool for automating UML CASE tools, capturing metrics or calculating
metrics, but a framework. The REM4j framework facilitates the steps necessary to evaluate a UML CASE tool,
against any metric with any Java application.

REM4j encapsulates an automated tool that adheres to a sound framework for evaluating a UML CASE
tools ability to reverse engineer and export valid XMI. It has benchmarked 11 UML CASE tools and clearly
shown which tools are reliable and which are untrustworthy.

References

[1] L. A. Barowski and J. H. Cross Ii, Extraction and use of class dependency information for Java, Proceedings
of the Ninth Working Conference on Reverse Engineering (2002), 309.

[2] Ted J. Biggerstaff, Design recovery for maintenance and reuse, Computer 22 (1989), no. 7, 36–49.

[3] Lionel Briand, Prem Devanbu, and Walcelio Melo, An investigation into coupling measures for C++,
Proceedings of the 19th international conference on Software engineering (1997), 412–421.

[4] S. R. Chidamber and C. F. Kemerer, A metrics suite for object oriented design, IEEE Trans. Softw. Eng.
20 (1994), no. 6, 476–493.

[5] Elliot J. Chikofsky and James H. Cross II, Reverse engineering and design recovery: A taxonomy, IEEE
Softw. 7 (1990), no. 1, 13–17.

[6] David Cooper, Benjamin Khoo, Brian R. von Konsky, and Michael Robey, Java implementation verification
using reverse engineering, Proceedings of the 27th Australasian conference on Computer science (2004),
203–211.

[7] Andrea D’Ambrogio, A model transformation framework for the automated building of performance models
from UML models, Proceedings of the 5th international workshop on Software and performance (2005),
75–86.

[8] Thomas R. Dean, Andrew J. Malton, and Ric Holt, Union schemas as a basis for a C++ extractor,
Proceedings of the Eighth Working Conference on Reverse Engineering (2001), 59.

[9] Stephen M Blackburn et al., The DaCapo benchmarks: Java benchmarking development and analysis,
Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications (2006), 169–190.

27

[10] R. Ferenc, F. Magyar, Á. Beszédes, Á. Kiss, and M. Tarkiainen., Columbus - tool for reverse engineering
large object oriented software systems, 7th Symposium on Programming Languages and Software Tools
(2001), 1627.

[11] Anna Gerber and Kerry Raymond, MOF to EMF: there and back again, Proceedings of the 2003 OOPSLA
workshop on eclipse technology eXchange (2003), 60–64.

[12] Martin Gogolla and Ralf Kollmann, Re-documentation of Java with UML class diagrams, Proc. 7th Reengi-
neering Forum, Reengineering Week 2000 Zürich (2000), 41–48.

[13] The Object Management Group, Proposal to the OMG OA&DTF RFP 3: Stream-based model interchange
format (smif), 1998, pp. 1–246.

[14] Juanjuan Jiang and Tarja Systä, Exploring Differences in Exchange Formats - Tool Support and Case
Studies, Proceedings of the Seventh European Conference on Software Maintenance and Reengineering
(2003), 389.

[15] Rick Kazman and S. Jeromy Carriére, Playing detective: Reconstructing software architecture from available
evidence, Automated Software Eng. 6 (1999), no. 2, 107–138.

[16] Martin Keschenau, Reverse engineering of UML specifications from Java programs, Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications
(2004), 326–327.

[17] Cris Kobryn, UML 2001: a standardization odyssey, Commun. ACM 42 (1999), no. 10, 29–37.

[18] Ralf Kollmann and Martin Gogolla, Metric-based selective representation of uml diagrams, Proceedings of
the Sixth European Conference on Software Maintenance and Reengineering (2002), 89.

[19] Yasser Kotb and Takuya Katayama, Consistency checking of UML model diagrams using the XML seman-
tics approach, Special interest tracks and posters of the 14th international conference on World Wide Web
(2005), 982–983.

[20] M. Lorenz and J. Kidd, Object-oriented software metrics, Prentice Hall, 1994.

