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Summary 

 Aspergillus fumigatus is a serious opportunistic human pathogen. Availability of the 

complete genome sequence of A. fumigatus allows the identification and subsequent 

characterisation of genes which may encode virulence factors, or novel drug targets. Non-

ribosomal peptide (NRP) synthetases have been implicated in virulence of A. fumigatus and other 

fungi. The work presented here reports opposing roles for two previously uncharacterised NRP 

synthetases with respect to A. fumigatus virulence. The NRP synthetase Pes3 appears to encode a 

structural peptide necessary for fungal recognition by the innate immune system; deletion of pes3 

resulted in hypervirulence in both insect (p < 0.001) and murine (p = 0.02) models of invasive 

aspergillosis, and increased susceptibility to voriconazole (p < 0.001). The NRP synthetase PesL 

was found to be essential for fumigaclavine C biosynthesis and deletion of pesL resulted in 

complete loss of fumigaclavine C accompanied by severely reduced virulence (p < 0.001), 

increased sensitivity of ∆pesL to H2O2 (> 1 mM) (p = 0.05), and increased sensitivity to the anti-

fungal voriconazole (> 0.25 µg/ml) (p < 0.01) compared to wild-type.  

 An adaptive response to alkylating agents (e.g. N-methyl-N′-nitro-N-nitrosoguanidine 

(MNNG)) was identified in A. fumigatus. Afmpt is a transcriptional regulator for this response, 

and exposure to MNNG causes up-regulation of Afmpt and Afagt, an alkylguaninetransferase. 

Afmpt and Afagt functions were confirmed through targeted gene deletion, phenotypic and 

expression analyses, and yeast complementation studies. Identification of this response, which 

has no mammalian equivalent, makes this pathway an attractive anti-fungal drug target worthy of 

further investigation. 

 Overall, this work further highlights the importance that NRPS plays in this serious 

human pathogen, and uncovered some interesting features such as possible secondary metabolite 

cluster cross-talk and NRP synthetase redundancy, themes which are beginning to emerge in the 

literature.  
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1.1. General characteristics of Aspergillus fumigatus. 
 The genus Aspergillus was described as early as 1729 by Micheli and comprises 

approximately 200 species found worldwide (Tomee & van der Werf, 2001). About 20 

species are associated with disease, including A. fumigatus, A. flavus, A. niger, A. terreus, 

A. nidulans and A. oryzae (Tomee & van der Werf, 2001). However, A. fumigatus is the 

most pathogenic of these species, and is responsible for approximately 90 % of all invasive 

aspergillosis infections (Dagenais & Keller, 2009).  

 A. fumigatus is a ubiquitous saprophytic filamentous fungus that plays an important 

role in the recycling of carbon and nitrogen in the environment (Latge, 2001). Its primary 

habitat is soil or decaying vegetation, and it produces small hydrophobic conidia (spores) 

which are airborne, and can survive a vast range of environmental conditions (Dagenais & 

Keller, 2009). In the laboratory, A. fumigatus can grow rapidly on minimal agar plates 

containing a carbon source (e.g. glucose), a nitrogen source (e.g. ammonium tartrate), and 

trace elements (Brakhage & Langfelder, 2002). A. fumigatus is a thermotolerant fungus, 

and can grow at temperatures as high as 55 ºC, with survival maintained at 70 ºC (Latge, 

1999). Although A. fumigatus is not the most abundant fungus in the world, it is one of the 

most ubiquitous fungus with airborne conidia (Mullins et al., 1984).  

 The fungus has a simple life cycle, which is shown in Figure 1.1. A. fumigatus is 

characterised by green powdery conidia, which are produced asexually in chains from 

conidiophores (Latge, 1999). Until recently, it was thought that no sexual stage was present 

in A. fumigatus (Latge, 1999). However, genome sequencing revealed several genes 

associated with mating processes and sexual development (Galagan et al., 2005). Recently, 

a fully functioning sexual cycle was discovered in A. fumigatus (O'Gorman et al., 2009).  
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Figure 1.1. Life cycle of A. fumigatus. A. Scanning electron microscopy of A. fumigatus 

conidiophores which burst to release thousands of asexual conidia (Image from Hannover 

Medical School). B. A. fumigatus Af293 colonies growing on Malt Extract agar (Section 

2.1.1.5) (photographed at NUIM). C. Conidia are released from conidiophores, and they 

germinate to form septate mycelia. Mycelia then produce conidiophores that release conidia 

and the cycle continues (Latge, 2001). 

 

Conidia 
released 

Conidia 
germination 

Conidiophre 
production 

Septate 
mycelia 

formation 

A. B.

C. 



 3

1.2. Pathobiology of A. fumigatus.  

 Aspergillus fumigatus is an opportunistic pathogen which can cause a range of 

human illnesses depending on the immune status of the host (Dagenais & Keller, 2009; 

Latge, 1999), and is responsible for about 4 % of all hospital-based deaths in Europe 

(Brookman & Denning, 2000). Although once thought to be relatively harmless, the status 

of A. fumigatus has changed over the last three decades, with an increasing number of 

immunosuppressed patients and an increase in the severity of immunosuppressive therapies 

(Latge, 2001). Conidia of A. fumigatus are inhaled on a daily basis, and it has been 

suggested that approximately 2000 spores are lodged in the terminal airways every day 

(Philippe et al., 2003). The conidia are small enough (2-3 µm in diameter) to easily reach 

the lung alveoli (Latge, 1999). For most patients therefore, disease occurs in the lung, 

although systemic infection to any body organ occurs in the most severely 

immunocompromised individuals (Latge, 1999). Pulmonary disease caused by A. fumigatus 

can be categorised according to the location of infection in the respiratory tract and the 

extent of mycelial invasion, which are influenced by host immune status (Latge, 1999). The 

innate immune system represents a tightly regulated defence system which is constitutively 

active, and is involved in the recognition and elimination of pathogenic microbes (Balloy 

and Chignard, 2009). In immunocompetent individuals, A. fumigatus conidial inhalation is 

relatively harmless, and conidia that enter terminal airways are phagocytosed and killed by 

alveolar macrophages (Philippe et al., 2003). The innate immune response to A. fumigatus 

will be discussed in more detail in Chapter 3.  

 A. fumigatus infections may be classed into three main categories; 1) allergic 

bronchopulmunory aspergillosis (ABPA), 2) aspergilloma (fungal ball) and 3) invasive 

aspergillosis (IA) (Daly & Kavanagh, 2001; Thompson & Patterson, 2008; Tomee & van 

der Werf, 2001). ABPA is a hypersensitivity to conidia of A. fumigatus. It is a potentially 
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fatal, non-infectious disease, causing extensive inflammation of the respiratory system 

(Banerjee et al., 1997; Crameri, 2002). It mainly occurs in cystic fibrosis (CF) and asthma 

patients and it is estimated that approximately 25 % of CF sufferers and 10 % of asthmatics 

have ABPA (Daly & Kavanagh, 2001). Allergens implicated in ABPA are identified on an 

ongoing basis, such as the recently described Asp f 34, a novel cell wall major allergen 

(Glaser et al., 2009) and more recently described novel allergens from proteomic analysis 

of secreted hyphal proteins and cytosolic allergens produced by A. fumigatus conidia 

(Singh et al., 2010a; Singh et al., 2010b). Treatment for ABPA usually involves reducing 

the hypersensitivity reaction to the fungus, and the use of corticosteroids such as prednisone 

has proven effective (Daly & Kavanagh, 2001; Elliott & Taylor, 1997). ABPA can be 

distinguished from other A. fumigatus infections by the elevated presence of IgE in serum 

(Moss, 2002), and therefore, constant monitoring of IgE is critical during corticosteroid 

therapy for ABPA (Daly & Kavanagh, 2001; Moss, 2002). 

 Aspergilloma or fungus ball typically grows in existing lung cavities, caused by 

carcinoma, emphysema, or a past incidence of TB (Thompson & Patterson, 2008). The 

aspergilloma consists of living and dead fungal elements, and can remain quiescent for 

many months, or even years, growing in size without invading pulmonary tissue (Daly & 

Kavanagh, 2001). Aspergilloma was the classical form of aspergillosis in the 1950’s and 

occurs today in approximately 15 % of patients with pre-existing lung cavities (Latge, 

1999). Haemoptysis is a common symptom of aspergilloma and may be massive and 

sometimes fatal (Latge, 1999). Treatment of aspergilloma is usually directed towards 

preventing life-threating haemoptysis, and can result in surgical removal of the fungal ball 

(Kaestel et al., 1999; Tomee & van der Werf, 2001), or local anti-fungal therapy (Tomee & 

van der Werf, 2001). As surgical removal carries a risk of mortality due to  pre-existing 

lung conditions in aspergilloma patients, it should only be offered in cases of extreme 
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haemoptysis (Stevens et al., 2000). When surgical treatment cannot be offered, long-term 

anti-fungal treatment with itraconazole alone or in combination with amphotericin B has 

been found to stabilise patient health or improve symptoms (Denning et al., 2003).  

 Invasive aspergillosis (IA) is the most common form of invasive disease caused by 

A. fumgiatus (Thompson & Patterson, 2008). It is the most devastating A. fumigatus-related 

disease, targeting severely immunocompromised patients (Dagenais & Keller, 2009). 

Patient cohorts most at risk of developing life-threatening IA are those with haematological 

malignancies such as leukaemia, solid-organ and hematopoietic stem cell transplant 

recipients, those undergoing prolonged corticosteroid therapy for the treatment of graft-

versus-host disease, patients with genetic immunodeficiencies such as chronic 

granulomatous disease (CGD), and those infected with HIV (Marr et al., 2002; Mikulska et 

al., 2009; Pagano et al., 2001; Post et al., 2007; Wiederhold & Lewis, 2003). Mortality 

rates associated with A. fumigatus infections are high, ranging between 40 – 80 % 

depending on patient immune status, the site of infection and the anti-fungal regimen 

administered (Lin et al., 2001). Prolonged neutropenia is defined as the most dominant risk 

factor for IA, and is often caused by cytotoxic therapies such as corticosteroid treatments 

used for transplant recipients or patients with haematological diseases (Dagenais & Keller, 

2009). Cyclophosphamide interrupts cell replication, and leads to a depletion of white 

blood cells including neutrophils, and IA in neutropenic patients is characterised by 

extensive blood clotting and haemorrhage from rapid and uncontrolled hyphal growth 

(Chiang et al., 2008; Stergiopoulou et al., 2007). Without neutrophil infiltration, the 

inflammatory response is low, and dissemination to other body organs results through the 

blood (Dagenais & Keller, 2009). IA is extremely difficult to treat and is often diagnosed 

relatively late (Denning & Hope, 2010). Treatment usually involves administration of anti-
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fungal therapy from the polyene, azole, and echinocandin classes of drugs (Denning & 

Hope, 2010). A selection of these will be described in the next section. 

 

1.3. Anti-fungal strategies currently in place for the treatment of IA. 

 Many anti-fungal agents target the cell wall, since it is unique to the fungal 

pathogen (Beauvais & Latge, 2001). The fungal cell wall will be described in detail in 

Chapter 3. Currently, four classes of drugs are available for the treatment of invasive fungal 

infections: the polyenes, azoles, echinocandins and the nucleoside analogues (Das et al., 

2009). Ergosterol is the principal sterol in the fungal cell membrane, and its absence in 

mammalian cell membranes has been the basis of polyene and triazole anti-fungal drug 

development for a long time (Beauvais & Latge, 2001). The polyenes bind membrane 

sterols through van der Waals forces to membrane sterols, and have much greater affinity 

for ergosterol than cholesterol, leading to the production of pores, increasing the 

permeability of the membrane (Brajtburg & Bolard, 1996). Amphotericin B is a polyene 

anti-fungal, and targets ergosterol in the fungal cell membrane. Amphotericin B forms 

channel structures or pores in the cell membrane, leading to the release of cellular 

components, mainly potassium ions, eventually leading to cell death (Baginski & Czub, 

2009). Amphotericin B deoxycholate, and more recently, liposomal formulations of 

amphotericin B (commercially available as AmBisome) is the anti-fungal of choice for 

most invasive fungal infections (Dupont, 2002; Moen et al., 2009).  

 Voriconazole (available commercially as Vfend) is a synthetic derivative of the 

triazole class of anti-fungal drugs. Drugs in this class block various components of sterol 

biosynthesis, thereby disrupting the fungal cell membrane and halting fungal growth. 

Specifically, voriconazole inhibits the cytochrome P450 (CYP)-dependent enzyme, 14-

alpha-sterol demethylase, inhibiting the conversion of lanosterol to ergosterol, and 
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interrupting cell membrane synthesis at this point (Scott & Simpson, 2007). This leads to a 

lack of ergosterol in the cell membrane, resulting in membrane leakage (Baginski & Czub, 

2009). Voriconazole is useful in the treatment of medically important fungi which cause 

infections in immunocompromised patients, especially those suffering from IA, where it 

has been shown to improve the overall survival of patients (Donnelly & De Pauw, 2004; 

Herbrecht et al., 2002).  

 Caspofungin was the first drug approved in a novel class of anti-fungal agents, the 

echinocandins, which are glucan synthase inhibitors. Drugs in this class are fungal-specific, 

interfering with fungal cell wall biosynthesis by blocking the activity of 1, 3-ß-D-glucan 

synthase, which is a crucial enzyme for cell wall synthesis (Sucher et al., 2009). This 

subsequently inhibits the biosynthesis of 1,3-ß-D-glucan, an important fungal cell wall 

component (Lamaris et al., 2008). Caspofungin has shown efficacy against a wide range of 

fungal species, including Aspergillus species (Keating & Jarvis, 2001).  

 Nucleoside analogues have recently been explored as novel antimicrobial agents, 

whereby these analogues interfere with transcription and DNA replication, essential 

processes for microbial survival. Analogues were produced; which were closely related to 

the naturally occurring nucleoside, S-adenosylhomocysteine (SAH), which is important for 

biological transmethylation reactions. Some of these analogues showed anti-fungal activity 

in vitro towards A. fumigatus and other important human pathogens (Srivastava et al., 

2007). 

 Aside from the use of anti-fungal drugs for the treatment of invasive fungal 

infections, by inhibiting fungal growth directly, another avenue which is now being 

explored is the possibility of immunomodulation, whereby anti-fungal treatment has the 

ability to boost the host immune system. Voriconazole has been shown to inhibit fungal 

growth, either alone or in combination with phagocytes, and has been shown to enhance the 
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inhibition of hyphal growth by neutrophils in vitro (Vora et al., 1998). Recently, it was 

found that in combination with voriconazole, A. fumigatus hyphae induce a higher level of 

gene expression in the human THP-1 monocytic cell line than hyphae alone, potentially 

increasing host resistance to the fungus, supporting the hypothesis that voriconazole has 

immunomodulatory effects (Simitsopoulou et al., 2008). Caspofungin also has the ability to 

enhance immune responses; polymorphonuclear neutrophil (PMN) killing of A. fumigatus 

hyphae was increased following caspofungin exposure and this is likely due to increased ß-

glucan unmasking on the fungal cell wall, and also coincided with induced expression of 

the innate immune receptor Dectin-1 by PMNs (Lamaris et al., 2008). 

 Currently, there are a range of avenues being explored for the discovery and 

development of new anti-fungals. One possibility being explored is the inhibition of fungal 

natural product and secondary metabolite biosynthesis (Cisar & Tan, 2008). Briefly, this 

notion involves inhibiting pathways, or components of pathways involved in the production 

of fungal-specific molecules which are important for growth and expressed during 

virulence, for example the iron-chelating siderophores, which are essential for A. fumigatus 

virulence (Schrettl et al., 2004). This idea has already led to the development of a screening 

method to identify compounds which inhibit siderophore biosynthesis in A. fumigatus 

(Pinto & Moore, 2009). Heat-shock protein 90 (Hsp90), has been found to enable the 

acquisition and maintenance of drug resistance in fungal species (Cowen & Lindquist, 

2005; Cowen et al., 2006). Hsp90 inhibition has been examined for its potential as an anti-

fungal therapy, and these studies showed that drug-mediated inhibition of Hsp90 blocked 

the development of azole resistance, and counteracted resistance in laboratory strains of C. 

albicans. Using two host systems; larvae of the greater wax-moth Galleria mellonella 

challenged with A. fumigatus, or a murine model of systemic candidosis, the combination 

of caspofungin or fluconazole (an azole) with Hsp90 inhibitors significantly increased the 
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activity of these drugs against A. fumigatus and C. albicans respectively (Cowen et al., 

2009). 

 Despite major advances in anti-fungal therapy development, many important 

challenges remain in this area. Much of the difficulty in treating IA stems from late 

diagnosis when significant tissue damage has already occurred, and a lack of effective 

biomarkers to monitor success of anti-fungal treatment over time (Denning & Hope, 2010). 

Also, the frequent appearance of resistance to anti-fungal drugs in pathogen populations is a 

significant problem (Cowen et al., 2009; Loeffler & Stevens, 2003). Anti-fungal drug 

resistance usually involves over-expression of plasma membrane efflux pumps, which 

actively transport the drug out of the cell, and this has been the subject of many recent 

reviews (Cannon et al., 2009; Chamilos & Kontoyiannis, 2005). Transcriptional regulation 

of efflux transporters is already under-going many avenues of investigation in order to 

circumvent this major problem (Monk & Goffeau, 2008). It is suggested that improvements 

in diagnostics, development of strategies with faster maximal anti-fungal activities; 

including new dosing strategies and therapeutic drug monitoring, and development of new 

orally bioavailable, broad spectrum anti-Aspergillus compounds with a low potential for 

development of drug resistance are all needed in order to confront the major challenges 

associated with current anti-fungal therapy (Denning & Hope, 2010). Furthermore, despite 

the fact that the fungal cell wall has proven to be a an effective drug target, and with one 

third of A. fumigatus genes thought to be involved in cell wall synthesis and structural 

organisation, only one class of available anti-fungal drugs actually target the cell wall, the 

echinocandins (Aimanianda & Latge, 2010).  More work is needed in this area, especially 

since strains resistant to the azole class of anti-fungals have been isolated among patients 

receiving long-term anti-fungal therapy (Aimanianda & Latge, 2010; Larsen et al., 2005). 
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1.4. A. fumigatus: toxins and virulence factors.  

 In order to invade host tissue, A. fumigatus must be able to adhere to and penetrate 

respiratory epithelium, and kill phagocytic cells that defend the host by engulfing A. 

fumigatus conidia (Latge, 1999). A plethora of literature is available reporting putative 

virulence factors of A. fumigatus, and this topic has been reviewed in detail (Ben-Ami et 

al., 2010; Rementeria et al., 2005; Tomee & Kauffman, 2000). It is beyond the scope of 

this work to discuss every proposed virulence factor here, so an overview will be given of 

the most significant ones.  

 A. fumigatus produces a repertoire of adhesins, pigments and enzymes which are 

regarded as putative virulence factors (Latge, 1999; Rementeria et al., 2005). These factors 

are summarised in Table 1.1. A. fumigatus also possesses several characteristics which 

allow it to evade attack from the immune system, and several important findings have been 

made in this area. A hydrophobic ‘rodlet layer’ comprised of hydrophobic RodA protein is 

covalently linked to the cell wall, covering A. fumigatus conidia and preventing their 

recognition by the immune system (Aimanianda et al., 2009). Recently, a secreted protease 

Alp1, was identified in A. fumigatus, which degrades human complement proteins C3, C4, 

and C5, helping the fungus to evade the hosts complement attack (Behnsen et al., 2010).  
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Table 1.1. Adhesins, pigments and enzymes regarded as putative A. fumigatus virulence factors. Adapted from Latge, (1999). 

Category of  
virulence 
factor 

Role in vivo Molecule Reference (s) 

Adhesins Aid the interactions of host proteins (e.g. 
fibrinogen, complement, Igs, and 
surfactant proteins) and cells with A. 
fumigatus 

Complement receptor (54-58 kDa) 
 
Laminarin Receptor (72 kDa) 
 
Hydrophobins (RodA and RodB 
proteins (14, 16 kDa) 
 

Sturtevant & Latge (1992) 
 
Tronchin et al. (2002) 
 
Thau et al. (1994) 
 

Pigments  Inhibition of conidial phagocytosis by 
macrophages 

Dihydroxynaphthalene-melanin  
 
 

Tsai et al. (1999) 
Brakhage & Liebmann (2005) 

Enzymes  Epithelial damage 
 
Antioxidants during phagocytosis 
 
 
 
Promotion of lung colonisation and/or 
degradation of humoral factors 
 
 

Phospholipase(s)  
 
Catalases  
 
Superoxide dismutases (SODs) 
 
Serine protease (33 kDa) 
Aspartic protease (38 kDa) 
Aspartic protease (CtsD) 
Metalloprotease (40 kDa) 
Dipeptidylpeptidases (88, 94 kDa) 

Birch et al. (1996, 2004)  
 
Calera et al. (1997) Paris et al. (2003) 
 
Holdom et al. (1996), Paris et al. (2003b) 
 
Behnsen et al. (2010) 
Reichard (1998) 
Vickers et al. (2007) 
Monod et al. (1993) 
Beauvais et al. (1997) 
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 Many toxic molecules and secondary metabolites produced by A. fumigatus have 

been implicated in virulence. Secondary metabolites will be discussed in more detail in a 

subsequent section. Of all the secondary metabolites reported to be virulence factors, the 

one which has attracted the most attention is gliotoxin, an epipolythiodioxopiperazine 

(ETP) molecule, characterised by a highly reactive disulphide bridge (Gardiner et al., 

2005). Gliotoxin exhibits immunosuppressive properties and was found to slow ciliary beat 

frequency in association with damage to human respiratory epithelial tissue in vitro 

(Amitani et al., 1995). Gliotoxin also blocks T-cell and B-cell activation and the generation 

of cytotoxic cells in vitro, and has been detected in infected animals and humans at 

concentrations sufficient to cause these effects in vitro (Latge, 1999). Gliotoxin also 

inhibits the activation of the NADPH oxidase complex in polymorphonuclear lymphocytes 

(Tsunawaki et al., 2004). Despite these important findings, there appears to be discrepancy 

regarding the importance of gliotoxin as a virulence factor, and this appears be attributed to 

differences in the type of murine infection model used, including the route of inoculation 

and the type of immunosuppression employed (reviewed in Kwon-Chung & Sugui, 2009).  

 Besides gliotoxin, other toxins produced by A. fumigatus; fumagillin and helvolic 

acid, also hinder ciliary beating of epithelial tissue, but at concentrations much higher than 

those reported for gliotoxin (Amitani et al., 1995). Helvolic acid (also known as fumigacin) 

belongs to a small family of natural steroid antibiotics known as the fusidanes (Rementeria 

et al., 2005). At high concentrations, helvolic acid can hinder the oxidative burst of 

macrophages and also cause a complete ciliostasis and rupture of epithelial cells in vitro 

(Amitani et al., 1995; Mitchell et al., 1997). Fumagillin is an anti-tumour antibiotic which 

had received attention due to its potent inhibition of angiogenesis (Ingber et al., 1990). 

Fumagillin has recently been shown to reduce the local immune response to A. fumigatus 

and other microbes by inhibiting several neutrophil functions, including NADPH oxidase 
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complex assembly and reduced phagocytosis of conidia (Fallon et al., 2010). The role of 

helvolic acid and fumagillin and the concentrations at which they occur in vivo is unclear, 

and remains to be characterised, but due to the activities described above, a role in 

pathogenisis can be speculated (Latge, 1999).  

 Other secondary metabolites produced by A. fumigatus, including the 

fumitremorgins and the ergot alkaloids, which will be discussed later, are likely to 

contribute to pathogenicity due to their toxic properties, although characterisation of these 

metabolites as virulence factors demonstrated by in vivo studies has not been forthcoming. 

 The ribotoxins are a family of ribosome inhibitory proteins which have activity 

against the highly conserved 28S ribosomal RNA (Kao & Davies, 1995; Kao & Davies, 

1999). A. fumigatus produces several of these molecules, one of which, Asp f1, is a 

principal allergen, and is one of the immuno-dominant antigens in patients suffering from 

IA (Rementeria et al., 2005). Asp f1, also known as restrictocin or mitogillin, is found in 

the urine of IA infected patients, and is believed to be a virulence factor for IA (Arruda et 

al., 1992; Madan et al., 2004). Its presence in infected patients and detailed characterisation 

of its structure has been used as a strategy for the diagnosis of A. fumigatus, with opposing 

views on its usefulness (Weig et al., 2001; Woo et al., 2001). Recent studies investigating 

the interaction of Aspf1 with immature dendritic cells (iDCs), demonstrated that Aspf1 was 

able to induce apoptosis, and trigger cytokine expression in iDCs, possibly representing a 

new immunomodulatory mechanism, resulting in the impairment of iDC’s, and the immune 

evasion of A. fumigatus (Ok et al., 2009). 

 Finally, non-ribosomal peptide synthesis (NRPS), which will be discussed in detail 

later, may also be a virulence strategy for A. fumigatus. Lactoferrin is produced by cells of 

the immune system during microbial infection and it binds iron, depriving the pathogen of 

iron (Zarember et al., 2007). To cope with this, A. fumigatus produces siderophores, via 
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NRPS, which are low molecular weight, ferric iron-specific chelators produced by many 

organisms under conditions of iron starvation (Haas, 2003; Leong and Winkelmann, 1998). 

Siderophore-mediated iron uptake was found to be essential for virulence in a murine 

model of IA (Schrettl et al., 2004). Furthermore, gliotoxin, implicated in A. fumigatus 

virulence, as described above, is also produced via NRPS (Balibar & Walsh, 2006; Cramer 

et al., 2006a; Gardiner & Howlett, 2005). Moreover, deletion of an NRP synthetase gene, 

pes1, in A. fumigatus, lead to a reduction in virulence in the G. mellonella insect model 

system of virulence (Reeves et al., 2006). Further investigations into NRP synthetases in A. 

fumigatus, of which the majority remain uncharacterised, might provide further support for 

NRPS as an important strategy for A. fumigatus virulence.  

 Overall, since A. fumigatus is an opportunistic pathogen which usually only causes 

disease in the immunocompromised population, study of component virulence factors can 

be difficult. The higher mortality rate associated with A. fumigatus infections compared to 

other Aspergillus species, is likely due to a combination of factors, including the immune 

status of the host, the virulence factors of A. fumigatus, allied to delays in diagnosis, which 

allow the fungus to thrive in the host tissue making anti-fungal treatment challenging 

(Araujo & Rodrigues, 2004; Rementeria et al., 2005). It is likely that basic characteristics 

associated with the fungus contribute to virulence; the conidia are small enough to spread 

through the entire respiratory tract, growth of mycelia at temperatures of 37 ºC and higher 

is rapid, and the fungus does not have specific nutrition requirements (Latge, 2001). A. 

fumigatus virulence is suggested to be polygenic, since a true virulence factor, unique and 

indispensable for the growth of the fungus does not appear to exist (Latge, 2001; 

Rementeria et al., 2005). Genome-wide transcriptional and/or proteomic analyses of A. 

fumigatus during infection may reveal global regulators involved in virulence (Latge, 
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2001), and significant progress in this area has already been achieved with the availability 

of the full genome sequence for A. fumigatus (Nierman et al., 2005). 

 

1.5. A. fumigatus genetics and genome  information. 

 The complete sequence of the A. fumigatus genome was published in 2005, and the 

sequenced strain was A. fumigatus Af293 (Nierman et al., 2005). This sequencing project 

revealed that the genome is 29.4 Mb in size, comprising 8 chromosomes, on which 9,926 

predicted genes are present (Nierman et al., 2005). The main features of the genome are 

presented in Table 1.2.  

  The Central Aspergillus Data Repository (CADRE), was built prior to completion 

of the genome sequence in order to manage the complete annotated genome sequence of A. 

fumigatus, to take part in secondary annotation of genes, and to facilitate future 

comparative studies with other Aspergillus genomes as they became available (Mabey et 

al., 2004). Currently, the full genome sequence of 8 Aspergillus species is available on the 

CADRE database, including a clinical isolate of A. fumigatus (A1163), the closely related 

species Neosartorya fisheri and A. clavatus (Fedorova et al., 2008), the model fungus A. 

nidulans (Galagan et al., 2005), A. oryzae (Machida et al., 2005), the industrially relevant 

A. niger (Pel et al., 2007), A. terreus (Broad Institute, USA), and A. flavus (North Carolina 

University and J. Craig Venter Institute, USA). Each gene is given a unique CADRE 

identifier, and is classified as known, putative, or unknown (Mabey et al., 2004). CADRE 

provides in silico transcripts, translated protein sequences, protein molecular weight 

calculations, and other useful information regarding genes of interest (Mabey et al., 2004).  

 Availability of the full genome sequence has been a landmark towards advancing A. 

fumigatus research. It has provided a platform for a range of genome-wide transcriptional 

analyses to be performed, in order to gain a better understanding of the fungus and the 
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transcriptional responses to particular environments. Amongst these are the response to heat 

shock (Albrecht et al., 2010; Do et al., 2009; Nierman et al., 2005), the transcriptional 

profile upon exposure to the anti-fungal voriconazole (Ferreira et al., 2006b), analysis of 

the genes expressed upon exit of spores from dormancy (Lamarre et al., 2008) and the 

transcriptional response of A. fumigatus upon exposure to human neutrophils (Sugui et al., 

2008).  

 Comparison of the A. fumigatus A1163 genome sequence to the Af293 sequence 

revealed that a large translocation had taken place between chromosomes 1 and 6 of Af293 

and a genomic region of A1163 (Fedorova et al., 2008). Most translocation events 

involving A. fumigatus chromosomes are reported to have taken place within 300 kb of the 

telomeres (Fedorova et al., 2008). Approximately 500 A. fumigatus-specific genes were 

found, having no homolgoues in A. niger or A. nidulans, and approximately one third of 

these showed sequence similarity to fungal gene products (Nierman et al., 2005). Many of 

the A. fumigatus-specific genes appear to be involved in secondary metabolite production, 

for example the developmentally-regulated pigment biosynthetic cluster (Nierman et al., 

2005). Secondary metabolites will be discussed in the following sections. 
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  Table 1.2. The key features of the A. fumigatus genome Modified from Nierman et al. (2005).

Genome Value 

Nuclear genome  

Size (Mb) 29.4 Mb 

G + C content (%) 49.9 % 

Number of predicted genes 9,926 

Mean gene length (bp) 1.431 

% of genes coding 50.1 % 

Genes of unknown function 3,288 

% of genes containing introns 77 % 

  

RNA  

tRNA number 179 

5S rRNA number 33 

  

Mitochondrial genome  

Size (bp) 31,892 

G + C content (%) 25.4 % 

Number of predicted genes 16 

% of genes coding 44.1 % 

tRNA number 33 
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1.6. Secondary metabolites and clustering of biosynthetic genes. 

 Fungal secondary metabolites (SM) constitute a diverse suite of small molecules 

that are not deemed essential for normal growth and development (Fox & Howlett, 2008). 

They may interchangeably be referred to as natural products. Secondary metabolites are 

considered to be the chemical arsenal necessary for adaptation to ecological niches (Calvo 

et al., 2002). Secondary metabolites have received intense interest due to their 

biotechnological and therapeutic applications. Compounds such as the penicillin antibiotics 

G and V, the anti-hypercholestemic drug lovastatin, the immunosuppressant cyclosporin, 

and all derivatives are fungal secondary metabolites (Berth-Jones, 2005; Demain & 

Elander, 1999; Misiek & Hoffmeister, 2007). Mycotoxins on the other hand are harmful 

SM that are mainly produced by fungi of the genera Fusarium, Aspergillus and Penicillium 

(Reverberi et al., 2010). Classes of fungal secondary metabolites include the polyketides 

(the aflatoxins and fumonisins), non-ribosomal peptides (gliotoxin, siderophores and 

sirodesmin) and terpenes and indole terpenes (Fox & Howlett, 2008). The first dedicated 

step in the biosynthesis of a secondary metabolite is usually catalysed by one of five 

enzymes, referred to as a ‘backbone enzyme’ (Khaldi et al., 2010). These enzymes include 

the non-ribosomal peptide (NRP) synthetases, polyketide sythetases (PKSs), hybrid NRP-

PKS enzymes, prenyltransferases (DMATS) and terpene cyclases (Khaldi et al., 2010). 

Genes for the biosynthesis of secondary metabolites are usually clustered (Keller & Hohn, 

1997), aiding identification from completed fungal genome sequences. Intermediate 

products formed by these backbone enzymes can usually be modified by ‘decorating’ 

enzymes, and the final product transported out of the fungal cell by a specific transporter, 

and the genes for these enzymes can also be found within the specific cluster (Khaldi et al., 

2010). Secondary metabolite gene clusters often contain a transcription factor that 

specifically regulates expression of the genes within the cluster, for example, the GliZ 
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transcriptional regulator of the gliotoxin biosynthetic cluster (Bok et al., 2006). Other gene 

clusters do not have transcription factors, such as the ergot alkaloid and lolitrem clusters in 

the endophytes Neophtodium lolli and Epichloe festucae (Fleetwood et al., 2007; Young et 

al., 2005; Young et al., 2006). In fact, the level of gene expression is much higher in 

plantae than under standard laboratory culturing conditions for some of these endophyte 

clusters, suggesting that they are regulated by plant signalling pathways (Young et al., 

2006).   

 Sequencing of the genome revealed that A. fumigatus possesses 26 SM gene 

clusters, containing polyketide synthase (PKS), non-ribosomal peptide (NRP) synthetases 

and/or dimethyallyl tryptophan (DMAT) synthase genes (Nierman et al., 2005). Thirteen of 

these clusters have orthologues in A. orzyae and/or A. nidulans, and 10 of those orthologous 

clusters are missing many of the genes present in the A. fumigatus clusters (Nierman et al., 

2005). It has since been suggested that there are only 22 SM gene clusters within A. 

fumigatus (Perrin et al., 2007). Although found throughout the genome, SM clusters 

location appears to be biased towards the telomeres (Nierman et al., 2005). The observation 

that translocations occur in the genome of A. fumigatus, particularly at telomeric regions, 

highlights the fact that the genomes are still evolving, and the bias of secondary metabolite 

clusters for telomeric locations might make them more susceptible to reorganisation, aiding 

their structural diversity (Fedorova et al., 2008).  

 Examples of characterised biosynthetic secondary metabolite gene clusters in A. 

fumigatus are those directing the biosynthesis of gliotoxin (Gardiner & Howlett, 2005), the 

fumitremogin family of secondary metabolites (Grundmann & Li, 2005), the ergot 

alkaloids (Coyle & Panaccione, 2005; Unsold & Li, 2005) and the siderophores (Reiber et 

al., 2005). 
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1.7. Regulation of secondary metabolism gene clusters by the global secondary 

metabolite regulator LaeA. 

 Sterigmatocystin (ST) is one of the most toxic secondary metabolites known, and is 

produced by a gene cluster in A. nidulans (Brown et al., 1996). In a mutagenesis study, 23 

A. nidulans mutants impaired in ST production were isolated (Butchko et al., 1999). A gene 

was identified, laeA, which could restore one of these mutants (Bok & Keller, 2004). laeA 

encodes a nuclear protein, with a conserved S-adenosyl methionine (SAM) binding site, 

characteristic of nuclear methyltransferases (Bok & Keller, 2004). LaeA was found to 

transcriptionally regulate the sterigmatocystin, penicillin and pigment biosynthetic clusters 

in A. nidulans; gliotoxin and mycelial pigments in A. fumigatus, and the lovastatin gene 

cluster in A. terreus (Bok & Keller, 2004). LaeA is thought to regulate the expression of 

secondary metabolite gene clusters by acting at a chromatin remodelling level, an activity 

which has been observed for other nuclear transferases (Bok & Keller, 2004). LaeA is 

highly conserved amongst pathogenic filamentous fungi but absent in S. cerevisiae, which 

does not produce secondary metabolites (Bok & Keller, 2004).  

