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Abstract 20

Let G be a finite group, and leR :={r € G | 12 =1}. Thens2 is aG-set under conjugation. Let 21
k be an algebraically closed field of characteristic 2. It is shown that each projective indecomposgble
summand of th&s-permutation modulés2 is irreducible and self-dual, whence it belongs to a reaj,
2-block of defect zero. This, together with the fact that each irredugiGlenodule that belongs to
a real 2-block of defect zero occurs with multiplicity 1 as a direct summaridnfestablishes a
bijection between the projective component& &f and the real 2-blocks af of defect zero.
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Let G be a finite group, with identity element and let2 := {r € G | 2 = ¢}. Then
£2 is aG-set under conjugation. In this note we describe the projective components of he
permutation modulé$2, wherek is an algebraically closed field of characteristic 2. By a
projective component we mean an indecomposable direct summaki@d tiat is also a .
direct summand of a freleG-module. We show that all such components are |rredu0|ble
self-dual and occur with multiplicity 1.

This gives an alternative proof of Remark (2) on p. 254 of [5], and strengthens Corgl-
laries 3 through 7 of that paper. In addition, we can give the following quick proof of
Proposition 8 in [5]: 0
41
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Corollary 1. Suppose that H is a strongly embedded subgroup of G. Then ky1¢ =
kg & [D;_; P;] where s > 0 and the P; are pairwise nonisomorphic self-dual projective
irreducible kG-modules.

Proof. That H is strongly embedded means thét| is even andH N H¥| is odd, for
eachg € G\H. Letr € H be an involution. Then clearlg (r) < H. Soky 1 is isomor-
phic to a submodule ofkc,))1¢. Mackey’s theorem implies that every component of
ku1©, other tharkg, is a projectivecG-module. Being projective, these modules must be
components o(kcc(l))TG. The result now follows from Theorem 8.0 9
10
Consider the wreath produéi: X of G with a cyclic groupX' of order 2. HereX' is 11
generated by an involution andG : X' is isomorphic to the semidirect product of the basé?2
groupG x G by X. The conjugation action @f onG x G is given by(g1, g2)° = (g2, g1), 28
for all g1, g2 € G. The elements of; : X will be written (g1, g2), (g1, g2)o Oro. 14
We shall exploit the fact thatG is akG : ¥-module. For, as is well know,G is an 15
k(G x G)-module viax - (g1, g2) := gl_lxgz, for eachx € kG, andg1, g2 € G. The action 16
of ¥ onkG is induced by the permutation action®fon the distinguished basts of kG: 17
g” := g1, for eachg € G. Clearlyo acts as an involutarg-algebra anti-automorphism 18
of kG. It follows that the actions off x G and X' on kG are compatible with the group 10
relationsinG: X. 20
By ablock of kG, or a 2-block ofG, we mean an indecomposalil@lgebra direct sum- 21
mand ofkG. Each block has associated to it a primitive idempotert (hG), a Brauer 22
equivalence class of characters of irreducitdemodules and a Brauer equivalence clas$3
modulo 2, of ordinary irreducible characters@®@f A block has defect zero if it is a simple 24
k-algebra, and is real if it contains the complex conjugates of its ordinary irreducible cttar-
acters. Theorem 8 establishes a bijection between the real 2-blockshadt have defect 26
zero and the projective componentske?. 27
We could equally well work over a complete discrete valuation ingf characteris- 28
tic 0, whose field of fractiong" is algebraically closed, and whose residue fiRjd/ (R) 20
is k. So we use&) to indicate either of the commutative ring®r R. 30
All our modules are right-modules. We denote the tri¢?al-module byOg. If Misan 3t
OG-module, we usé/ | g to denote the restriction @f to H. If H is a subgroup of; and 32
N is anO H-module, we us&/ 1 ¢ to denote the induction df to G. Wheneveg € G, we 33
write g for (g,¢) € G x G, and we sefX := {x | x € X}, for eachX C G. Other notation 34
and concepts can be found in a standard textbook on modular representation theory,38uch

o g b~ W N P

as [1] or [4]. 36
If B is a block of OG, then so too isB? = {x° | x € B}. We call B a real block if 37

B = B°. Our first result describes the component£xaf asOG : X-module. 38
39

Lemma 2. There is an indecomposable decomposition of OG as OG : X -module; 40
41

OG=B1®  ®B- & (Bry1+ B 1)@ ® (Brys+ B, ,1)- 42

43
Here By, ..., B, are the real 2-blocks and B, 1, Bl 4, ..., Bris, Bl are the nonreal 44
2-blocks of G. 45
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Proof. This follows from the well-known indecomposable decompositiordaf, as an
O(G x G)-module, into a direct sum of its blocks, and the fact tBdt= B; for i =
1,...,r, andB;’+j =B;’+j forj=1,...,5s. O