[21] Radu Marinescu and Michele Lanza, Object-oriented metrics in practice, Springer, 2006.

[22] Dave Randall and et al., Focus issue on legacy information systems and business process engineering:
banking on the old technology: understanding the organisational context of Legacy issues, Commun. AIS 2
(1999), 8.

[23] Steven D Sheetz, David E Monarchi, and David Tegarden, Effectiveness of Traditional Software Metrics
for Object-Oriented Systems, IEEE (1992), 359–368.

[24] James Skene and Wolfgang Emmerich, Specifications, not meta-models, Proceedings of the 2006 interna-
tional workshop on Global integrated model management (2006), 47–54.

[25] Perdita Stevens, Small-Scale XMI programming: A revolution in UML tool use?, Automated Software Eng.
10 (2003), no. 1, 7–21.

[26] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller, Rigi: a visualization environment for reverse
engineering, Proceedings of the 19th international conference on Software engineering (1997), 606–607.

[27] Andrew Sutton and Jonathan I. Maletic, Mappings for accurately reverse engineering UML class models
from C++, Proceedings of the 12th Working Conference on Reverse Engineering (2005), 175–184.

[28] Will Tracz, Book Reviews: The Deadline, A Novel about Project Management, Tom DeMarco, SIGSOFT
Softw. Eng. Notes 23 (1998), no. 1, 109–109.

[29] Jürgen Wüst, SDMetrics, 2006, http://www.sdmetrics.com.

28

http://www.sdmetrics.com

A Metric Results by Application

The following appendix lists the success of tool for each metric on a per Java application.
The following abbreviations are used in the tables representing the results for our analysis:

σ = Center Line
α = Upper Control Limit
β = Lower Control Limit
γ = Upper Warning Limit
δ = Lower Warning Limit
µ = Mean

mo = Mode
σ% = Standard Deviation as a percentage of the Mean

A.1 Results for pmd

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 3218 2191 898 151.6 649 56.8 86.2 304.3 558 60.4 20724 2508
mo 3314 2224 959 153 659 0 0 309 569 65 20833 2704

σ% 6.7 3.4 10.7 1.6 3.2 95.8 78.5 6.6 3.1 16.2 1.7 12.8

BO 2.5 5.7β 19.6β 3.7β 8.2β F F 11.4α 2.7 14.2 0.5 22.0β

UM 3.0 1.5 6.8 1.0 1.5 5.7 49.6 1.5 2.0 9.2 0.5 7.8
AR 3.9 2.9 6.2 1.0 1.5 104.3γ 101.8 2.5 2.5 5.9 0.8γ 8.0

ES 3.0 2.9 6.8 1.0 1.5 F 49.6 1.5 2.2β 9.2 4.4 3.5
MD 0.5 0.7 0.7 1.0 1.5 180α 36.9 0.5 1.4 2.6 0.5 7.8

PO 3.3 1.5 16.5β 1.0 1.5 5.7 49.6 1.5 2.0 7.5β 0.5 21.4β

EA 3.0 1.5 8.6 1.0 1.5 F F 10.0β 4.9β 27.2β 0.5 7.8
VP 3.0 2.0 6.8 1.0 1.5 5.7 12.5 10.3 5.0 28.9 0.5 7.8

MM 17.1β 5.7β 0.3 1.0 0.5 1.4 F 1.2 1.6 7.5 0.5 7.8
JU
IC

A.2 Results for pcj

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 3799 12442 11077 121 1514 410 515 653 883 164 9164 172
mo 4534 14354 12644 139 1733 568 0 773 1035 187 10546 196

σ% 42.0 40.6 40.6 39.4 38.2 68.4 101.6 39.9 38.5 35.3 39.9 27.0

VP 19.3 15.4 19.6 14.9 14.5 38.3 9.2 2.7 0.7 10.8 15.1 14.0
MM 19.3 15.4 14.1 14.9 14.5 38.3 F 18.3 17.1 13.8 15.1 14.0
JU 3.5 15.4 14.1 14.9 14.5 38.3 F 18.3 17.1 13.8 15.1 12.8