 Subsequent studies showed that deletion of laeA resulted in reduced virulence in a 

murine model of IA, associated with a loss of gliotoxin production, increased conidial 

susceptibility to phagocytosis by macrophages, and decreased ability of hyphae to kill 

neutrophils (Bok et al., 2005). Conidial surfaces of the laeA mutant were altered in 

comparison to wild-type, with loss of the characteristic protrusions normally observed on 

conidia. These findings implied that LaeA regulates the expression of certain genes 

involved in conidial biosynthesis (Bok et al., 2005). This also provides support for a link 

between secondary metabolism and fungal development (Calvo et al., 2002). Recently, it 

was found that the reduced virulence observed in the laeA mutant was associated with a 

perturbation of the hydrophobic layer on the surface of the conidia, and decreased 
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hydrophobicity of the ∆laeA conidia most likely leads to increased phagoycytic uptake 

(Dagenais et al., 2010). A transcriptional profiling study of an A. fumigatus laeA mutant 

identified 13 SM gene clusters that were under the transcriptional regulation of LaeA (Bok 

& Keller, 2004; Perrin et al., 2007).  

  

1.8. Association of secondary metabolism with development. 

 Secondary metabolites are often associated with sporulation and developmental 

processes (reviewed in (Calvo et al., 2002). BrlA is a C2H2 zinc finger transcription factor 

that is essential for sporulation in A. nidulans (Adams et al., 1988; Boylan et al., 1987). 

brlA is expressed in response to sporulation signals in both A. nidulans and A. fumigatus, 

and BrlA regulates the expression of two other genes wetA and abaA, which together 

comprise the central regulatory pathway for sporulation (Boylan et al., 1987; Mirabito et 

al., 1989). StuA is another transcription factor also required for regulation of sporulation in 

A. nidulans (Aguirre, 1993; Busby et al., 1996; Miller et al., 1991). Deletion of A. nidulans 

stuA interferes with the localisation of BrlA and AbaA, and results in deformed 

conidiophores (Clutterbuck, 1969; Miller et al., 1992). A similar phenotype was observed 

in an A. fumigatus stuA mutant (Sheppard et al., 2005). The expression of genes involved in 

ergot alkaloid biosynthesis in A. fumigatus is dependant on BrlA, with ergot alkaloids 

accounting for 1 % of total conidial weight (Coyle et al., 2007). Gliotoxin production is 

dependant on StuA both in vitro and in vivo (Gravelat et al., 2008). A further analysis of the 

transcriptional program regulated by BrlA and StuA indicated that 6 secondary metabolite 

gene clusters are dependant on StuA, including the ergot alkaloid, fumitremorgin, gliotoxin, 

pseurotin A, and two unknown clusters (Twumasi-Boateng et al., 2009). Only the ergot 

alkaloid cluster was found to be dependant on BrlA (Twumasi-Boateng et al., 2009). 

Recent phylogenetic analyses revealed a correlation between the presence of secondary 
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metabolite biosynthetic pathways and filamentous growth among the fungi (Khaldi et al., 

2010).  

 Secondary metabolism and development in A. nidulans are also regulated in 

response to external cues such as light (Bayram et al., 2008). There is genetic evidence for 

an association between sporulation, secondary metabolite production and light, but until 

recently, the underlying molecular mechanisms were unknown (Busch et al., 2003; Kato et 

al., 2003; Kim et al., 2002). A possible candidate protein was velvet (VeA), whose 

expression and function is coordinated with sexual reproduction and light (Kim et al., 2002; 

Stinnett et al., 2007). VeA was found to negatively regulate asexual sporulation and 

antibiotic biosynthesis (Mooney & Yager, 1990; Sprote & Brakhage, 2007).  Recently, a 

study was undertaken to identify proteins that interact with A. nidulans VeA, and an 

interaction complex was identified, comprising VeA, velvet-like protein B (VelB), the 

global SM regulator LaeA, and an importin KapA, and these proteins were found to interact 

with VeA in the dark (Bayram et al., 2008). VeA expression was negligible in the light 

(Bayram et al., 2008). The authors proposed a model for this complex set of interactions, 

referred to as the VelB/VeA/LaeA (velvet) complex. In the dark, the velvet complex 

interaction controls and possibly supports the epigenetic activity of LaeA, leading to the up-

regulation of SM gene cluster expression (Bayram et al., 2008). The authors suggest that 

this complex regulates the level of SM production by modulating the epigenetic control of 

chromatin remodelling by the LaeA methyltransferase (Bayram et al., 2008). The velvet 

complex is represented schematically in Figure 1.2. 
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nucleus and supports asexual sporulation, and LaeA is poorly active, resulting in a low level of SM production. In the dark, 

KapA imports VeA into the nucleus (dark orange) where it interacts with LaeA and VeB to form the velvet complex, resulting in 

sexual sporulation and an increase in SM production (Bayram et al., 2008). 
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1.9. Non-ribosomal peptide synthesis (NRPS) 

1.9.1. NRPS – An overview 

 NRPS is a key mechanism which is responsible for the biosynthesis of a large 

number of bioactive metabolites in bacterial and fungal species (Mootz et al., 2002b; 

Reiber et al., 2005; Stack et al., 2007). As the name indicates, NRPS produces peptides 

independently of the ribosome, and this process was first identified by Lipmann and 

colleagues while investigating the biosynthesis of the antibiotics gramicidin S and tyrocidin 

in the bacterium Bacillus. brevis  (Lipmann, 1971; Lipmann et al., 1971). NRPS has gained 

significant attention as it represents a reservoir of current and new natural product 

medicines, and it has the potential for antimicrobial drug development by the targeting of 

NRP synthetases which are essential for survival of pathogens in the human host (Doyle, 

2009; Schrettl et al., 2004).  

 Products of NRP synthetases include pharmaceutically important products such as 

the immunosuppressant cyclosporine 1 and the antibiotic penicillin G 2 (Cramer et al., 

2006b; Doyle, 2009), HC-toxin 3 and AM-toxin in phytopathogenic fungi (Turgeon et al., 

2008), anti-tumour agents (actinomycin 4, bleomycin ) (Turgeon et al., 2008), the iron-

chelating siderophores fusaranine C  and ferricrocin 5 (Eisendle et al., 2003; Schrettl et al., 

2004), the toxic metabolites gliotoxin 6 and sirodesmin from A. fumigatus and L. maculans, 

respectively (Fox & Howlett, 2008), and the fumitremorgin family of secondary 

metabolites in A. fumigatus (Maiya et al., 2006). Various non-ribosomally produced 

peptides are shown in Figure 1.3. 
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Figure 1.3. Non-ribosomally synthesised peptides of bacterial or fungal origin. 

1. The immunosuppressant cyclosporin 2. Penicillin G, one of the β-lactam antibiotics is 

synthesised by the tri-modular ACV synthetase. This enzyme had been found in fungi of 

the genera Penicillium, Streptomyces, Acremonium and Aspergillus (Doyle, 2009; Martin, 

2000), 3. HC-toxin produced by Cochliobolus carbonum, implicated in plant pathogenesis, 

4. The anti-tumour agent actinomycin C1 is produced in Streptomyces spp. by a three gene 

cluster of NRP synthetases (vonDohren et al., 1997), 5. The intracellular siderophore, 

ferricrocin, produced in A. fumigatus, by a three module NRP synthetase, SidC (Schrettl et 

al., 2007), 6. Gliotoxin, is part-synthesised by a di-modular NRP synthetase, GliP, in A. 

fumigatus (Balibar & Walsh, 2006; Cramer et al., 2006a). 
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 An overview of NRPS is presented in Figure 1.4. NRP synthetases are produced as 

inactive apo-enzymes. The synthesis of a non-ribosomal peptide requires NRP synthetase 

activation, which is mediated by the activity of a 4’phosphopantetheinyl transferase (4’-

PPTase) (Neville et al., 2005). Conversion of apo-NRP synthetase to holo-NRP synthetase 

is performed post-translationally by the addition of a phosphopantetheine group (Ppant) 

from Coenzyme A (CoA) to a specific residue on the NRP synthetase by 4’PPTase. The 

activated holo-NRP synthetase then generates the NRP product by incorporating amino 

acid substrates into a peptide chain (Stack et al., 2007). NRP synthetases may be mono- or 

multi-modular, with each module responsible for the incorporation of an individual amino 

acid into the growing peptide (Stack et al., 2007). The generated peptide chain can then 

undergo further modifications before being released from the NRP synthetase as the final 

NRP product.  
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Figure 1.4. Schematic overview of the process of, and enzymatic functions involved in, 

NRP synthesis (Stack et al., 2007). Key: 4’-PPTase, 4’phosphopantetheinyl transferase;  

NRP synthetase, non-ribosomal peptide synthetase; NRP, non-ribosomal peptide. 
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1.9.2. Structural arrangements and domain architecture of NRP synthetases. 

 Non-ribosomal peptide synthetase genes, which are generally present in multi-gene 

clusters as described earlier, encode NRP synthetases, which can be up to 2.3 MDa 

molecular mass (Stack et al., 2007). NRP synthetases are organised into sets of catalytic 

units known as modules, whereby the minimal module is comprised of three discrete 

domains; namely adenylation (A), thiolation (T) (or peptidyl carrier protein (PCP)), and 

condensation (C) domains (Grunewald & Marahiel, 2006; Stack et al., 2007). Each module 

is responsible for the recognition, via the A domain, and incorporation of a single amino 

acid into the cognate peptide product (Stack et al., 2007). Amino acids are selected from a 

large repertoire of substrates, as mentioned previously, which leads to the high level of 

structural diversity observed in NRPs (Grunewald & Marahiel, 2006; Stack et al., 2007).  

 NRP synthetase modules can also contain additional domains for the epimerisation 

(L- to D- conversion), cyclization or methylation of the amino acid substrates (Tiburzi et 

al., 2007). The final module of an NRP synthetase usually contains a thioesterase domain 

(TE), which functions in the release of the final peptide product. However, to date, very 

few TE domains have been found in fungal NRP synthetases (Cramer et al., 2006b). In 

fungal NRP synthetases, the TE domain is often replaced by a specialised C domain, which 

is believed to catalyse cyclization and release of the NRP (Cramer et al., 2006b; Keating et 

al., 2001). 

 The organisation and order of NRP synthetase modules usually corresponds to the 

amino acid sequence of the peptide product, a feature known as the co-linearity rule 

(Grunewald & Marahiel, 2006; Lautru & Challis, 2004; Tiburzi et al., 2007). The basic 

organisation of a typical NRP synthetase comprises an initiation module, followed by a 

variable number of elongation modules, which are required for the propagation of the 

growing peptide, and finally, a termination module, where if present, a TE domain 
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catalyses peptide release (Strieker et al., 2010). The arrangement of A. fumigatus Pes3 

(Cramer et al., 2006b; Stack et al., 2009), a multi-modular NRP synthetase, which is of 

major interest in this work, is detailed in Figure 1.5.   
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Figure 1.5. Diagrammatic representation of the domain architecture of A. fumigatus Pes3, comprising six adenylation domains (A1-A6), 

seven thiolation domains (in grey), seven condensation domains (C1-C7), and three epimerisation domains (E1-E3). The black helixes 

extending from the thiolation domains represent Ppant groups which are post-translationally added, thereby converting Pes3 to a holo-

enzyme. An initiation module consists of an N-terminal adenylation and thiolation domain (Cramer et al., 2006b), and each elongation 

module minimally consists of a condensation, an adenylation and a thiolation domain. The final C domain may function in release of the 

peptide from the NRP synthetase (Cramer et al., 2006b; Keating et al., 2001). Initiation modules (IM) and elongation modules (EM) are 

shown. Adapted from (Cramer et al., 2006b; Stack et al., 2007; Stack et al., 2009).  
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 NRP synthetases can broadly be grouped into three categories; (A) linear, (B) 

iterative and (C) non-linear (Mootz et al., 2002b). Linear NRP synthetases have the 

classical domain architecture of C-A-T, with each module used once during peptide 

synthesis, to incorporate an individual amino acid into the growing peptide, thus following 

the co-linearity rule (Grunewald & Marahiel, 2006; Mootz et al., 2002b). Known linear 

NRP synthetases include those which produce surfactin, cyclosporin, and ACV, the 

precursor to the penicillin antibiotics (Mootz et al., 2002b). Iterative NRP synthetases use 

modules more than once in the synthesis of one single peptide product, a strategy that leads 

to a peptide chain consisting of repeated smaller sequences (Mootz et al., 2002b). Iterative 

NRP synthetases include those which biosynthesise siderophores (Mootz et al., 2002b; 

Reiber et al., 2005; Stack et al., 2007). Non-linear NRP synthetases deviate from the 

standard C-A-T modular arrangement, and it is thought that they represent a large part of 

the NRP synthetase repertoire in nature (Mootz et al., 2002b). Non-linear NRP synthetases 

are complex and require detailed biochemical studies in order to understand the functions 

of each module and the peptide produced, as it is impossible to accurately predict the 

peptide  sequence due to the unusual domain organisation (Mootz et al., 2002b). Examples 

of non-linear NRP synthetases include those which are responsible for bleomycin, 

vibriobactin or mycobactin biosynthesis (Mootz et al., 2002b).  
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1.9.3. 4’phosphopantetheinyl transferases and requirement for NRP Synthetase 

activation to holoenzyme. 

 NRP synthetases are produced in an inactive apo-form and require post-translational 

modification in order to yield the active holo-form (Lambalot et al., 1996). Activation of an 

NRP synthetase from an inactive apo-form to an active holo-form is mediated by a 

4’phosphopantetheinyl transferase (4’-PPTase), in a magnesium-dependant reaction 

(Lambalot et al., 1996; Walsh et al., 1997). PPTases also catalyse the transfer of 

phosphopantetheine (Ppant) groups from CoA to the carrier or thiolation domain of 

enzymes involved in polyketide and fatty acid biosynthesis (Mootz et al., 2002a). The 

Ppant group is transferred to a conserved serine within the thiolation domain of an apo-

NRP synthetase yielding an activated holo-NRP synthetase (Stack et al., 2007). The Ppant 

groups serve to anchor activated amino acid substrates during NRPS, and allow their 

movement between active sites within the NRP synthetase (Grunewald & Marahiel, 2006). 

In A. nidulans, a 4’-PPTase (npgA) was found to be essential for penicillin biosynthesis 

(Keszenman-Pereyra et al., 2003). An A. fumigatus 4’-PPTase was characterised and shown 

to post-translationally activate modules of recombinant A. fumigatus NRP synthetase, Pes1 

and Pes3 (Neville et al., 2005; Stack et al., 2009). A diagrammatic representation of 4’-

PPTase activity is shown in Figure 1.6. 
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Figure 1.6. Reaction catalysed by PPTases to convert apo- to holo- NRP synthetase. PPTases catalyse the activation of an apo-enzyme 

to a holo-enzyme by the transfer of a Ppant group from CoA onto the side chain hydroxyl group of a conserved serine residue in the 

thiolation/ peptidyl carrier domain of an NRP synthetase. The –SH of the Ppant group acts as a nucleophile for acylation by the adenylation 

domain specific substrate (Lambalot et al., 1996; Mootz et al., 2002a). 
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1.9.4. NRPS – Mechanisms of Non-ribosomal Peptide Synthesis. 

 Amino acid selection and activation for ribosomal protein synthesis is mediated by 

the activity of tRNA synthases, whereby amino acyladenylate is converted into amino acyl-

tRNA (Stachelhaus & Marahiel, 1995). NRP synthetases biosynthesise peptides similarly; 

the adenylation domain of the NRP synthetase selects and activates a specific amino acid. 

However, there are striking differences between ribosomal and NRP synthesis. Firstly, non-

ribosomal peptides contain not only the 20 common proteinogenic L-amino acids, but many 

other different building blocks, including D-amino acids, N-terminally attached fatty acids, 

methylated, hydroxylated and acetylated amino acids, as well as various phosphorylated 

and glycosylated residues (Grunewald & Marahiel, 2006; Tiburzi et al., 2007). A common 

feature of NRPs is heterocyclization of the peptide backbone, which poses structural 

constraints on the peptide necessary for ensuring specific interaction with the correct 

molecular target (Kohli & Walsh, 2003; Tiburzi et al., 2007).  Furthermore, ribosomal 

protein synthesis involves strict proof-reading mechanisms to ensure that the correct amino 

acid is incorporated during peptide synthesis, whereas NRPS shows less strict substrate 

selection and incorporation (Stachelhaus et al., 1999). 

 The specific mechanisms underling the biosynthesis of peptides by modular 

enzymes such as NRP synthetases has been widely studied and has seen significant 

breakthroughs over the last 30 years (Meier & Burkart, 2009). As mentioned earlier, the A 

domain controls the first step of NRPS, which is the selection of an amino acid substrate 

and activation to an amino acyl adenylate (Schwarzer & Marahiel, 2001). The A domain is 

about 550 amino acids in length and contains a non-linear 8-13 aa ‘signature motif’ which 

is believed to govern the substrate specificity of the particular A domain (Grunewald & 

Marahiel, 2006; Stack et al., 2007).  



 35

 The first A domain to be crystallised was the phenylalanine activating module 

(PheA) of gramicidin synthetase 1 (GrsA), responsible for antibiotic biosynthesis in 

Bacillus brevis (Conti et al., 1997). PheA was crystallised with bound substrate and ATP 

and this led to the identification of a 10 amino acid active site, revealing the basis for 

substrate recognition and activation (Conti et al., 1997; Schwarzer & Marahiel, 2001).

 The second dedicated step of NRPS is the transfer of the activated substrate from 

the A domain to the T or PCP domain of the NRP synthetase. T domains are approximately 

80-100 amino acids in length, and are located downstream of A domains. The T domain 

covalently binds the amino acyl adenylate as thioester to the terminal thiol of the Ppant 

group, and the group can now act as a ‘swinging arm’ to reach various catalytic centres of 

the NRP synthetase (e.g. for condensation of modification at other domains) (Schwarzer & 

Marahiel, 2001). The C domain is usually the third domain present in a minimal NRP 

module, and this represents the condensation unit, catalysing peptide bond formation 

between amino acid adenylates on two adjacent thiolation domains (Marahiel et al., 1997). 

Finally, the completed peptide can be released from the enzyme by the activity of a 

thioesterase (TE) domain (Grunewald & Marahiel, 2006; Mootz et al., 2002b; Stack et al., 

2007), or in the case of fungal NRP synthetases, peptide release is more likely to be 

catalysed by a specialised C domain (Cramer et al., 2006b; Keating et al., 2001). A 

simplified mechanism for NRPS is shown in Figure 1.7. 
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Figure 1.7. A simplified illustration of the process of NRPS. 1. The substrate amino acid 

is activated as amino-acyl AMP by the adenylation domain. 2. The amino acid is 

transferred onto the T/PCP domain, which has been post-translationally modified by the 

addition of a Ppant group (indicated by a black helix). 3. Condensation or peptide bond 

formation between thiolation bound amino acid intermediates on adjacent T/PCP domains. 

4. Possible amino acid modifications which may occur; E domains can mediate L- to D- 

amino acid conversion. 5. Trans-esterification of the complete peptide from the terminal 

T/PCP domain onto the TE domain (Note this may be a specialised terminal C domain in 

fungal NRP synthetases). 6. Peptide is released from TE domain by either hydrolysis or 

macrocyclization. Strieker et al. (2010). 
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 Since the crystallisation of GrsA, and the identification of substrate specificity 

conferring residues in NRP synthetase A domains, subsequent comparisons between GrsA 

and corresponding moieties in other A domains have led to the successful substrate 

prediction of  bacterial NRP synthetase A domains, and therefore might allow prediction of 

NRP products (Stachelhaus et al., 1999). These selectivity motifs, also known as core 

domains appear to be highly conserved and are shown in Table 1.3 (Schwarzer et al., 

2003).  

 

Table 1.3. Core motifs governing substrate specificity of NRP synthetase A domains 

Schwarzer et al. (2003).  

 

          NRP synthetase adenylation domain core motifs 

A1 L(TS)YxEL 

A2 LGAGxAYL(VL)P(LI)D 

A3 LAYxxYTSG(ST)TGxPKG 

A4 FDxS 

A5 NxYGPTE 

A6 GELxJGX(VL)ARGYL 

A7 Y(RK)TGDL 

A8 GRxPxQVKIRGxRIELGEIE 

A9 LPxYM(IV)P 

A10 NGK(VL)DR 
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 Despite significant progress in elucidating the NRPS specificity conferring ‘code’, 

initial studies focused on bacterial A domain specificity, and don’t appear to be predictive 

of fungal A domain specificity (Bushley et al., 2008; Stack et al., 2007). Fungal A domain 

specificity therefore remains to be elucidated, with only a handful of specific substrates 

identified to date, detailed in Table 1.4 Doyle, (2009).  

 

Table 1.4. A domain specificity of fungal NRP or PK/NRP synthetases Doyle, (2009).  

 

Enzyme type 

 

Final product A domain Species Reference 

NRP synthetases 

SidD TAFC A1 (n5-cis-

anhydromevalonyl-

N5-hydroxy-L-

ornithine 

A. fumigatus Schrettl et al. 

(2007) 

SidC FC N5-acetyl-N5-

hydroxy-L-ornithine, 

Ser, Gly 

A. fumigatus Schrettl et al. 

(2007) 

GliP Gliotoxin A1 (L-Phe), 

A2 (L-Ser) 

A. fumigatus Balibar and 

Walsh (2006) 

Hybrid polyketide/NRP synthetases 

FUSS Fusarin C A1 (homoserine) Fusarium 

moniliforme 

Rees et al. 

(2007) 

TENS 2-pyridone 

tenellin 

L-Tyr Beauveria 

bassiana 

Eley et al. 

(2007) 

PsoA pseurotin A L-Phe A. fumigatus Maiya et al. 

(2007) 

TdiA terriquinone A Arylic acid A. nidulans Bok et al. 

(2006b) 

CheA Cytochalasan L-Trp Penicillium 

expansum 

Schumann and 

Hertweck (2007) 
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1.10. NRPS in A. fumigatus. 

 Sequencing and analysis of the A. fumigatus genome revealed the presence of 14 

NRP synthetase encoding genes (Cramer et al., 2006b; Nierman et al., 2005). Domain 

architecture of NRP synthetases were predicted using in silico methods. Table 1.5 gives an 

overview of the NRP synthetases within A. fumigatus, their predicted organisation, and 

known NRP products are included. None of the A. fumigatus NRP synthetases contain a TE 

domain, while 10 of the 14 NRP synthetases end in a unique C domain, which may 

function in the release of the NRP, similar to a finding made for C. heterostrophus NRP 

synthetases (Cramer et al., 2006b; Lee et al., 2005).  

 Peptides produced by a small number of these NRP synthetases have been 

elucidated to date, mainly through targeted gene deletion studies. A combined 

bioinformatic and gene deletion approach led to the identification of an NRP synthetase, 

GliP, which is essential in the early biosynthesis of gliotoxin in A. fumigatus (Cramer et al., 

2006a; Gardiner & Howlett, 2005). Heterologous expression and gene deletion strategies 

were used to confirm that the NRP synthetase FtmA makes the diketopiperazine scaffold 

brevianamide F, which is the precursor to the fumitremorgin family of secondary 

metabolites produced by A. fumigatus (Maiya et al., 2006). Two NRP synthetases, encoded 

by the genes sidD and sidC in A. fumigatus have been found to be essential for the 

biosynthesis of siderophores (Reiber et al., 2005; Schrettl et al., 2007). A multi-modular 

NRP synthetase, pes1 was found to important for virulence and protection against oxidative 

stress, although no corresponding peptide was identified in that study (Reeves et al., 2006). 

The lack of information relating the remaining NRP synthetases to peptide products 

presents a functional genomics challenge that can now be addressed with the available 

genome sequence. This challenge is addressed by much of the work described in this thesis. 
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Table 1.5. NRP synthetase genes in A. fumigatus, with predicted domain organisation 

(Cramer et al., 2006b; Stack et al., 2007). 

 

Gene Domain Architecture CADRE I.D. NRP 

product 

pes1 (NRPS1) ATECACACATECTCT AFUA_1G10380  

sidC (NRPS2) ATCATCATCTCTC AFUA_1G17200 Ferrichrome 

sidE (NPRS3) ATCATC AFUA_3G03350  

sidD (NRPS4) ATCATC AFUA_3G03420 TAFC 

pesF (NRPS5) ATCATCT AFUA_3G12920  

pesG (NRPS6) ATC AFUA_3G13730  

pesH (NRPS7) ACATC AFUA_3G15270  

pes3/I (NRPS8) ATCATECATCETCATCATCATEC AFUA_5G12730  

pesJ (NRPS9) C*ATC AFUA_6G09610  

gliK (NRPS10) ATCATCT AFUA_6G09660 Gliotoxin 

pesL (NRPS11) ATC AFUA_6G12050  

pesM (NRPS12) ATCATCEATC(TE) AFUA_6G12080  

pesN (NRPS13) 

(ftmA) 

ACATC AFUA_9G00170 FTMs 

pesO (NRPS14) PKSNNCAT(DH) AFUA_8G00540  

 

Key: A, adenlyation domain; T, thiolation domain; C, condensation domain; E, 

epimerisation domain TE, thioesterase domain; DH, putative dehydrogenase domain; C*, 

partial condensation domain; PKS, polyketide synthetase; N, incomplete domain; FTMs, 

fumitremorgin family of secondary metabolites. 
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1.11. Genetic manipulations available for characterisation of genes within A. 

fumigatus. 

 The availability of the complete A. fumigatus genome sequence has provided the 

necessary information to facilitate characterisation of gene function by genetic 

manipulation (Xue et al., 2004). To investigate gene function, genetic manipulation 

systems which are capable of specifically targeting genes of interest for deletion or 

disruption, leading to the creation of isogenic mutant strains, are essential, whereby mutant 

strains differ from their parental strain by only one gene, the gene of interest. A range of 

transformation systems exist for the genetic manipulation of fungi, and there have been 

some major developments in the strategies used to prepare gene deletion substrates in 

recent years. Several other advancements, including the generation of non-homologous end 

joining (NHEJ) - deficient strains have greatly improved the success rate of targeted gene 

disruptions in A. fumigatus and other fungi (Ferreira et al., 2006a; Krappmann et al., 2006; 

Ninomiya et al., 2004b), and these topics will be discussed in the following sections.  

 

1.11.1. Transformation systems. 

 A range of transformation systems exist for A. fumigatus and other filamentous 

fungi, including protoplast transformation, electroporation of germinating conidia, and 

Agrobacterium tumefaciens-mediated transformation (ATMT) (Brakhage & Langfelder, 

2002; Meyer, 2008; Michielse et al., 2005b). Protoplast transformation involves the 

enzymatic removal of the fungal cell wall of recently germinated spores before 

transforming DNA is taken up by the cells through heat shocking or by the addition of 

polyethylene glycol (PEG) and calcium chloride (Brookman & Denning, 2000; Meyer, 

2008). Electroporation (EP) involves the reversible permeabilisation of the membrane with 

electrical impulses which mediates DNA uptake (Meyer, 2008; Ruiz-Diez, 2002). EP has 
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been successful for transforming a range of Aspergilli and is relatively quick compared to 

protoplast transformation in A. niger (Ozeki et al., 1994). In A. fumigatus, transformation 

efficiencies have been reported to be up to 10-fold higher following electroporation 

compared to protoplast transformation, with the limitation that the percentage of ectopic 

integrations into non-desired genomic sites is also significantly high (Brakhage & 

Langfelder, 2002). The principle behind ATMT is that A. tumefacians possesses two 

vectors, one in which the transforming DNA is cloned into, and another one (Ti), which is 

important for DNA transfer during the infection of the fungus with A. tumefaciens (Meyer, 

2008; Michielse et al., 2005b). ATMT was successfully used to transform A. niger (de 

Groot et al., 1998). Despite reports of its usefulness in various Aspergillus species, 

including the industrially relevant A. awamori (Michielse et al., 2005a), and its reported use 

as a tool for transformation, random insertional mutagenesis and targeted gene disruption in 

A. fumigatus (Sugui et al., 2005), there have still only been a few reports of ATMT being 

used to genetically modify A. fumigatus.  

 The most frequently used method of transformation appears to be protoplast-

mediated transformation, and this was the method used for the functional characterisation 

of the genes involved in the gliotoxin and siderophore biosynthetic pathways of A. 

fumigatus (Balibar & Walsh, 2006; Cramer et al., 2006a; Gardiner et al., 2004; Schrettl et 

al., 2004; Schrettl et al., 2007). Therefore, it is a powerful technique for the delineation of 

biosynthetic pathways, and secondary metabolite gene clusters, that have been identified 

through genome sequencing, but as of yet remain uncharacterised.  

 

1.11.2. Preparation of transforming DNA for targeted gene deletions. 

 Strategies currently available for fungal gene deletion involve various methods for 

preparing the transforming DNA (constructs), including the use of plasmid integrations 
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(Kubodera et al., 2002), single linear constructs (Kuwayama et al., 2002), the Double-joint 

method (Yu et al., 2004) and the bipartite method (Nielsen et al., 2006). A. fumigatus gene 

deletion strategies require the use of a non- A. fumigatus selection marker, and in the case 

of previously mutated strains, a selection marker which has not been previously used. 

Targeted gene replacements can be achieved by homologous recombination (HR), whereby 

the selection marker replaces the gene of interest with the aid of homologous recombination 

sequences (HRS) that flank the selection marker (Brakhage & Langfelder, 2002). Despite 

the presence of HRS, ectopic integrations of transforming DNA can still occur, and the 

efficiency of HR was found to correlate with the size of the homologous fragment (Bird & 

Bradshaw, 1997). Recombination between the homologous flanking regions leads to 

replacement of the targeted gene by the selection marker, and there is no risk of reversion 

since the gene is entirely deleted (Brakhage & Langfelder, 2002). The HRSs must be 

identical to the sequence in the genome and are usually amplified by PCR to create a 

suitable gene replacement construct. Flanking regions of approximately 1.0 kb result in a 

reasonably high transformation efficiency (Brakhage & Langfelder, 2002) (Figure 1.8). 
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Selection marker

 

Figure 1.8. Schematic representation of targeted gene replacement by homologous 

recombination (HR). 

The flanking regions of the gene of interest are fused to a selection marker (A), and these 

serve as the HRSs that recombine with the flanking regions on the chromosomal DNA (B), 

resulting in replacement of the gene of interest with the selection marker (C). Adapted from 

Brakhage and Langfelder, 2002. 

 

 

 

 

 

A. 

B. 

C. 



 45

 Following the availability of many complete fungal genome sequences, 

technologies were developed to rapidly create gene disruption constructs using various 

PCR based approaches (Kuwayama et al., 2002; Yang et al., 2004; Yu et al., 2004). Earlier 

approaches tended to involve several E. coli cloning steps which was both tedious and 

time-consuming (Nielsen et al., 2006). Kuwayama et al. (2002) described a two-step PCR-

based protocol for generating suitable constructs for gene deletion, whereby regions 5’ and 

3’ to the gene of interest are PCR amplified, a selection marker is amplified, and all three 

are fused together to create a linear construct. A second PCR reaction is then performed to 

generate sufficient amounts of the entire construct which is transformed into the recipient 

(Kuwayama et al., 2002). The main advantage reported for this technique was the freedom 

to generate flanking regions of any length which could then be fused to the ends of the 

selection marker (Kuwayama et al., 2002).  

 A similar approach, known as the Double-joint PCR method was described to 

generate gene replacement constructs for use in filamentous fungi, and this was successful 

in the targeted deletion of 31 genes from A. fumigatus, A. nidulans, and Fusarium 

graminearum (Yu et al., 2004). The final replacement construct consisted of a linear DNA 

fragment containing a centrally located selection marker fused to 0.5-3.0 kb upstream and 

downstream regions flanking the gene of interest (Yu et al., 2004). The use of flanking 

regions with a length of 2-3 kb yielded the highest rate of homologous recombination 

(approx. 20 % of cases) resulting in replacement of the desired gene (Yu et al., 2004). Of 

major importance when generating PCR-based gene deletion constructs is the use of high-

fidelity polymerases for amplification of all components, due to the high gene density in the 

fungal genome (approx. 1 gene per 3 kb), and the possible risk that an erroneous base in the 

flanking region might interrupt an adjacent gene (Yu et al., 2004). The double-joint 
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approach was subsequently used to disrupt the NRP synthetase gene, pes1, in A. fumigatus 

(Reeves et al., 2006). 

 More recently, a new PCR-based strategy was described for use in A. nidulans, 

known as the bipartite strategy (Nielsen et al., 2006). The bipartite method involves the 

generation of two overlapping constructs, each containing either the 5’ or 3’ flanking region 

of the gene of interest, fused to partial overlapping fragments of a selection marker and is 

based on an earlier method described for use in S. cerevisiae (Erdeniz et al., 1997). The 

principle behind the bipartite strategy is that the two overlapping constructs recombine in 

vivo, reconstituting the selection marker, and this increases the frequency of targeted 

disruptions, presumably by channelling the entire DNA construct into the homologous 

recombination mode of DNA recombination (Nielsen et al., 2006). As stated above, 

bipartite deletion constructs yield greater success than continuous constructs, with at least 

double the rate of targeted integrations associated with the bipartite construct compared to 

the continuous construct for the same gene locus (Nielsen et al., 2006). The bipartite 

strategy resembles a split-marker strategy which was earlier proposed for use in 

filamentous fungi (Catlett et al., 2002). The bipartite strategy has now been widely used for 

the generation of targeted gene deletions in A. fumigatus (Al-Bader et al., 2010; 

Ejzykowicz et al., 2009; Ejzykowicz et al., 2010; Schrettl et al., 2010). 

 

1.11.3. Selection markers used for A. fumigatus genetic manipulation.  

 A. fumigatus and other fungi are naturally sensitive to certain antibiotics such as 

phleomycin/bleomycin and hygromycin (Brakhage & Langfelder, 2002). Bacterial genes 

conferring resistance to these antibiotics can be used as dominant selection markers for the 

transformation of A. fumigatus (Brakhage & Langfelder, 2002). Such genes have been 

found and in order to ensure their expression in fungi, they are usually engineered into 
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cassettes where they are placed under the transcriptional control of a fungal promoter and a 

suitable terminator sequence (Brakhage & Langfelder, 2002).  

 One particular cassette, which is widely used, comprises the hygromycin resistance 

gene, hph, encoding the hygromycin B phosphotransferase protein, under the control of the 

constitutive glyceraldehyde-3-phosphate dehydrogenase promoter and the trpC terminator 

from A. nidulans. The hph gene has now been used to generate large numbers of 

transformants in A. fumigatus (Coyle et al., 2010; Ejzykowicz et al., 2009; Fleck & Brock, 

2010; Hissen et al., 2005; Kim et al., 2009; Krappmann et al., 2004; Lessing et al., 2007; 

Schrettl et al., 2007). The ble gene, which confers resistance to phleomycin is also used for 

the transformation of A. fumigatus (Ejzykowicz et al., 2009; Krappmann et al., 2004;  

Lessing et al., 2007; Levdansky et al., 2010; Maubon et al., 2006). 

 Auxotrophic or nutritional markers are an alternative to the selectable markers 

described above (Brakhage & Langfelder, 2002). The pyrG gene represents the most 

common auxotrophic marker used for A. fumigatus. pyrG encodes orotine-5’-

monophosphate decarboxylase which is critical for uracil biosynthesis (Brakhage & 

Langfelder, 2002). pyrG mutants exhibit uracil auxotrophy, and can be identified by their 

ability to grow on medium containing 5-fluoro-orotic acid (FOA), because FOA is 

converted to the toxic intermediate 5-fluoro-UMP by uracil prototrophs (Boeke et al., 1984; 

Boeke et al., 1987). Because of this, the pyrG gene can then be used as a selection marker 

to replace target genes of interest, thus restoring uracil prototrophy. pyrG homologs have 

been identified in a number of other Aspergilli, including A. nidulans (pyrG) (Oakley et al., 

1987), A. niger (pyrG) (Wilson et al., 1988) and A. flavus (Chang et al., 2010) and this 

strategy was pioneered for A. fumigatus by complementing uracil auxotrophy with the A. 

niger pyrG gene (dEnfert, 1996). pyrG-based gene deletion constructs, often referred to as 

pyrG-blaster, usually comprise a pyrG gene flanked with direct repeats of a bacterial 
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transposon sequence, flanked by sequence homologous to the target locus (dEnfert, 1996). 

Recombination between the two direct repeats, leading to pyrG excision, can be selected 

for in the presence of FOA following transformation, meaning that the pyrG cassette can be 

re-used to disrupt another gene, in the same strain if required, making it an attractive 

selective marker (dEnfert, 1996).  