An obvious but useful fact is th&? G is a permutation module:
Lemma3. The OG: X-module OG isisomorphic to the permutation module (Og « )1 6% .
Proof. The elements o0& form a G : X-invariant basis of)G. Moreover ifg1, g2 € G,
thengo = g1 - (g1, g2)- SOG is a transitiveG : X-set. The stabilizerafe OGin G: X is
G x X. The lemma follows from these factso

Let C be a conjugacy class a@f. SetC? :={c € G | ¢t e C}. ThenC? is also a
conjugacy class o7, andC U C? can be regarded as an orbit@fx X on theG: X-
setG. As such, the corresponding permutation modigC U C?) is aOG x X-direct

summand ofDG. If C = C?, we callC a real class of5. In this case for eache C there
existsx € G such that* = ¢~1. The point stabilizer of in G x X is Cg(c)(xo). SO

OC = (Ocg () wo)) 197

If C £ C?, we callC anonreal class dfi. In this case the point stabilizer ofe C U C? in
G x X isCg(c). So

O(CUC®) = (Ocye) 1%,

25

Suppose now that the real classes éxe..., C; and that the nonreal classes ares

Ci+1,Cl 45 -+ s Cryu, 7y, Then we have:
Lemma 4. Thereis a decomposition of OG asan OG x X-permutation module:
0G=0C1® - ®OC; ®O(Cr32UC 1) DD O(Crruy UCL,11).

Proof. This follows from Lemma 3 and the discussion aboves

By a quasi-permutation module we mean a direct summand of a permutation mocdhale.

27
28
29
30
31
32
33
34

Our next result is Lemma 9.7 of [1]. We include a proof for the convenience of the reader.

Lemma5. Let M be an indecomposable quasi-permutation O G-modul e and suppose that
H isasubgroup of G such that M | g isindecomposable. Then thereisa vertex V of M
suchthat V N H isavertexof M| y.If H isanormal subgroup of G, then thisis true for
all verticesof M.

Proof. LetU be avertexofl. AsOy | M|y we haveOyny | (M g)lung. ButU N H
is a vertex ofOyng. So Mackey's theorem implies that there exists a veiterf M | g
suchthaty N H < W.

37
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As M| gy is a component of the restriction &f to H, Mackey’s theorem shows that 1
there existg € G such thatW < U8 N H. Now U$ is a vertex ofM. So by the previous 2
paragraph, and the uniqueness of verticeafdfy up to H-conjugacy, there existse H 3
such that/¢ N H < W". Comparing cardinalities, we see théit= U¢ N H. SoU$ N H
is a vertex ofM | g .

Suppose that{ is a normal subgroup of;. ThenU N H < W andW =U8 N H =
(UNH)SimplythatUnH=W. O

o N o g b

R. Brauer showed how to associate to each blocko6f a G-conjugacy class of ° 0
2-subgroups, its so-called defect groups. It is known that a block has defect zero if and
only if its defect groups are all trivial. J.A. Green showed how to associate to each inde-
composabledG-module aG-conjugacy class of 2-subgroups, its so-called vertices. I—E
also showed how to identify the defect groups of a block using its vertices as an mdecom—
posableD(G x G)-module.

15
16
Corollary 6. Let B be a block of OG and let D be a defect group of B. If Biisnot real 17
then D isavertexof B+ B?,asOG X-module. If B isreal, thenthereexistsx € Ng(D), 18
with x2 € D, such that D(xo) isa vertex of B, as OG : ¥-module. In particular, ¥ isa 19
vertex of B + B? if and only if B isareal 2-block of G that has defect zero. 20

Proof. J.A. Green showed in [2] thab is a vertex of B, when B is regarded as an 22
indecomposabl& (G x G)-module. Suppose first tha is not real. ThenB + B = 23
(Blgxg)1C¢¥, for instance by Corollary 8.3 of [1]. It follows tha& + B° has vertex 24
D, as an indecomposab(®G : X-module. %

Suppose then th& = B + B? is real. Lemma 3 shows th#tis G x X-projective. So 28
we may choose a vertéx of B such thatV < G x X'. Moreover,B is a quasi-permutation
OG : ¥-module, and its restriction to the normal subgraip< G is indecomposable.
Lemma 5 then implies that N (G x G) =V NG is a vertex ofB | gxG- SO by Green’s
result, we may choosb so thatV NG = D. Now G x G has index 2 irG: ¥. So Green’s *°
indecomposability theorem, and the fact tBats « ¢ is indecomposable, implies thetZ
(G x G). It follows that there exists € Ng (D), with x2 € D, such thatV = D(xo). 32