UM 19.3 15.4 14.1 14.9 14.5 38.3 103γ 18.3 17.1 13.8 15.1 14.0
ES 19.3 15.4 15.9 14.9 14.5 F 103γ 18.3 17.1 13.8 15.1 14.0

IC 93.3β 92.2β 92.1β 89.3β 86.7β F F 88.8β 86.3β 79.9β 90.5β 57β

MD 19.3 15.4 14.1 14.9 14.5 46.8 103γ 18.3 17.1 13.8 15.1 14.0
BO
AR
PO
EA

29

A.3 Results for java2d

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 787 521 500 23 76 57 30 81 160 14 1216 1107
mo 912 561 539 24 84 0 0 89 188 17 1348 1284

σ% 23.7 17.3 17.5 6.7 26.2 104.3 108.0 40.0 41.6 45.4 33.3 34.5

VP 15.8 7.5 7.7 2.7 10.5 17.6 60.8 24.7 38.2 46.3δ 10.8 15.9
MM 15.8 7.5 7.7 2.7 10.5 17.6 F 9.9 17.4 14.0 10.8 15.9
JU 18.9 7.5 7.7 2.7 10.5 19.3 F 9.9 17.4 14.0 10.8 7.0

BO 45.2β 41.0β 41.2β 18.7β 73.7β F F 56.8γ 42.4γ 67.7 2.5 4.3
UM 15.8 7.5 7.7 2.7 10.5 17.6 112.2γ 9.9 17.4 14.0 10.8 15.9
AR 15.8 7.5 7.7 2.7 10.5 55.7 112.2γ 32.1 28.7 34.1 10.8 15.9
ES 15.4 7.5 8.1 2.7 10.5 F 112.2γ 9.9 17.4 14.0 10.8 15.9

IC 20.4 28.1β 28.8β 5.8 21.1 F F F F F F F
MD 15.8 7.5 7.7 2.7 10.5 252α 112.2γ 9.9 17.4 14.0 10.8 15.9

PO 30.3δ 9.2 7.7 2.7 10.5 19.3 112.2γ 9.9 17.4 14.0 10.8 8.6
EA 20.5 7.5 7.7 2.7 10.5 F F 23.5 37.5 39.6 10.8 15.9

A.4 Results for jolden

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 100.4 155.5 270.3 13.0 12.7 1.9 2.8 5.7 5.6 2.9 71.8 40.5
mo 92 203 314 15 15 3 0 6 6 3 74 47

σ% 65.4 41.9 34.8 33.2 31.5 87.5 107.5 37.0 35.9 37.9 36.9 46.5

VP 22.5 30.5 16.2 15.4 18.1 57.9 42.9 5.3 7.1 3.4 3.1 16.0
MM 8.4 30.5 16.2 15.4 18.1 57.9 F 5.3 7.1 3.4 3.1 16.0
JU 20.3 26.0 0.1 F 5.5 57.9 F 5.3 7.1 3.4 3.1 33.3
BO 11.4 17.7 14.3 15.4 10.2 F F 40.4γ 25.0 37.9 3.1 33.3
AR 20.3 13.8 0.1 F 5.5 57.9 114γ 5.3 7.1 3.4 3.1 16.0

ES 166.9β 30.5 16.2 15.4 18.1 F 114γ 5.3 7.1 3.4 28.1 55.6γ

IC 93.0δ 98.1β 97.0β 92.3β 84.3β F F F F F F F
MD 9.4 28.0 15.4 15.4 18.1 111γ 114γ 5.3 7.1 3.4 25.3 55.6γ

PO 18.3 22.2 2.8 F 5.5 57.9 114γ 5.3 7.1 3.4 28.1 8.6
EA 8.4 30.5 16.2 15.4 18.1 F F 22.8 25.0 37.9 3.1 16.0
UM

A.5 Results for xalan
NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

σ 5433 3753 3073 360 1323 102 117 320.8 647 133 17042 3942
mo 11980 9509 7633 921 3161 151 0 688 1378 287 35200 8463