 A pyrithiamine (PT) resistance gene was cloned from a PT-resistant A. oryzae 

mutant, and was used as a positive selection marker to transform A. nidulans and wild-type 

A. oryzae strains (Kubodera et al., 2000). PT is a potent antagonist of thiamine, and inhibits 

the activity of thiamine pyrophosphokinase (TPK), which is essential enzyme in catalysing 

the transfer of pyrophosphate group from ATP to thiamine to form the coenzyme thiamine 

pyrophosphate (TPP), which is an essential co-factor in many metabolic reactions (Baker et 

al., 2001). The product of the pyrithiamine resistance gene (ptrA) provides resistance to the 

otherwise lethal effects of PT and allows normal growth of the fungus (Kubodera et al., 

2000). It was observed that a single integration of a plasmid vector harbouring ptrA into the 

genome could confer PT resistance, rendering it useful as a dominant selectable marker in 

PT sensitive fungi (Kubodera et al., 2000). Later, two plasmid vectors containing ptrA were 

constructed, and were used as selection markers for the transformation of other filamentous 

fungi including A. fumigatus (Kubodera et al., 2002).  

 The ptrA gene is now widely used as a selection marker in a range of different 

experimental situations. It has been used for mutant complementation in A. fumigatus, 

where a plasmid (pSK275) containing ptrA was co-transformed with transforming DNA to 

restore a previously disrupted gene (Schrettl et al., 2007), complementation of disrupted 

genes using ptrA fused to the target gene as a linear construct (Bergmann et al., 2009), 

deletion of genes using a linearised vector containing ptrA as a selection marker (Valiante 

et al., 2009), and more recently, gene deletion using ptrA as a selection marker in a linear 
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construct comprising target flanking regions for HR (Fleck & Brock, 2010), and gene 

deletion using ptrA as the selection marker in combination with the bipartite strategy 

(Nielsen et al., 2006; Schrettl et al., 2010).  

 

1.11.4. The use of non-homologous end joining (NHEJ)-deficient strains to increase 

targeted integrations. 

 In order to produce stable genetic manipulations in A. fumigatus, the transforming 

DNA must be integrated at a chromosomal locus (Brakhage & Langfelder, 2002). Targeting 

and replacing genes in filamentous fungi, usually with antibiotic resistance cassettes, is 

facilitated by the cellular machinery that carries out recombination and repair of DNA 

(Krappmann et al., 2006). Double-strand DNA breaks (DSBs) are the underlying principle 

for genetic modification by recombination of chromosomal DNA with transforming DNA 

in yeast and filamentous fungi (Paques & Haber, 1999).  

 In eukaryotic cells, two principle recombination pathways have been identified for 

the repair of DSBs; homologous recombination (HR) and DNA repair by non-homologous 

end joining (NHEJ) (Haarmann et al., 2008). HR involves the targeted integration of 

exogenous DNA at homologous regions by virtue of homologous sequence, and this occurs 

at low frequencies of 10-30 % in filamentous fungi such as A. fumigatus and A. niger 

compared to S. cerevisiae, meaning that many transformants need to be screened to find the 

correct one, making transformation of fungi tedious and time-consuming (Carvalho et al., 

2010; Meyer, 2008). The NHEJ pathway involves direct ligation of DNA strands 

irrespective of the presence of sequence homology, thereby leading to ectopic integrations 

of transforming DNA into the genome, hampering the isolation of a targeted gene 

disruption. The NHEJ pathway is present in all eukaryotes and competes with the HR 

pathway (Critchlow & Jackson, 1998; Shrivastav et al., 2008).  
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 The NHEJ pathway is facilitated by the activation of the Ku heterodimer, also 

known as the Ku70/Ku80-protein complex, and the DNA ligase IV-Xrcc4 complex 

(Dudasova et al., 2004; Krogh & Symington, 2004). The Ku70/Ku80 heterodimer forms a 

three protein complex with a catalytic subunit DNA-PKcs. The Ku heterdimer directs the 

catalytic subunit to DNA ends and stabilizes its binding to DNA where it becomes activated 

(Spagnolo et al., 2006). The HR pathway is mediated by the Rad52 group of proteins. 

According to the gate-keeper model, both pathways compete with each other, so that when 

Rad52 binds DNA, HR results, whereas when Ku binds DNA, the DNA becomes 

integrated by NHEJ and can enter the genomic DNA ectopically (Meyer, 2008). It appears 

that higher eukaryotic organisms, including filamentous fungi, preferentially use NHEJ to 

repair DSBs (Haarmann et al., 2008). HR and NHEJ are not the only pathways of DNA 

repair that exist in eukaryotic organisms; in fact not much attention has been given to the 

processes of DNA repair in A. fumigatus. Investigation into an adaptive response towards 

alkylating DNA damage in A. fumigatus is described in Chapter 5 of this thesis.  

 A huge advance was made in the generation of targeted gene deletions in the model 

ascomycete fungus Neurospora crassa by disruption of the NHEJ pathway (Ninomiya et 

al., 2004a). Deletion of the ku70 and ku80 genes in N. crassa, mus-51 and mus-52, 

respectively, led to transformants which exhibited 100 % targeted integration of 

transforming DNA, compared to 10-30 % targeted integration in the wild-type background, 

when flanking regions of 2 kb were used to generate transformation constructs (Ninomiya 

et al., 2004a). Since this breakthrough, the use of NHEJ-deficient strains has been extended 

to facilitate gene disruption in a range of filamentous fungi, including A. fumigatus 

(Ferreira et al., 2006a; Krappmann et al., 2006). A NHEJ-deficient strain was employed to 

characterise an NRP synthetase gene in the Claviceps purpurea ergot alkaloid (EA) 

biosynthetic cluster, a cluster which is widespread throughout fungi, including A. 
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fumigatus, and this led to significant advances in the understanding of EA biosynthesis 

(Haarmann et al., 2008).  

 One concern that exists about the use of NHEJ-deficient strains is that 

complementation of resulting mutants may be difficult, as this usually involves 

reintroducing the deleted gene ectopically into the genome in order to restore mutant 

phenotypes, and the rate of ectopic integrations is significantly reduced in NHEJ-deficient 

strains (Carvalho et al., 2010). To circumvent any issues that may occur with the use of 

NHEJ-deficient strains, Nielsen et al. (2008) have developed a method whereby 

components of the NHEJ machinery (Ku70 and Ku80) can be transiently disrupted in order 

to facilitate deletion of gene(s) of interest, and then NHEJ can be restored by a simple 

selection scheme. In combination with the bipartite strategy described above (Nielsen et al., 

2006), this strategy resulted in rates of homologous integration of above 95 % compared to 

less than 2 % in wild-type strains of A. nidulans (Nielsen et al., 2008). This strategy was 

adapted to create a transiently disrupted A. niger strain where the Ku70 NHEJ component 

was firstly disrupted and then replaced after genes of interest had been disrupted in the 

NHEJ-deficient state (Carvalho et al., 2010).  

 Despite the obvious advantages to using NHEJ-deficient and transiently disrupted 

NHEJ-deficient strains, there has not yet been a report of transient NHEJ-disruption usage 

in A. fumigatus. In contrast, the majority of gene deletions currently emerging in the 

literature are based on the bipartite method alone, and this has been successfully used to 

generate targeted gene deletions in a number of strains, including the fully-genome 

sequenced strain Af293 (Ejzykowicz et al., 2010; Sheppard et al., 2005), and in other 

strains such as ATCC 46645 and ATCC 26933 (Schrettl et al., 2010). The design of a gene 

deletion construct for A. fumigatus employing the bipartite strategy will be dealt with in 

Chapter 2.  
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1.12. The oxidative stress response in A. fumigatus. 

 Oxidative stress is a shift in the normal balance of oxidants and antioxidants in 

favour of oxidant species, leading to an accumulation of reactive oxygen species (ROS) and 

cell damage (Sies, 1991). Cells can respond to oxidative stress by producing antioxidant 

molecules such as ascorbic acid, carotene and reduced glutathione, and by activating 

specific anti-oxidant enzymes (Reverberi et al., 2010). Chemicals which generate reactive 

oxygen species are routinely used to induce antioxidant defence systems in organisms of 

interest, in order to study defence systems against oxidative stress (Gutteridge & Halliwell, 

2000). Among the routinely used oxidising agents are hydrogen peroxide (H2O2), 

menadione and diamide. H2O2 causes oxidative stress by increasing intracellular peroxide 

levels (O2
2-), and this leads to direct oxidation of sulphur-containing amino acids and 

production of OH- radicals (Pocsi et al., 2005). H2O2 is also known to cause DNA damage 

in cells, as a downstream effect of oxidative stress (Klaunig et al., 2010). Menadione causes 

a redox cycle, leading to the generation of superoxide anions (O2
-), inactivating 4Fe-4S 

cluster-containing proteins (Pocsi et al., 2005). Detoxification of menadione catalyzed by 

glutathione-s-transferases (GSTs) may also affect the intracellular glutathione pool (Pocsi 

et al., 2004). Diamide is a thiol-oxidising chemical resulting in fast oxidation of glutathione 

(GSH) to oxidised glutathione (GSSG) resulting in GSH/GSSH redox imbalance in the cell 

(Pocsi et al., 2005). 

 The production of ROS by alveolar macrophages has been reported to play an 

important role in the innate immune response towards A. fumigatus (Paris et al., 2003b; 

Schaffner et al., 1982). Amongst the A. fumigatus cellular defences to oxidative stress are 

antioxidant enzymes including superoxide dismutase (SOD), thioredoxin, glutathione 

reductase, catalase (CAT) and glutathione peroxidase (GPX) (Chauhan et al., 2006). SOD 

converts one harmful ROS, superoxide, into another, H2O2, thus shunting the superoxide in 
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the direction of ROS, and away from the formation of harmful reactive nitrogen 

intermediates (RNI) such as peroxynitrite (Missall et al., 2004). SOD activity is beneficial 

to the cell, since many defence systems exist to counteract peroxides, but few are present to 

deal with RNI (Missall et al., 2004).  

 Catalases are metalloenzmyes, found in all aerobic organisms, and mediate the 

conversion of  H2O2 to water and oxygen (Missall et al., 2004). A. fumigatus possesses three 

catalases which are produced during IA, one conidial catalase, CatA, and two mycelial 

catalases; Cat1 and Cat2 (Paris et al., 2003b). CatA protects A. fumigatus spores against the 

effects of H2O2 in vitro, but does not protect against the ROS released from macrophages, 

indicating that H2O2 may not be the most important ROS involved in the killing of A. 

fumigatus conidia by macrophages (Paris et al., 2003b). Deletion of both mycelial catalases 

led to slightly increased sensitivity to H2O2 compared to wild-type, and reduced fungal 

development in vivo, whereas individual deletions had no effect on either protection against 

H2O2 or virulence (Paris et al., 2003b). A. fumigatus possesses several SOD enzymes, as 

well as GSTs and peroxidasses, and glutaredoxin and thioredoxin systems (Chauhan et al., 

2006; Holdom et al., 2000).  

 Melanins are multi-functional polymers that can reduce oxidants, and are implicated 

in the virulence of many human pathogenic fungi (Missall et al., 2004). Melanin is an 

important conidial pigment of A. fumigatus which protects the fungus from reactive oxygen 

and chlorine species as well as from oxidative killing by macrophages, conferring virulence 

to the organism (Langfelder et al., 1998). Trehalose, a carbohydrate, which serves as 

reserve energy supply and a stress metabolite, has the ability to scavenge free radicals 

which accumulate during oxidative stress (Al-Bader et al., 2010; Singer & Lindquist, 

1998). Recently, basal levels of trehalose were found to be important in protecting A. 

fumigatus against oxidative stress in vitro (Al-Bader et al., 2010).  
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 An important finding was made when the A. fumigatus AfYAP1 transcriptional 

regulator was identified as the major regulator of enzymes in the defence against ROS 

through a proteomic analysis of A. fumigatus exposed to H2O2 (Lessing et al., 2007). An 

AfYAP1 deletion strain (∆Afyap1) confirmed these findings (Lessing et al., 2007). 

Proteomic analysis of A. fumigatus ∆Afyap1 revealed that catalases, peroxiredoxins, 

cytochrome C peroxidase, and a putative thioredoxin peroxidase AspF3 were the specific 

antioxidant enzymes that were regulated by AfYAP1 (Lessing et al., 2007). Other protein 

families were also up-regulated upon exposure to H2O2 including heat shock proteins, 

protein translation machinery, enzymes involved in glycolysis and the Kreb’s cycle 

(Lessing et al., 2007). In that study, AfYAP1 was found to be dispensable for pathogenicity 

in a murine model for IA (Lessing et al., 2007).   

 The oxidative stress response was of interest for this work since several NRP 

synthetases characterised to date have been important for protection against oxidative stress 

(Eisendle et al., 2006; Lee et al., 2005; Reeves et al., 2006; Schrettl et al., 2007). 

Furthermore, there appears to be a link between fungal secondary metabolite production 

and oxidative stress (Reverberi et al., 2010). It has been shown that some secondary 

metabolites are produced during fungal developmental and metabolic transitions, co-

inciding with an accumulation of ROS (Reverberi et al., 2010). Conidial germination to 

hyphae occurs with a burst of ROS and this coincides with the onset of mycotoxin 

biosynthesis in Aspergillus parasiticus (Reverberi et al., 2010). Oxidative stress and 

aflatoxin biosynthesis are closely related events (Fanelli et al., 2004). Links between 

secondary metabolite production have also been inferred in A. flavus (Mahoney et al., 

2010), and Fusarium graminearum (Ponts et al., 2006; Ponts et al., 2007).  
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1.13. Use of the Galleria mellonella insect model to study A. fumigatus virulence. 

 The last decade has seen an increase in the number of non-vertebrate models used to 

study microbial virulence. The use of insects as hosts has received major attention, and 

derives from the high degree of similarity between the innate immune system of insects and 

mammals (Muller et al., 2008; Vilmos & Kurucz, 1998). The use of insect models carries 

many advantages, including ease of handling and infection, reduction in the need for 

mammalian suffering, and insects are inexpensive to purchase and store (Cotter et al., 2000; 

Kavanagh & Fallon, 2010). Furthermore, use of such a system allows the screening of large 

number of pathogenic isolates at any given time, allowing comparisons of virulence 

between different fungal strains and species (Cotter et al., 2000) and also allowing the 

screening of mutants to identify ones which may be defective in virulence (Kavanagh & 

Reeves, 2004). Larvae of G. mellonella (the wax moth) have been used for the development 

of a robust insect model for the in vivo pathogenicity testing of yeasts (Cotter et al., 2000). 

Previously, G. mellonella were used to examine virulence associated with LPS-deficient 

mutants of Pseudomonas aeruginosa, and are now used to investigate the molecular basis 

of pathogenicity in a wide range of important pathogens, for example, Listeria 

monocytogenes (Joyce & Gahan, 2010), and Enterococcus faecalis (Hanin et al., 2010). 

Results from experiments using G. mellonella can usually be obtained within 72 hr of 

infection, further allowing the screening of large numbers of isolates in a relatively short 

period of time (Cotter et al., 2000). The immune system of insects including G. mellonella 

comprises structural and passive barriers to protect against microbes, and cellular and 

humoral responses mediate the immune response (Cotter et al., 2000). Haemocytes, 

analogous to mammalian phagocytes are found within the haemolymph of the insect 

(Dunphy & Thurston, 1990). Six different types of haemocytes have been identified and 

these have found to be important in defending the insect against bacteria and unicellular 
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fungi (Walters & Ratcliffe, 1983). Some of these haemocytes are involved in phagocytosis, 

encapsulation and nodule formation (Matha & Mracek, 1984). Humoral factors in insect 

immunity include lysozyme, lectins and the pro-phenoloxidase cascade (Dunphy & 

Thurston, 1990). The phenoloxidase (PO) pathway is catalysed by phenoloxidase (PO), 

which becomes activated in the presence of microbial components, such as A. fumigatus β-

1,3 glucans, lipopolysaccharide (LPS), and peptidoglycan, ensuring its activation upon 

pathogen presence (Cerenius & Soderhall, 2004). Activated PO mediates melaninisation 

around the damaged tissue or invading microbe, which may retard microbial growth, and 

during melanisation, many reactive and toxic quinine intermediates are produced (Cerenius 

& Soderhall, 2004).  The insect humoral response also includes the production of a range of 

antimicrobial peptides which are released from a range of organs and cells (Bulet et al., 

1999; Leclerc & Reichhart, 2004) into the haemolymph where they can diffuse to the 

infected site and attack bacterial and fungal cell wall components (Ratcliffe, 1985). 

Furthermore, G. mellonella possesses proteins orthologous to the components of the 

NADPH oxidase complex in human neutrophils, and these are responsible for superoxide 

production in the haemocytes indicating that the haemocytes kill conidia of A. fumigatus in 

a similar matter to human neutrophils (Bergin et al., 2005).  

 The use of the Galleria model to investigate the pathogenicity and virulence of A. 

fumigatus has been well documented to date (Kavanagh & Fallon, 2010). A correlation 

between the production of gliotoxin and the virulence of different isolates of A. fumigatus 

was observed in a G. mellonella infection model (Reeves et al., 2004). This model was also 

able to imply a role for the non-ribosomal peptide synthetase Pes1 in the virulence of A. 

fumigatus, as larvae infected with a Pes1 deletion mutant exhibited reduced mortality 

compared to wild-type (Reeves et al., 2006). Recently, the robustness of the G. mellonella 
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model was reported with strong correlations between G. mellonella and murine virulence 

studies using a previously characterised set of A. fumigatus mutants (Slater et al., 2010). 

 

1.14 Rationale and objectives of this thesis. 

  A. fumigatus is a serious human pathogen whose complete genome sequence has 

recently become available, revealing the presence of at least 22 SM biosynthetic clusters, 

for which the majority of products are unknown (Nierman et al., 2005). The virulence of 

this organism in part relies on secondary metabolite production since the finding that a 

LaeA mutant, crippled in secondary metabolite production, exhibited reduced virulence in a 

murine model of IA (Bok et al., 2005). Fourteen NRP synthetase genes have been found in 

the A. fumigatus genome, however, specific data relating these NRP synthetases to their 

downstream peptide has not been forthcoming (Stack et al., 2007). Further studies, 

including the analysis of NRPS mutants, are therefore required to link specific metabolites 

with their corresponding NRP synthetase, and to address the role of individual secondary 

metabolites in the pathogenesis of A. fumigatus (Cramer et al., 2006b). Several strategies 

may be used to identify the products of NRP synthetases, and gene deletion studies have 

proved to be successful for the A. fumigatus NRP synthetases characterised to date.

 However, these studies, described earlier, only account for 5 of the 14 NRP 

synthetases found within the A. fumigatus genome (Cramer et al., 2006b; Nierman et al., 

2005), and underpins the functional genomics challenge in the elucidation of the peptide 

products of the remaining NRP synthetases. 
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Therefore, the overall work objectives presented in this thesis are as follows: 

 

1) Elucidation of the function of two distinct NRP synthetases, encoded by the genes 

pes3 and pesL in A. fumigatus, using a targeted gene deletion approach, followed by 

phenotypic analysis. 

 

2) Identification of NRP products of PesL and Pes3 by comparative metabolite 

profiling between wild-type and mutant strains. 

 

3) Taking advantage of the gene deletion technology, an adaptive response pathway 

for the repair of alkylating DNA damage was investigated in A. fumigatus. This 

topic will be discussed entirely in Volume 2 of this thesis. 
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2.1. Materials 

 All chemicals were purchased from Sigma-Aldrich Chemical Co. Ltd. (U.K.), 

unless otherwise stated. 

 

2.1.1 Microbiological Medias and Reagents 

2.1.1.1 Aspergillus Trace Elements 

  Na2B4O7.7H2O (0.04 g), CuSO4. (5H2O) FeSO4.7H2O (1.2 g), MnSO4 (0.7 g), 

Na2MoO.2H2O (0.8 g) and ZnSO4.7H2O (10 g) were added to 800 ml dH2O and dissolved. 

The solution was made up to 1 L with dH2O and subsequently autoclaved. The solution was 

aliquoted (50 ml) and stored at -20 ºC. 

 

2.1.1.2 Aspergillus Salt Solution 

 KCl (26 g), MgSO4.7H2O (26 g), KH2PO4 (76 g) and Aspergillus Trace Elements 

(50 ml) (Section 2.1.1.1) were added to 800 ml dH2O and dissolved. The solution was made 

up to 1 L with dH2O and autoclaved. The solution was stored at room temperature. 

 

2.1.1.3 100x Ammonium Tartrate 

 Ammonium tartrate (92 g) was dissolved in 1 L dH2O and autoclaved. The solution 

was stored at room temperature. 

 

2.1.1.4 20 mM L-Glutamine 

 A 200 mM L-Glutamine stock was purchased from Sigma-Aldrich and stored at -20 

ºC. L- Glutamine was used as a Nitrogen source at a final concentration of 20 mM. 
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2.1.1.5 Malt Extract Agar 

  Malt extract agar (30 g) (Difco, Maryland, USA) was added to 600 ml dH2O, and 

dissolved. The solution was autoclaved, and allowed to cool to ~50 ºC. Agar (25 ml) was 

then poured into 90 mm petri dishes, under sterile conditions. The plates were allowed to 

set and were stored at 4 ºC. 

 

2.1.1.6 Aspergillus Minimal Media (AMM) Agar 

 Ammonium tartrate (100 X, 10 ml) (Section 2.1.1.3), Aspergillus salt solution (20 

ml) (Section 2.1.1.2) and glucose (10 g) were added to 800 ml dH2O and dissolved. The pH 

of the solution was adjusted to pH 6.8 and made up to 1 L with dH2O prior to the addition 

of agar (18 g) (Scharlau Chemie S.A., Barcelona, Spain). The solution was mixed and 

autoclaved and allowed to cool to ~50 ºC before being poured into 90 mm petri dishes, 

under sterile conditions. The plates were allowed to set and were stored at 4 ºC. 

 

2.1.1.7 Aspergillus Minimal Media (AMM) 

 Ammonium tartrate (100 X, 10 ml), Aspergillus salt solution (20 ml) and glucose 

(10 g) were added to 800 ml dH2O and dissolved. The pH of the solution was adjusted to 

pH 6.8 and made up to 1 L with dH2O. The solution was autoclaved and stored at 4 ºC. 

 

2.1.1.8 Yeast Glucose (YG) Media 

 Yeast extract (5 g) (Oxoid Ltd., Basinstoke, Hampshire, England) and glucose (20 

g) were added to 800 ml dH2O and dissolved. The solution was made to 1 L with dH2O, 

autoclaved and stored at 4 ºC. 
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2.1.1.9 Sabourard- Dextrose Media 

 Sabourard-Dextrose media (30 g) (Oxoid Ltd., Basinstoke, Hampshire, England) 

was added to 1 L dH2O, and dissolved. The solution was autoclaved and stored at 4 ºC. 

 

2.1.1.10 RPMI Media 

 RPMI media (Gibco®, Invitrogen Life Sciences, California, USA) was 

supplemented with L- Glutamine (final concentration 20 mM) (Section 2.1.1.4.) and stored 

at 4 ºC. 

 

2.1.1.11 Czapek’s Broth   

 Czapek-Dox powder (30 g) (Difco, Maryland, USA) was added to 1 L dH2O, and 

dissolved. The solution was autoclaved and stored at 4 ºC. 

 

2.1.1.12 Czapek’s Agar  

 Czapek-Dox powder (30 g) (Difco, Maryland, USA) was added to 1 L of dH2O, and 

dissolved prior to the addition of agar (18 g) (Scharlau Chemie S.A., Barcelona, Spain). 

The solution was mixed and autoclaved and allowed to cool to ~50 ºC before being poured 

into 90 mm petri dishes, under sterile conditions. The plates were allowed to set and were 

stored at 4 ºC.  

 

2.1.1.13 MEM Media supplemented with 5 % (w/v) Foetal Calf Serum (FCS) 

 Minimal Essential Media (MEM) (Gibco®, Invitrogen Life Sciences, California, 

USA) was supplemented with FCS as required to a final concentration of 5 % (v/v), and 

stored at 4 ºC. 
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2.1.1.14 Aspergillus Transformation Regeneration Media 

 Ammonium tartrate (100 X, 10 ml) (Section 2.1.1.3), Aspergillus salt solution (20 

ml) (Section 2.1.1.2), glucose (10 g) and sucrose (342 g) were added to 800 ml dH2O and 

dissolved. The pH of the solution was adjusted to pH 6.8 and made up to 1 L with dH2O 

prior to the addition of agar (18 g) (Scharlau Chemie S.A., Barcelona, Spain). The solution 

was mixed and autoclaved and allowed to cool to ~50 ºC. The mixture was supplemented 

with desired drug for selection before being poured (25 ml) into 90 mm petri dishes, under 

sterile conditions. The plates were allowed to set and were stored at 4 ºC. 

 

2.1.1.15 Aspergillus Transformation Soft Agar 

 Ammonium tartrate (100 X, 10 ml), Aspergillus salt solution (20 ml), glucose (10 g) 

and sucrose (342 g) were added to 800 ml dH2O and dissolved. The pH of the solution was 

adjusted to pH 6.8 and made up to 1 L with dH2O prior to the addition of agar (7 g) 

(Scharlau Chemie S.A., Barcelona, Spain). The solution was mixed and autoclaved and 

allowed to cool to ~50 ºC before being poured (25 ml) into 90 mm petri dishes, under 

sterile conditions. The plates were allowed to set and stored at 4 ºC.  

 

2.1.1.16 Phosphate Buffered Saline (PBS) 

 One PBS tablet was added to 200 ml of dH2O, and dissolved by stirring. The 

solution was autoclaved and stored at room temperature. 
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2.1.1.17 Phosphate Buffer Saline/ 0.1 % (w/v) Tween-20 (PBST) NaCl (0.9 % w/v) 

 Tween-20 (0.1 ml) was added to 1 L PBS (Section 2.1.1.16). NaCl (9 g) was added 

and the solution was dissolved. The solution was autoclaved and stored at room 

temperature. 

 

2.1.1.18 Luria-Bertani (LB) Agar 

 LB agar (40 g) (Difco, Maryland, USA) was added to 1 L dH2O, and dissolved by 

stirring. The solution was autoclaved and allowed to cool to ~50 ºC before being poured 

(25 ml) into 90 mm petri dishes, under sterile conditions. The plates were allowed to set 

and were stored at 4 ºC. 

 

2.1.1.19 Luria-Bertani (LB) Broth 

 LB broth (25 g) (Difco, Maryland, USA) was added to 1 L dH2O, and dissolved by 

stirring. The solution was autoclaved and stored at 4 ºC. 

 

2.1.1.20 80 % (w/v) Glycerol 

  Glycerol (80 ml) was added to 20 ml dH2O. The solution was autoclaved, and 

stored at 4 ºC. 

 

2.1.1.21 40 % (w/v) Glycerol 

 Glycerol (40 ml) was added to 60 ml dH2O. The solution was autoclaved, and 

stored at 4 ºC.  
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2.1.1.22 YPD broth 

 BactoYeast™ Extract (10 g) BactoPeptone™ (20 g), and BactoDextrose™ (20 g) 

(Becton and Dickinson, France) were dissolved in 500 ml dH2O.  The volume was brought 

to 1 L with dH2O. The mixture was subsequently autoclaved and stored at room 

temperature. 

 

2.1.1.23 YPD Agar 

 A solution was prepared as for YPD broth (Section 2.1.1.22), and 20 g of Bacto 

agar (Difco) was added. The solution was autoclaved and allowed to cool to ~50 ºC before 

being poured (25 ml) into 90 mm petri dishes, under sterile conditions. The plates were 

allowed to set and were stored at 4 ºC. 

 

2.1.1.24 Dropout Mix 

 The drop-out mix used contained all of the ingredients listed in Table 2.1.  

 

2.1.1.25 Synthetic Complete Media (SC)  

 SC media was prepared by dissolving the following ingredients in 1 L dH2O: 6.7 g 

of Bacto-yeast nitrogen base without amino acids™ (Becton and Dickinson, France), 20 g 

glucose and 2 g Dropout mix (Section 2.1.1.24). The solution was autoclaved and stored at 

room temperature. 

 

2.1.1.26 Synthetic Complete Agar (SC) 

 SC agar was prepared as for SC media (Section 2.1.1.25) and 20 g of agar was 

added.  The solution was autoclaved and allowed to cool to ~50 ºC before being poured (25 
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ml) into 90 mm petri dishes, under sterile conditions. The plates were allowed to set and 

were stored at 4 ºC. 

 

2.1.1.27 Antibiotics and Plate Assay Supplements 

 Antibiotics and Plate Assay Supplements were prepared as stock solutions in water, 

methanol, ethanol or dimethyl sulfoxide (DMSO) and filter sterilised. All were stored at -20 

ºC. All antibiotics were supplied by Sigma-Aldrich. Further details are provided in Table 

2.2. 
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 Table 2.1. Components used to prepare Dropout Mix (Section 2.1.1.24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component added Amount added 

(g) 

Component added Amount added 

(g) 

Component added Amount added 

(g) 

Adenine 0.5 Lysine 2.0 Glycine 2.0 

Alanine 2.0 Methionine 2.0 Histidine 2.0 

Arginine 2.0 para-Aminobenzoic 

acid  

2.0 Inositol 2.0 

Asparagine 2.0 Phenylalanine 2.0 Isoleucine 2.0 

Aspartic Acid 2.0 Proline 2.0 Tyrosine 2.0 

Cysteine 2.0 Serine 2.0 Uracil 2.0 

Glutamine 2.0 Threonine 2.0 Valine 2.0 

Glutamic Acid 2.0 Tryptophan 2.0   
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Table 2.2. Additives and antibiotics used in this study (Section 2.1.1.27). 

Condition Tested Reagent added Concentrations Tested Stock Concentration 

Sensitivity to Oxidative Stress H2O2 1 mM, 2 mM, 3 mM 1 M stock prepared in H2O 

 Diamide 100 μM, 200 μM, 400 μM, 1 mM, 2 mM 1 M Diamide prepared in Methanol 

 Menadione 5 μM, 10 μM, 15 μM etc. up to 40 μM 10 mM Menadione prepared in 

Methanol 

Sensitivity to Anti-fungals Voriconazole 0.25 μg/ml, 0.5 μg/ml, 0.75 μg/ml, 1.0 

μg/ml 

0.5 mg/ml stock prepared in H2O 

 Caspofungin 0.2 µg/ml, 0.5 µg/ml, 1.0 µg/ml 350 µg/ml stock prepared in H2O 

 Amphotericin B 0.125 µg/ml, 0.25 µg/ml, 0.5 µg/ml, 1.0 

µg/ml 

250 µg/ml stock purchased 

commercially 

Cell Wall Stress Calcofluor White 100 µg/ml, 200 µg/ml 100 mg/ml stock prepared in H2O 

 Congo Red 5 µg/ml, 10 µg/ml, 15 µg/ml 50 mg/ml stock prepared in H2O 

 SDS 0.01 %, 0.02 % (w/v) 10 % (w/v) stock prepared in H2O 

 Caffeine 2 mM, 5 mM  0.5 M stock prepared in DMSO 

Heavy Metal Stress Cobalt Chloride 0.1 mM, 0.5 mM, 1 mM 0.5 M stock prepared in H2O 

Various Iron Conditions Iron Sulphate 

(FeSO4) 

BPS 

10 µM, 1.5 mM, 200 µM BPS 5 mM / 72 mM stock prepared in H2O

Gliotoxin Sensitivity Gliotoxin from 5 µg/ml, 10 µg/ml, 20 µg/ml 1 mg/ml stock prepared in Methanol 
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Condition Tested Reagent added Concentrations Tested Stock Concentration 

Gliocladium 

fimbriatum 

Phleomycin Sensitivity Phleomycin from 

Streptomyces 

verticillus 

2 µg/ml, 5 µg/ml, 10 µ/ml 25 mg/ml stock prepared in H2O 

Alkylating DNA damage N-Methyl-N’-Nitro-

Nitrosoguanidine 

(MNNG) 

0.5 µg/ml, 1.0 µg/ml, 2.0 µg/ml, 4 µg/ml 2 mg/ml stock in Methanol 

 Ethyl 

methanesulfonate  

(EMS) 

0.02 %, 0.04 %, 0.08 % (w/v) 200 mg/ml stock purchased 

commercially 

 Methyl 

methanesulfonate  

(MMS) 

0.01 %, 0.02 %, 0.04 % 200 mg/ml stock purchased 

commercially 

Pyrithiamine Resistance  Pyrithiamine 

Hydrochloride 

0.1 µg/ml 0.1 mg/ml in H2O 

Phleomycin Resistance Phleomycin 40 µg/ml 25 mg/ml in H2O 

Ampicillin resistance in E. coli  Ampicillin 0.1 mg/ml 0.1 g/ml in H2O 

http://en.wikipedia.org/wiki/Ethyl_methanesulfonate�
http://en.wikipedia.org/wiki/Ethyl_methanesulfonate�
http://nar.oxfordjournals.org/cgi/content/abstract/33/12/3799�
http://nar.oxfordjournals.org/cgi/content/abstract/33/12/3799�
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2.1.2 Molecular Biological Reagents 

 

2.1.2.1 Agarose Gel Electrophoresis Reagents 

2.1.2.1.1 50 X Tris-Acetate (TAE) 

 Trizma Base (242 g) was added to 57.1 ml glacial acetic acid and 100 ml of 0.5 M 

EDTA, pH 8.0. The volume was adjusted to 1 L with dH2O, and the solution was stored at 

room temperature. This solution was diluted to a 1 X concentration in dH2O before use. 

 

2.1.2.1.2 1 X Tris-Acetate (TAE) 

 50 X Tris-Acetate (Section 2.1.2.1.1) (40 ml) was added to 960 ml of dH2O and the 

solution was stirred and stored at room temperature. 

 

2.1.2.1.3 Ethidium Bromide Solution 

 Ethidium Bromide (0.1 mg) was added to 100 ml PBS (Section 2.1.1.16). The 

solution was stored at room temperature. 

 

2.1.2.1.4 SYBR® Safe DNA Gel Stain 

 A 10,000 X concentrate solution of SYBR® Safe was diluted into 1 % (w/v) 

agarose gel (Section 2.1.2.1.3) at a 1 X concentration. 

 

2.1.2.1.5 1 % (w/v) Agarose Gel 

 Agarose powder (1 g) was dissolved into 100 ml 1 X TAE (Section 2.1.2.1.2). This 

mixture was heated in a microwave oven until the agarose had dissolved and the mixture 

was molten. The solution was then air-cooled until hand-hot and was then poured into a gel 

casting tray. Immediately, either 3 µl Ethidium Bromide solution (Section 2.1.2.1.3), or 10 
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µl SYBR® SAFE DNA Gel Stain (Section 2.1.2.1.4) was added. Combs were then placed 

on top to create wells for sample loading. The gel was left to set for at least 30 minutes.  

 

2.1.2.2 DNA Reagents 

2.1.2.2.1 100 % (v/v) Ethanol (ice-cold) 

 Molecular Biology Grade Ethanol (100 % (v/v)) was poured into a sterile 50 ml 

falcon tube and stored at -20 ºC. 

 

2.1.2.2.2 70 % (v/v) Ethanol (ice-cold) 

 Molecular Biology Grade Ethanol (35 ml) was added to 15 ml of Molecular Biology 

Grade H2O in a sterile 50 ml falcon tube and the solution was stored at -20 ºC.  

 

2.1.2.2.3 3 M Na-acetate 

 Sodium acetate (12.3 g) was dissolved in 50 ml Molecular Grade H2O in a sterile 50 

ml tube. The solution was pH adjusted to pH 5.2 and stored at room temperature. 
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 Table 2.3. Primers used in this study. Primers named according to the gene of interest, e.g. Afpes3-x used for pes3 disruption 

 construct, while AfpesL-x used for pesL disruption construct. AFUA_5G06350 -x and AFUA_2G02090-x used for Afmpt and Afagt 

 disruption constructs respectively. 