If B has defect zero, theP = (¢). Sox2 = e. In this casefxo) = X is G -
conjugate ta¥'. So X is a vertex ofB. Conversely, suppose that is a vertex ofB + B°.
The first paragraph shows thatis a real block ofG. Moreover B has defect zero, as
XNG={). O

We quote the following result of Burry, Carlson and Puig [4, 4.4.6] on the Green cortg-
spondence: 0

Lemma7.Let V < H < G besuchthat Visa p-groupand Ng (V) < H. Let f denotethe 42
Green correspondence with respect to (G, V, H). Suppose that M is an indecomposable 43
OG-module such that M| z has a component N with vertex V. Then V isavertexof M 44
and N = f(M). 45
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We can now prove our main result. Part (i) is Remark (2) on p. 254 of [5], but our proof

is independent of the proof given there.
Theorem 8.

() Letr e G, with 12 = ¢. Suppose that P is an indecomposable projective direct sum-
mand of (Oc,, (Z))TG. Then P isirreducible and self-dual and occurs with multiplicity
1 as a component of (OCG(I))TG. In particular P belongsto areal 2-block of G that
has defect zero.

(il) Suppose that M is a projective indecomposable OG-module that belongs to a real
2-block of G that has defect zero. Then there exists s € G, with s2 = ¢, such that M
is a component of (Oc, ) 1¢. Moreover, s is uniquely determined up to conjugacy
inG.

Proof. If t =e thenP = Og. So P is irreducible and self-dual. The assumption tRais
projective and the fact that dig{P) = 1 implies that|G| is odd. So all blocks 0OG, in
particular the one containing, have defect zero.

Now suppose that# e. Let T be the conjugacy class ¢f that containg. The permu-
tation moduleDT is a direct summand of the restriction@iG to G x X'. RegardP as an
OG-module. Letl (P) be the inflation of this module t& x X. ThenI(P) is a compo-
nent ofOT. As X is contained in the kernel df(P), and P is a projectiveDG-module, it
follows that/ (P) has vertex>' as an indecomposabteG x X'-module.

By Lemma 2, and the Krull-Schmidt theorem, there exists a 2-bbcdk G such that

2

© 0 N o g b~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

I(P) is a component of the restrictiaiB + B°)| g xx. An easy computation shows that24

NGz (X) =G x X. It then follows from Lemma 7 thatB + B?) has vertex> and also
that! (P) is the Green correspondent@ + B?) with respecttadG: ¥, ¥, G x X). We
conclude from Corollary 6 thak is a real 2-block of5 that has defect zero.

Let B be the 2-block ofG : ¥ that contains3. ThenB is real and has defect group.
Let A be the Brauer correspondent Bf Then A is a real 2-block ofG x X that has
defect groupX. Now A = A @ O.X, whereA is a real 2-block of0G that has defect

zero. In particularA has a unigue indecomposable module, and this module is projecti¢e,

irreducible and self-dual. Corollary 14.4 of [1] implies thetP) belongs toA. So P

32

belongs tad. We conclude thaP is irreducible and self-dual and belongs to a real 2-bloct

of G that has defect zero.

Now B occurs with multiplicity 1 as a component 6?G, and I (P) is the Green
correspondent of3 with respect to(G : X, ¥, G x X). So I(P) has multiplicity 1 as
a component of the restriction 61G to G x X. It follows that P occurs with multiplicity
1 as a component a®¢, )1 ¢, and with multiplicity 0 as a component ®c,, 1)1,
for r € G with 2 = e, butr not G-conjugate ta. This completes the proof of part (i).

Let R be areal 2-block o&; that has defect zero. Thehhas vertext as indecompos-
ableOG: ¥-module. So its Green correspondégiiiR), with respecttdG: X, ¥, G x X),
is a component of the restriction 61G to G x X that has vertex”. Lemma 4 and the
Krull-Schmidt theorem imply thaf (R) is isomorphic to a component 61(C U C?), for
some conjugacy class of G. Now X' is a central subgroup af x X¥'. So X must be a
subgroup of the point stabilizer 6fU C? in G x X. It follows thats? = e, for eachs € C.