µ% 66.6 52.9 52.8 51.9 57.0 82.9 99.5 71.4 71.7 69.1 72.9 73.2

AR 99.4δ 97.1β 96.6β 96.6β 97.9β 128α 89.8 F 99.8δ 99.0δ F F
MD 46.8 34.0 31.0 32.6 36.3 79.2 101γ 53.1 52.9 48.5 51.9 59.6
BO

MM 46.8 34.0 31.0 32.6 36.2 23.0 F 55.3 61.8 56.3 53.2 63.3
VP 46.8 34.0 33.5 32.6 36.2 23.0 14.7 11.5 24.7 31.5 50.6 57.2
JU

EA 89.2δ 64.7δ 68.1δ 71.8δ 86.9β F F 79.8δ 83.6δ 74.1δ 90.4δ 85.4δ

UM 46.8 34.0 31.0 32.6 36.2 23.0 101γ 53.1 50.6 51.1 50.6 57.2
ES 42.3 33.8 44.2 32.6 35.6 F 101γ 53.1 40.6 37.1 31.9 36.8

IC 76.4δ 42.5 37.0 27.0 32.1 F F F F F F F
PO 35.4 34.5 31.0 32.6 36.3 23.0 101γ 53.3 52.9 48.5 52.1 11.3

30

A.6 Results for junit

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 275.1 97.8 369.8 6.5 58.3 6.9 7.9 30.4 37.7 20.5 304.5 19.5
mo 343 112 462 8 78 0 0 30 46 18 370 25

σ% 38.8 52.5 40.1 41.8 52.4 133.4 97.8 35.7 36.4 32.5 39.9 57.1

VP 27.6 14.5 26.3 23.9 33.9 30.3 64.4 14.4 7.2 12.4 21.5 28.5
MM 5.4 8.4 18.7 23.9 21.8 42.1 F 1.2 12.5 12.4 3.5 28.0
JU 24.7 23.3 24.7 23.9 33.9 13.2 F 15.3 19.3 16.8 21.5 22.9
EA 24.7 14.5 24.9 23.9 33.9 F F 11.1 4.6 7.5 21.5 28.5
BO 12.0 28.4 11.1 23.9 23.6 F F 8.7 0.7 7.1 9.3 28.0
UM 18.1 9.4 17.1 22.5 21.8 13.2 64.4 18.6 21.9 21.7 12.0 2.8
AR 25.4 14.5 25.5 23.9 33.9 247γ 140γ 58.1γ 56.4γ 41.2γ 48.7γ 64.5γ

ES 17.8 120γ 23.5 8.5 46.8 F 77.0 2.1 1.9 11.9 20.9 95.3γ

IC 88.0β 88.8β 88.6β F 98.3β F F 90.1β 92.0β 85.4β F F
MD 24.7 14.5 24.9 23.9 33.9 261γ 77.0 15.3 21.9 16.8 21.8 28.5

PO 56.7δ 55.0δ 61.1β 53.5δ 91.4β 71.1 77.0 1.2 1.9 2.2 32.0 69.2δ

A.7 Results for fop

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 92.4 130.9 109.1 33.0 37.5 1.4 0.5 4.7 4.7 4.1 0 0
mo 97 133 111 33 38 0 0 6 6 5 0 0

σ% 10.2 5.6 6.4 0.0 4.8 331.7 114.9 51.9 51.9 50.6 0.0 0.0

VP 5.0 1.6 2.7 0.0 1.5 F F F F F 0 0
MM 5.0 1.6 1.8 0.0 1.5 F F 26.9 26.9 22.2 0 0

JU 28.5β 1.6 1.8 0.0 1.5 F F 26.9 26.9 46.7 0 0
BO 1.8 1.6 1.8 0.0 1.5 F F 48.1 48.1 46.7 0 0
UM 5.0 1.6 1.8 0.0 1.5 F 120γ 26.9 26.9 22.2 0 0
AR 2.9 1.6 1.8 0.0 1.5 F 120γ 57.7 57.7 51.1 0 0
IC 1.8 16.7 19.3 0.0 14.6 F F 26.9 26.9 22.2 0 0
ES 5.0 1.6 2.7 0.0 1.5 F 120γ 26.9 26.9 22.2 0 0