Primer Name F/R Sequence 5’-3’ Used in PCR reaction 

oAfpes3-1 

oAfpes3-4 

F 

R 

gaggcggaacgttggaa 

cagtgctatgttccgccac 

PCR 1 / 1st Round PCR 

pes3 5’ DIG- probe 

oAfpes3-3 

oAfpes3-2 

F 

R 

ttggagatgcggtactcg 

aagctgcgcttcaacctc 

 

PCR 2 / 1st Round PCR 

oAfpes3-5 

oPtrA2 

F 

R 

ggaaccgatcactcaagac 

catcgtgaccagtggtac 

PCR 3 / 2nd Round PCR 

ptrA DIG probe 

oPtrA1 

oAfpes3-6 

F 

R 

gaggacctggacaagtac 

cgacgtagatgagcgatc 

ptrA DIG probe 

PCR 4 / 2nd Round PCR 

oAfpes3-5 

Afpes3Comp1 

F 

R 

ggaaccgatcactcaagac 

ccagagatcggctaagtgtca 

 

pes3-left 

Afpes3Comp2 

oAfpes3-6 

F 

R 

cggaggttttattagacgcctg 

cgacgtagatgagcgatc 

 

pes3-right 

pes3RT-F 

pes3RT-R 

F 

R 

ctctggcactcctccaagtc 

agcaatctatcccacggatg 

 

pes3 RT-PCR 

oAfpes3-5 

oAfpes3-6 

F 

R 

ggaaccgatcactcaagac 

cgacgtagatgagcgatc 

 

3.7kb pes3 replacement construct 
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Primer Name F/R Sequence 5’-3’ Used in PCR reaction 

calm F 

calm R 

F 

R 

ccgagtacaaggaagctttctc 

gaatcatctcgtcgattcgtcgtctcagt 

calm RT-PCR 

oAfpesL-1 

oAfpesL-4 

F 

R 

gtctatcagcacacccttaccg 

aatctgcaggacaacgcagcatcaagg 

PCR 1  

 

oAfpesL-3 

oAfpesL-2 

F 

R 

cctgttgctcgacattcc 

aactccgcttcacagacc 

PCR 2 

pesL 3’ DIG- probe  

oAfpesL-5 

oPtrA2 

F 

R 

gattctgccttggatgcg 

catcgtgaccagtggtac 

 

PCR 3  

oPtrA1 

oAfpesL-6 

F 

R 

gaggacctggacaagtac 

tcaggtcccttctcacac 

 

PCR 4  

pesLRT-F 

pesLRT-R 

F 

R 

gggccgctatataccacaga 

aagaggagtgccaccaacac 

 

pesL RT-PCR 

AFUA_6G12040 RT-F 

AFUA_6G12040 RT-R 

F 

R 

tctatgccacggttggtgta 

attgcccgaatcgacattat 

AFUA_6G12040 RT-PCR 

AFUA_6G12060 RT-F 

AFUA_6G12060 RT-R 

F 

R 

gtgtctttgcgtttcccaat 

atgtgtcctccacccgataa 

AFUA_6G12060 RT-PCR 

AFUA_6G12070 RT-F 

AFUA_6G12070 RT-R 

F 

R 

tcatggggtccaatgaagat 

tggctgcatctgttcttctg 

AFUA_6G12070 RT-PCR 

AFUA_6G12070 RT-F 

AFUA_6G12070 RT-R 

F 

R 

tcatggggtccaatgaagat 

tggctgcatctgttcttctg 

AFUA_6G12070 RT-PCR 
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Primer Name F/R Sequence 5’-3’ Used in PCR reaction 

AFUA_5G06350 -1 

AFUA_5G06350 -2 

F 

R 

gagggcaagaccagaatcaa 

ggacaattggtaacccagga 

PCR 1 

5’ DIG probe 

AFUA_5G06350 -3 

AFUA_5G06350 -4 

F 

R 

gctaagcttctgccttcaacct 

cctcttggcaggattgtctc 

PCR 2 

AFUA_5G06350 -5 

AFUA_5G06350 -6 

F 

R 

gtaccgacaagcctctgctc 

ggatgacaagcggagttgat 

PCR 3, 5’ DIG probe 

PCR 4 

AFUA_5G06350 –RT-F 

AFUA_5G06350 –RT-R 

F 

R 

tctatgacacgccctcacag 

atctaaaccgcccaagaggt 

AFUA_5G06350 RT-PCR 

AFUA5G06350 PC210 F 

AFUA5G06350 PC210 –R 

F 

R 

gggtttcatatgcatgtggtcgatgattca 

gcacatgcatgcctattgtacttcgtctgg 

Cloning AFUA_5G06350 into 

pPC210 

AFUA_2G02090-1 

AFUA_2G02090-2 

F 

R 

tacaccgaaggactgggtct 

gctccccccgggctcttctgcaagtattgg 

PCR 1 , 5’ DIG probe 

 

AFUA_2G02090-3 

AFUA_2G02090-4 

F 

R 

gagggtaccgaatgatctgg 

tggggcctattacctctcaa 

PCR 2 

AFUA_2G02090-5 

AFUA_2G02090-6 

F 

R 

caggagtaccgcaccaagat 

tcttcgtcgagatggagctt 

PCR 3 

PCR 4 

AFUA_2G02090-RT-F 

AFUA_2G02090-RT-R 

F 

R 

catcccaccctaacccctta 

agccgcttctcaacctgata 

AFUA_2G02090 RT-PCR 

AFUA_2G02090 PC210 F 

AFUA_2G02090 PC210 R 

F 

R 

gggtttcatatgagaaccaagcagtcccca 

gcacatgcatgcctactttccactccccaa 

Cloning AFUA_2G02090 into 

pPC210 
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2.1.3 Aspergillus Transformation Buffers 

2.1.3.1 Lysis Buffer 

 A 50 mM KH2PO4 solution was prepared by dissolving 1.70 g KH2PO4 in 500 ml 

dH2O (Buffer L1). A 50 mM K2HPO4 was prepared by dissolving 0.87 g K2HPO4 in 200 

ml dH2O (Buffer L2). A 0.8 M solution of KCl was prepared by dissolving 26.1 g of KCl in 

350 ml Buffer L1. This solution was pH adjusted to pH 5.8 using Buffer L1 and Buffer L2. 

The solution was brought to a final volume of 500 ml with dH2O. This solution was 

autoclaved and stored at room temperature. 

 

2.1.3.2 Mycelial lysing solution 

 An enzyme preparation was purchased from Sigma-Aldrich (Lytic Enzymes from 

Trichoderma harzianum Cat. No. L1412) which contains β-glucanase, cellulase, protease, 

and chitinase activities. Lytic Enzymes (0.9 g) were dissolved in 30 ml of Lysis Buffer 

(2.1.3.1). This solution was stirred and filtered through a 0.45 µm filter. 

 

2.1.3.3 0.7 M KCl 

 KCl (26.1 g) was dissolved into 500 ml dH2O. This solution was autoclaved and 

stored at room temperature. 

 

2.1.3.4 L6 Buffer 

 A solution of 1 M sorbitol, 10 mM Tris-HCl and 10 mM CaCl2 was prepared by 

dissolving 72.88 g sorbitol, 0.484 g Tris-HCl and 0.876 g CaCl2.6H2O into 300 ml dH2O. 

This solution was adjusted to pH 7.5. The solution was then brought to a final volume of 

400 ml with dH2O. The solution was then autoclaved and stored at room temperature. 
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2.1.3.5 L7 Buffer 

 PEG 6000 (60 g) was dissolved in 40 ml dH2O. To this, 0.157 g Tris-HCl was 

added and dissolved (final concentration 10 mM Tris-HCl). The solution was adjusted to 

pH 7.5. The solution was then autoclaved and stored at room temperature. 

 

2.1.4 Southern and Northern Blotting Reagents 

2.1.4.1 Southern Transfer Buffer 

 A 0.4 M NaOH / 0.6 M NaCl solution was prepared by dissolving 16 g NaOH 

pellets and 35.06 g NaCl in 1 L dH2O. The solution was prepared freshly prior to each 

Southern blot procedure. 

 

2.1.4.2 20 X SSC Buffer 

 NaCl (175.3 g) and 88.2 g sodium citrate was dissolved into 800 ml dH2O. The 

solution was pH adjusted to pH 7.0 and the final volume was brought to 1 L with dH2O. 

The solution was autoclaved and stored at room temperature. 

 

2.1.4.3 10 X SSC Buffer 

 20 X SSC Buffer (Section 2.1.4.2) (500 ml) was added to 500 ml dH2O and stirred. 

The solution was stored at room temperature. 

 

2.1.4.4 2 X SSC Buffer 

 20 X SSC Buffer (Section 2.1.4.2) (100 ml) was added to 900 ml dH2O and stirred. 

The solution was stored at room temperature. 
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2.1.4.5 10 % (w/v) Sodium Dodecyl Sulphate (SDS) 

 SDS (100 g) was dissolved into 1 L dH2O. The solution was stored at room 

temperature. 

 

2.1.4.6 0.1 % (w/v) SDS / 1 X SSC buffer 

 20 X SSC (Section 2.1.4.2) (50 ml) and 10 ml of 10 % (w/v) SDS (Section 2.1.4.5) 

were dissolved in 1 L dH2O. The solution was prepared freshly prior to each use and stored 

at room temperature. 

 

2.1.5 Digoxigenin (DIG) Detection Buffers 

2.1.5.1 Membrane Pre-Hybridisation Buffer 

 SDS (35 g), 250 ml Formamide (deionised), 100 ml 10% (w/v) Blocking reagent 

(Roche), 5 ml 10% (w/v) Laurylosarcosine were dissolved in 500 ml dH2O. The solution 

was stirred well and autoclaved. The solution was stored at 4 ºC.  

 

2.1.5.2 DIG Buffer 1 

 Maleic acid (1.161 g) and NaCl (0.876 g) were dissolved in 80 ml dH2O. The 

solution was pH adjusted to pH 7.5 and the final volume was brought to 100 ml with dH2O. 

The solution was filter sterilized and stored at room temperature for a maximum of one 

month. 

 

2.1.5.3 Antibody Blocking Buffer 

 Blocking reagent (0.4 g) (Roche) was dissolved at 50 ºC into 40 ml DIG Buffer 1 

(Section 2.1.5.2). The solution was prepared freshly before each use. 
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2.1.5.4 DIG Buffer 3 

 Tris-HCl (1.57 g), 0.58 g NaCl and 1.01 g MgCl2.6H2O were dissolved into 80 ml 

dH2O. The solution was pH adjusted to pH 9.5 and the final volume was brought to 100 ml 

with dH2O. The solution was filter sterilized and stored at room temperature for a 

maximum of one month. 

 

2.1.5.5 DIG Wash Buffer 

 Tween-20 (0.15 g) was dissolved into 50 ml DIG Buffer 1 (Section 2.1.5.2). This 

solution was prepared in a 50 ml falcon tube and stored at room temperature. 

 

2.1.5.6 Anti-DIG FaB Fragments 

 Anti-DIG FaB Fragments (1 µl) (Roche) was added to 10 ml Antibody Blocking 

Buffer (Section 2.1.5.3). This solution was prepared freshly in a 50 ml falcon tube prior to 

each use. 

 

2.1.5.7 CSPD chemiluminescent substrate 

 CSPD (50 µl) (Roche) was added to 4.95 ml DIG Buffer 3 (Section 2.1.5.4). This 

solution was prepared freshly in a 50 ml falcon tube prior to each use.  

 

2.1.5.8 DIG-labelled deoxynucleotide Triphosphates (dNTP’s) 

 Pre-mixed DIG-labelled dNTP’s were purchased from Roche and used according to 

supplier recommendations for the generation of DIG-labelled probes for Southern blot 

detection. 
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2.1.6 Blot Development Solutions 

2.1.6.1 Developing Solution 

 Developing solution (200 ml) (Kodak) was added to 400 ml dH2O in a Duran bottle 

covered in tin foil and stirred. The solution was stored at room temperature in the dark. 

 

2.1.6.2 Fixing Solution 

 Fixing solution (150 ml) (Kodak) was added to 450 ml dH2O in a Duran bottle 

covered in tin foil and stirred. The solution was stored at room temperature in the dark. 

 

2.1.7 RNA Reagents 

2.1.7.1 RNA Glassware 

 All glassware required for RNA reagent preparation and RNA extraction was 

autoclaved twice before use. 

 

2.1.7.2 10 X Formaldehyde Agarose (FA) Gel Buffer 

 MOPS (41.9 g) (0.2 M), sodium acetate (6.8 g) (82mM) and 0.5 M EDTA pH 8.0 

(20 ml) were dissolved in 800 ml double autoclaved dH2O. The pH of the solution was 

adjusted to pH 7.0 and the final volume was adjusted to 1 L with double autoclaved dH2O. 

The solution was then autoclaved and stored at room temperature. 

 

2.1.7.3 1 X Formaldehyde Agarose (FA) Running Buffer 

 FA gel buffer (10 X, 100 ml), 37 % (v/v) (12.3 M) formaldehyde (20 ml) and 

double autoclaved dH2O were added to an autoclaved 1 L Duran bottle (Section 2.1.10.2). 

The solution was stirred and stored at room temperature. 
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2.1.8 Reverse-Phase High Performance Liquid Chromatography (RP-HPLC) Solvents 

2.1.8.1 RP-HPLC Running Solvents 

2.1.8.1.1 Solvent A  

  Trifluoroacetic acid (TCA) (1 ml) was added to 999 ml of HPLC grade water to 

yield a solution 0.1 % (v/v) of TCA and water. The solution was prepared freshly before 

each use. 

 

2.1.8.1.2 Solvent B 

 Trifluoroacetic acid (1 ml) (TCA) was added to 999 ml of HPLC grade acetonitrile 

to yield a solution of 0.1 % (v/v) of TCA and acetonitrile. The solution was prepared 

freshly before each use. 

 

2.1.8.2 RP-HPLC Sample Preparation Reagents/Extraction Mixtures 

2.1.8.2.1 Acetronitrile/H2O Extraction Mixture 

 A 25 % (v/v) acetonitrile extraction reagent was prepared. HPLC grade acetonitrile 

(25 ml) was added to 75 ml HPLC grade water and mixed. The solution was prepared 

freshly before use. 

 

2.1.8.2.2 Ethyl Acetate: Dichloromethane: Methanol Extraction Mixture 

 A 3:2:1 dilution of ethyl acetate: dichloromethane: methanol was prepared using 

HPLC grade solvents as follows: 30 ml of ethyl acetate, 20 ml dichloromethane and 10 ml 

methanol were placed in a Duran bottle and mixed. This reagent was prepared freshly 

before each use or was stored at 4 ºC for 1 week. 
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2.1.9 E. coli Competent Cell Buffers 

2.1.9.1 RF 1 

 Potassium acetate (1.47 g), 0.75 g of calcium chloride (CaCl2.2H2O), and 75 g of 

glycerol were dissolved sequentially in 450 ml dH2O. The pH was adjusted to 5.92 and then 

the following components were added: 6 g of rubidium chloride (RbCl) and 4.95 g of 

manganese chloride (MnCl2.4H2O). The volume was adjusted to 500 ml with dH2O, and 

the solution was filter sterilized and stored at 4 ºC.  

 

2.1.9.2 RF 2 

 Rubidium chloride (0.6 g), 5.5 g of calcium chloride (CaCl2.2H2O), 1.05 g of 3-(N-

Morpholinopropanesulfonic acid (MOPS), and 75 g of glycerol were sequentially dissolved 

in 450 ml dH2O. The pH of the solution was adjusted to 6.8. The volume was brought to 

500 ml with dH2O, and the solution was filter sterilized and stored at room temperature. 

 

2.1.10 Yeast Transformation Buffers 

2.1.10.1 50 % (w/v) Polyethylene Glycol (PEG) 

 PEG (50 g) was dissolved in 100 ml dH2O. The solution was autoclaved and stored 

at 4 ºC. 

 

2.1.10.2 1 M Lithium Acetate  

 Lithium acetate (6.59 g) was dissolved in 100 ml dH2O. The solution was 

autoclaved and stored at room temperature. 
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2.1.10.3 100 mM Lithium Acetate  

 Lithium acetate (0.659 g) was dissolved in 100 ml dH2O. The solution was 

autoclaved and stored at room temperature. 

 

2.1.10.4 Carrier DNA for transformation 

 Salmon sperm carrier DNA (Sigma) was used at a concentration of 2mg/ml in dH2O 

in all yeast transformations.  
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2.2 Methods 

2.2.1 Microbiological Methods – Strain Storage and Growth 

 Fungal strains used in this study are listed in Table 2.4. Yeast strains used in the 

study are listed in Table 2.5. E. coli DH5α was used throughout this study for plasmid 

propagation. 

 

2.2.1.1 A. fumigatus growth, maintenance and storage 

 A. fumigatus strains were stored on either Malt extract agar (Section 2.1.1.5) or on 

AMM (Aspergillus minimal media) agar (Section 2.1.1.6). To culture fungal strains on 

agar, a loop of spores from a spore solution was spread around a culture plate and plates 

were incubated at 37 ºC in a static incubator in the dark for 5-7 days. Once grown, conidia 

were harvested from plates for immediate use. Freshly grown spores were harvested from 

plates by adding 10 ml sterile PBST (Section 2.1.1.17) to the conidiating culture and 

rubbing the surface with the side of a sterile Pasteur pipette to dislodge the spores. The 

spore suspension was then collected with the sterile Pasteur pipette and placed in a sterile 

50 ml tube. Spores were either used immediately or were stored at 4 ºC.  A. fumigatus 

conidial suspensions (usually at a density of x 107 spores/ml) were used to inoculate liquid 

media cultures for relevant experiments. The cultures were incubated for a defined time 

point, with shaking at 200 rpm. Subsequently, overnight cultures were harvested by 

filtering the mycelia through sterile miracloth. Sterile water was used to wash media from 

the mycelia, and the mycelia were then scraped from the miracloth using a sterile spatula 

and were either used immediately or wrapped in two layers of tin foil. The wrapped 

mycelia were then placed into a container of liquid nitrogen and rapidly frozen. At this 

point, mycelia were frozen at -70 ºC until required. For long term storage of fungal strains, 

aliquots of the conidial suspensions in PBST (800 µl) (Section 2.1.1.17) were added to 200 
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µl of sterile 80 % (v/v) glycerol (Section 2.1.1.20) in sterile 1.5 ml tubes. Tubes were 

vortexed and rapid-frozen in liquid nitrogen before transferring to – 80 ºC.  

 

2.2.1.2 E. coli growth, maintenance and storage 

 E. coli strains were grown on LB agar (Section 2.1.1.18) overnight at 37 ºC or in LB 

broth (Section 2.1.1.19) at 37 ºC, shaking at 200 rpm. Where appropriate, media was 

supplemented with suitable antibiotics. Bacterial strains were stored at 4 ºC for short term 

storage. For long term storage, 500 µl of freshly grown liquid culture of the desired strain 

(with plasmid(s) where appropriate), were mixed with an equal volume of 40 % (v/v) 

glycerol (Section 2.1.1.21) in a screw cap 1.5 ml eppendorf tube. Tubes were rapid-frozen 

in liquid nitrogen before transferring to – 80 ºC. To regenerate bacterial strains, tubes were 

removed from – 80 ºC and placed on ice. A cooled sterile loop was scraped across the 

surface of the frozen culture and streaked onto a LB agar plate with appropriate antibiotics. 

Tubes were then re-frozen in liquid nitrogen and returned to – 80 ºC. Fresh glycerol stocks 

were prepared as required to avoid loss of viability from numerous freeze-thaw cycles. 
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2.2.1.3 Yeast growth, maintenance and storage 

 Saccharomyces cerevisiae strains were grown on YPD agar plates (Section 

2.1.1.23) at 30 ºC in a static incubator in the dark for 2 days. For liquid cultures, yeast 

strains were grown in YPD broth (Section 2.1.1.22) at 30 ºC shaking with 200 rpm. Where 

yeast strains contained plasmids, such strains were grown in SC media (Section 2.1.1.25) or 

on SC agar (Section 2.1.1.26) lacking an appropriate amino acid to ensure plasmid 

maintenance. Yeast strains were stored at 4 ºC for short term storage. For long term storage, 

500 µl of freshly grown liquid culture of the desired strain (with plasmid(s) where 

appropriate), were mixed with an equal volume of 40 % (v/v) glycerol (Section 2.1.1.21) in 

a screw cap 1.5 ml eppendorf tube. Tubes were rapid-frozen in liquid nitrogen before 

transferring to – 80 ºC. To regenerate yeast strains, tubes were removed from – 80 ºC and 

placed on ice. A cooled sterile loop was scraped across the surface of the frozen culture and 

streaked onto an SC agar plate lacking appropriate amino acids. Tubes were then re-frozen 

in liquid nitrogen and returned to – 80 ºC. Fresh glycerol stocks were prepared as required 

to avoid loss of viability from numerous freeze-thaw cycles. 
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Table 2.4. List of fungal strains used in this study. 

Strain used Genotype Reference 

Aspergillus fumigatus ATCC 46645 Wild-type ATCC collection  

Aspergillus fumigatus Af293 Wild-type fully genome-sequenced strain Nierman et al., (2005) 

Aspergillus fumigatus CEA17  ΔakuB (NHEJ-deficient strain) da Silva Ferreira et al., 2006 

Aspergillus fumigatus ∆pesL ∆pesL::ptrA in the akuB(∆KU80) background. This study 

Aspergillus fumigatus ∆pes3 ∆pes3::ptrA in the ATCC 46645 background. Dr. Deirdre Stack, NUI Maynooth 

Aspergillus fumigatus ∆pes3::PES3 ∆pes3ATCC 46645::pes3-phleomycin (pes3 disruption 
restored) 

This study 

Aspergillus fumigatus ∆Afmpt ∆Afmpt::ptrA in the Af293 background This study 

Aspergillus fumigatus ∆Afagt ∆Afagt::ptrA in the Af293 background This study 
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 Table 2.5. List of yeast strains used in this study 

Strain Used Genotype Source 

S. cerevisiae BY4741  (Mat a; his3D1; leu2D0; met15D0; ura3D0; 

YDL200c::kanMX4)  

YDL200 = A. fumigatus AFUA_5G06350 homologue, and 

is deleted in this S. cerevisiae strain 

European Saccharomyces 

cerevisiae archive for functional 

analysis. (Euroscarf) 

S. cerevisiae  

SC + Afmpt 

S. cerevisiae ∆MGT1 bearing a plasmid-borne copy of A. 

fumigatus AFUA_5G06350 (Afmpt) 

This study 

S. cerevisiae  

SC + Afagt 

S. cerevisiae ∆MGT1 bearing a plasmid-borne copy of A. 

fumigatus AFUA_2G02090 (Afagt) 

This study 

 

 . 
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2.2.2 Molecular Biological Methods 

2.2.2.1 Isolation of Genomic DNA from A. fumigatus  

 A. fumigatus conidial suspensions were used to inoculate 100 ml Sabourard liquid 

(Section 2.1.1.9) cultures. The cultures were incubated overnight at 37 ºC shaking at 200 

rpm. Subsequently, overnight cultures were harvested by filtering the mycelia through 

sterile miracloth. Sterile water was used to wash media from the mycelia, and the mycelia 

were then removed from the miracloth using a sterile spatula and wrapped in two layers of 

tin foil. The wrapped mycelia were then placed into a container of liquid nitrogen and 

rapidly frozen. At this point, mycelia were either frozen at -70 ºC until required or DNA 

isolation was carried out on the day. For DNA isolation, the ZR Fungal/Bacterial DNA 

Kit™ (Zymo Research U.S.A.) was used with reagents and columns supplied with the kit 

and following the manufacturer’s instructions. All buffer constituents (Lysis Solution, 

Fungal/Bacterial DNA Binding Buffer, DNA Pre-Wash Buffer and Fungal/Bacterial DNA 

Wash Buffer) are described in the ZR Fungal/Bacterial DNA kit manual supplied with the 

kit. Briefly, the frozen mycelia were crushed to a powdery consistency with a pestle and 

100 mg of this was added to a ZR BashingBead™ Lysis Tube. Lysis Solution (750 µl) was 

added to the tube. The tubes were vortexed at high speed for ten min to disrupt the mycelial 

cell walls. The ZR BashingBead™ Lysis Tube was centrifuged in a microcentrifuge at 

10,000 x g for 1 min. Subsequently, 400 µl of the supernatant was added to a Zymo-Spin™ 

IV Spin Filter in a collection tube and this was centrifuged at 7,000 x g for 1 min. After this 

centrifugation step, 1,200 µl of Fungal/Bacterial DNA Binding Buffer was added to the 

filtrate in the collection tube and mixed. Subsequently, 800 µl of this mixture was added to 

a Zymo-Spin™ IIC Column in a new collection tube and this was centrifuged at 10,000 x g 

for 1 min. The flow-through was discarded and this step was repeated with the remaining 

800 µl that was left from the DNA binding step. DNA Pre-Wash Buffer (200 µl) was added 
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to the Zymo-Spin™ IIC Column in a new collection tube and this was centrifuged at 

10,000 x g for 1 min. The flow-through was discarded and 500 µl of Fungal/Bacterial DNA 

Wash Buffer was added to the Zymo-Spin™ IIC Column and then centrifuged at 10,000 x 

g for 1 min. Following these wash steps, the Zymo-Spin™ IIC Column was transferred to a 

sterile 1.5 ml microcentrifuge tube. Sterile water (100 µl) was added to the centre of the 

column in order to elute the DNA. The DNA was eluted by centrifuging at 10,000 x g for 1 

min and collected in the 1.5 ml microcentrifuge tube. 

 

2.2.2.2 Precipitation of A. fumigatus genomic DNA  

 Sterile water was added to genomic DNA in a 1.5 ml microcentrifuge tube until the 

final volume in the tube was 100 µl. Sodium acetate (10 µl) (Section 2.1.2.2.3) and 250 µl 

of ice-cold ethanol (100 % (v/v)) was added and samples were mixed by inversion. 

Samples were incubated for at least an hour at – 20 ºC. Subsequently, samples were 

centrifuged at 13,000 x g for 10 min at 4 ºC. The supernatants were discarded and 70 % 

ethanol (v/v) (100 µl) (Section 2.1.2.2.2) was added to the tube. The samples were handled 

carefully at this point so as not to disturb the DNA pellet. Subsequently, the samples were 

centrifuged at 13,000 x g for 10 min at 4 ºC. The supernatant was discarded and a quick 

spin on the microcentrifuge was performed (10,000 x g, 15 sec). Residual ethanol 

remaining in the tube was removed by pipetting, taking care not to disturb the pellet. The 

pellet was air-dried and resuspended in 16 µl sterile water. 

 

2.2.2.3 Polymerase Chain Reaction (PCR) 

 Polymerase chain reaction (PCR) was used to amplify fragments of DNA for 

cloning, to test E. coli for recombinant plasmids, for generation of A. fumigatus gene 

disruption constructs, and for the generation of DIG-labelled DNA probes for use in 
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Southern blot analysis. PCR for the generation of gene disruption constructs and the 

generation of DIG-labelled DNA probes was performed using the Expand Long Range 

Template system (Roche). All other PCR was carried out using AccuTaq LA polymerase 

(Sigma) where the DNA amplified was to be used for cloning. For testing E. coli for 

recombinant plasmids, a Taq polymerase (Sigma-Aldrich) was used. The general reaction 

constituents for each polymerase used was as follows: 

 

Expand Long Range Template system 

10x reaction buffer  5 µl 

dNTP mix (20 µM)  5 µl 

Primer 1 (100 pmol/µl) 2 µl 

Primer 2 (100 pmol/µl) 2 µl 

DNA Template  Up to 500 ng 

Sterile Water   to a total of 50 µl 

 

AccuTaq LA polymerase 

10X reaction buffer  2 µl 

dNTP mix (10 µM)  2 µl 

Primer 1 (100 pmol/µl) 1 µl 

Primer 2 (100 pmol/µl) 1 µl 

DMSO    0.8 µl 

DNA template   10-100 ng 

Sterile water   to a total of 20 µl 
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Taq polymerase 

10X reaction buffer  2 µl 

dNTP mix (10 µM)  2 µl 

Primer 1 (100 pmol/µl) 1 µl 

Primer 2 (100 pmol/µl) 1 µl 

DNA template   10-100 ng 

Sterile water   to a total of 20 µl 

 

The following reaction cycle was used unless otherwise stated: 

95 ºC (denaturing)  5 min 

95 ºC (denaturing)  1 min 

55 ºC (annealing)  1 min 30 sec 

72 ºC (extending)  1 min 

72 ºC (extending)   10 min 

  

 Annealing temperatures were estimated as ca. 4 ºC below the lowest melting 

temperature (Tm) of the primer pair used. Extension times used were ca. 1 min/kb of DNA 

target to be amplified. When AccuTaq was used, extension temperature was reduced to 68 

ºC as per supplier recommendations. Reactions were carried out using an Eppendorf PCR 

machine or a G-Storm Thermal Cycler (Mason Technologies) 

 

2.2.2.4 DNA Gel Electrophoresis 

2.2.2.4.1 Preparation of Agarose Gel 

 Agarose gel electrophoresis was used to visualise PCR products, restriction digest 

reactions, to separate DNA for Southern analysis, to separate differently sized DNA 

fragments prior to purification and for estimation of DNA yield. Agarose gels were cast and 

X 30-40 cycles 
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run using Bio-Rad electrophoresis equipment. Agarose gels of between 0.7 % -2 % (w/v) in 

1X TAE (Section 2.1.2.1.2) buffer were used, although for most applications, a 1 % (w/v) 

gel strength was suitable. Powdered agarose was added to the appropriate volume of 1X 

TAE buffer in a 200 ml flask with a loose stopper. This was then gently heated in a 

microwave oven, with frequent mixing, until the agarose had dissolved. While allowing the 

gel to cool, a mould was prepared by sealing the ends of a gel tray with masking tape, and 

inserting a gel comb. After allowing the gel to cool to 40-50 ºC, 5 µg/ml ethidium bromide 

(Section 2.1.2.1.3) or Sybr-Green (1 µl/10 ml) (Section 2.1.2.1.4) was added and mixed by 

swirling. The molten gel was then poured into the prepared mould, and was allowed to set 

on a level surface. Once set, the gel comb and masking tape were removed gently, and the 

gel tray placed into the gel tank, with the wells nearer the negative (black) electrode. 1X 

TAE buffer was then poured into the gel tank to fully submerge the gel. 

 

2.2.2.4.2 Loading and Running Samples 

 In order to apply DNA samples to the wells in the agarose gel, samples were first 

mixed with 6X loading dye (Promega). DNA fragment size was estimated by running 

molecular weight markers alongside the unknown samples. Three different molecular 

weight markers were used throughout this study; marker VII and marker VII (DIG-labelled) 

(Roche) and 50 bp DNA ladder (Sigma-Aldrich). Gels were electrophoresed at 50-100 volts 

for 30-60 min. 

 

2.2.2.5 DNA Gel Extraction 

 DNA gel extraction was carried out using the QIA quick gel extraction Kit (Qiagen, 

U.K.) using reagents and columns supplied with the kit and following the manufacturer’s 

instructions. All buffer constituents (PE buffer) are described in the Qia quick spin 
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handbook supplied with the kit. DNA fragments were excised from the agarose gel using a 

sterile blade and the gel piece placed in a sterile pre-weighed microfuge tube and weighed. 

For every 1 volume of gel, 3 volumes of Buffer QG were added. Samples were incubated 

for 10 min at 50 ºC in a heating block, vortexing the samples every 2 min. When the gel 

had fully dissolved, the solution was transferred to the QIA quick spin column placed in a 2 

ml collection tube. The samples were centrifuged at 12,000 x g for 1 min and the flow-

through removed. Buffer PE (750 µl) was applied to the column and centrifuged at 12,000 

x g for 1 min and the flow-through once again removed. A further centrifugation step was 

carried out at 12,000 x g for 1 min to remove any residual ethanol from the column and the 

column was placed in a sterile 1.5 ml microfuge tube. To elute DNA, 30 µl of sterile water 

was added to the centre of the column membrane and the column was allowed to stand for 

2 min. A final centrifugation step (12,000 x g for 1 min) was carried out and DNA collected 

in the microfuge tube was analysed by agarose gel electrophoresis. 

 

2.2.2.6 Restriction Enzyme Digests 

 Restriction enzymes, 10 X reaction buffers, and bovine serum albumin (BSA) were 

obtained from either Promega or New England Biolabs. Reactions were carried out 

according to the manufacturer’s instructions, but a typical reaction was performed as 

follows: 

DNA    1-5 µg 

Enzyme 1   1 µl 

Enzyme 2   1 µl 

10 x buffer   2.5/5 µl 

10 x BSA    2.5/5 µl 

Sterile water   to a total of 25/50 µl 
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 The total reaction was always > 10 X the volume of enzyme used in order to 

prevent high glycerol concentrations, which could cause non-specific digestion (star 

activity). Reactions were typically carried out at 37 ºC for 3 hr, although some enzymes 

require different incubation temperatures, as per the manufacturer’s instructions. Digestion 

reactions were visualised by agarose gel electrophoresis. 

 

2.2.2.7 Ligation of DNA Fragments 

 Ligation of DNA fragments was required for the generation of gene disruption 

constructs and for the cloning of A. fumigatus genes into vectors suitable for expression in 

S. cerevisiae yeast strains. DNA was digested (Section 2.2.2.6) to produce compatible 

fragments. These fragments were then separated by DNA gel electrophoresis (Section 

2.2.2.4) and the DNA isolated from the gel (Section 2.2.2.5). Ligation of DNA fragments 

was carried out using the Ligafast™ Rapid DNA Ligation System (Promega) which 

employs T4 DNA ligase. Ligations were carried out according to manufacturer’s 

instructions. Restriction digests either produce a DNA fragment with an overhang of single-

stranded DNA at either end of the double-stranded section, known as cohesive ends, or 

blunt ended molecules, which have no such overhangs. Creation of recombinant molecules 

for cloning genes into plasmid vectors usually involved the ligation of a smaller fragment to 

a larger fragment (backbone). For cohesive ended ligation, the preferred molecular ratio of 

was 3 insert to 1 backbone. This was estimated from the size of the DNA fragments, 

according to the following formula: 

 

(ng of vector)* (kb size of insert)       *     _3_               = ng of insert 

kb size of            1 
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 Ligations were assembled in a sterile 0.5 ml using 50-200 ng of vector DNA, T4 

DNA ligase (1 µl), and 2X Rapid Ligation Buffer. For ligations where inserts were ligated 

to vectors, a control ligation was also carried out whereby the insert DNA was ommited 

from the reaction. For the generation of linear DNA constructs for gene disruptions, a 1:1 

ratio of each molecule was used and this was estimated again based on the size of the DNA 

fragments, according to the formula described above. Ligation reactions containing 

cohesive-ended molecules were usually incubated for 10 min- 1 hr at 20 ºC, while for linear 

constructs for gene disruption cassettes, and ligations containing blunt-ended molecules, 

reactions were usually incubated overnight at 20 ºC. All ligation reactions were carried out 

in a thermal cycler to ensure constant temperature. 

 

2.2.3 Generation of Aspergillus fumigatus mutant strains 

2.2.3.1 Generation of A. fumigatus gene disruption constructs 

 A bipartite gene disruption strategy was employed for the generation of all A. 

fumigatus mutant strains used in this study. The use of the bipartite method allows the 

generation of gene replacement substrates by PCR and a ligation step, thereby abrogating 

the need for time-consuming bacterial sub-cloning steps (Nielsen et al., 2006). More 

specifically, this strategy involves the generation of two overlapping constructs, each 

containing partial fragments of a selection marker gene which are ligated to 5’ and 3’ 

flanking regions of the specific gene of interest (GOI). In this study, the pyrithiamine (PT) 

resistance gene (ptrA) gene from Aspergillus oryzae (Kubodera et al., 2000; 2002) was 

used as the selection marker. ptrA was present on a plasmid vector pSK275 (a kind gift 

from Professor Sven Krappmann), and was released by digestion with appropriate 

restriction enzymes (Section 2.2.2.6). Respective GOI fragments were amplified from A. 

fumigatus genomic DNA by PCR (Section 2.2.2.3). Usually about 1-1.2 kb of 5’ and 3’ 
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flanking regions were amplified in these PCR reactions. The resulting products of these 

PCR reactions were digested with the same enzymes as ptrA to make the ends compatible 

for ligation (Section 2.2.2.7). Ligation products were used as the DNA template for a 

second round of PCR reactions, this time using primers that would amplify the majority of 

the flanking region, while only amplifying a portion of ptrA. A schematic representation of 

the bipartite gene deletion strategy is shown in Figure 2.1.  

 PCR reactions for Round 1 and Round 2 PCR were performed using the Expand 

Long Range Template PCR System (Roche). In all cases, PCR products were extracted 

from 1 % (w/v) agarose gels and purified using a Qiagen gel extraction kit (Section 

2.2.2.5). PCR products were resolved on 1% (w/v) agarose gels (Section 2.2.2.4). 