34



© 0 N o g b~ W N P

AOBA DA B DN B OWOW W W W W W W WWNDNDNDNDNDNDNDNDNDNR R R B B B B R R
a M W M P O © © N O O~ W RN P O © © N 0 00 W NP O © ® N O A w N P O

50021-8693(05)00338-8/FLA AID:10633 Vol.eee(e, [DTD5] P.6 (1-7)
YJABR:m1 v 1.39 Prn:23/06/2005; 8:51 wabr10633 by:Gi p. 6

6 J. Murray / Journal of Algebra eee (eeee) ese—see

Let N denote the restriction of (R) to G, and considelV as anOG-module. We have
just shown thatV is a component ofOc,(s))1¢. Arguing as before, we see thaltis an
indecomposable projectid®@G-module that belongs to a real 2-block@fthat has defect
zero.

The last paragraph establishes an injective map between the real 2-blackisaifhave
defect zero and certain projective component®®?. As each block of defect zero con-
tains a single irreducibl®G-module, this map must be onto. It follows that the module
in the statement of the theorem is a component of some permutation m@yle,) 1,
wheres € G ands? = e. The fact thak is determined up t6-conjugacy now follows from
the last statement of the proof of part (i). This completes the proof of part ().

© 0 N o g b~ W N P

PR e
N R O

Itis possible to simplify the above proof by showing thaBifs a real 2-block of5 that
has defect zero, then its Green correspondent, with respéétita@, X, G x ¥) is M,
whereMF" is the Frobenius conjugate of the unique irreducibi-module that belongs
to B. »

Suppose tharR is a complete discrete valuation ring and thais an RCg (r)-module,
whereL hasR-rank 1 and0?(Cg (1)) acts trivially onL. Then the 2-modular reduction of
L is the trivial kC¢ (t)-module, althoughL is not necessarily the triviaRC¢ (1)-module.
Now each projective irreducibleG-module lifts to a projective irreducibl® G-module.
So the conclusions of part (i) of the above theorem applyt6: all of its projective com-
ponents are irreducible and self-dual. We thank the referee for pointing out this extension
of our result. 22

The proof of Theorem 8 hints at the fact that we have some 2-local control over all the
components ofOc, )1 . The investigation of special properties of such componentsi$
continued in [3]. 2

13

26

Corollary 9. Let 2 = {r € G | t2 = ¢}. Then there is a bijection between the real 2-blocks 2

of G that have defect zero and the projective components of Os2. ’

30
31

32
Corollary 10. Let n > 1 and let ¢+ be an involution in the symmetric group X,. If 4

n=m(@m + 1)/2 is a triangular number, and 7 is a product of | (m? + 1)/4] commuting s,
transpositions, then there is a single projective irreducible O X,,-module, and thismodule 45
is the unique projective component of (Ocy; ) 1. For all other values of n or noncon- 44
jugate involutions ¢, the modules (Ocy;, (1)) 127 are projective free. 37

38
Proof. We give a proof of the following resultin [3, Corollary 8.4]: Létbe a finite group, 39
let B be a real 2-block of5 of defect zero, and let be the unique irreducible character4o
in B. Then there exists a 2-regular conjugacy cl@ssf G such thatC = C?, |Cg(c)| is 41
odd, forc € C, andx (c¢) is nonzero, modulo a prime ideal containing 2. Moreover, there
exists an involutiorr € G such that! = ¢~1, and for thisr we have(xc. ), lecn) =1. 43
The existence of was shown in [5]. The identification af using the clas€ was first 44
shown by R. Gow (in unpublished work). 45

Here is a sample application. It was suggested to me by G.R. Robinson.
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Suppose thatOcy;, )1 has a projective component. Th&h has a 2-block of defect 1
zero, by Theorem 8. The 2-blocks Bf, are indexed by triangular partitiops= [m, m — 1,
..., 2,1], wherem ranges over those natural numbers for which m(m + 1)/2 is even.
Moreover, the 2-block corresponding tohas defect zero if and only if = m(m + 1)/2.
In particular, we can assume that m(m + 1)/2, for somen > 1.

Let B be the unique 2-block aoF,, that has defect zero, lgt be the unique irreducible
character inB and letg € X, have cycle type. =[2m — 1,2m — 5, ...]. Then|Cx, (g)|
is odd. As the parts of are the “diagonal hooklengths” of, the Murnaghan—Nakayama 8
formula shows thag (¢) = 1. Now has| (m — 1)/2] nonzero parts. Sgis inverted by an ¢
involution that is a product ofn — [ (m — 1)/2])/2 = | (m? + 1) /4] commuting transpo- 10
sitions. It follows from Theorem 8 and the previous paragraph that the unique irreducible
projective B-module occurs with multiplicity 1 as a component(ic;, ) 1. The last 12

N o g~ wWwN

statement of the corollary now follows from Theorem &2 13
14
15
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