MD 5.0 1.6 1.8 0.0 1.5 F 120γ 26.9 26.9 22.2 0 0
PO 8.0 2.4 1.8 0.0 1.5 F 120γ 26.9 26.9 22.2 0 0
EA 5.0 1.6 1.8 0.0 1.5 F F 78.8 78.8 75.6 0 0

A.8 Results for hsqldb

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 3204 4586 2562 325 1268 62 48 118 158 75 2071 978
mo 3499 4804 2445 340 1323 58 0 136 188 86 2322 1161

σ% 10.3 13.5 19.2 13.7 12.4 159.5 111.5 42.8 42.9 42.7 35.2 36.3

VP 9.2 4.7 1.9 4.6 4.3 6.9 2.9 25.9 31.4 26.2 11.7 18.2
MM 9.2 4.7 4.6 4.6 4.3 6.9 F 14.5 18.4 14.6 12.1 18.6
JU 10.2 4.7 4.6 4.6 4.3 6.9 F 14.5 18.4 13.3 12.1 1.2
BO 6.9 0.5 11.9 2.4 0.5 F F 63.3γ 51.8γ 62.1γ 9.0 1.6
UM 9.2 4.7 4.6 4.6 4.3 6.9 124.3γ 14.5 18.4 14.6 11.7 18.2

IC 15.8β 38.0β 15.4 38.8β 35.2β F F F F F F F
ES 2.2 4.7 52.9α 4.6 4.3 F 124.3γ 14.5 17.8 18.6 6.8 11.2

MD 9.2 4.7 4.6 4.6 4.3 434β 124.3γ 14.5 18.4 13.3 12.1 18.6

PO 11.1δ 5.4 4.6 4.6 4.3 6.9 124.3γ 14.5 18.4 13.3 12.3 0.6
EA 9.4 4.7 4.6 4.6 4.3 F F 24.2 30.1 23.6 12.1 18.6
AR

31

A.9 Results for jameleon

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 498 1223 914 247 361 34 27 95 203 63 2592 679
mo 547 1254 939 250 364 0 0 100 217 68 2667 759

σ% 14.2 7.4 8.8 3.6 1.8 183.8 105.8 20.5 22.1 19.9 9.6 17.3

VP 9.8 2.5 4.2 1.2 0.7 50.3 6.7 39.1β 36.9β 38.3β 2.9 11.6
MM 9.8 2.5 2.7 1.2 0.7 50.3 F 10.2 6.9 7.6 2.9 11.6

JU 30.4β 2.5 2.7 1.2 0.7 44.4 F 10.2 6.9 7.6 2.9 36.8β

EA 9.8 2.5 2.7 1.2 0.7 F F 38.1β 36.5β 36.7β 2.9 11.6
BO 9.5 0.4 0.1 0.4 0.7 F F 29.1γ 41.4α 26.6γ 2.9 15.9
UM 9.8 2.5 2.7 1.2 0.7 50.3 72.9 5.0 6.9 7.6 2.9 11.6
AR 7.6 2.8 3.2 1.2 0.7 113.6 201.7 0.8 13.8 5.0 3.0 10.8

IC 9.1 22.1β 26.3β 11.0β 5.4β F F 7.1 4.4 7.6 29.0β 8.7
ES 9.8 2.5 2.7 1.2 0.7 F 72.9 5.0 6.9 7.6 2.9 11.6

MD 9.8 2.5 2.7 1.2 0.7 523.1 72.9 5.0 6.9 7.6 2.9 11.6

PO 17.1δ 2.5 2.7 1.2 0.7 41.5 72.9 5.0 6.9 7.6 2.9 19.3δ

A.10 Results for antlr
NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 1768 735 2352 189 293 6 39 96 169 60 2088 666
mo 884 2502 1857 196 304 5 0 99 177 62 2246 784