Successful transformation of both of these constructs, referred to as PCR 3 and PCR 4 into 

protoplasts of the recipient strain can lead to the growth of PT-resistant colonies when 

transformants are grown on selective media, due to the reconstitution of the selection 

marker by homologous recombination between the two overlapping constructs. This often 

results in the replacement of the desired gene region with ptrA, and a single homologous 

integration of ptrA can be confirmed by Southern blot analysis.  
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GOI  
5’ GOI (1-1.2 kb) 3’ GOI (1-1.2 kb)

Primer 1 F

Primer  2 RPrimer  4 R 

Primer  3 F

5’ GOI ptrA

3’ GOIptrA

ptrA (2.2 kb)

Released from pSK275 vector with
suitable restriction enzymes

5’ GOI 3’ GOIptrA (2.2 kb)

Primer 5 F oPtrA-2 R

oPtrA-1 F Primer 6 R

Chromosomal DNA

Represents a restriction site incorporated during primer design

Potential spot for homologous 
recombination to occur between 
marker fragments  

 

Figure 2.1. The bipartite strategy used to disrupt A. fumigatus genes in this study, 

using ptrA as a selection marker. Using this strategy, approximately 1-1.2 kb of 5’ and 3’ 

flanking regions are amplified by PCR (A), with suitable restriction sites engineered for 

ligation to ptrA (B) (Kubodera et al., 2000; Kubodera et al., 2002). C. Another round of 

PCR generates two overlapping constructs which only contain approx. two thirds of the 

selection marker due to the use of nested primers. Primers indicated by black arrows. 

Adapted from the original method of Nielsen et al. (2006). 

Chromosomal DNA 
Restriction site incorporation by primers 

Potential spot for 
homologous 
recombination to occur 

ptrA released from  
pSK275 plasmid  

A. 

B. 

C. 
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2.2.3.2 A. fumigatus Protoplast Production and Transformation 

2.2.3.2.1 A. fumigatus Protoplast Formation 

 AMM cultures (200 ml) of A. fumigatus were incubated overnight at 37 º C, and the 

mycelia were harvested by filtering through sterile miracloth. Sterile water was used to wash 

media from the mycelia, and subsequently 1.5 g of mycelia was placed into a sterile 50 ml tube. 

For each transformation, protoplasting of 1.5 g mycelia was performed in duplicate. Mycelial 

lysing solution (Section 2.1.3.2) (15 ml) was added to each tube, and the mycelia were lysed by 

incubating the tubes at 30 ºC at 200 rpm. After 10 min incubation, the tubes were removed and a 

1000 µl pipette tip with a 200 µl pipette tip on top were used to pipette the mixture up and down 

continuously for 10 min in order to break up clumps of mycelia. Subsequently, the tubes were 

incubated at 30 ºC at 200 rpm shaking for a further 2 hr and 40 min. The samples were then 

placed on ice for 5 min to terminate the lysing reaction. The samples were then centrifuged at 900 

x g for 18 min in order to pellet cellular debris. The brake was left off the centrifuge for all of the 

protoplasting centrifuge steps so as not to disrupt the protoplasts. The supernatant was then 

filtered through sterile miracloth into a fresh 50 ml tube, and the volume was brought to 40 ml 

with 0.7 M KCL (Section 2.1.3.3). The protoplast solutions were centrifuged at 3,300 x g for 18 

min, and the supernatant was immediately removed, being careful not to disturb the pellet. The 

pellets were resuspended in 10 ml of 0.7 M KCL, and were then centrifuged at 3,300 x g for 12 

min. Again, the supernatant was removed and the tubes were left upside down on sterile tissue 

paper for 1 min. The pellet was then resuspended by gently pipetting and swirling in 70 µl of L6 

Buffer (Section 2.1.3.4). The samples were given a quick spin at 600 x g to gather all the contents 

at the bottom of the tube. Duplicate samples were combined and the protoplasts were kept on ice 

for no longer than 20 min before use. Protoplasts (5 µl) were checked for integrity using a light 

microscope. 
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2.2.3.2.2. A. fumigatus protoplast transformation 

 For each transformation, usually 10 µg of transforming DNA was used. The DNA was 

placed in a 50 ml tube and the volume was brought to 50 µl with Buffer L6 (Section 2.1.3.4). An 

A. fumigatus protoplast suspension (150 µl) (Section 2.2.3.2.1), was added to the DNA and the 

tube was swirled gently to mix. A negative control was prepared by adding 15 µl of the same 

protoplast preparation to 185 µl of Buffer L6 in a 50 ml tube, and the tube was swirled gently to 

mix. Buffer L7 (50 µl) (Section 2.1.3.5) was added to the tubes, and they were shaken gently to 

mix. Tubes were incubated on ice for 20 min. Buffer L7 (1 ml) was added to the tubes and they 

were left standing at room temperature for 5 min. Buffer L6 (5 ml) was then added to the 

mixtures. The transformed protoplasts were now ready to be plated. 

 

2.2.3.2.3. Plating of A. fumigatus transformed protoplasts and selection with either 

phleomycin or pyrithiamine 

 Aspergillus Transformation Regeneration Media (Section 2.1.1.14) was prepared freshly 

on the morning of transformation, and final concentrations of either pyrithiamine (0.1 µg/ml) or 

phleomycin (40 µg/ml) were added to the agar prior to pouring (Table 2.2). These plates were 

stored at room temperature while the transformation was underway. For each transformation, six 

plates containing the selective agent were prepared, and two were prepared only containing 

regeneration media, and these were used to set up protoplast viability plates. For plating the 

negative control, 1.25 ml of the negative control protoplasts were added to a fresh 50 ml tube, 

and this was brought up to a final volume of 6 ml with Aspergillus Transformation Soft Agar 

(Section 2.1.1.15) and poured onto a plate containing a selection agent. For the protoplast 

viability plates, two protoplasts concentrations were prepared in fresh 50 ml tubes. Transformed 

protoplasts (12.5 µl or 1.25 µl) was added into these tubes, and the final volume of each was 

brought to 6 ml with soft agar before pouring onto plates lacking a selection agent. Finally, the 
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transformed protoplasts were topped up to 30 ml with soft agar, and 6 ml was poured onto each 

of 5 transformation plates containing the desired selection agent. Plates were incubated at room 

temperature overnight. The following day, plates were overlaid with 6 ml of fresh soft agar, and 

pyrithiamine or phleomycin was added to this accordingly (Table 2.2). Once agar had set, the 

plates were incubated at 37 ºC for about 5-7 days until colonies began to become visible. The 

appearance of colonies on the protoplast viability plates after approx. 2 days indicated that the 

protoplasts had been sustained during the preparation procedure and were capable of 

regeneration. 

 

2.2.3.3 Isolation of A. fumigatus transformants following transformation  

 Potential Aspergillus transformants were initially identified by resistance to either 

pyrithiamine or phleomycin supplied in the agar plates following transformation. There were 

usually between 10-40 colonies from each transformation experiment. Spores of these colonies 

(usually 10 were isolated at any time) were picked aseptically from transformation plates, using a 

sterile 1000 µl pipette tip and were subcultured onto fresh selective agar plates and incubated at 

37 ºC. This subculturing step was performed in order to verify resistance. Once sporulated, which 

was usually two days after inoculation, agar plugs of these colonies were picked aseptically, 

using an inverted 1000 µl pipette tip, and transferred to sterile 1.5 ml tubes.  Colony plugs were 

then resuspended in 1 ml PBST (Section 2.2.1.17) and were vortexed to dislodge conidia from 

agar plugs. Conidial suspensions (500 µl) were used to inoculate 50 ml of Sabourard liquid 

(Section 2.1.1.9) and cultures were incubated at 37 ºC shaking with 200 rpm for 16 hr. These 

cultures were prepared to facilitate genomic DNA isolation (Section 2.2.2.1) from the 

transformants for further analysis by Southern blotting (Section 2.2.4). 
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2.2.3.4 Single Spore Isolation of A. fumigatus transformants 

 Following Southern blot analysis of transformants that were picked from a transformation 

plate, colonies which yielded a hybridisation pattern indicating the desired mutation were 

subjected to single spore isolation, in order to gain colonies of nuclear homogeneity. To do this, 

conidial suspensions from each transformant picked from the agar plates were diluted 10,000 fold 

in PBST (Section 2.2.1.17) and 100 µl of these suspensions were spread onto individual selective 

agar plates. These plates were incubated at 37 ºC until individual colonies became visible. These 

colonies were then isolated as described earlier (Section 2.2.3.3) and were subjected to a second 

round of Southern blot analysis (Section 2.2.4). 

 

2.2.4 Southern Blotting 

2.2.4.1 Southern Blotting – Nucleic Acid Transfer 

 Southern blotting analysis was performed to detect gene fragments at desired loci in A. 

fumigatus genomic DNA (gDNA) in order to identify transformants that had undergone either 

gene deletion or gene replacement. gDNA was isolated (Section 2.2.2.1) from relevant 

transformants, and was restriction digested with a suitable restriction enzyme. The enzyme choice 

depended on the sequence of the region of interest in the genome. An enzyme was used which 

would cut the region in a wild-type gDNA and a corresponding mutant gDNA differentially. 

Restriction digests were carried out as described (Section 2.2.2.6) and the digestion reactions 

were resolved on 0.7 % (w/v) agarose gels (Section 2.2.2.4). Once the gels had completed 

running, the gel was placed into a UV cross-linking machine and was pulsed with 800 µJ. This 

creates nicks in the DNA which aids transfer onto a nylon membrane. Following this, a Southern 

blotting tower was set up. Southern transfer buffer (I L) (Section 2.1.4.1) was poured into a large 

Biorad gel tank, and two sheets of Whatman filter paper (about 12 inches L x 4 inches H) were 

dipped into the transfer buffer and then laid across the top of the tank. On top of this the gel 
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containing the restricted DNA was placed (load side down), and a piece of H+ Nylon Membrane 

(Amersham) was placed directly on top of the gel in one single movement. On top of these, three 

more pieces of Whatman filter paper were placed, and finally three packets of pocket-size tissues 

were removed from their packaging and placed on top for absorbance of the transfer buffer as it 

moved up through the layers. For Southern blotting, the gels used were exactly the same size as a 

pocket-size tissue, and the Whatman filter pieces and nylon membrane were cut to exactly this 

size. A glass plate was placed across the top of the assembly, and a Duran bottle containing about 

400 ml of water was used as a weight. Southern blotting was carried out overnight at room 

temperature. 

 

2.2.4.2 Disassembly of Southern Blots Following Nucleic Acid Transfer 

 Following Southern blotting overnight, the stacks of tissue paper and Whatman filter 

paper was carefully removed from the gel and the nylon membrane to which the DNA had been 

transferred. The nylon membranes were washed for 2 X 5 min with gentle rocking in 0.1 % (w/v) 

SDS / 1 X SSC buffer (Section 2.1.4.6). Following this, the blots were placed onto clean tissue 

paper and the excess water was allowed to air-dry for 1 min. Subsequently, the membranes were 

placed into a UV cross-linking machine and were pulsed with 1200 µJ in order to cross-link the 

DNA onto the membrane and prevent it from being washed away during subsequent steps. 

 

2.2.5 Digoxigenin (DIG) - Detection of Hybridised DNA fragments on Southern blot  

2.2.5.1 Generation of DIG-labelled DNA probes 

 DIG-labelled DNA probes were generated by PCR (Section 2.2.2.3) using specific 

primers (Table 2.3). In order to DIG-label the PCR product, DIG-labelled dNTP’s (Section 

2.1.5.8) were employed. PCR products were resolved on a 1 % (w/v) agarose gel (Section 
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2.2.2.4) and excised from the gel (Section 2.2.2.5). DNA was denatured by heating at 100 ºC for 

8 min in a heated block, and was immediately placed on ice. DNA was quantified using a 

Nanodrop spectrophotometer and 400 ng DNA was added to membrane pre-hybridisation buffer 

(5 ml) (Section 2.1.5.1) that had been preheated to 65 ºC in a water bath for at least 30 min. This 

probe solution was stored at – 20 ºC, and was heated to 65 ºC in a water bath for at least 30 min 

before each use. 
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2.2.5.2 Prehybridisation of Nylon Membrane Following UV Cross-linking 

 Immediately after UV cross-linking, the blots were placed into a clean glass 

hybridisation tube which had been pre-heated to 42 ºC in a hybridisation oven. 

Immediately, 10-20 ml of membrane pre-hybridisation buffer (Section 2.1.5.1), which had 

been pre-heated at 65 ºC was poured down the side of the hybridisation tube, and the tubes 

were incubated at 42 ºC rotating for 4-5 hr in a hybridisation oven, in order to block the 

blots. 

 

2.2.5.3 Addition of DIG-labelled probe to Southern blots 

 Following the prehybridisation of blots (Section 2.2.5.2), the membrane pre-

hybridisation buffer was removed from the hybridisation tubes. The specific DIG-labelled 

probe solution (containing approx 400 ng probe DNA) was poured into the hybridisation 

tube, careful not to pour directly on the blot, and the tubes were incubated at 42 ºC rotating 

overnight in a hybridisation oven, in order to allow the probe to hybridise homologous 

regions on the membrane. 

 

2.2.5.4 DIG Detection 

 The DIG-labelled probe solution was poured from the hybridisation tube and stored 

in a clean 50 ml tube at – 20 ºC. The blots were removed from the hybridisation tube and 

were washed for 2 X 5 min with gentle rocking in 0.1 % (w/v) SDS / 1 X SSC buffer 

(Section 2.1.4.6). Subsequently, the blots were placed back into clean hybridisation tubes 

which were pre-heated at 65 ºC. The tubes were filled about half-way with 0.1 % (w/v) 

SDS / 1 X SSC buffer and the tubes were placed into a hybridisation oven for 15 min 

rotating at 65 ºC. These steps were repeated and each time, the tubes were placed upside 

down on clean tissue paper between each wash step to drain excess liquid from the blots. 
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Draining of blots on clean tissue was employed throughout the entire DIG Detection 

procedure. Blots were next washed with DIG Wash Buffer (10 ml) (Section 2.1.5.5) for 5 

min rotating at 25 ºC. Subsequently, the blots were blocked with Antibody Blocking Buffer 

(10 ml) (Section 2.1.5.3) for 30 min rotating at 25 ºC. The Antibody Blocking Buffer was 

poured off and the Anti-DIG Fab Fragments - alkaline phosphatase (10 ml) (Section 

2.1.5.6) were added to the blots and were left rotating at 25 ºC for 30 min. Subsequently, 

the blots were washed with DIG Wash Buffer (10 ml) for 10 min at 25 ºC. This step was 

repeated. DIG Buffer 3 (5 ml) (Section 2.1.5.4) was then added to the blots and the blots 

were left for 5 min rotating at 25 ºC. The DIG Buffer 3 was poured off and the CSPD 

chemiluminescent substrate (5 ml) (Section 2.1.5.7) was then added to the blots and the 

blots were left for a further 5 min rotating at 25 ºC. When this 5 min was complete, the 

CSPD was poured off the blots and stored in a fresh 50 ml tube covered in tin-foil at 4 ºC to 

be re-used within a week. The blots were carefully removed from the hybridisation tube, 

and were placed on clean tissue paper to dry for 1 min. The blots were then carefully 

wrapped in cling film and incubated at 37 ºC for 15 min, as this increases the intensity of 

the signal emitted by the processing of the CSPD by the Anti-DIG Fab-alkaline 

phosphatase conjugate. 

 

2.2.5.5 Developing of DIG-detected Southern Blots 

 Following DIG detection, (Section 2.2.5), blots were placed into a Kodak film 

cassette and exposed to a Kodak film in the dark. The blots were usually exposed for 1 hr, 

and 3 hr if necessary. After the required time, blots were developed using the Kodak 

developing solution (Section 2.1.6.1), rinsed in water, and fixed using the Kodak fixing 

solution (Section 2.1.6.2). 
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2.2.6 RNA analysis 

2.2.6.1 RNA Extraction 

 For RNA extraction, the QIAGEN RNeasy plant mini kit was used following 

manufacturer’s instructions. All buffers (RLC, RWI, and RPE) and columns were supplied 

with the kit and details of buffer constituents are outlined in the Qiagen RNeasy plant mini 

kit Handbook. Aspergillus fumigatus mycelia (100 or 200 ml cultures) were harvested 

aseptically by filtering through sterile miracloth. Mycelia were washed with sterile water. 

Following this, the mycelia were placed in a mortar. For rapid freezing liquid nitrogen was 

poured onto the mycelia. A pestle was then used to crush the mycelia into a very fine 

powdery consistency. Crushed mycelia (100 mg) were placed in a sterile 1.5 ml eppendorf 

tube containing 450 µl RLC (containing ß-Mercaptoethanol) and the tube was vortexed 

vigorously. Samples were then incubated for 3 min at 56 ºC in a water bath to help further 

disrupt the mycelia. Subsequently, the lysate was added to a QIAshredder spin column 

placed in a 2 ml collection tube and the sample was centrifuged at 13,000 x g for 2 min. 

The filtrate was then transferred to a fresh eppendorf tube for subsequent steps. Ethanol 

(100 % (v/v)) (250 µl) was added to the filtrate and the sample was mixed immediately by 

pipetting. The samples were then transferred to an RNeasy spin column placed in a 2 ml 

collection tube and centrifuged at 10,000 x g for 15 sec. The flow-through was discarded. 

Buffer RWI (700 µl) was added to the RNeasy spin column and the sample was centrifuged 

at 10,000 x g for 2 min to wash the spin column membrane. The flow-through was 

discarded. Buffer RPE (500 µl) was added to the RNeasy spin column and the samples 

were centrifuged at 10,000 x g for 15 sec to wash the spin column membrane. The flow-

through was discarded. Buffer RPE (500 µl) was added to the RNeasy spin column, and the 

sample was centrifuged at 10,000 x g for 2 min to wash the spin column membrane once 

again. To remove residual RPE, the RNeasy spin column was placed in a new 2 ml 
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collection tube, and the sample was centrifuged at 13,000 x g for 2 min. Subsequently, the 

RNA was eluted into a new 1.5 ml eppendorf tube. Sterile water (50 µl) was placed on the 

centre of the column, and the column was allowed to stand for 1 min. The column was 

centrifuged at 10,000 x g for 1 min. To increase RNA concentration, the eluent was 

removed from the eppendorf tube by pipetting and eluted a second time through the 

RNeasy spin column by centrifuging at 10,000 x g for 1 min. RNA was stored at – 20 ºC 

for up to 6 months until required. 

 

2.2.6.2 RNA Gel Electrophoresis 

 Agarose gels (1.2 % (w/v) were prepared by adding agarose (1.2 g) to double 

autoclaved water (80 ml). The agarose was melted in a microwave, and was allowed to cool 

to 65 ºC. Formaldehyde Agarose (FA) gel buffer (10 X) (10 ml) (Section 2.1.7.2) was 

subsequently added in a fume hood, and the final volume was adjusted to 100 ml with 

double autoclaved water. Subsequently, the gel was poured into a gel casting tray and 

allowed to set. The gel was then placed in an electrophoresis rig and submerged in 1 X 

Formaldehyde Agarose running buffer (Section 2.1.7.3). The gel was allowed to equilibrate 

in this buffer for 10 min prior to use. RNA samples were prepared for loading at the desired 

concentration of RNA in a 4 µl volume added to the following components: 10 X FA 

Buffer (2.5 µl), Formaldehyde (37 %; 4 µl), Formamide (12 µl) and Ethidium Bromide (1 

mg/ml; 1 µl). The mixtures were incubated at 65 ºC for 15 min and allowed to chill on ice. 

Samples were loaded onto the gel and electrophoresed at 100 V for 60 min. Formaldehyde 

Agarose gels were visualised using an AlphaTech DigiDoc still video system (Alpha 

Technologies).  
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2.2.6.3 DNase Treatment of RNA 

 DNase treatment of RNA was performed using a DNase kit purchased from Sigma-

Aldrich. A. fumigatus RNA (0.5 µg) was brought to an 8 µl volume with molecular grade 

water in a microfuge tube, 1 µl of 10 X reaction buffer and 1 µl of DNase were added to the 

microfuge tube, and the mixture was incubated at room temperature for 15 min. Stop 

solution (supplied with DNase kit) (1 µl) was added to the solution, which was incubated at 

70 ºC for 10 min. The samples were chilled on ice, and were stored long-term at - 70 ºC. 

 

2.2.6.4 cDNA Synthesis 

 cDNA synthesis was performed using either the Superscript® First-Strand 

Synthesis System for RT-PCR (Invitrogen), or the Transcriptor First Strand cDNA 

Synthesis Kit (Roche Applied Science) for Real-Time PCR experiments. In both cases, all 

buffers and reagents were supplied with the kit, and cDNA was prepared according to 

suppliers instructions. Using the Superscript® cDNA synthesis kit, DNase-treated RNA (8 

µl), 10 mM DNTP mix (1 µl), Oligo (dT) (1 µl), were added to a microfuge tube. Tubes 

were incubated at 65 ºC for 5 min, and placed on ice for 1 min. A master mix of 10 X RT 

buffer (2 µl), 25 mM MgCl2 (4 µl), 0.1 M DTT (2 µl) and RNase OUT recombinant RNase 

Inhibitor (1 µl), and Superscript III Reverse Transcriptase (1 µl) per sample, was prepared. 

This master mix (10 µl) was added to each RNA sample and mixed gently by pipetting. The 

samples were then incubated at 50 ºC for 50 min. Reactions were terminated by incubating 

samples at 85 ºC for 5 min. RNase H (1 µl) was then added to each sample to remove any 

remaining RNA, and the samples were incubated at 37 ºC for 20 min. The samples were 

then chilled on ice for immediate use or stored at – 20 ºC. 

 Using the Transcriptor First Strand Synthesis kit, DNase-treated RNA was added to 

a microfuge tube, and Anchored-oligo(dT)18 Primer (1 µl) was added. The volume was 
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brought to 13 µl with RNase-free water (Sigma-Aldrich). The template-primer mixture was 

denatured by an initial incubation at 65 ºC for 10 min, and the samples were subsequently 

cooled on ice. To the samples, the remaining components required for cDNA synthesis 

were added as a master mix containing the following: 5 X Transcriptor Reverse 

Transcriptase Reaction Buffer (4 µl), Protector RNase Inhibitor (0.5 µl), 

Deoxyribonucleotide Mix (10 mM each) (2 µl) and Transcriptor Reverse Transcriptase (0.5 

µl), bringing the final volume of the samples to 20 µl. The samples were carefully mixed by 

pipetting, and incubated for 60 min at 55 ºC. Samples were then incubated at 85 ºC for 5 

min to inactivate the reverse transcriptase. The reactions were chilled on ice for immediate 

use or stored at – 20 ºC.  

 

2.2.6.5 Semi-quantitative RT-PCR 

 PCR was carried out on the cDNA samples as described in Section 2.2.2.3 with the 

A. fumigatus calmodulin (calm) gene (AFUA_4G10050) serving as a house-keeping control 

in RT-PCR experiments (Burns et al., 2005). The primers calm F - ccgagtacaaggaagctttctc 

and calm R - gaatcatctcgtcgattcgtcgtctcagt were used for calm RT-PCR. These primers span 

an intronic region in the calm coding region, so calm amplicons generated from genomic 

DNA (gDNA) and cDNA will be of different sizes (617 bp and 314 bp respectively). This 

feature is used to confirm the absence of contaminating gDNA in cDNA preparations. Due 

to the large size of some of the genes investigated in this study (specifically pesL and pes3), 

primers were designed within 1 kb of the poly A+ tail. RT-PCR amplicons were resolved 

by gel electrophoresis (Section 2.2.2.4) using a 2 % (w/v) agarose gel Visualisation of PCR 

products was performed using an AlphaTech DigiDoc still video system (Alpha 

Technologies). All RT-PCR primers are listed in Table 2.3. 
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2.2.6.6 Real-Time PCR 

 Aspergillus fumigatus strains (Table 2.4) were cultured in the desired media for the 

defined time point. Usually RPMI (Section 2.1.1.10), AMM (Section 2.1.1.7) or Czapek’s 

(Section 2.1.1.11) cultures (200 ml) were incubated for 24, 48 or 72 hr at 37 ºC with 200 

rpm, and mycelia were harvested aseptically through miracloth. Total RNA was isolated 

(Section 2.1.6.1), DNase treated (Section 2.1.6.2) and reverse transcribed (Section 2.1.6.4). 

cDNA was subsequently assayed for endogenous calmodulin (calm) expression and the 

gene(s) of interest, using the LightCycler® 480 Sybr Green 1 Master Mix (Roche) and also 

using the LightCycler® 480 Real-Time PCR System. PCR reactions were carried out in 96-

well plates in a reaction volume of 20 µl containing 5 µl of template DNA. Relative 

Quantification analysis was performed to investigate differences in gene expression over 

different growth conditions, time periods, and within different A. fumigatus strains, by 

using the Relative Quantification module on the LightCycler® 480 Real-Time PCR System. 

This module calculates the differences in levels of gene expression between different 

samples, and this is most accurate when standard curves are prepared for all gene(s) to be 

assayed, so that PCR quality can be taken into consideration. Also, standard curves were 

used as a check to confirm optimal PCR conditions. Standard curves were prepared for 

calm and each gene of interest to be assayed by generating 5 orders of 10-fold serial 

dilutions of cDNA in molecular grade water, and performing between 3 and 5 replicate 

PCR reactions on these dilutions with specific primer pairs. Cycling conditions for all Real-

Time PCR reactions were calculated using the recommendations from Roche and 40 cycles 

of PCR were performed.  

The extension time for PCR amplification was calculated as the number of base pairs 

expected in the product / 25 = extension time (sec).  
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 The standard curves were calculated automatically using the Absolute 

Quantification Module on the LightCycler® 480 Real-Time PCR System, and PCR 

efficiency was given as a value between 0 and 2, with 2 being the highest quality of PCR. 

Where standard curves had a PCR efficiency of 1.8 or more, with an error value of less than 

0.2, the standard curve was saved onto the LightCycler® 480 Real-Time PCR System, and 

the cycling conditions were used for subsequent Real-time PCR analysis by Relative 

Quantification. For this, usually a 1/10 dilution of cDNA from each sample was used as a 

template for PCR and each PCR reaction was set up and performed in triplicate. Relative 

gene expression levels for all genes in comparison to calm were calculated automatically by 

the 2(-Delta Delta C(T)) method (Livak & Schmittgen, 2001), using the LightCycler® 

system software, and results were given as a bar chart, and a table containing the relative 

ratio of calm gene expression: target gene expression. Negative controls containing 5 µl of 

molecular grade water were performed in triplicate on each 96-well plate, and Tm Calling 

Analysis was performed after each PCR reaction to check that only one PCR product was 

present in each well following the PCR run. A proportion of PCR reactions were also 

analysed by Agarose Gel Electrophoresis and PCR products were resolved on a 2 % (w/v) 

agarose gel.  

 

2.2.7 Comparative metabolite analysis by Reverse Phase High Performance Liquid 

Chromatography (RP-HPLC) 

2.2.7.1 Culture Supernatant Preparation for RP-HPLC analysis 

 Aspergillus fumigatus was grown in liquid culture (200 ml) for the desired 

incubation period. Mycelia were harvested, and the culture supernatant (SN) was collected 

into 50 ml tubes.  SN was stored at – 20 ºC until required for analysis. Preparation of SN 

for analysis involved thawing the frozen material at room temperature, and transferring 1 
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ml of the material to an eppendorf tube. Subsequently, the samples were centrifuged at 

13,000 x rpm for 15 min in order to pellet any particulate material that may have been 

present in the culture SN. The SN was removed and placed into glass vials for immediate 

analysis by RP- HPLC. 

 

2.2.7.2 Organic Extraction of culture SN for RP-HPLC analysis 

 Aspergillus fumigatus was grown in liquid culture (200 ml) for the desired 

incubation period. Mycelia were harvested, and the culture supernatant (SN) was collected 

into 50 ml tubes. SN (20 ml) was then transferred to a new 50 ml tube and mixed with an 

equal volume of HPLC grade chloroform (20 ml). The solution was placed on a daisy 

wheel and was left rotating to mix at 4 ºC overnight. Following overnight mixing, the 

samples were centrifuged at 5,000 x rpm for 5 min to allow the organic and non-organic 

layer to separate. The organic (lower) layer was removed with a Pasteur pipette and placed 

into a new 50 ml tube. A 1 ml aliquot of this was placed into an eppendorf tube and 

centrifuged at 13,000 x rpm for 15 min to pellet any particulate material that was present in 

the organic extract. The organic material was then transferred into glass vials and was left 

in a fume hood overnight to allow the chloroform to evaporate. The remaining pellet was 

dissolved in either 20 µl or 100 µl of HPLC grade methanol for immediate analysis by RP-

HPLC.  

 

2.2.7.3 Preparation of A. fumigatus Conidial Extracts for Analysis by RP-HPLC 

 A. fumigatus conidia were harvested from 6 day old AMM plates using 10 ml sterile 

deionised water and a Pasteur pipette. Subsequently, the spore suspensions were filtered 

through sterile miracloth to remove any mycelial material. Supernatant was removed but 

retained at -20º C for later analysis of any polar material. The conidial pellet was 
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resuspended in 250-500 µl HPLC Grade Methanol, mixed by vortexing and transferred to 

new eppendorf tubes. Sonication was performed in a sonicator bath for 5 min. Finally, 

conidial suspensions were centrifuged at 13,000 x rpm for 10 min and the supernatant was 

removed for immediate RP-HPLC analysis or was stored at -20ºC until required. This 

method was adapted from an earlier method (Moon et al., 2008).  

 

2.2.7.4 Preparation of Aspergillus fumigatus plug extracts from agar plates 

 Plug extracts from A. fumigatus were prepared according to the methods used by 

Smedsgaard (1997). Plugs (n = 6) were removed from agar plates beginning at the centre of 

the colony and extending outwards, so that all regions of the colony could be sampled. 

Plugs were taken using a stainless steel hollow cylinder with a 6 mm diameter. Plugs were 

transferred to a 2 ml eppendorf tube and 1 ml of extraction buffer was added to the tube. 

These plugs were then organically extracted using 1 ml of an extraction mixture (Section 

2.1.8.2). The extraction mixture was either a mix of acetonitrile and H2O (extraction 

mixutre 1) (Section 2.1.8.2.1), or a mix of ethyl acetate, dichloromethane and methanol 

(extraction mixture 2) (Section 2.1.8.2.2), so that a range of metabolites, with different 

polarities, could be analysed respectively. Tubes were sonicated in a sonication bath for 1 

hr. After sonication, supernatant was removed from the tubes and transferred to a fresh 2 ml 

eppendorf tube. A further 1 ml of extraction mixture was added to the remaining plugs and 

these plugs were sonicated again for a further 1 hr in order to re-extract the samples. 

Supernatant which was removed from the plugs following sonication was placed in a fume 

hood overnight in order to evaporate the solvent. Extracted material was then resuspended 

in 400 µl and stored at -20 ºC for RP-HPLC analysis. 



 113

2.2.7.5 RP-HPLC Procedure 

 Solvent A (Section 2.1.8.1.1) and Solvent B (Section 2.1.8.1.2.) were used for all 

RP-HPLC. Chromatography, using a C18 column (Agilent Zorbax Eclipse XDB-C18; 5 mm 

particle size; 4.6 x 15 mm) was carried out using an Agilent Series 1200 HPLC system 

equipped with a diode array and fluorescence detector. Gradient HPLC conditions (0 -100 

% Solvent B over 25 min) were employed for culture supernatants, organically extracted 

culture supernatants and conidial extract injections followed by absorbance detection (220 

and 280 nm). Specimen injection volume was either 20 µl or 100 µl, in all cases, at a 

solvent flow rate of 1 ml /min. LC-MS analysis of A. fumigatus plug extracts was 

performed by Professor Thomas Larsen at the Danish Technical University. 

 

2.2.8 A. fumigatus Plate Assays 

 A. fumigatus wild-type and mutant strains (Table 2.4) were grown on either AMM 

agar or MEA agar plates for one week at 37 ºC. Conidia were harvested aseptically in 

PBST (Section 2.1.1.17) and filtered through sterile miracloth. Conidia were serially 

diluted 100-fold and 10000-fold in PBST and 5 µl of each dilution was used to spot test 

plates. Plates were incubated at 37 ºC unless otherwise stated and growth was monitored 

periodically by measuring the radial span of fungal colonies.  Plate assays were performed 

independently three times, and radial growths (cm) of colonies were tested for significant 

differences by means of a two-way Anova. Strains were tested for growth in a variety of 

conditions and these are summarized in Table 2.2.  

 

2.2.9 A. fumigatus growth curves. 

 Growth curves were performed following a procedure adapted from Reeves et al. 

(2004). Conidia were harvested from 5 day-old MEA plates and used to inoculate AMM 
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cultures (1 x 107 conidia/100 ml media). Cultures were incubated for 24, 48, 72 or 96 hours 

at 37 ºC with 200 rpm and mycelial biomass was collected through sterile miracloth. 

Mycelia was washed in sterile water and dried in a freeze dryer to remove excess liquid. 

Dry weights were recorded and plotted against incubation period. Growth curves were 

performed in triplicate and a t-test test was used to assess if there was any significant 

difference between the growth rates of the fungal strains.  

 

2.2.10 A. fumigatus germination assay 

 A. fumigatus conidia of each strain to be assayed were harvested from 5 day old 

MEA agar plates and 1 x 107/ml were inoculated into 10 ml of AMM liquid media (Section 

2.1.1.7) in a 50 ml conical flask. The cultures were incubated at 37 ºC with 200 rpm for at 

least 3 hr. To quantify the rate of germination, 500 µl of each primary culture was 

transferred into a 2 ml screw cap tube containing a 0.2 ml scoop of 0.1 mm glass beads (to 

break up clumps of germinating conidia), and the tubes were vortexed for about 10 sec. 

Cultures were immediately returned to the incubator once the samples had been taken. 

Following vortexing of samples, 10 µl of each sample was placed on a haemocytometer and 

conidia and germlings were counted up to 100 in total. The number of germinated conidia 

was expressed as a percentage of the total number of conidia counted at each time point. 

Swollen conidia were not counted as having been germinated. Each sample was counted in 

duplicate. Once germination had begun (around 3-4 hr from the time of inoculation), 

samples were removed every hour and germination was recorded. The assay was continued 

until germination rates became constant for all strains being tested.  
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2.2.11 Murine Virulence Testing 

 Murine virulence testing was carried out by a collaborating group at the Imperial 

College London under the direction of Dr. Elaine Bignell. Outbred male mice (strain CD1, 

20 to 28 g; Charles Rivers Breeders) were used for animal experiments. 

Immunosuppression was carried out by subcutaneous injection of 112 mg/kg 

hydrocortisone acetate and intraperitoneal injection of 150 mg/kg cyclophosphamide 

following a sequential protocol as described (Bergmann et al., 2009, and references 

therein). Bacterial infections were prevented by adding 1 g/liter tetracycline and 64 mg/liter 

ciproxicin to the drinking water. Inocula of 1x104 conidiospores in 40 µl of saline were 

prepared by harvesting spores from 5-day-old slants of solid medium followed by filtration 

through Miracloth (Calbiochem) and washing with saline. Mice were anesthetized by 

inhalation of isofluorane and infected by intranasal instillation. The weights of infected 

mice were monitored for 5 days twice daily before animals were culled to isolate their 

lungs. In order to assess fungal burdens as a quantitative virulence criterion, qPCRs were 

performed on equivalent amounts (100 ng) of genomic DNA that had been extracted from 

equal amounts (250 mg) of homogenized lung tissue using several references for genomic 

DNA concentration and the oligonucleotides qPCRf and qPCRr to amplify the 18S rRNA 

locus from the A. fumigatus genome (Bergmann et al., 2009). 

 

2.2.12 Galleria mellonella Virulence Testing 

 G. mellonella virulence testing was carried out according to Reeves et al. (2004). 

Briefly, sixth instar larvae of G. mellonella (Lepidoptera: Pyralidae, the Greater Wax Moth) 

(Mealworm Company, Sheffield, England) were stored in wood shavings in the dark at 15 

ºC. Only larvae weighing between 0.2 and 0.4 g were used during this study. Conidial 

suspensions from A. fumigatus were prepared in sterile PBS (Section 2.1.1.16). Larvae 
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were injected (n = 10) with a fungal load of 1 x 107 conidia per 20 μl inoculum. Injections 

were made with sterile syringes into the last left proleg. Injections of 20 μl sterile PBS 

served as a control. Conidial suspensions were isolated from 3 independent cultures and 2 

sets of injections were carried out for each replicate. Injected larvae were placed in sterile 

petri dishes and incubated in the dark at 30 ºC in a stationary incubator. Mortality rates 

were determined over a 72 hr period. Larval death was assessed by the lack of movement of 

larvae in response to stimulation together with discolouration of the cuticle. 

