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Summary. We summarise some current results for active membrane systems using uni-
formity below P. Many of the systems we consider are easily to simulate on parallel
hardware and provide interesting new directions for the complexity theory of membrane
systems as well as those seeking to simulate membrane systems.

1 Familiar frontiers

The majority of complexity results to date in membrane systems (also known as
P-systems) have been focused on the frontier of tractability. This frontier is also
known as the P

?= NP conjecture. This boundary has been fruitfully explored using
polynomial time (semi-)uniform families of membrane systems. However, when the
uniformity condition is restricted to being computed in classes below P many new
and interesting things about families of active membrane systems without charges
(AM0) become clear.

One result [6] is that logspace semi-uniform families (when dissolution rules
are excluded, denoted AM0

−d) solve all problems in NL. (When using P semi-
uniformity, families of AM0

−d were shown to solve all of P. [4]) The problems in
NL are solvable using very little memory (O(log2 n)) on a deterministic polynomial
time Turing machine [11]. Furthermore since NL ⊆ NC, this places us on the far
side of another frontier: the parallelisable frontier. The parallelisable frontier is also
known as the NC

?= P conjecture and is almost as significant in its implications
as the P

?= NP conjecture [2]. Problems in NC (∪i≥0NCi) are those which are
decided in poly-logarithmic (O(logi n)) time when using a polynomial number of
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processors, that is they are efficiently parallelisable. However P-complete problems
are thought to be intrinsically sequential and no significant speed-up is achieved
when the number of processors working on the problem is increased[2].

We have also shown[5, 6] the first P characterisation for AM0 systems with
dissolution rules where the lowerbound is not dependant on P uniformity.

Another result is that for AM0
−d the notions of uniformity and semi-uniformity

are formally different. This result may be applicable to other types of membrane
systems and models of computation.

2 First Results

We now summarise the first results from beyond the P frontier. The key to these
results has been to use uniformity conditions weaker than P (note Obtu lowicz [9]
was the first to explicitly use logspace).

Theorem 1 ([6]). The set of problems solved by semi-uniform families of recog-
niser active membrane systems without charges and without dissolution rules equals
NL, formally (AC0)–PMC∗AM0−d

= NL. This result holds if the semi-uniformity
function is AC0, NC1, L, or NL computable.

With a slight restriction on the way rules are allowed to interact in the system,
the set of problems solvable shrinks to L [8]. The proofs of these results show
that it is possible to simulate a AM0

−d system with a membrane structure by
using a system with a single membrane and only evolution rules. Also clarified
is the power of dissolution, with dissolution a semi-uniform AM0 system with
strong non-elementary division rules solves PSPACE, however without dissolution
rules, the system solves only NL [1]. Similarly dissolution rules provide the first P
characterisation that is robust to uniformity conditions below P.

Theorem 2 ([5]). The set of problems solved by semi-uniform families of recog-
niser active membrane systems without charges and using dissolution and symmet-
ric division rules equals P, formally (AC0)–PMC∗AM0

+d,−a
= P. This result holds if

the semi-uniformity function is AC0, NC1, L, NL, or P computable.

Theorem 1 highlights the importance of choosing an appropriate uniformity
condition. If the uniformity function is computed in polynomial time then the
AM0

−d system is found to solve all of the problems in P [4]. Families of membrane
systems are sensitive (more than circuits for example) to the strength of their
uniformity conditions as the (semi-)uniformity function accesses the input word.
Thus an active membrane system with just 2 rules, [ a → yes ] and [ b → no ]
solves a P-complete problem if its uniformity function is polynomial time com-
putable, the input encoder simply solves the problem using the input word! In
Figure 2 we see how the power of a system increases in step with its uniformity
until a certain threshold is crossed, intuitively this threshold represents the actual
computing power of the system.
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Fig. 1. Complexity classes characterised by membrane systems. Characterisations by
uniform families of AM0

−d systems are denoted by , and semi-uniform by . Theorem 2
is indicated by and a PSPACE-characterisation [1, 13] with various (semi-)uniformity
conditions indicated by , for these, semi-uniform and uniform classes have the same
power.

Now we consider the power of uniform families of active membranes without
dissolution. It has been shown in a number of models that whether one chooses to
use uniformity or semi-uniformity does not affect the power of the model. However,
we have shown [7] that these notions are not equivalent, resolving Open Problem
C in [10]. Our result proves that choosing one notion over another gives char-
acterisations of completely different complexity classes, including known distinct
classes. This is surprising because in all membrane system models studied to date,
the classes of problems solved by semi-uniform and uniform families turned out
to be equal [1, 5, 12]. Uniform families of AM0

−d are so weak that the complexity
of their encoding functions (down as far as AC0) gives the upperbound of solvable
problems.

Theorem 3 ([7]). AC0 uniform families of active membrane systems without
charges and without dissolution rules characterise a strict subset of their semi-
uniform equivalent. AC0 = (AC0)–PMCAM0−d

( (AC0, AC0)–PMC∗AM0−d
= NL.

3 Applications

We have mentioned that problems in NL (such as AM0
−d prediction [8]) are those

solvable using very little memory on a sequential computer, but we can also exploit
the parallelisable aspects of these systems. Recall that NL ⊆ NC2, this implies
that with a polynomial number of processors the system can be simulated in
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O(log2 n) time. To simulate recogniser AM0
−d systems on a parallel processing

system (such as CUDA) we use a technique known as transitive closure [14]. Given
the dependency graph [4] of a recogniser AM0

−d system, we construct a square
binary matrix M (whose size is the square of the number of objects and labels)
where the rows and columns both represent all object-membrane combinations.
Coordinates M〈o,h〉,〈u,g〉 = 1 where there is an edge linking (o, h) and (u, g) in the
graph, all other coordinates in the matrix are 0. By squaring this matrix log times
we calculate the transitive closure of the dependency graph. If this yields a 1 in
the matrix at coordinate M〈x,in〉,〈yes,out〉, where x is an input object and yes is
an output object, then the system is an accepting one. This efficient simulation
technique indicates thatAM0

−d systems naively make good choice to model cellular
systems.

4 Conclusions and open problems

In membrane systems it is vital to choose the correct uniformity condition. If
the uniformity is too strong you may miss the true power of the system you are
trying to analyse. For example, a P upper bound result for Tissue systems using
a dependency graph such as [3] can be trivially tightened to NL if a more suitable
uniformity is used. Since AC0 has a strong separation from other classes it makes
an excellent choice for a uniformity condition.

The problems in NP are intractable, any attempt to use brute force paral-
lelism to solve them will run short of processors. However problems in NC (e.g.
AM0

−d simulation) are easy to solve in parallel. The transitive closure technique
is applicable for any system that can be modeled using a dependency graph.

Some open problems that this work has raised.

1. Can all recogniser active membrane systems without charges be simulated by
a system with at most one copy of each object?

2. Can we characterise the levels of the NC hierarchy (or polynomial hierarchy)
using active membrane systems?

3. What happens if we adjust the membrane uniformity definition to remove the
encoding of the input, making it similar to circuit uniformity?

4. For which systems do the semi-uniform and uniform versions have different
computing power?
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