σ% 27.9 20.0 16.9 10.5 11.1 146.6 86.6 11.9 13.2 9.3 23.4 27.6

MM 5.0 20.2 6.4 3.3 3.5 24.2 F 4.2 4.6 3.2 7.5 17.7
JU 5.0 12.5 6.4 3.3 3.5 24.2 F 3.1 4.6 3.2 7.5 15.2
BO 4.5 27.6 6.0 3.3 3.5 F F 13.5γ 13.5γ 11.5γ 7.0 11.9
UM 5.0 20.2 6.4 3.3 3.5 24.2 70.9 3.1 4.6 3.2 7.5 17.7
AR 5.0 20.2 6.4 3.3 3.5 21.2 76.0 4.2 5.2 4.8 7.5 17.7
ES 7.6 20.1 6.4 3.3 3.5 F 70.9 3.1 4.0 1.5 7.0 16.7

IC 48.0β 53.9β 56.9β 29.9β 31.6β F F 31.3β 32.6β 15.1β 66.7β 67.4β

MD 5.0 20.2 6.4 3.3 3.5 400β 70.9 3.1 4.6 3.2 7.5 17.7
PO 5.0 27.2 6.4 3.3 3.5 24.2 70.9 3.1 4.6 3.2 7.5 10.8

VP 6.0 20.2 6.4 3.3 3.5 24.2 40.3 6.3 13.1 18.5β 7.5 17.7
EA

A.11 Results for eje

NoV NoM NoPM NoS NoG IC II NOC IT CLD MI VI

µ 363 525 401 73 137 45 7 71 87 41 147 60
mo 450 551 412 75 142 0 0 81 104 48 151 68

σ% 38.7 13.3 12.4 4.5 7.5 154.1 111.6 37.0 37.8 34.7 7.1 21.3

VP 23.7 4.8 10.2 1.6 3.1 21.4 36.0 67.9β 70.4β 70.9β 2.2 11.8
MM 23.7 4.8 2.5 1.6 3.1 21.4 F 11.8 15.1 11.7 2.2 11.8

JU 69.5β 4.8 2.5 1.6 3.1 19.2 F 13.2 18.5 16.6 2.2 49.0β

EA 23.7 4.8 2.5 1.6 3.1 F F 66.5β 69.2β 68.4β 2.2 11.8

BO 4.7 20.1β 12.6δ 1.1 20.1β F F 25.8 7.7 9.3 2.2 0.3
UM 23.7 4.8 2.5 1.6 3.1 21.4 79.1 13.2 18.5 16.6 2.2 11.8
AR 28.4 13.0 12.0 1.6 3.8 65.9 219α 51.0γ 49.3γ 26.3 2.2 11.8

IC 38.7 31.9β 32.3β 13.3β 8.5δ F F 20.3 9.9 9.3 21.5β 0.3
ES 23.7 4.8 7.5 1.6 3.1 F 79.1 13.2 18.5 16.6 2.2 11.8

MD 23.7 4.8 2.5 1.6 3.1 436α 79.1 13.2 18.5 16.6 2.2 11.8

PO 67.0β 5.0 2.5 1.6 3.1 19.2 79.1 13.2 18.5 16.6 2.2 34.2β

32

	Introduction
	Background and Related Work
	Reverse Engineering
	The Unified Modelling Language (UML)
	Software Metrics
	Towards a framework

	Experimental Setup
	Initial Research
	The building of REM4j

	Exploratory Analysis, finding an Oracle
	Size Metrics
	Inheritance Metrics
	Coupling Metrics

	Determining Tool Accuracy
	Why metrics?
	Control Charts
	Mean Deviation
	Mode

	Analysis of Real World Programs
	Java Application Selection
	Metric Capture
	Results Per Tool

	Conclusions and Future Work
	Conclusion
	Future Work
	Summary

	Metric Results by Application
	Results for pmd
	Results for pcj
	Results for java2d
	Results for jolden
	Results for xalan
	Results for junit
	Results for fop
	Results for hsqldb
	Results for jameleon
	Results for antlr
	Results for eje