 

2.2.13 Murine Cell Signalling in Response to Aspergillus fumigatus 

2.2.13.1 Cultivation and Maintenance of Murine Bone Marrow Derived Macrophages 

(BMMØS) 

 Murine BMMØs were cultured in Dulbecco's Modified Eagle Medium (Gibco) 

supplemented with foetal calf serum (10 % (v/v)), pen-strep (1 % (v/v)) and 0.5 ml 

gentamicin solution (Sigma-Aldrich). Cells were cultured in a T175 flask at 37 ºC static 

with 5 % CO2. Murine BMMØs are adherent cells and can be seen to adhere to the base of 

a tissue flask when healthy. Cells were inspected daily by placing the flask under the lens 

of a light microscope to ensure that they were adhering to the base of the flask. All culture 

media and reagents used for cell culture were pre-warmed to 37 ºC for at least 40 min in a 

water bath prior to use. Culture media was changed by aspirating the media from the cells 

with a sterile pipette, and pipetting fresh media onto the cells. Culture media was usually 

changed every two days.  

 

2.2.13.2 Subculturing or Passaging of BMMØS 

 When cells had become at least 80-90 % confluent and were covering the base of 

the flask, they were subcultured by removing them from the T175 flask and using a 
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proportion of them to start the next passage. This was carried out every 3-4 days depending 

on the level of confluency observed upon microscopic inspection. As the cells are adherent, 

it was necessary to remove them from the culture flask using trypsin. Culture media was 

aspirated from the cells with a sterile pipette, and Dulbecco's Phosphate Buffered Saline 

(PBS) (10 ml) was added to the flask by pipetting to wash the cells and remove any serum 

from the culture media which would inhibit the trypsin. PBS was removed by pipetting 

after the washing step. Subsequently, Trypsin-EDTA solution (Sigma-Aldrich) (1 x) 

(approximately 5 ml) was added to the flask by pipetting. This was swirled gently in order 

to cover the base of the flask, and the flask was replaced into the incubator at 37 ºC static 

for a maximum of 10 min. After 10 min, the flask was removed from the incubator and 

tapped on a hard surface to dislodge cells that were loosely attached to the flask. At this 

point, cells were suspended in the Trpysin-EDTA solution. Fresh culture media (10 ml) was 

added to the cells, and the mixture was pipetted up and down several times to ensure 

homogeneity. In order to split in a 1:7 ratio at each passage, 10 ml of the cell suspension 

was removed, and 25 ml of fresh culture media was added to the flask before being 

returned to the incubator. 

 

2.2.13.3 Fungal stimulation of BMMØS 

 For stimulation with Aspergillus fumigatus, BMMØs were washed in PBS and 

subsequently removed from flasks by trypsinisation as described (Section 2.2.13.2). Cells 

were counted twice using a hameocytomer and seeded onto 24-well plates containing Opti-

MEM® at a cell density of  1 x 106 cells per well, and were left to adhere to 24-well plates 

overnight. A. fumigatus conidia (5 x 106) or germlings (5 x 106) were added to each well of 

BMMØs, and cells were stimulated for 18 hr at 37 ºC with 5 % CO2. Supernatants were 

subsequently collected for cytokine determination by ELISA. In order to achieve germling 
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formation, A. fumigatus strains were germinated for either 6 or 9 hr at 37 ºC in AMM 

media (10 ml) at 1 x 107 conidia/ml. Preparatory experiments indicated that between 90-

100 % of conidia had formed dichotomous germ tubes following 9 hours incubation. 

BMMØs were also exposed to filter sterilized culture supernatant (500 µl) from A. 

fumigatus strains. For experiments where dead conidia or germlings were assayed, killing 

was achieved by heat-inactivating fungal samples at 100 ºC for 30 min in an autoclave. The 

efficiency of heat-killing was verified by plating serial dilutions of conidia or germlings on 

Malt extract agar. Aliquots of filter sterilized Aspergillus culture supernatant were 

inoculated onto Malt Extract agar and this confirmed that the supernatant was completely 

cell-free. 

 

2.2.13.4 Cytokine Determination in Murine Cells by ELISA 

 Commercially available ELISA kits for TNF-α, IL-6, IL-10 and RANTES 

(Peprotech UK) were used according to manufacturer’s instructions.  

 

2.2.14 Preparation of Chemically Competent E. coli cells 

 LB broth (10 ml) (Section 2.1.1.19) was inoculated with an E. coli DH5α colony 

and this was incubated overnight at 37 ºC with 200 rpm. This culture was used to inoculate 

1 L of LB broth and this was incubated for 2 hr at 37 ºC with 200 rpm. Following this, the 

culture was split into 4 fresh tubes and the tubes were left on ice for 10 min. The cells were 

then subsequently centrifuged at 5,000 x g for 10 min at 4 ºC. The supernatant was 

completely removed by decanting and pipetting. Each pellet was resuspended by pipetting 

and swirling in 10 ml of cold RF 1 buffer (Section 2.1.9.1). The tubes were then kept on ice 

for 30 min. The cells were subsequently centrifuged at 5,000 x g for 10 min at 4 ºC and 

once again the supernatant was completely removed. Each pellet was resuspended in 3.2 ml 
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of cold RF 2 buffer (Section 2.1.9.2) and the tubes were kept on ice for 15 min. The cells 

were then aliquoted (100 µl) into sterile, pre-cooled microcentrifuge tubes and stored at – 

80 ºC. 

 

2.2.15 Minute Transformation of Chemically Competent E. coli cells 

 Competent E. coli cells (Section 2.2.14) were removed from – 80 ºC storage and 

were thawed on ice for no more than 5 min. The DNA to be transformed (usually 2-5 µl of 

a plasmid preparation (Section 2.2.17) or 5-10 µl of a ligation reaction (section 2.2.2.7)) 

was added to the cells whilst on ice and mixed by gentle pipetting. The mixture was left on 

ice for 5 min. Subsequently, transformed cells were spread onto desired selection plates 

(usually LB agar with ampicillin added (Section 2.1.1.18, Table 2.2).  

 

2.2.16 Colony PCR 

 Bacterial and yeast colonies yielded by transformation could be directly screened 

for presence of the desired plasmid by PCR. Using aseptic techniques, a colony suspension 

was prepared. To this end, an isolated colony was removed using a sterile tip and 

resuspended in 10 µl sterile water in a sterile 0.2 ml mircofuge tube. Simultaneously, each 

colony was also restreaked onto a fresh reference plate. A PCR Mastermix containing all 

components necessary for PCR was prepared and aliquoted into an appropriate number of 

0.2 ml microfuge tubes. The colony suspension (1 µl) was used as a template for the PCR 

reactions. Genomic DNA and no template controls were included and PCR was carried out 

as described in Section 2.2.2.3.  
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2.2.17 Small Scale Plasmid Purification 

 Plasmid purification was carried out according to the Qiagen plasmid purification 

manual using the QIA prep Miniprep kit. All buffers (PI, P2, N3 and PE) and columns were 

supplied with the kit and details of buffer constituents are outlined in the Qiagen plasmid 

purification handbook. An isolated E. coli colony was picked aseptically and used to 

inoculate LB broth (5 ml) containing 100 µg/ml of ampicillin in a sterile 50 ml tube. The 

culture was grown overnight at 37 ºC shaking at 200 rpm, and the cells harvested by 

centrifugation at 2,500 x g for 5 min. The supernatant was removed and the cells were 

resuspended in ice cold Buffer PI (250 µl). Buffer P2 (250 µl), and Buffer N3 (350 µl) were 

then added and the tubes inverted 5 times prior to centrifugation at 13,000 x g for 10 min. 

The supernatant was removed, applied to the Qiaprep spin column and centrifuged at 

13,000 x g for 1 min. The flow-through was discarded and the column was washed with 

Buffer PE (750 µl) and centrifuged at 13,000 x g for 1 min. Once again the flow-through 

was discarded and the column was centrifuged at 13,000 x g for 1 min to remove residual 

ethanol. The column was then allowed to stand for 1 min before the DNA was eluted by the 

addition of 30 µl of sterile water to the centre of the column followed by a final 

centrifugation at 13,000 x g for 1 min. The purified plasmid was subsequently analysed by 

DNA gel electrophoresis (Section 2.2.2.4). 

 

2.2.18 DNA Sequencing 

 DNA sequencing of recombinant clones was performed by Agowa Sequencing 

using the pre-paid barcode sequencing service. 
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2.2.19 Cloning of Afmpt and Afagt into pC210 plasmid for transformation into S. 

cerevisiae 

 The coding regions of AFUA_5G06350 and AFUA_2G02090 were amplified by 

PCR using primers AFUA_5G06350 PC210 F and AFUA_5G06350 PC210 R or 

AFUA_2G02090 PC210 F and AFUA_2G02090 PC210 R respectively (Primers listed in 

Table 2.3). These primers pairs were designed to incorporate 5’ NdeI and 3’ SphI restriction 

sites onto both A. fumigatus genes for subsequent directional cloning into the pC210 vector 

(Schwimmer & Masison, 2002). The PCR products (2 µg) and pC210 (5 µg) were doubly 

digested with NdeI and SphI and further purified from 1% (w/v) agarose gels (Section 

2.2.2.5). Purified digested vector and insert (either AFUA_5G06350 or AFUA_2G02090) 

were quantified and ligations were set up (Section 2.2.2.7). Ligations were incubated 

overnight at 16 ºC in a thermal cycler and the products of these ligations were transformed 

into E. coli DH5α (Section 2.2.15). Several bacterial colonies were subjected to colony 

PCR analysis (Section 2.2.16), using the same primers that were used for cloning, to check 

for presence of the insert. Plasmids were isolated from a selection of the colonies and 

diagnostic restriction digests was performed to check the orientation of the cloned inserts. 

 

2.2.20 Yeast Cell Transformation 

 Plasmids were transformed into yeast using a Lithium Acetate/DMSO/Polyethylene 

Glycol Method (PEG). The yeast strain used in this study exhibits leucine auxotrophy. 

Therefore this strain can only grow either when cultured in a growth medium supplemented 

with leucine, or when a functioning copy of the LEU2 gene has been transformed into the 

cells. This characteristic was the basis of the selection for transformed yeast cells, as there 

is a LEU2 gene on transforming plasmids. Approximately 1 µg of plasmid was transformed 

into competent yeast cells and transformed cells were selected on media lacking leucine.  
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 For transformation, a single colony of the recipient strain was inoculated into 5 ml 

of YPD broth (2.1.1.22) and incubated overnight at 30 ºC shaking at 200 rpm. The 

overnight culture was counted using a haemocytometer and 50 ml of YPD broth was 

inoculated using the overnight culture at a cell density of 5 x 106 cells /ml. This culture was 

allowed to grow at 30 ºC shaking at 200 rpm until it reached 1-2 x 107 cells/ ml (usually 3-4 

hr). When the cells had reached the required density, they were centrifuged at 2,500 x g for 

5 min. The supernatant was removed and the cell pellet was resuspended in 1 ml of 100 

mM lithium acetate (Section 2.1.10.3) and this mixture was transferred to a fresh 1.5 ml 

eppendorf tube. This tube was centrifuged at 13,000 x g for 10 sec to pellet the cells once 

again. The supernatant was then removed and the cells were resuspended in 500 µl 100 mM 

lithium acetate. For each transformation performed, 50 µl of this cell suspension was 

transferred to a fresh 1.5 ml eppendorf tube and the tubes were centrifuged at 13,000 x g for 

10 sec. Several components for the transformation were then added in the following order:  

50 % (w/v) PEG (240 µl), I M lithim acetate (36 µl), carrier DNA (25 µl) and 50 µl of 

DNA/ sterile water mix (Section 2.1.10). In all cases, 1 µg of plasmid DNA was used per 

transformation and this was prepared in a sterile eppendorf and sterile water was added up 

to a final volume of 50 µl. The transformation reactions were then mixed by pipetting 

gently. Transformation reactions were then incubated for at 30 ºC for 30 min in a water 

bath. Following this, the cells were heat-shocked by placing the transformation reactions 

into a pre-heated water bath at 42 ºC for 25 min. Subsequently, the reactions were 

centrifuged at 7,000 x g for 15 sec. The cell pellets were resuspended in 150 µl of sterile 

water and were then spread out onto transformation plates (SC lacking leucine) (Section 

2.1.1.24, 2.1.1.25) using a sterile disposable microbiological spreader.  
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2.2.21 Yeast Dot Growth Assays 

 Liquid cultures (5 ml) of relevant yeast strains were grown overnight in SC media 

(Section 2.1.1.26) lacking leucine in order to maintain relevant plasmids. These overnight 

cultures were used to inoculate fresh cultures the following day at an OD600 of 0.15 into 5 

ml of fresh SC media. These cultures were subsequently grown for approximately 4 hours 

until the cell density had reached 3 x 106 cells/ ml. At this time, cells were harvested by 

centrifugation at 2,500 rpm for 5 min, and the cell pellets were resuspended in fresh SC 

media at a concentration of 5 x 106 cells/ ml. A 96-well plate was prepared as follows: 80 

µl of YPD (Section 2.1.1.22) was added to each of the wells in columns 2-12, rows A-H. 

Cells of the relevant strains (100 µl) were added to the wells in column 1. Using a multi-

channel pipette, a 10-fold serial dilution of the cells was created by pipetting 20 µl from 

column 1 into column 2, mixing the cells by pipetting, and then pipetting 20 µl from 

column 2 into column 3 etc. This was repeated until cells were added into the wells in 

column 6, so that the 96-well plate then contained 6 orders of dilution. Using a pin 

replicator, 5 µl of the diluted culture was spotted onto YPD agar plates (Section 2.1.1.23) 

supplemented with increasing concentrations of MNNG (Table 2.2). Growth differences 

were recorded following incubation of the plates for 2–3 days at 30°C. 
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3.1 Introduction. 
3.1.1 The non-ribosomal peptide synthetase gene, pes3. 

 The pes3 open reading frame represents the largest gene within the A. fumigatus 

genome. pes3 (CADRE locus identifier: AFUA_5G12730) (Mabey et al., 2004), is 

found on Chromosome 5 and spans 25,548 bp in length. pes3 is predicted to encode a 

protein of 8,515 amino acid residues with a predicted molecular mass of approximately 

940 kDa. There are no annotated introns in the pes3 gene. Blast searching of pes3 using 

blastn at NCBI revealed no sequence homologues in any organism for which the full 

genome sequence is available, making it difficult to predict a peptide produced by Pes3 

by comparison with other producing organisms (Cramer et al., 2006b; Stack et al., 

2007). pes3 is annotated to encode a multi-modular NRP synthetase, consisting of one 

initiation module and five elongation modules. The order of modules in Pes3 is 

ATCATECATCETCATCATCATEC (Cramer et al., 2006b). Based on this number of 

modules, Pes3 would be predicted to encode a peptide with 6 amino acids, if each 

adenylation domain exhibited unique amino acid specificity. However, the non-linear 

arrangement of domains and modules within Pes3 (the domain arrangement of a typical 

elongation module is CAT), may suggest repetitive or non-linear use of these modules 

(Cramer et al., 2006b). This possibility makes it difficult to predict the number of amino 

acid moieties in the downstream non-ribosomal peptide (NRP).  

 Pes3 was chosen as an interesting NRP synthetase to study for several reasons. 

Firstly, it represents the largest gene in A. fumigatus (Dr. David Fitzpatrick, NUI 

Maynooth – personal communication) and its expression is detected under various 

conditions (Cramer et al., 2006b) indicating that it may be performing an important 

function in A. fumigatus. Interestingly, pes3 displayed a unique pattern of gene 

expression in comparison to all other A. fumigatus NRP synthetase encoding genes, 

during a Real-Time PCR analysis, whereby pes3 transcripts were most abundant in 
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ungerminated spores, in contrast to all other NRP synthetases examined (Cramer et al., 

2006b). Secondly, availability of the complete genome sequence of this important 

human pathogen (Nierman et al., 2005) poses a functional genomics challenge in 

elucidating the role of genes for which no literature currently exists. Furthermore, the 

overall deficit of information relating NRP synthetase genes to peptides and their 

function in filamentous fungi, including A. fumigatus, makes NRP synthetase genes 

worthy of further investigation. pes3 was the subject of a previous PhD project (Dr. 

Deirdre Stack), who disrupted pes3 in the genome of A. fumigatus before the 

commencement of this work. 

 As mentioned previously, genes controlling secondary metabolite production are 

generally organised into clusters in the genome, many of which are specific to certain 

species (Keller & Hohn, 1997; Nierman et al., 2005). LaeA has been identified as the 

master transcriptional regulator of SM biosynthetic clusters in A. fumigatus (Bok & 

Keller, 2004). Interestingly, pes3 was not found to be under the transcriptional control 

of LaeA, suggesting that it might not be involved in SM production. The high level of 

expression in ungerminated spores (Cramer et al., 2006b) hints that pes3 may be 

involved in germination or cell wall structure in A. fumigatus. For this reason, cell wall 

structure will be discussed in detail in this chapter. Furthermore, mechanisms for innate 

immune recognition of, and the immune response to, A. fumigatus will be discussed, 

since this is largely dependant on cell wall structure. Lastly, virulence models currently 

in use for the investigation of A. fumigatus virulence will be described in detail.  

 

3.1.2 Structure of the Aspergillus fumigatus cell wall. 

 The fungal cell wall is an important protective structure for the fungus, acting as 

a barrier in contact with harsh environments (Latge, 2007). Fungi will die if the cell 

wall is weakened or removed, unless they are osmotically stabilised (Latge, 2007). The 
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cell wall also bears an aggressive function, as it is a reservoir of toxic and hydrolytic 

molecules, which are used by the fungus to invade ecological niches (Latge, 2007). 

Despite the essential role of the fungal cell wall, the biosynthesis and accurate structure 

of the cell wall of most fungal species is not fully understood, and this is particularly 

obvious amongst filamentous fungi (Latge & Calderone, 2002; Lesage & Bussey, 

2006). The cell wall can be organised into two distinct layers; an inner and an outer 

layer, whose composition varies between fungal species and growth stage of the fungus. 

A schematic representation of the A. fumigatus cell wall is shown in Figure 3.1 (Latge, 

2010). Fibrillar polysaccharides are close to the plasma membrane, while amorphous 

polysaccharides are located throughout the cell wall but mostly facing outwards (Latge, 

2010). This distinction between the two layers is purely theoretical since it is impossible 

to analyse the cell wall without prior enzymatic or chemical treatment, thereby altering 

the arrangement of the layers (Latge, 2010). 
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Figure 3.1. The structure of the A. fumigatus cell wall. 

A. Transmission electron microscopy (TEM) showing a section of a conidial cell wall 

(CW) and also the melanin (m) dense outer layer. 

B. Scanning electron microscopy (SEM) showing the rodlets (r) on the conidial surface. 

C. Diagrammatic representation showing the theoretical organisation of the polymers in 

the conidial cell wall. Here, the amorphous α-1,3-glucan glues the melanin to the 

conidial surface. PM: plasma membrane. 

D. TEM showing the mycelial cell wall grown in liquid culture. 

E. Diagrammatic representation of the theoretical structure of the mycelial cell wall. 

Soluble or GPI-anchored proteins and some polysaccharides such as mannans are 

produced intracellularly and transported to the cell wall space by the Golgi/secretory 

vesicle (G/SV) system. ß-1,3-glucans and chitin are produced as linear chains by 

polysaccharide synthases. Individual chains are then joined non-covalently into stable 

triple helixes. 

F. SEM showing the extracellular matrix (ECM) covering the hyphae growing on agar 

(and absent on hyphae grown in liquid culture). 

G. Localisation of chitin around the cell wall of a germinating conidium and at the 

septum using a fluorescent label. 

H. Surface labelling of the mycelial cell wall using a fluorescently-labelled antibody. 

I. ß-1,3-glucan localised with a ß-1,3-glucan specific monoclonal antibody around the 

germinating conidia and at the germ tube apex. 

J. Labelling of the entire mycelial surface with an anti-galactofuran monoclonal 

antibody. 

All images taken from  Latge, (2010). 
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 More than 90 % of the cell wall is composed of polysaccharide, and the outer 

layer of the cell wall is an insoluble structure requiring solubilisation, usually by means 

of hot alkali treatment before it can be properly analysed (Latge, 2007). For most fungal 

species, the central core of the cell wall is composed of a branched ß-1,3, 1,6, glucan 

linked to chitin via a ß-1,4 linkage (Latge, 2007). In A. fumigatus and S. cerevisiae, 

interchain ß1,6 glucosidic linkages make up 3 % and 4 % of the total glucan linkages, 

respectively (Fontaine et al., 2000a; Kollar et al., 1995; Nguyen et al., 1998; Perez & 

Ribas, 2004). This structural core varies between fungal species, and is thought to be 

fibrillar and embedded in an unstructured cement, which is alkali-soluble (Latge, 2007). 

The glucan-chitin complex is bound covalently to other polysaccharides, and this is 

variable between pathogens. In A. fumigatus, the polysaccharides are composed of 

galactomannan and ß-1,3-1,4-glucan, which is absent in the human pathogenic yeast 

Candida albicans which contains mainly ß-1,6-glucan, that is absent in A. fumigatus 

(Aimanianda et al., 2009; Fontaine et al., 2000b). In A. fumigatus, the alkali-soluble 

fraction is comprised of α-1,3-glucan with 1 % interconnecting α-1,4-linkages (Latge, 

2010). ß (1-3) glucans are synthesised by a plasma membrane bound glucan synthase 

complex, and using UDP-glucose as a substrate, linear chains are extruded through the 

membrane (Beauvais et al., 1993). Fungal ß-glucan exhibits important 

immunostimulatory properties, mediated by the innate immune receptor Dectin-1 

(Brown, 2006; Taylor et al., 2007). Dectin-1 will be discussed later in this chapter.  

 N-mannans and O-mannans are also found in the cell wall of A. fumigatus, and 

these often terminate in a galactofuranose residue at the non-reducing end (Leitao et al., 

2003; Morelle et al., 2005), and these mannans are covalently bound to the glucan 

fibrillar core (Latge, 2010). The polysaccharide skeleton of the cell wall is coated with 

cell wall proteins (CWPs). The glycophosphatidylinositol (GPI)-modified proteins 

represent the major class of CWPs (de Groot et al., 2003; Eisenhaber et al., 2004). GPI-
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modified proteins possess an N-terminal hydrophobic signal peptide sequence targeting 

them to the endoplasmic reticulum. A C-terminal hydrophobic domain is present that is 

cleaved in the endoplasmic reticulum and replaced with a GPI-anchor. The GPI moiety 

may then be processed and attached to 1,6-ß-glucan in the cell wall (Romano et al., 

2006). The S. cerevisiae ECM33 protein has the typical features of a GPI-anchored 

protein, and its deletion resulted in a weakened and disorganised cell wall, defective 

glycosylation and activation of the cell wall integrity pathway (Pardo et al., 2004). The 

cell wall integrity (CWI) pathway is activated in response to cell wall stress, and uses a 

mitogen-activated protein kinase (MAPK) cascade, to ensure maintenance of the cell 

wall by mediating cell wall biosynthesis, actin organization, and other events necessary 

to maintain CWI (Levin, 2005). The C. albicans ECM33 protein is required for normal 

cell architecture and expression of cell-surface proteins, and ECM33 mutants were 

reduced in the ability to invade epithelial cells, and were less virulent in a murine model 

of candidosis (Martinez-Lopez et al., 2004; Martinez-Lopez et al., 2006). These 

findings prompted a study which found that the A. fumigatus ECM33 (AfuECM33) 

homologue is involved in conidial adherence and morphogenesis (Romano et al., 2006). 

Interestingly, an AfuECM33 mutant exhibited rapid germination, increased cell-cell 

adhesion, increased resistance towards the anti-fungal caspofungin and increased 

virulence in a mouse model for IA (Romano et al., 2006). The authors suggest that the 

cell wall alteration in the AfuECM33 mutant leads to greater exposure of cell-surface 

proteins involved in adherence, leading to increased cell-cell adhesion, and that a softer, 

more pliable cell wall allows for faster germination. Reduced synthesis of (1,3)-β-

glucan in the AfuECM33 mutant may explain the increased sensitivity to caspofungin, 

since caspofungin inhibits the (1,3)-β-glucan synthase (Romano et al., 2006). 

 An important feature of the fungal cell wall is that it is a highly dynamic 

structure that is constantly changing during the cell cycle and in response to the 
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environment. The majority of structural changes that occur in the cell wall are 

associated with the outer layer (Latge, 2010). A. fumigatus conidia are covered by 

hydophobins and melanin, while germinating conidia expose α-1,3-glucans, 

galactomannan, galactosaminogalactan and N-glycosylated proteins including 

galactomannoproteins on their surface (Latge, 2010). In fact, the exposure of such 

galactomannan and associated galactomannoproteins on germinating conidia is the basis 

of the commercial Platelia enzyme immunoassay (EIA), which has been used 

widespread for the diagnosis of IA, and detection of  ß (1-3) glucans is also used as a 

diagnostic strategy for IA (Thornton, 2010).  

 Dormant A. fumigatus conidia are covered by a hydrophobic rodlet layer 

comprised of a thin layer of specifically arranged RodA hydrophobins (Thau et al., 

1994). The rodlet layer favours the buoyancy and air dispersal of conidia (Beever & 

Dempsey, 1978). The hydrophobin proteins are characterised by a conserved spacing of 

eight cysteine residues (Wessels, 1997; Wosten & de Vocht, 2000). The conidia of A. 

fumigatus contain two hydrophobins, RodA and RodB. The RodB protein, although 

homologous to RodA, is not essential for rodlet formation (Paris et al., 2003a). Using 

rodlet mutants, it was shown that RodA protects A. fumigatus conidia against killing by 

alveolar macrophages (Paris et al., 2003a). RodA is covalently bound to the cell wall 

polysaccharides, indicated by the presence of a GPI-anchoring sequence in the rodA 

gene (AFUA_5G09580) (Latge, 2007). The rodlet layer maintains A. fumigatus conidia 

immunologically silent, and is the likely reason why inhaled spores do not usually 

initiate inflammatory responses in immunocompetent individuals (Aimanianda et al., 

2009). Removal of the RodA protein chemically, by gene deletion, or through 

germination, resulted in conidia which induced greater immune responses compared to 

the wild-type (Aimanianda et al., 2009). RodA has recently been shown to prevent A. 

fumigatus conidia from triggering nuclear extracellular trap (NET) formation in human 
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and murine neutrophils, thereby presenting a novel mechanism by which A. fumigatus 

conidia escape neutrophil attack (Bruns et al., 2010). NETs will be discussed in more 

detail in the subsequent section. 

 Melanin is a blue-green pigment synthesised by the dihydroxynaphthalene 

(DHN)-melanin pathway, directed by a cluster of 6 genes in A. fumigatus, which are 

expressed during conidiation (Tsai et al., 1999). Melanin has been shown in vitro to 

protect A. fumigatus conidia against phagocytosis and the effects of reactive oxygen 

species (ROS) produced by phagocytes (Jahn et al., 2002; Tsai et al., 1998), and it is a 

documented virulence factor for A. fumigatus (Latge, 1999). The polyketide synthetase 

PKSP, encoded by the pksp gene in A. fumigatus (also called alb1) mediates one of the 

first steps of the DHN-melanin pathway. pskp mutants did not produce melanin and 

were found to be less virulent than wild-type strains in murine models of IA (Jahn et al., 

1997; Tsai et al., 1998). Recently, it has been shown that melanin also plays a structural 

role in the conidial cell wall, is essential for correct assembly of the fungal cell wall 

layers, and the expression of the hydrophobic rodlet layer at the outer cell wall (Pihet et 

al., 2009).   

 Importantly, the fungal cell wall is an essential and major target for anti-fungal 

drug discovery and development for several reasons: it accounts for one quarter of the 

fungal cell; it is a physically rigid structure protecting the fungus from the environment; 

it is essential for fungal life; it is composed of unique molecules which do not have 

equivalents in humans (e.g. β-glucans and chitin) (Beauvais & Latge, 2001). Given the 

huge potential for cell wall anti-fungal drug targets and the importance of the cell wall 

in innate immune recognition of A. fumigatus, a greater understanding of the cell wall, 

its composition, biosynthesis and regulation is necessary. 
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3.1.3 The innate immune response towards Aspergillus fumigatus. 

 The innate immune response to A. fumigatus may be discussed under 4 different 

headings: the cells of the innate immune system, the antimicrobial activity of respiratory 

cells, pattern recognition systems and chemical immune effectors such as cytokines and 

chemokines (Balloy & Chignard, 2009). 

 

3.1.3.1 The cells of the innate immune system. 

 The innate immune system comprises three main cell types involved in defence 

against pathogens; alveolar macrophages, epithelial cells, and polymorphonuclear 

neutrophils (PMNs). Alveolar macrophages are the most prominent phagocytic cells in 

the lung alveoli, and are important in controlling the early steps of innate immunity 

towards Aspergillus infections (Romani, 2004). Macrophages engulf A. fumigatus 

conidia by phagocytosis, and conidia are killed within the cells, with 90 % of spores 

being killed after 30 hr (Schaffner et al., 1983). Alveolar macrophages are able to 

engulf dormant or swollen conidia; however, they can only kill swollen spores (Philippe 

et al., 2003). Furthermore, recognition, phagocytosis, and killing of A. fumigatus 

conidia by alveolar macrophages not only plays an important role in fungal clearance, 

but also in triggering a pro-inflammatory immune response leading to local influx of 

neutrophils and their migration to the site of infection (Brakhage et al., 2010). Pathogen 

recognition by macrophages is mediated by specialised membrane bound pathogen 

recognition receptors (PRRs) such as the C-type lectin receptor Dectin-1 (Reid et al., 

2009) and the Toll-like receptors (Akira & Takeda, 2004). Such PRRs will be discussed 

in more detail in subsequent sections. Once A. fumigatus conidia are phagocytosed by 

alveolar macrophages, they are processed in the phagolysosome and eventually killed 

(Brakhage et al., 2010). It has not been fully elucidated how the macrophages kill the 

conidia but reactive oxygen species (ROS) are important in this process, as NADPH 
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oxidase mutants are unable to kill A. fumigatus conidia (Philippe et al., 2003). However, 

since A. fumigatus mutants deficient in major oxidative stress defence regulators 

(AfYap1, and AfSkn7) are not attenuated in virulence in various immunosuppressed 

mouse models of IA (Lamarre et al., 2007; Lessing et al., 2007), it is unlikely that the 

production of ROS is crucial for the direct killing of A. fumigatus, but that it may be 

more relevant in signalling to other immune effector cells (Lessing et al., 2007). This 

hypothesis is supported by earlier experiments that found the granular proteins in 

neutrophils to be responsible for the killing of microbes while the ROS were important 

for the activation of vacuolar enzymes (Reeves et al., 2002; Segal, 2005). Segal, (2005) 

proposed that the mechanism by which NADPH oxidase contributes to A. fumigatus 

killing might be indirect, and due to depolarisation of the phagocytic vacuole leads to an 

influx of ions, resulting in the activation of degradative enzymes, such as elastase and 

cathepsin G. 

 Epithelial cells are located on the upper airways of the trachea and bronchus, and 

include cell types than are either ciliated or produce and secrete mucus. Inhaled spores 

become trapped in the mucus and are transported by cilial beating to the oropharyngeal 

region, where they are either swallowed or ejected, and this is aided by mechanical 

defences such as coughing and sneezing (Balloy & Chignard, 2009). There are two 

types of epithelial cell present in alveoli, the type I and type II pneumocytes. These cell 

types are important in secreting pulmonary surfactant, which has been implicated in 

defence against microorganisms, due to the antimicrobial properties of two of its 

constituent proteins: surfactant proteins A and D (SP-A, SP-D) (Balloy & Chignard, 

2009). SP-A and SP-D are actually pattern recognition molecules of innate immunity 

themselves, and are composed of an N-terminal helical domain, and a ligand recognition 

domain called a C-type lectin or carbohydrate recognition domain (CRD) (Madan et al., 

2010). These CRDs recognise patterns on the surface of pathogens such as viruses, 
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bacteria and fungi, and cause both direct inhibition of microbial growth, as well as 

enhanced phagocytosis by neutrophils and macrophages (Kuroki et al., 2007). SP-A and 

SP-D can interact with phagocytes upon microbial challenge, increasing their 

chemotactic, phagocytic, antigen presentation and oxidative properties (Kishore et al., 

2002). SP-A and SP-D have been shown to be important in binding and clumping of A. 

fumigatus conidia leading to increased phagocytosis of germinating conidia by 

macrophages and neutrophils (Allen et al., 2001; Madan et al., 1997). In fact, surfactant 

proteins act as opsonins, inducing phagocytic cells and modulating inflammatory 

cytokine release (Wright, 2005). Indeed, mice with SP-D gene deletions showed 

increased susceptibility to A. fumigatus conidia challenge in a corticosteroid model of 

immunosuppression (Madan et al., 2010). Many interactions have been described for 

pathogens and phagocytic cells, and many intracellular pathogens have been 

documented, such as Mycobacteria tuberculosis and Chlamydia pneumoniae, whereby 

the pathogens multiply inside the epithelial cell (Balloy & Chignard, 2009). To date, A. 

fumigatus has not been described as an intracellular pathogen, although the conidia of 

this fungus can survive in acid organelles following engulfment by respiratory epithelial 

cells (Botterel et al., 2008; Paris et al., 1997; Wasylnka & Moore, 2002; Wasylnka & 

Moore, 2003). In some cases, A. fumigatus conidia have been found to germinate inside 

these acid organelles without causing tissue damage (Wasylnka & Moore, 2003), a fact 

that suggests that A. fumigatus evades the action of phagocytes through residence in 

these epithelial organelles, and may represent a starting point for systemic spread of 

infection (Balloy & Chignard, 2009).  

 PMNs represent the most abundant population of intravascular phagocytic cells 

and are essential for defence against infections. At least 40 % of all human neutrophils 

are found in the vascular network of the lung, and these neutrophils are recruited to the 

alveolar spaces during infection so that they can boost immune defences (Balloy & 
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Chignard, 2009). During infection, PMNs may make up 90 % of the total phagocytic 

cells in the alveoli. Recently, it was shown that neutrophils are essential at early time- 

points following A. fumigatus infection, with mice developing IA following neutrophil 

depletion either before or within 3 hr of infection (Mircescu et al., 2009). In contrast, 

alveolar-macrophage depleted animals were able to limit hyphal tissue invasion, 

possibly due to the presence of functioning neutrophils (Mircescu et al., 2009). 

Neutrophils are capable of phagocytosing A. fumigatus conidia in the alveoli, and have 

been shown to be fungicidal against conidia in vitro (Chignard et al., 2007; Levitz & 

Diamond, 1985). A. fumigatus has been found to produce metabolites which interfere 

with neutrophil function, including the toxic molecule fumagillin (Fallon et al., 2010) 

and gliotoxin (Tsunawaki et al., 2004). Many of the cell-mediated killing strategies 

discussed here refer to the phagocytic killing of A. fumigatus conidia by macrophages 

and neutrophils, as A. fumigatus hyphae are too large to be taken up by phagocytes.  

Hyphae are targeted by polymorphonuclear leucocytes (PMNLs) (Levitz, 2004; Rex et 

al., 1990). PMNLs form aggregates around the hyphae and kill them by the granular 

release of ROS and antimicrobial peptides (Levitz et al., 1986; Levitz & Farrell, 1990). 

 Despite the obvious importance of neutrophils in the defence against A. 

fumigatus, it is likely that ROS-mediated mechanisms of killing may not be the most 

crucial, or the only killing strategy used by neutrophils (Lessing et al., 2007). In line 

with the need to elucidate mechanisms of neutrophil-killing independent of ROS-

mediated destruction, neutrophils have recently attracted much attention following the 

identification of neutrophil extracellular traps (NETs). NETs were observed during 

neutrophil death as a final defence mechanism against bacteria (Brinkmann et al., 

2004). Dying PMNLs have been shown to eject nuclear DNA in response to A. 

fumigatus, forming NETs, described as a dynamic web-like structure embedded with 

fungicidal proteins which inhibit hyphal growth (Bruns et al., 2010; McCormick et al., 
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2010). NET formation has been observed in human neutrophils upon exposure to A. 

fumigatus and other Aspergilli both in vivo and in vitro (Bianchi et al., 2009; Bruns et 

al., 2010; McCormick et al., 2010), and has been found to reduce hyphal activity in the 

respiratory tract after nine hours of co-incubation (Bruns et al., 2010). Following 

NETosis, the final NET release from a neutrophil occurs within three hours of DNA 

release (Bruns et al., 2010). NET formation was observed upon exposure to live and 

UV-killed A. fumigatus conidia and hyphae, and was associated with the presence of 

elastase, known to be characteristic of NETs (McCormick et al., 2010). NETs trap A. 

fumigatus conidia (Bruns et al., 2010; Jaillon et al., 2007; McCormick et al., 2010) and 

hyphae (Bruns et al., 2010), and appear to be fungistatic rather than fungicidal (Bruns et 

al., 2010; McCormick et al., 2010). It is suggested that they may help recruit more 

neutrophils or other immune cells to the infected site (Brakhage et al., 2010), as well as 

reducing fungal dissemination (Bruns et al., 2010; McCormick et al., 2010). NETs are 

formed following the induction of a ROS signalling cascade in neutrophils which results 

in breakdown of the nuclear envelope and granular membranes (Fuchs et al., 2007). 

Once the nuclear membrane is ruptured, the NETs are formed by a mixture of nuclear 

DNA with granular contents and are then explosively released, in a process associated 

with cell death, known as NETosis (Brinkmann & Zychlinsky, 2007). These findings 

highlight the importance of neutrophils in the defence against A. fumigatus, and the 

NET phenomenon will be discussed in more detail later in this chapter.  

 

3.1.3.2 The antimicrobial activity of respiratory cells. 

 The airway epithelial cells exert antimicrobial activity by producing a range of 

antimicrobial compounds, which either kill pathogens directly, or act to enhance 

phagocytosis-mediated elimination of pathogens. The primary role of macrophages and 

neutrophils in the immune response is the phagocytosis and subsequent killing of 



 138

pathogens. Oxygen-dependant oxidative mechanisms are important in this process, 

involving the generation of ROS and reactive nitrogen species (RNS) derived from 

nitric oxide (NO). The generation of ROS during phagocytosis involves the NADPH 

oxidase complex, which produces hypochloric acid (HOCl) (Kohchi et al., 2009). 

Another enzyme, myeloperoxidase (MPO) produces superoxide anions. Both of these 

enzymes are critical for elimination of A. fumigatus. In vitro studies using murine 

macrophages lacking NADPH oxidase have shown that the production of ROS is an 

important part of the fungicidal activity of macrophages (Philippe et al., 2003). 

However, in the same study using murine macrophages lacking NO synthase, it was 

shown that the fungicidal activity of macrophages is independent of the production of 

NO and its derivatives. This shows that the importance of different oxidative 

mechanisms in the defence against A. fumigatus needs further investigation. A study 

using mice NADPH oxidase mutants showed that mice lacking NADPH oxidase were 

more susceptible to A. fumigatus infection (Aratani et al., 2002). The importance of the 

NADPH complex in defence against A. fumigatus explains why patients of chronic 

granulatomous disease (CGD), who are deficient in macrophage and neutrophil 

NADPH oxidase, are highly susceptible to IA (Almyroudis et al., 2005).

 Antimicrobial molecules are another strategy used by respiratory cells in the 

defence against A. fumigatus. Lactoferrin is produced by the neutrophils and 

macrophages, and binds to iron, depriving the fungus of iron, which is essential for its 

survival (Zarember et al., 2007). Lactoferrin is abundant in respiratory secretions 

(Travis et al., 1999). Recently, it was found that PMNLs play a role in the defence 

against inhaled A. fumigatus conidia (Bonnett et al., 2006) and that they aggregate 

around conidia in the airways and prevent germination by releasing lactoferrin from 

primary granules (Bonnett et al., 2006; Zarember et al., 2007). Platelets have also 

recently been found to damage A. fumigatus conidia and germinating hyphae by 
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adhering to the fungus and releasing serotonin from granules (Perkhofer et al., 2008a). 

Serotonin was previously found to exert anti-fungal effects against Aspergillus species 

in vitro (Perkhofer et al., 2008b). Elastase and cathepsin G, two serine proteases which 

are present in neutrophil granules appear to be important in defence against A. 

fumigatus, as mice deficient in either of these enzymes were found to be more 

susceptible to A. fumigatus infection (Tkalcevic et al., 2000). Chitinases, which are 

capable of degrading chitin in the fungal cell wall, are produced by epithelial cells and 

macrophages (Chen et al., 2009). 
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3.1.3.3 Pattern recognition systems.  

 The ability of our immune system to immediately recognise and respond to 

microbes is dependant upon germ-line encoded pattern recognition receptors (PRRs) 

which recognise microbial components and initiate an immune response (Janeway, 

1992). Each PRR is specific in nature, enabling it to recognise invariant molecular 

components of pathogens, known as pathogen associated molecular patterns (PAMPs), 

and this leads to an appropriate immune response that is tailored to specifically defend 

against the particular pathogen (Janeway, 1998; Medzhitov & Janeway, 2000). Specific 

PAMPs tend to be found in groups of related organisms. For example, 

lipopolysaccharide (LPS) is a PAMP found in Gram-negative bacteria, and ß-glucans 

are an important fungal PAMP, allowing a limited range of PRRs to recognise a wide 

range of organisms (Tsoni & Brown, 2008). PRRs are also known to identify 

endogenous components released during tissue injury, and it has been hypothesised that 

rather than discriminating between self and non-self here, PRRs identify ‘danger’ 

signals and activate the immune system accordingly (Matzinger, 1994). Several families 

of PRRs exist, both inside and outside of the cell, but the main PRRs which will be 

discussed here are those involved in the recognition of extracellular pathogens, in 

particular the Toll-Like receptors (TLR) and the C-type lectin (CLR) receptors. 

Recognition of pathogens through these receptors results in ingestion and phagocytosis 

of microbes in an actin-dependant manner. Several destructive mechanisms, including 

the respiratory burst (Kohchi et al., 2009), result in microbial killing.  

 TLRs are a family of innate immune receptors that are highly evolutionary 

conserved right across the plant and animal kingdom (Vega & Martin, 2008). TLRs 

derive their name from the Toll protein in Drosophila, with which they share a high 

level of sequence similarity. Toll was originally described as a protein involved in 

Drosophila embryonic development (Anderson et al., 1985a; Anderson et al., 1985b). 
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However, there are remarkable similarities between the Toll signalling pathway and the 

mammalian IL-1 pathway which leads to the activation of NF-ĸB, a transcription factor 

that plays an important role in inflammation and immune response (Takeda et al., 

2003). In fact, the intracellular domains of Toll and IL-1 are highly conserved at the 

sequence level and are known as the Toll/IL-1 receptor (TIR) domain (Takeda et al., 

2003). These similarities prompted a series of experiments which showed that Toll 

protein was involved in protecting Drosophila against fungal and Gram-positive 

bacterial infections (Lemaitre et al., 1996; Lemaitre et al., 1997). 

 Shortly after Toll protein was found to be important for host defence, a 

mammalian homologue of Toll was discovered (Medzhitov et al., 1997). Since then, a 

family of Toll homologues have been identified in mammals, and these are known as 

the Toll-like receptors. Currently, 10 functional TLRs are known, TLR 1-10, and it is 

likely that many more have yet to be discovered (Chuang & Ulevitch, 2000; Chuang & 

Ulevitch, 2001; Du et al., 2000; Medzhitov et al., 1997; Rock et al., 1998; Takeuchi et 

al., 1999). Members of the TLR family share a common structure, and are composed of 

an intracellular and an extracellular domain. Examination of human TLRs reveals that 

they can be placed into 5 subfamilies based on sequence similarity and genomic 

structure of the TLR encoding genes.  

 TLRs are integral membrane glycoproteins, characterised by a leucine-rich 

repeat (LRR) in the extracellular domains, involved in ligand recognition, and an 

intraceullar TIR domain which is important for signal transduction following ligand 

binding. The actual structural basis of ligand binding to mammalian TLRs is poorly 

understood, and there is a deficit in experimental proof for an interaction between TLR 

ligands and LRR domains (Vega & Martin, 2008). However, a signalling cascade for 

TLRs, ultimately leading to the activation of NF-ĸB and other transcription factors such 

as interferon (IFN) regulatory factor (IRF)-1/3/5/7, and/or activator protein-1 (AP-1) 
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has been well characterised (Brikos & O'Neill, 2008). Activation of these transcription 

factors induces the expression of genes encoding cytokines, chemokines, type 1 

interferons, co-stimulatory molecules and other effectors of the immune response 

tailored to the particular pathogen. Upon recognition of PAMPS on microbial surfaces, 

TLRs form dimers and/or associate with other receptors to induce an interaction 

between the TIR-intracellular domain of the TLR and the TIR-domain of intracellular 

adaptor molecules (O'Neill & Bowie, 2007). Except for TLR3, ligand-TLR interactions 

trigger the binding of at least one adaptor molecule to the intracellular domain of the 

TLR (Chignard et al., 2007). This leads to the signal cascade that eventually results in 

the activation of transcription factors as mentioned above. A general overview of 

mammalian TLR signalling using the MyD88 adaptor is presented schematically in 

Figure 3.2 (adapted from Chignard et al., 2007; Vega & Martin, 2008). The LRR 

domain recognises the ligand (PAMP). The cytoplasmic or intracellular domain of the 

TLR (TIR) associates with MyD88, recruiting members of the IRAK family of protein 

kinases and a signal cascade occurs which eventually leads to the activation of the 

transcription factor NFĸB. In unstimulated cells, NFĸB is retained in the cytoplasm by 

interaction with one of seven inhibitory factor kappa B (IĸBs) proteins. In response to a 

wide variety of stimuli, IFkB is phosphorylated by members of the IĸB-kinase family 

(IKK). Phosphorylation targets IFĸB for ubiquitination and degradation. NFĸB is then 

free, and it subsequently translocates to the nucleus, activating the transcription of 

inflammatory genes encoding cytokines (such as IL-1 and TNF-α), chemokines and 

other inflammatory mediators and immune effectors as previously mentioned. 
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Figure 3.2. The mammalian Toll-like receptor (TLR) signalling pathway. 

Mammalian TLRs possess an extracellular domain, which contains a leucine rich region 

(LRR). This LRR functions in ligand binding. TLR ligands are usually specific 

microbial patterns (PAMPs). The cytoplasmic or intracellular domain of TLRs (TIR) 

associates with MyD88, recruiting members of the IRAK family of protein kinases, and 

this eventually leads to the degradation of IĸB, releasing the transcription factor NFĸB. 

Release of NFĸB causes it to become activated, where it translocates to the nucleus, 

activating the transcription of inflammatory genes encoding cytokines, chemokines and 

other inflammatory mediators and immune effectors. 
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 The role of TLRs in the recognition of A. fumigatus was first reported when 

TLR2, but not TLR4 was proposed to be a receptor for A. fumigatus hyphae (Wang et 

al., 2001). TLR2 and TLR4 have since been found to be essential for Aspergillus-

induced activation of murine macrophages in vivo and in vitro (Meier et al., 2003). 

Initially, HEK293 cells expressing each of the human TLRs were challenged with A. 

fumigatus conidia or hyphae, and only cells specifically expressing TLR2 or TLR4 

exhibited NFkß activation (Meier et al., 2003). Immunofluoresence detection of NFkß 

nuclear translocation in murine macrophages following A. fumigatus exposure is 

dependant on functional TLR4 and to a lesser extent TLR2 (Meier et al., 2003). 

Cytokine measurement from murine macrophages stimulated with A. fumigatus hyphae 

and conidia indicated that the secretion of IL-6, TNF-α and NO are mainly TLR4-

dependant (Meier et al., 2003). TLR2 is also involved in recognition of A. fumigatus, 

due to the additive loss of cytokine production in TLR2/TLR4 double deficient 

macrophages compared to TLR4 deficient macrophages (Meier et al., 2003). Lack of 

TLR2 and TLR4 resulted in less neutrophil infiltration in vivo, and also less production 

of a chemoattractant, MIP-2, in response to A. fumigatus challenge (Meier et al., 2003). 

In all cases, the reduction in immune function was more severe with loss of TLR4 

compared to TLR2. These findings prove the importance of TLR2 and TLR4 in the 

recognition and corresponding immune response towards A. fumigatus (Meier et al., 

2003). TLR2 and TLR4 have also been implicated in mediating the NFkß-dependant 

production of pro-inflammatory cytokines during fungal keratitis cause by A. fumigatus 

(Zhao & Wu, 2008). The important of TLR4, but not TLR2 in inducing TNF-α release 

from human monocytes exposed to ethanol-fixed, serum-opsonised A. fumigatus hyphae 

has also been reported (Wang et al., 2001). Another study found that TLR2 rather than 

TLR4 was the important receptor for signalling TNF-α in response to A. fumigatus 

hyphae in both the human cell line HEK293 and murine peritoneal macrophages 
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(Mambula et al., 2002). Signalling through the PRR CD14 contributed to TNF-α 

production in response to A. fumigatus hyphae in a human monocytic cell line (THP-1) 

and HEK293 cells (Mambula et al., 2002; Wang et al., 2001). CD14 has been widely 

recognised as a PRR for a wide variety of microbial and non-microbial ligands (Pugin et 

al., 1994). As alluded to above, the literature reveals several controversies regarding the 

role of TLR2 and TRL4 in the innate immune response to A. fumigatus (Chignard et al., 

2007). In agreement with Meier et al., (2003), another study documented that TLR2 and 

TLR4 were necessary for immune signalling in response to A. fumigatus (Netea et al., 

2005; Netea et al., 2006), and that macrophages respond differently to conidia and 

hyphae (Netea et al., 2005). TLR2 appears to recognise both conidia and hyphae, 

whereas TLR4 only detects conidia (Netea et al., 2005). TLR4-mediated pro-

inflammatory signals, but not TLR2-induced signals, are lost on A. fumigatus 

germination to hyphae, and TLR2 induces IL-10 production upon exposure to hyphae 

(Netea et al., 2005). This was speculated to be a strategy used by germinating A. 

fumgiatus to evade the immune system (Netea et al., 2005). Differential recognition of 

A. fumigatus conidia and hyphae by TLRs is most likely due to differences in the 

expression of cell wall components on hyphae and conidia which comprise PAMPs  

which are differentially recognised by TLR2 and TLR4 (Bernard & Latge, 2001). To 

date, specific A. fumigatus PAMPs which are recognised by TLRs have not been 

described, highlighting the importance in this area of research (Chignard et al., 2007). 

In fact, with the exception of phospholipomannan of C. albicans, the fungal ligands 

stimulating TLR activation remain completely undefined (Levitz, 2010).  

 Two C-type lectin receptors on human myeloid cells; the mannose receptor 

(CD206) and DC-SIGN, appear to play a major role in the recognition of mannans on 

fungal cell walls (Levitz & Specht, 2006). These receptors have cytoplasmic regions 

which direct mannosylated antigens, such as fungal cell wall components, to the 
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endocytic pathway of dendritic cells, to be eventually presented to T cells (Levitz, 

2010). Langerin and Dectin-2 are receptors which also recognise mannan (Levitz, 

2010).  CD206 and Dectin-2 also recognise chitin and α-glucans respectively, although 

redundancy exists with regard to the number of host receptors that recognise glucans, 

mannans and chitin (Bittencourt et al., 2006; Lee et al., 2008; Levitz, 2010).  

 Dectin-1, a type II transmembrane protein that belongs to the NK-like C-type 

lectin-like receptor family is a known receptor for β-1,3/ β-1,6-linked glucans (Brown et 

al., 2002). Since the discovery that Dectin-1 is required for the generation of the 

alveolar macrophage proinflammatory response towards A. fumigatus, and that these 

Dectin-1 mediated responses are dependant on the stage-specific display of β-glucan 

(Hohl et al., 2005; Steele et al., 2005), Dectin-1 has received much attention for its 

essential role in the pulmonary defence against A. fumigatus (Werner et al., 2009). 

Dectin-1 contains an extracellular C-type lectin-like domain (CTLD) connected by a 

stalk region to a transmembrane domain and a cytoplasmic tail. The tail contains an 

immune-receptor tyrosine-based activation (ITAM)-like motif (Ariizumi et al., 2000). 

Alternative splicing of Dectin-1 leads to two isoforms that differ by the presence or 

absence of the stalk region, and have different functionalities (Heinsbroek et al., 2006; 

Jimenez-A et al., 2008; Willment et al., 2001). Dectin-1 is highly expressed on 

inflammatory cells and cells at portals of microbial entry, such as alveolar macrophages 

(Reid et al., 2004; Taylor et al., 2002). Remodelling and expansion of the cell wall 

during the early stages of conidial germination results in exposure of β-glucan on the 

fungal cell surface, and subsequently triggers Dectin-1 signalling in a dose-response 

manner (Hohl et al., 2005). The authors propose that restricted recognition of 

germinating conidia focuses immune responses on spores likely to cause invasive 

disease (Hohl et al., 2005). Dectin-1 has been shown in vitro to mediate the production 

of cytokines (TNF-α) and chemokines (G-CSF and MIP-2) by human macrophages in 
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response to A. fumigatus after 24 hr co-culture, and this induction was blocked upon 

addition of an anti-Dectin 1 mAb (Steele et al., 2005). TLR2 was found to play an 

accessory role in facilitating the Dectin-1-mediated alveolar response to A. fumigatus, 

whereby loss of TLR2 function seemed to reduce the level of Dectin-1 cytokine release 

(Steele et al., 2005). Furthermore, production of cytokines and chemokines by 

macrophages in response to A. fumigatus swollen conidia and early germlings was 

mediated by the recognition of exposed β-glucans by Dectin-1, and that the production 

of these inflammatory mediators is negligible following exposure to live A. fumigatus 

resting conidia, which are maintained in an immunologically inert state by the presence 

of the rodlet layer as mentioned previously (Aimanianda et al., 2009; Steele et al., 

2005). Despite current research efforts, it is important to state that the conidial ligands 

that activate TLR/MyD88-dependant signals still remain unknown and it is suggested 

that they may involve molecules of carbohydrate, lipid or protein origin (Hohl et al., 

2005). The complex interactions that exist between ligands and receptors beyond the 

established β-glucan/ Dectin-1 interaction represents an area of research which requires 

further investigation.  

 

3.1.3.4 Chemical Immune Effectors.   

 Activation of transcription factors, such as NFĸB, results in their translocation to 

the nucleus, whereby they can up-regulate the expression of a suite of inflammatory 

genes. Genes encoding cytokines and chemokines are targets for NFĸß. The exact 

repertoire of cytokines produced during an invasive aspergillosis infection varies in 

mice depending on the immune status and the mode of immunosuppression used 

(Balloy et al., 2005; Duong et al., 1998). The lungs of immunocompetent mice 

generally contain cytokines such as TNF-α, interleukin-12 (IL-12), interferon-gamma 

(IFN-γ), IL-18, IL-6, IL-1ß, IL-10, granulocyte macrophage-colony stimulating factor 
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(GM-CSF), MIP-1α, MCP-1, MIP-2 and keratinocyte chemoattractant (KC) (Balloy et 

al., 2005; Duong et al., 1998). A selection of these cytokines will be discussed in more 

detail. 

 TNF-α is a 17-kDa cytokine produced predominantly by a range of macrophage 

populations, including alveolar macrophages (Mehrad et al., 1999). It has been shown 

to be an essential proximal signal for the induction and maintenance of the innate 

pulmonary defence in pneumonia (Moussa et al., 1994) and other important human 

pathogens (Gosselin et al., 1995; Laichalk et al., 1996). TNF-α has also been found to 

be important for the immune response towards A. fumigatus in vivo, whereby depletion 

of TNF-α resulted in greater fungal burden and mortality, coinciding with a reduction in 

the number of circulating neutrophils at the site of infection (Mehrad et al., 1999). Prior 

administration of TNF-α to mice resulted in resistance of animals to A. fumigatus 

infection (Mehrad et al., 1999). The activity of TNF-α towards A. fumigatus is likely to 

involve several mechanisms. TNF-α induces expression of adhesion molecules on 

leucocytes and endothelial cells, thereby controlling neutophil abundance in the lung 

(Gamble et al., 1985). Mehrad et al., (1999) indicated that in vivo neutralisation of 

TNF-α resulted in a reduction in the level of chemokines. Chemokines have been 

implicated in the defence against A. fumigatus; in vitro experiments using rat alveolar 

macrophages showed that these cells produced MIP-1α, MIP-2, KC and also TNF-α 

following exposure to A. fumigatus conidia (Shahan et al., 1998). Mice with a deletion 

in CCR1, a chemokine receptor for MIP-1α and RANTES, developed systemic infection 

when exposed to A. fumigatus intravenously, indicating the important role of these 

chemokines in defence (Gao et al., 1997).  

 IL-10 is a pleiotropic cytokine that is predominantly produced by Th2 

lymphocytes, but also by macrophages, dendritic cells, mast cells and B lymphocytes 

(de Vries, 1995; Goldman et al., 1997; Ho et al., 1994; Moore et al., 1993). IL-10 is an 
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important regulatory cytokine of the innate immune system (Balloy & Chignard, 2009). 

IL-10 has a variety of effects on the function of immune cells, including T cells and 

phagocytes (de Vries, 1995; Goldman et al., 1997; Ho et al., 1994; Moore et al., 1993). 

IL-10 can downregulate T cell activation and the production of pro-inflammatory 

cytokines (IL-1, TNF-α, IL-5), chemokines and IFN- γ. It can hinder macrophage 

function, inhibit NO production, enhance B cell proliferation and antibody production. 

It promotes a Th2 cellular response while blocking a Th1 response (Bettelli et al., 1998; 

de Vries, 1995; Goldman et al., 1997; Ho et al., 1994; Moore et al., 1993). While IL-10 

has proven to be a beneficial cytokine for some microbial infections, IL-10 production 

has been found to be deleterious for others, in particular fungal infections, including 

those caused by C. albicans and Cryptococcus neoformans (Monari et al., 1997; 

Romani et al., 1994; Tonnetti et al., 1995). IL-10 has been found to have contrasting 

roles in response to A. fumigatus; it can inhibit the oxidative and anti-fungal activity of 

neutrophils to A. fumigatus hyphae, yet it can enhance the phagocytic activity of these 

cells, possibly providing a sanctuary for progressive infection (Roilides et al., 1997). 

IL-10 had no direct effect on the morphological forms of A. fumigatus (Roilides et al., 

1997). IL-10 appears to be beneficial in regulating the inflammatory response towards 

allergic bronchopulmonary aspergillosis, and inhibits inflammatory responses caused by 

IFN-γ or IL-5 (Grunig et al., 1997). However, later experiments using IL-10 knockout 

mice have shown that IL-10 is detrimental during systemic aspergillosis infections, 

increasing host susceptibility to infection (Clemons et al., 2000).  

 

3.1.4 Model systems for studying A. fumigatus virulence. 

 There are a range of model systems available for the study of virulence in many 

important human pathogens including A. fumigatus. Use of the invertebrate Galleria 
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mellonella as a virulence model has been described in Chapter 1. Here, various 

immunocompromised murine models of invasive aspergillosis (IA) will be discussed. 

 Animals, in particular mouse models have played a major role in the 

investigation of virulence of A. fumigatus (Latge, 2001). The identification of virulence 

factors depends on the experimental model used (Shibuya et al., 1999). Models can vary 

in animals used (weight, strain and sex), the type of immunosuppression (drugs, dose 

and frequency of administration), and the challenge protocol (route of inoculation and 

concentration of conidia) (Latge, 2001). The most commonly used animal models of IA 

involve the induction of neutropenia or corticosteroid-induced immunosuppression 

which mimic human infection (Dagenais and Keller, 2009). Neutropenia may be 

achieved by treatment with cyclophosphamide or other chemotherapeutic agents, 

whereas animals treated with corticosteroids represent the non-neutropenic model used 

to evaluate IA in the context of non-neutropenic patients (Dagenais and Keller, 2009). 

The use of different drug or neutrophil depletion regimens is known to influence 

survival, pathology and other outcomes in animal models of IA (Stephens-Romero et 

al., 2005). One of the most notable examples of this is the observation that A. fumigatus 

gliotoxin mutants demonstrate wild-type virulence in a neutropenic model but reduced 

virulence in a non-neutropenic model, suggesting that gliotoxin is only important for 

pathogenicity in non-neutropenic hosts (Dagenais and Keller, 2009).  

 In order to induce IA in mice, conidial inoculation may be performed 

intratracheally, intravenously or via inhalation chamber (Dagenais and Keller, 2009). 

Intranasal inoculation is used routinely due to ease of handling, although inhalation 

chamber may represent the most reproducible strategy, and most closely resembles 

human infection (Sheppard et al., 2004; Steinbach et al., 2004). The typical outcomes 

often chosen to assess disease development include animal survival, histology, host 

cellular responses and fungal burden, which may all be influenced by the variables 
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mentioned above (Stephens-Romero et al., 2005). Models which involve infecting 

separate groups of A. fumigatus with different strains are useful in identifying mutant 

strains which exhibit large differences in virulence (Latge, 2001). Models incorporating 

mixtures of strains are more useful in measuring slight variations in strain virulence 

capabilities that may not be detected when groups of animals are infected separately 

(Latge, 1999). Despite the advances in the development of animal models, one 

limitation that remains is the lack of conformity to human infection, and there currently 

is no model where IA can be induced by a low number of conidia (Latge, 1999). In 

humans, IA is often a chronic disease, caused by cumulative exposure to small numbers 

of conidia in an immunocompromised patient, whereas experimentally induced IA is a 

hyperacute infection achieved by delivering a large dose of conidia at a single time 

point (Latge, 1999).  

 The interaction of pathogenic fungi with mammalian cells has proven to be very 

useful in complementing in vivo studies, and can direct experiments towards the 

appropriate in vivo assays (Dagenais and Keller, 2009). In vitro studies with mammalian 

cell lines are frequently used to assess the role of specific fungal components during 

fungal-host cell interactions (Dagenais and Keller, 2009), and have been particularly 

useful in the discovering of the major β-glucan receptor, Dectin-1, as described above. 

The fact that A. fumigatus mutants which exhibit altered interactions with host cells in 

vitro do not always exhibit differences in virulence in vivo highlights the multifactorial 

nature of A. fumigatus pathogenicity and indicates the important of examining multiple 

outcomes of infection, including histology and fungal burden (Dagenais and Keller, 

2009).  

 Alternative hosts for studying A. fumigatus virulence have been described 

including the use of a Drosophila melanogaster model to study drug activity and 

virulence (Lionakis & Kontoyiannis, 2005). Rabbits and guinea pigs have also been 
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used to study IA and fungal keratitis (Clemons & Stevens, 2005), although these models 

will not be discussed further in this study. Recently, the use of embryonated chicken 

eggs has been described for the investigation of A. fumigatus virulence, and results 

obtained from these studies using defined mutants with previously identified virulence 

capabilities, showed strong agreement with murine models (Jacobsen et al., 2010). The 

authors reported many advantages in using such a model; it bridges the gap between 

invertebrates and mice, is economically sustainable and easy to handle, yields highly 

reproducible results and histological examination of tissues post-infection is possible. 

 Overall, there is now a large choice of infection models in which to study A. 

fumigatus virulence traits and pathogenicity. These models are useful in discriminating 

between different mutant strains, whereby the contribution of a specific gene to 

virulence can be assessed.  The use of invertebrate models provides a good starting 

point for screening mutants for differences in virulence, and then interesting mutants 

can be further analysed in one of the other models.  
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3.2 Aims and Objectives. 

 The overall aims of this work were to functionally characterise and determine a 

role for the non-ribosomal peptide synthetase Pes3 in A. fumigatus. The specific aims 

that were addressed are listed below. 

 

1) To disrupt pes3 function in A. fumigatus by a targeted gene disruption approach, in 

order to generate a pes3 mutant strain (termed ∆pes3). 

2) Complementation of pes3 disruption restoring a functional pes3 open reading frame. 

3) To confirm pes3 manipulations by examining pes3 expression in relevant strains. 

4) To undertake comparative metabolite analysis between A. fumigatus wild-type and 

∆pes3. 

5) To perform comparative phenotypic analysis between A. fumigatus wild-type and 

∆pes3 in order to identify possible a biological role for pes3. 

6) To perform in vivo virulence testing in order to assess the virulence of ∆pes3, in both 

an insect model system and murine virulence models of IA. 

7) To measure cytokine production in a mammalian macrophage cell line following 

exposure to A. fumigatus wild-type and ∆pes3 in order to investigate if deletion of pes3 

led to an immunologically silent phenotype. 
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3.3 Results. 

3.3.1 Genetic manipulation of pes3 gene within A. fumigatus. 

 The generation of A. fumigatus ∆pes3 was performed by Dr. Deirdre Stack prior 

to commencement of this work. A summary of this is provided in Section 3.3.2. 

Screening for the ∆pes3 genotype following transformation was part of this work, and is 

described in detail. 

 

3.3.2 Generation of pes3 disruption constructs. 

 For inactivation of pes3, a bipartite gene disruption strategy was employed 

(Section 2.2.3.1, Figure 2.1). The A. fumigatus ATCC 46645 strain was used in this 

study. As the pes3 ORF very large (25 kb), the strategy employed was designed to 

disrupt 1.5 kb of the pes3 coding region, corresponding to the first pes3 module. This 

specifically resulted in the deletion of the first thiolation and condensation domains 

(nucleotides 2,046-3,528 of pes3). For this study, ptrA was released from the pSK275 

plasmid via EcoICRI and HindIII restriction digestion. PCR 1 resulted in a 1.2 kb DNA 

fragment corresponding to a region of pes3 beginning approximately 800 bp 

downstream of the ATG start codon. This PCR product contained an EcoICRI 

recognition site towards its 3’ end which was available for restriction and subsequent 

ligation to ptrA. PCR 2 resulted in a 1.3 kb DNA fragment corresponding to a region of 

pes3 beginning approximately 5.5 kb downstream from the ATG start codon. This PCR 

product contained a HindIII recognition site close to its 5’ end. The products of PCR 1 

and PCR 2 were restricted with EcoICRI and HindIII respectively, and were ligated to 

ptrA via the same sites. Final pes3 disruption constructs were 2.6 kb and 2.3 kb, 

respectively. Transformation of A. fumigatus ATCC 46645 protoplasts was performed 

and transformants were selected on agar plates containing pyrithiamine as described 

(Section 2.2.3.2). 



 155

3.3.3 Isolation of an A. fumigatus pes3 mutant strain (∆pes3). 

 Potential pes3 mutants were initially identified by resistance to pyrithiamine 

(PT) following transformation. There were 10 colonies that appeared PT-resistant 

following transformation. These colonies were isolated as described (Section 2.2.3.3) 

and Southern blot analysis was performed (Section 2.2.4). Genomic DNA (gDNA) from 

A. fumigatus ATCC 46645 and these transformants was restriction digested with EcoRI 

and probed for the 5’ coding region of pes3 with a DIG-labelled pes3 probe (Section 

2.2.5). Expected hybridisation patterns for wild-type and ∆pes3 were 4.1 kb and 1.5 kb 

respectively. A schematic representation of the Southern blot and hybridisation patterns 

is shown in Figure 3.3. Following Southern blot analysis, colonies which yielded the 

correct signal for a pes3 disruption were subjected to single spore isolation (Section 

2.2.3.4). A second round of Southern blot analysis was then carried out on single- 

spored colonies using the Southern strategy as outlined above. EcoRI genomic DNA 

digestions and Southern blot analysis of two of the ∆pes3 single spore transformants is 

shown in Figure 3.4. 

 

 

 

 



 156

 

 

 

 

 

Figure 3.3. Southern blotting and hybridisation strategy used to identify A. fumigatus ∆pes3. 

This diagram illustrates the probing strategy that was used to identify ∆pes3. The pes3 locus in wild-type (A) and ∆pes3 (B) is shown. The 

entire pes3 coding region is indicated as an orange bar and the 5’ and 3’ flanking regions are shown in green.  Approx. 1.5 kb of pes3 was 

deleted and replaced by the pyrithiamine resistance cassette (ptrA) from A. oryzae (Kubodera et al., 2000; 2002). ptrA is indicated in blue, 

while the region of pes3 targeted for deletion is indicated in pink. Black vertical lines indicate EcoRI restriction sites in the genomic 

sequence of wild-type and ∆pes3. Genomic DNA from pyrithiamine-resistance colonies was EcoRI digested and probed with a 1 kB DIG-

labelled fragment corresponding to the 5’ region of pes3. The probe is indicated with a black horizontal line. The positions for probe 

binding are indicated with red horizontal lines. Expected hybridisation patterns: ATCC 46645 wild-type-4.1 kb, ∆pes3-1.5 kb. 
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A. 

 

B. 

 

 

Figure 3.4. Isolation of an A. fumigatus ∆pes3 mutant strain.  

A. EcoRI restriction digestion of 1 µg genomic DNA (gDNA) from PT-resistant single 

spored transformants # 2 and # 4 following transformation of A. fumigatus ATCC 

46645 protoplasts with pes3 disruption constructs. M: Molecular weight marker (Roche 

VII). WT: gDNA from A. fumigatus ATCC 46645. Lanes 2.1-4.2: gDNA from 

pyrithiamine-resistant single spored transformants following EcoRI digestion. 

B. Southern blot depicting successful disruption of pes3 gene. EcoRI digested genomic 

DNA (A) was probed with a DIG-labelled PCR product corresponding to the 5’ region 

of pes3. Horizontal arrows indicate the sizes (bp) of the DNA fragments visible on the 

blot. WT: A. fumigatus WT (= ATCC 46645). Lanes 2.1-4.2: A. fumigatus ∆pes3 single 

spore transformants. Expected hybridisation patterns: WT: 4,139 bp, ∆pes3: 1,568 bp. 
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3.3.4 Generation of pes3 replacement constructs and isolation of a pes3 

complemented strain (∆pes3::PES3). 

 As the pes3 disruption strategy resulted in the deletion of 1.5 kb of the gene, it 

was essential to restore the deleted pes3 region specifically at the pes3 locus. In order to 

select for transformed colonies, a resistance cassette was supplied separately on a 

plasmid vector, Pan8.1 (a gift from Dr. Markus Schrettl). Pan8.1 contains a Phleomycin 

resistance cassette (bler).  bler is comprised of 1.8 kb of the constitutive gpdA promoter 

from Aspergillus nidulans and the ble-gene fused to the A. nidulans trpC terminator 

sequence. Phleomycin resistance was used as a trait to select for transformants that had 

incorporated Pan8.1. Several strategies were undertaken in order to complement ∆pes3 

and restore an intact pes3 coding region, and a summary of these, and outcomes are 

provided in Table 3.1. Ultimately, a bipartite replacement strategy was designed to 

specifically replace the region of pes3 that had been deleted. This strategy was designed 

to replace ptrA which was located at the pes3 locus in ∆pes3. The pes3 bipartite 

replacement constructs (referred to as pes3-left and pes3-right) comprised two 

overlapping fragments spanning the 1.5 kb of pes3 which had been deleted. These were 

generated by PCR using specific primer pairs to generate overlapping pes3 fragments 

(Table 2.3 for a list of all primers). Wild-type ATCC 46645 gDNA was used as a PCR 

template. The pes3-left and pes3-right PCR products are shown in Figure 3.5. Gel-

purified DNA was precipitated prior to use in transformation (Section 2.2.2.2), and the 

precipitated PCR products are shown in Figure 3.5. In order to select for transformants 

and potentially complemented strains, a co-transformation procedure was employed 

whereby protoplasts of ∆pes3 were transformed simultaneously with both the pes3 

bipartite replacement constructs and the plasmid vector Pan8.1, which was described 

above. Phleomycin-resistant transformants were further screened for the presence of an 

intact pes3 gene, employing the same Southern blot strategy that was used to confirm 
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∆pes3 (Figure 3.3). EcoRI genomic DNA digestions and Southern blot analysis of 

∆pes3 complemented single spore transformants are shown in Figure 3.6. gDNA from 

phleomycin-resistant colony 3 showed absence of the 1,568 bp fragment specific to 

∆pes3 (Figure 3.6, lanes 5), while displaying the presence of a 4,139 bp band indicative 

of restoration of the pes3 coding region (Figure 3.6). Single spore isolation colony 3 

yielded A. fumigatus ∆pes3::PES33.1and ∆pes3::PES33.2. Table 3.1 outlines the various 

transformation experiments undertaken in order to generate A. fumigatus ∆pes3::PES3. 
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Table 3.1. Strategies employed to complement ∆pes3. Plasmid Pan8.1 was used to confer phleomycin resistance on A. fumigatus transformants. ∆pes3 

protoplasts were either transformed with linear or bipartite replacement constructs using the indicated DNA amounts. Strategy 4 was successful with 

one transformant exhibiting targeted integration of the pes3 bipartite replacement constructs at the pes3 locus, thereby restoring pes3 integrity. 

Strategy 

no. 

pes3 replacement construct used Concentration of DNA used 

for transformation 

No. of 

phleomycin 

resistant  

colonies 

No. of colonies 

with pes3 

integration 

No. of targeted 

pes3 integrations 

1 A single pes3 replacement construct, 

3.7 kb in length, spanning the 1.5 kb 

deleted region, with approximately 1 

kb of flanking region each side. 

 

5 µg pes3 construct and 3 µg 

Pan8.1 vector. 

0 0 0 

2 A single pes3 replacement construct, 

3.7 kb in length, spanning the 1.5 kb 

deleted region, with approximately 1 

kb of flanking region each side. 

 

5 µg pes3 linear replacement 

construct and 5 µg Pan8.1. 

40 0 0 
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Strategy 

no. 

pes3 replacement construct used Concentration of DNA used 

for transformation 

No. of 

phleomycin 

resistant  

colonies 

No. of colonies 

with pes3 

integration 

No. of targeted 

pes3 integrations 

3 pes3 bipartite constructs - pes3-left 

and pes3-right. 

 

5 µg pes3-left and 5 µg pes3-

right and 10 µg Pan8.1 

25 25 0 

4 

 

pes3 bipartite constructs - pes3-left 

and pes3-right. 

 

5 µg pes3-left and 5 µg pes3-

right and 5 µg Pan8.1 

15 9 1 
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A. 

 

B. 

 

C. 

 

 

Figure 3.5. PCR amplification of pes3 bipartite replacement constructs. 

A. PCR reactions (x10) were performed to amplify the pes3-left construct. Lanes 1-10: 

pes3-left (2,121bp). 

B. PCR reactions (x10) were performed to amplify the pes3-right construct. Lanes 1-10: 

pes3-right (2,091bp). 

C. Precipitated pes3 replacement constructs. Lane 1: pes3-left. Lane 2: pes3-right. Load: 1 

µl precipitated DNA. 

M. Molecular weight marker (Roche VII). 

 

 M       1         2         3         4        5        6         7         8       9        10         

 M       1         2         3         4         5          6          7         8          9        10  

1953 bp 

M                                     1                                   2                   

2799 bp 
1953 bp 

2799 bp 

1953 bp 
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A. 

 

B. 

 

Figure 3.6. Isolation of a complemented A. fumigatus ∆pes3 (∆pes3::PES3).  

A. EcoRI restriction digests of 1 µg genomic DNA (gDNA) from phleomycin 

transformants following transformation of A. fumigatus ∆pes3 protoplasts with pes3 

replacement constructs and Pan8.1 vector simultaneously. Lane 1: gDNA from A. 

fumigatus ∆pes3. Lanes 2, 9, 15: gDNA from A. fumigatus ATCC 46645. Lanes: 3-8 & 10-

14: gDNA from 11 phleomycin resistant transformants. 

B. Southern blot for determination of pes3 complementation. EcoRI digested DNA (A) was 

probed with the 5’ flanking region of pes3. Lane annotation: As for A. Expected 

hybridisation patterns: Wild-type (Lanes 2, 9, 15): 4,139bp, ∆pes3 (Lane 1): 1,568bp, 

∆pes3::PES3 (Lane 5): 4,139 bp. 

M. DIG-labelled 8 kb DNA Molecular weight marker (Roche VII). 

 

 

 M       1     2      3      4      5      6       7     8      9     10    11    12    13    14    15   M 

 M     1     2      3     4      5     6      7     8     9    10    11   12   13    14    15    M  

4139 bp 

1568 bp 
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3.3.5 Expression analysis of pes3 in A. fumigatus.  

 The disruption and subsequent replacement of pes3 was confirmed by Southern 

blot. A combination of RT-PCR and qReal-Time PCR was then employed to confirm that 

these genetic manipulations resulted in the abolition of pes3 expression in A. fumigatus 

∆pes3 and the re-appearance of pes3 expression in ∆pes3::PES3. Expression analysis in 

∆pes3 and ∆pes3::PES3 will be dealt with in the following two sections. 

 

3.3.5.1 Disruption of pes3 leads to abolition of pes3 expression in A. fumigatus. 

 RT-PCR and qRT-PCR was performed on A. fumigatus wild-type ATCC 46645 and 

A. fumigatus ∆pes3. RT-PCR was then performed to examine pes3 expression under a 

range of culture conditions using specific primers (Table 2.3) to yield a pes3 amplicon (248 

bp). RT-PCR was also performed for the house-keeping gene, calm (Section 2.2.6.5). This 

analysis confirmed that the disruption strategy employed resulted in the expected absence 

of pes3 expression. Real-Time PCR (Section 2.2.6.6) was subsequently performed on the 

same cDNA samples in order to quantify the gene expression levels and this is shown in 

Figure 3.7. Here, the relative expression of pes3 transcripts is compared to calm (Burns et 

al., 2005) in any given cDNA sample, and is given as a multiple of 1, whereby a value of 1 

indicates that pes3 and calm were equally abundant in that sample. The qRT-PCR analysis 

confirms that pes3 expression is evident in all wild-type cultures, and absent in A. 

fumigatus ∆pes3 in all culture conditions. Although expression is evident, pes3 appears to 

be expressed at a low level in comparison to calm in all samples, with a 10-20 % level of 

abundance compared to calm in most cDNA preparations (Figure 3.7). 
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Figure 3.7. Real-Time expression analysis confirms abolition of pes3 expression in A. 

fumigatus ∆pes3. 

Cultures of A. fumigatus wild-type and ∆pes3 were grown in either AMM or Czapek’s 

broth media for either 24 or 48 hr, and Real-Time PCR analysis was performed on the 

resultant cDNA samples. The relative abundances of pes3 and the house-keeping calm 

transcripts are given. pes3 expression is evident in A. fumigatus wild-type, and is absent in 

A. fumigatus ∆pes3 in all conditions tested. 
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3.3.5.2 Restoration of pes3 expression in ∆pes3::PES3. 

 Complementation of ∆pes3 using the strategy described in Section 3.3.4, was 

confirmed by Southern blot. Subsequently, RT-PCR was performed to confirm the 

restoration of pes3 expression in complemented strains. A. fumigatus wild-type ATCC 

46645, A. fumigatus ∆pes3 and single-spored colonies of ∆pes3::PES3 were analysed. 

These single-spored colonies are referred to as A. fumigatus ∆pes3::PES33.1 and 

∆pes3::PES33.2. RT-PCR was then performed as in the preceding section. RT-PCR 

confirmed that the complementation strategy employed resulted in the restoration of pes3 

expression, as visualised by the reappearance of the pes3 amplicon in ∆pes3::PES33.1 and 

∆pes3::PES33.2 (Figure 3.8). A. fumigatus ∆pes3 was also included in this experiment, and 

the absence of pes3 gene expression was confirmed in the mutant strain by RT-PCR (Figure 

3.8). 
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Figure 3.8. RT-PCR expression analysis confirming absence of pes3 transcripts in A. 

fumigatus ∆pes3, and restoration of pes3 transcription in ∆pes3::PES33.1and 

∆pes3::PES33.2. 

A. Total RNA was harvested from 48 hr cultures of A. fumigatus strains in Czapek’s broth. 

The integrity of the 28, 18 and 5.8 S rRNA sub-units is evident. Load: 3 µg RNA per lane. 

B. calm is constitutively expressed and gDNA amplicon absence in cDNA confirms the 

absence of contaminating genomic DNA (gDNA) in cDNA preparations. 

C. pes3 RT-PCR. An amplicon (248 bp) of the pes3 coding region was amplified from 

cDNA of A. fumigatus strains. 

Load: 5 µl PCR product per lane resolved on 2 % (w/v) agarose gels. 

 

 

A. 

B. 

C. 

ATCC 46645      ∆pes3        ∆pes3::PES33.1    ∆pes3::PES33.2 

calm 

pes3 

rRNA 

348 bp 

617 bp 

248 bp 
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3.3.6 Restoration of pes3 locus in pes3 complemented strain confirmed by restriction 

mapping. 

 Due to the large size of the pes3 gene, the disruption strategy was designed to delete 

a region of the gene. Subsequently, targeted complementation was required to restore the 

pes3 locus. To ensure correct integration of the pes3 replacement constructs at the pes3 

locus, a restriction mapping experiment was performed. Using genomic DNA (gDNA) 

from either A. fumigatus wild-type, ∆pes3 or ∆pes3::PES3 strains, a PCR reaction was 

carried out using primers oAfpes3-6 and oAfpes3-6 (Table 2.3). These primers span the 

region where the pes3 disruption was targeted, and should lead to a PCR product in all 

strains. PCR reactions should generate a PCR product of 3,737 bp in wild-type and 

∆pes3::PES3, and 4,285 bp in ∆pes3. These PCR products were gel purified and restriction 

digested with AgeI restriction enzyme (Section 2.2.2.5, 2.2.2.6). AgeI restriction should 

lead to different size bands in the wild-type and ∆pes3 PCR products due to presence of 

ptrA in the ∆pes3 gDNA. A list of the expected and observed fragments following AgeI 

digestion is presented in Table 3.2. This confirms that the pes3 locus was restored in 

∆pes3::PES3 as all expected bands were observed (Figure 3.9). The restriction pattern for 

∆pes3::PES3 is identical to that of wild-type as expected. ∆pes3 contains differences at this 

region, due to the presence of ptrA, and this is also evident in the restriction map. Overall, 

this confirms the integrity of the pes3 locus in the ∆pes3::PES3 strain, and validates the use 

of this strain for further analysis. 
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Table 3.2. Expected restriction fragments following Age1 restriction digestion of pes3 PCR 

fragments from genomic DNA of A. fumigatus wild-type, ∆pes3 and ∆pes3::PES33.1. 

 

Wild-type genomic DNA: 

 

∆pes3 genomic DNA: Successfully complemented 

pes3 strain – i.e. ∆pes3::PES3 

1197 bp 2197 bp 1197 bp 

1053 bp 1170 bp 1053 bp 

694 bp 694 bp 694 bp 

569 bp 224 bp 569 bp 

224 bp  224 bp 

 

 

 

 

Figure 3.9. Restriction mapping of pes3 PCR product confirms successful integration 

of pes3 constructs in ∆pes3::PES33.1 and ∆pes3::PES33.2. 

Purified PCR products were restriction digested with AgeI and resolved on 1 % agarose gel. 

All expected bands were observed as listed in Table 3.2  

M. Roche VII marker. Lanes 1-3: AgeI digested PCR products: Lane 1: A. fumigatus ATCC 

46645, Lane 2: ∆pes3 genomic DNA, Lane 3: ∆pes3::PES33.1 genomic DNA. 

1953 bp 

710 bp 

                        M                       1                         2                         3                       

1515 bp 

1164 bp 

492 bp 

359 bp 
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3.3.7. Comparative metabolite analysis reveals no difference in metabolite profile 

between A. fumigatus wild-type and ∆pes3. 

 Availability of the A. fumigatus ∆pes3 mutant facilitated comparative metabolite 

analysis to be undertaken between wild-type and mutant cultures to identify a potential 

Pes3 encoded non-ribosomal peptide (NRP) (Section 2.2.7). In order to do this, A. 

fumigatus wild-type and ∆pes3 were cultivated in a variety of growth conditions, which are 

listed in Table 3.3.  

 The growth conditions employed comprised a variety of liquid culture media, or 

growth on different agar media for a defined time-point. For liquid culture media, either 

supernatants (Section 2.2.7.1) or organic extractions of supernatants (Section 2.2.7.2) of 

wild-type and ∆pes3 were compared. For agar cultures, extractions were performed using 

two different methods, and the time-point analysed here was usually 6 days incubation at 

37 ºC. Extraction methods and appropriate solvents used are also listed in Table 3.3. 

Conditions listed as A, B, C, D and E were performed and analysed by RP- HPLC at NUI 

Maynooth. The material for analysis for Conditions F and G was prepared at NUI 

Maynooth, and analysed by LC-DAD-MS by a collaborating group at the Danish Technical 

University (DTU). Material resulting from condition D and E were also analysed at DTU. 

 For Conditions D and E, conidial suspensions were washed from agar plates with 

H2O and metabolites were extracted using a protocol based on that of Moon et al., (2008) 

(Section 2.2.7.3). This conidial metabolite extraction procedure was performed on conidia 

which had either been cultivated for 6 days on AMM agar or AMM agar which was 

supplemented with 2 mM hydrogen peroxide. Examination of metabolite profiles following 

exposure to hydrogen peroxide was performed in order to see if differences occurred 

between the strains after oxidative stress, following the observation that another NRP 

synthetase, Pes1, has previously been shown to protect against oxidative stress in A. 
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fumigatus (Reeves et al., 2006). Preparation of plug extracts for analysis at DTU was 

performed using a method which was developed at DTU (Smedsgaard, 1997) (Section 

2.2.7.4). Organically extracted material was analysed by LC-DAD-MS at the facilities at 

DTU. 
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Table 3.3. Summary of conditions used for comparative metabolite analysis of wild-type A. fumigatus and ∆pes3. 

 

 Growth Condition (all at 37 ºC) Extraction Solvent 
Injection 

Volume 
Outcome 

A. RPMI 48 hr incubation, 200 rpm 

1) Organic extraction of culture supernatant (SN) 

with  SN: chloroform in a 1:1 ratio 

2) Neat culture supernatant injection. 

100 µl / 

20 µl 
No differences observed

B. Czapek’s 48 hr incubation, 200 rpm 

1) Organic extraction of culture supernatant (SN) 

with  SN: chloroform in a 1:1 ratio 

2) Neat culture supernatant injection. 

100 µl / 

20 µl 
No differences observed

C. AMM 48 hr incubation, 200 rpm 

1) Organic extraction of culture supernatant (SN) 

with  SN: chloroform in a 1:1 ratio 

2) Neat culture supernatant injection. 

100 µl / 

20 µl 
No differences observed

D. Incubation on AMM agar for 6 days  Conidial Extraction Method (Moon et al., 2008) 100 µl No differences observed

E. 
Incubation on AMM supplemented with 

H2O2 (final concentration 2 mM) for 6 days  
Conidial Extraction Method (Moon et al., 2008) 100 µl No differences observed

F. Incubation on AMM agar for 6 days  Plug Extraction Method (Smedsgaard, 1997) 1 µl No differences observed

G. Incubation on Czapek’s agar for 6 days  Plug Extraction Method (Smedsgaard, 1997) 1 µl No differences observed
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 In all cases, comparative analysis between wild-type and ∆pes3 revealed that there 

were no differences in metabolite profiles between the strains. Not all chromatograms are 

shown, however a selection of the chromatograms generated at DTU are presented. The 

remainder of the analysis is summarised in Table 3.3. The metabolite profiles of wild-type 

and ∆pes3 following 6 days growth on Czapek’s agar are given in Figures 3.10 and 3.11. 

Plug extracts were performed from these agar plates, and extractions were carried using two 

solvent mixes. Figure 3.10 shows the chromatograms following organic extractions of 

plugs using either a mixture of 25 % acetonitrile and 75 % water (Section 2.1.8.2.1) and the 

LC-DAD and total ion chromatgrams are shown for each strain. Figure 3.11 shows the 

chromatograms following organic extraction of plugs using a mixture of ethyl acetate, 

dichloromethane and methanol (Section 2.1.8.2.2). These samples were separated on a 

Dionex HPLC system. Wild-type and ∆pes3 extracts yielded profiles that are virtually 

identical to one another, under all growth conditions, using all extraction methods tested in 

this study.  This strongly suggests that pes3 is not responsible for the synthesis of a soluble 

non-ribosomal peptide that is secreted or stored intracellularly in A. fumigatus. 
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Figure 3.10. LC-DAD and mass spectra for A. fumigatus wild-type and ∆pes3 

following plug extraction with an acetonitrile/H2O extraction solvent. 

A. LC-DAD profiles for both strains. The profiles for both strains are virtually identical. 

B. Mass spectra for both strains show that the metabolite profiles from wild-type and ∆pes3 

are the same. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 



 176

 

A. Wild-type  
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B. ∆pes3 
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Figure 3.11. Chromatograms of A. fumigatus wild-type and ∆pes3 metabolite profiles 

following plug extraction with a 3:2:1 ethyl acetate: dichloromethane: methanol 

mixture. 

A. Wild-type. 

B. ∆pes3.  

Profiles for both strains are identical. 
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3.3.8 Phenotypic Characterisation of the A. fumigatus ∆pes3 mutant. 

 A. fumigatus ∆pes3 was compared to wild-type under a variety of growth conditions 

and environmental stresses in order to investigate if it displayed an altered phenotype under 

any condition. A summary of all conditions tested in this study, and their outcomes, is 

provided in Table 3.4. For all phenotypic analysis described in Table 3.4, plate assays were 

used in order to compare A. fumigatus wild-type and ∆pes3 (Section 2.2.8).  

 Initially, plate assays were performed in a range of different iron concentrations to 

see if pes3 was involved in siderophore biosynthesis in A. fumigatus. This strategy was 

based on the fact that at least two of the non-ribosomal peptide synthetases in A. fumigatus 

have been proven to be involved in siderophore biosynthesis for iron acquisition (Schrettl et 

al., 2007; Reiber et al., 2005). Under all growth conditions examined here, ∆pes3 behaved 

comparably to the wild-type strain. A representative of these plate assays showing the 

radial growth of wild-type and ∆pes3 at 20, 44 and 66 hr growth is given in Figure 3.12.  

 A. fumigatus wild-type and ∆pes3 were compared in their sensitivity to cell wall 

stressing agents including calcafluor white, congo red, sodium dodecyl sulphate and 

caffeine. The specific activity of these agents will be discussed later. For all cell wall stress 

experiments, A. fumigatus ∆pes3 behaved identical to wild-type.  
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Figure 3.12. A. fumigatus ∆pes3 behaves identical to wild-type (ATCC 46645) when 

grown on a range of varying iron conditions. 

Wild-type and ∆pes3 were exposed to a range of conditions, as indicated. Iron replete (10 

µM FeSO4), high iron (1.5 mM FeSO4), -iron (omission of iron from growth media), iron + 

BPS (omission of iron from growth media, in addition to supplementation with the iron 

chelator bathophenantroline disulphonate (BPS) (200 µM)).  Radial growth (cm) of 

colonies was measured at 20, 44 and 66 hr intervals. Both wild-type and ∆pes3 strains grew 

at comparable rates on all conditions tested.  
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 ∆pes3 was examined for sensitivity to oxidative stress by growth on AMM agar in 

increasing concentrations of the oxidising agents hydrogen peroxide (H2O2), diamide or 

menadione. Plate assays were performed as described and growth was monitored over a 72 

hr period at 24 hr intervals. Sensitivity to the oxidising agents was tested at concentrations 

of; H2O2 – 0-3 mM, diamide – 0-2 mM, and menadione – 0-40 µM. The radial growth of A. 

fumigatus wild-type and ∆pes3 following growth under all of these oxidative stress 

conditions is shown in Figure 3.13. The time point is 72 hr, and the data represents the 

mean ± SE of three biological replicates. A. fumigatus ∆pes3 exhibited an increased growth 

rate compared to wild-type when exposed to 0.1 mM diamide (p < 0.05). In all other 

conditions tested here, pes3 displayed no alteration in growth compared to wild-type A. 

fumigatus, indicating that pes3 does not play a role in protection against oxidative stress in 

A. fumigatus.  
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Figure 3.13. A. fumigatus ∆pes3 behaves comparably to wild-type ATCC 46645 when 

exposed to a range of oxidising agents, including hydrogen peroxide (H2O2), diamide 

and menadione. 

The radial growth of wild-type and ∆pes3 are shown following 72 hr exposure to hydrogen 

peroxide, diamide or menadione which are known to cause oxidative stress. In all 

conditions tested, wild-type and ∆pes3 exhibited comparable growth rates, with the 

exception of a slightly increased growth of ∆pes3 compared to wild-type on the lowest 

concentration of diamide tested Key:  *: p < 0.05. Data presented as mean ± standard error 

of three experiments.  

ATCC 46645
pes3



 183

3.3.9 A. fumigatus ∆pes3 exhibits increased sensitivity to the anti-fungal Voriconazole. 

 Anti-fungal phenotypic testing was performed in order to compare wild-type and 

∆pes3 upon exposure to anti-fungal agents. Sensitivity to voriconazole, amphotericin B and 

caspofungin were tested in this study. The concentrations of anti-fungals used in this study 

were: voriconazole – 0.25, 0.5, 0.75, 1.0 µg/ml, caspofungin – 0.2, 0.5, 1.0 µg/ml and 

amphotericin B – 0.125, 0.25, 0.5, 1.0 µg/ml.  

 A. fumigatus ∆pes3 exhibited increased sensitivity to voriconazole when compared 

to wild-type at all concentrations of voriconazole tested. This difference in sensitivity was 

observed by a lower growth rate of ∆pes3 when exposed to the anti-fungal, and the altered 

phenotype was most significant at a concentration of 0.5 µg/ml (p < 0.001, n = 3). This data 

is presented in Figure 3.14 which shows the radial growth rates of wild-type and ∆pes3 

upon either on AMM agar only or in the presence of 0.5 µg/ml voriconazole for the 

indicated time points (hr). ∆pes3 also displayed increased sensitivity compared to wild-type 

at concentrations of 0.25 µg/ml (p < 0.05), and 0.75 µg/ml (p < 0.05). At 1 µg/ml 

voriconazole, ∆pes3 was completely inhibited in growth at all time points analysed. 

However, since the most significant difference between wild-type and ∆pes3 was observed 

at 0.5 µg/ml voriconazole, this is the only data presented. Complementation with pes3 

resulted in levels of growth which were similar to wild-type when exposed to voriconazole. 

The radial growth of wild-type, ∆pes3 and complemented strains at 72 hr growth on 

voriconazole (0.5 µg/ml) is shown in Figure 3.14. There appears to be an overall growth 

reduction on voriconazole in all strains from the data presented in Figure 3.14 (B) 

compared to that in Figure 3.14 (A). The fact that these experiments were carried out close 

to one year apart, and differences in conidial concentrations and/or voriconazole batch 

differences may explain this observation. What is important however, is that overall trend is 

constant whereby ∆pes3 displays increased sensitivity to voriconazole and this reduction in 
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growth (p < 0.001) is restored in the complemented strain (∆pes3::PES33.1 and 

∆pes3::PES33.2).  Taken together, these results indicate that pes3 plays a role in protection 

against voriconazole toxicity in A. fumigatus and suggests an alteration at the cell wall or 

cell membrane of A. fumigatus ∆pes3. ∆pes3 behaved comparably to wild-type when 

exposed to the other anti-fungals used in this study (amphotericin B and caspofungin). 

Radial growths of strains upon exposure to these drugs is given in Figure 3.15. 
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Figure 3.14. A. fumigatus ∆pes3 displays increased sensitivity to the anti-fungal 

voriconazole. 

A. Radial growth (cm) of wild-type and ∆pes3 following exposure to voriconazole (0.5 

µg/ml). Growth was monitored daily at the time points indicated. On AMM only, wild-type 

and ∆pes3 grew at similar rates, while exposure to voriconazole led to significant 

differences in growth between the two strains (p < 0.001), with the mutant displaying 

reduced growth at all time points.  

B. Restoration of growth upon exposure to voriconazole is restored once pes3 is 

complemented. Exposure of wild-type, ∆pes3 and pes3 complemented strains is presented 

following 72 hr growth on voriconazole at 0, 0.25, 0.5 µg/ml. All strains grew equally in 

the absence of voriconazole, and the lack of growth observed for ∆pes3 (0.5 µg/ml) is 

restored in both complemented strains tested here (p < 0.001). 

Each graph displays the mean ± standard error of three experiments. Key: ***: p < 0.001. 
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Figure 3.15. A. fumigatus wild-type and ∆pes3 display similar growth rates on 

exposure to amphotericin B and caspofungin. 

A. Radial growth (cm) of wild-type and ∆pes3 following exposure to amphotericin B (0-

0.25 µg/ml). Growth was monitored daily and the 72 hr time-point is shown here. Both 

strains showed equal growth rates on all concentrations tested. Data represents the mean ± 

standard error of three experiments.  

B. Radial growth (cm) of wild-type and ∆pes3 following exposure to caspofungin (0-1.0 

µg/ml). Growth was monitored daily and the 48 hr time-point is shown here. Both strains 

showed equal growth rates on all concentrations tested. Data represents the mean ± 

standard error of three experiments.  
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Table 3.4. A summary of the phenotypic assays, and their outcomes, performed for A. fumigatus wild-type (ATCC 46645) and 

 ∆pes3  in this study. 

Phenotypic Test Reagents Used Concentrations 

Tested 

Result (i.e. growth of ∆pes3 compared to 

wild-type) 

Role of pes3 in Siderophore 

Biosynthesis 

Iron Stresses (High, Low, 

none) 

10 µM, 1.5 mM, 

200 µM BPS 

 

No difference. 

Oxidative Stress Menadione 20, 30, 40 µM No difference. 

 

 Diamide 0.1, 0.2, 0.4, 1, 2 

mM 

∆pes3 more resistant to diamide (0.1 mM, p < 

0.05) for A. fumigatus ∆pes3 

 

 Hydrogen Peroxide 1, 2, 3 mM No difference. 

 

Anti-fungal Susceptibility Voriconazole (vrc) 0.25, 0.5, 0.75, 1.0 

µg/ml 

∆pes3 displays increased sensitivity to vrc at 

0.5 µg/ml (p < 0.001). Restored in 

∆pes3::PES3. 

 Amphotericin B 0.125, 0.25, 0.5, 

1.0 µg/ml 

No difference. 

 Caspofungin 0.2, 0.5, 1.0 µg/ml No difference. 
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Phenotypic Test Reagents Used Concentrations 

Tested 

Result (i.e. growth of ∆pes3 compared to 

wild-type) 

Cell Wall Stress Caffeine 2, 5 mM No difference. 

 Congo Red 5, 10, 15 µg/ml No difference. 

 Calcafluor White 100, 200 µg/ml No difference. 

 High temperature (48 º) n/a No difference.  

 

Membrane Stress SDS 0.01, 0.02 % (w/v) No difference. 

 

  

 

 



 191

3.3.10 A. fumigatus ∆pes3 grows and undergoes conidial germination at a rate 

comparable to wild-type.  

 In order to compare the growth rates for A. fumigatus ATCC 46645 and ∆pes3, both 

conidial germination rates and vegetative growth were measured. To measure the conidial 

germination rates, a germination assay was performed (Section 2.2.10). The result of the 

germination assay is presented in Figure 3.16. Germination began in both strains after 3 hr 

growth, and after 5 hr, the rate of germination was about 5 % for both strains. By 6 hr, 

germination was underway for about 25 % of the wild-type conidia, while a 35 % 

germination rate for ∆pes3 was observed at this time, indicating a slightly faster 

germination rate for ∆pes3. ∆pes3 also exhibited a slightly faster germination rate after 7 hr 

incubation (wild-type – 55 %, ∆pes3 – 65 %). At 9 hr, the wild-type cultures contained 

more germinated conidia compared to ∆pes3 (wild-type – 85 %, ∆pes3 – 80 %). While 

moderate differences were observed between the two strains, statistical analysis (Students t-

test), indicated that these differences were not significant.  

 Growth curves were then carried out for both strains (Section 2.2.9), whereby the 

dry weights of mycelial biomass following a 96 hr incubation period were recorded. The 

dry weights (g) of the total biomass harvested from cultures at 24, 48, 72 and 96 hr is 

presented in Figure 3.17. Growth curves for these two strains showed that the exponential 

growth phase lasted until 48 hr, with growth rates remaining stationary after this time-point. 

Overall, there is no significant difference between the growth rates of A. fumigatus wild-

type and ∆pes3 in liquid shake cultures. 
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Figure 3.16.  A. fumigatus ATCC 46645 and ∆pes3 have similar conidial germination 

rates. 

Germination rates of wild-type and ∆pes3 were recorded over an 8 hr time period following 

growth of conidia in AMM. Germination was first observed at 3 hr, and the % of conidia in 

germination (of 100 counted in total) is indicated on the Y-axis. No significant differences 

in the germination rate between both strains was observed. The mean ± standard error of 2 

replicates for wild-type and 3 replicates for ∆pes3 is displayed. 
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Figure 3.17. Vegetative growth curves are similar for Aspergillus fumigatus ATCC 

46645 and ∆pes3. 

Cultures (n = 3 for each time point) were grown in AMM (100 ml) at 37 ºC. A comparison 

of the dry weights (g) of resulting mycelia indicates that there were no significant 

differences between strains. The mean ± the standard error of three experiments is 

displayed. 
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3.3.11. A. fumigatus ∆pes3 is more virulent than wild-type A. fumigatus. 

 In order to assess any contribution of pes3 in the virulence of A. fumigatus, the 

∆pes3 mutant and its wild-type progenitor ATCC 46645 were tested in two distinct models 

of infection. The major result of these experiments was that A. fumigatus ∆pes3 was more 

virulent than wild-type, and increased virulence was recorded using both the G.mellonella 

insect model (Cotter et al., 2000) and a hydrocortisone acetate (HCA) 

immunocompromised mouse model of invasive aspergillosis (Smith et al., 1994). 

Interestingly, no difference in virulence between the two strains was observed in a 

neutropenic model of invasive aspergillosis, suggesting that the hypervirulence of ∆pes3 is 

dependant on neutrophil presence. Murine virulence testing was carried out in collaboration 

with Dr. Elaine Bignell and Timothy Cairns at Imperial College London, UK. 

 

3.3.11.1 Deletion of A. fumigatus pes3 leads to increased virulence in the Galleria 

mellonella model of infection.  

 To assess the relative contribution of pes3 to the virulence of A. fumigatus, the 

survival of larvae (n = 20) of the greater wax moth G. mellonella was compared following 

infection with 107 conidia/larvae of A. fumigatus ATCC 46645 or the same dose of ∆pes3 

conidia (Section 2.2.12). Larvae (n = 20) were injected with sterile PBS as an injection 

control. Larvae infected with wild-type had a greater survival compared to those infected 

with ∆pes3 (p < 0.001) indicating increased virulence of the ∆pes3 strain. The experiment 

was repeated four times. Larval survival (%) is shown in Figure 3.18. Apart from the PBS 

control, 100 % mortality was recorded at 96 hr post infection for all groups of larvae. At 24 

hr following infection, approx. 95 % of the larva infected with wild-type remained alive, 

while an 85 % survival rate was observed for those infected with the mutant, indicating 

increased mortality associated with the loss of pes3. This difference is more pronounced at 
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48 hr and 72 hr time-points. At 48 hr post infection, 55 % of larvae infected with wild-type 

remain alive, in contrast to only 30 % of larvae infected with ∆pes3. By 72 hr, only 3 % of 

larvae infected with ∆pes3 are viable, versus 23 % in the wild-type group. The increased 

mortality associated with the higher virulence potential of ∆pes3 is restored to wild-type 

survival levels in both complemented strains (∆pes3::PES33.1 and ∆pes3::PES33.1) tested 

here, and the overall differences in survival proportions between larvae infected with wild-

type or mutant is highly significant (p < 0.001) (Figure 3.18). Survival curves were 

generated using Kaplan-Meier survival plot with the Log-Rank (Mantel-Cox) test for 

significance. As stated above, virulence is restored to wild-type levels in pes3 

complemented strains, indicating that the hypervirulence of ∆pes3 is solely due to the 

disruption of pes3 (Figure 3.18). It is clear that A. fumigatus ∆pes3 is more virulent than 

wild-type in the G. mellonella model of infection. 
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Figure 3.18. A. fumigatus ∆pes3 is more virulent in the Galleria mellonella insect 

model. 

The survival proportions of larvae (n = 20) infected with either wild-type, ∆pes3 or 

∆pes3::PES33.1 and ∆pes3::PES33.2 strains are shown. Larval viability (%) was assessed at 

24 hr intervals following infection. A. fumigatus ∆pes3 is more virulent that wild-type and 

is associated with reduced larval survival (p < 0.001) at all time points observed. Virulence 

is restored to wild-type levels in two complemented strains (∆pes3::PES33.1 and  

∆pes3::PES33.2). PBS was used as an injection control and all larvae in this group remained 

viable for the entire experiment.  
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3.3.11.2 Deletion of A. fumigatus pes3 leads to increased virulence in a Murine 

Hydrocortisone Acetate (HCA) Immunocompromised model of Invasive Aspergillosis 

(IA). 

 Mice were immunosuppressed with hydrocortisone acetate (HCA) as described 

(Section 2.2.11), and were infected with conidia (104) of either A. fumigatus wild-type 

(ATCC 46645) or ∆pes3 and weights of the animals were recorded daily as a measure of 

health in this model. The experiment took place over a period of 5 days. Animals that 

dropped below 20 % of their starting weight before the end of the infection were culled, 

and were regarded as having succumbed to infection. The weight data for each strain in the 

HCA model is given in Figure 3.19. The ∆pes3 strain exhibits increased virulence in this 

model, as observed by weight loss in these animals, and two animals exhibited > 20 % 

weight loss by day 4 of the infection; animal 2 at day 2 and animal 3 at day 4. These 

animals were culled. Every animal infected with ∆pes3 exhibited some weight loss over the 

course of the infection. Animals infected with wild-type displayed moderate fluctuations in 

weight during the infection, but none of them dropped below 20 % of their starting weight 

(Figure 3.19). The mean weights of animals at day 5 of the infection were significantly 

lower for the A. fumigatus ∆pes3 infection group (93.00 ± 2.5 % of starting weight) than 

the wild-type counterpart (106.2 ± 1.62 % of starting weight) (p < 0.01). As a  control for 

this experiment, mice (n = 5) were HCA treated, and inoculated with conidia (104) of an A. 

fumigatus para-aminobenzoic (PABA) acid auxotroph (referred to as A. fumigatus H515) 

which is unable to germinate in the murine lung (Brown et al., 2000). Weights for animals 

in the H515 group are also shown in Figure 3.19. Animals in this group remained at a 

steady weight over the course of the infection.  

 In addition to weight loss determination, fungal burden was assessed in the lungs of 

infected animals as a measure of fungal virulence. Lungs of infected animals were isolated 
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at 4 days post-infection and genomic DNA was extracted from homogenised tissue. From 

these samples the fractions of fungal DNA, corresponding to the fungal burden in the 

respective organ, were determined by quantitative PCR by amplifying the fungal beta-

tubulin (BT) gene product and comparing this to the murine actin gene product (Bergmann 

et al., 2009; Timothy Cairns, Imperial College London – personal communication) (Figure 

3.20). In this assay, the cycle threshold (Ct) values are calculated for each specimen, and 

normalised to give a value corresponding to Ct fungal BT/ Ct murine actin. A lower value 

indicates a higher fungal:murine DNA ratio, because the higher the concentration of fungal 

DNA, the lower the cycle threshold value for BT, and therefore increased fungal burden. 

This analysis revealed a higher fungal burden in the lungs of animals infected with ∆pes3 

compared to wild-type (p = 0.02), as indicated by a higher fungal:murine DNA ratio 

(Figure 3.20).  There was a large difference between the fungal burden in mice challenged 

with the negative control H515 strain compared to wild-type (p = 0.03) or ∆pes3 (p = 0.03), 

as expected, since this strain is unable to germinate in the murine lung. 

 In summary, the hypervirulent phenotype observed for ∆pes3 in the HCA model is 

associated with a reduction in weight loss and an increase in fungal burden in the murine 

lung (Figures 3.19 and 3.20). 
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Figure 3.19. A. fumigatus ∆pes3 is more virulent than wild-type in a HCA 

immunocompromised model of IA. 

Immunosuppressed animals (n = 5) were infected with either wild-type or ∆pes3 and 

weight was measured daily. A strain unable to germinate in the murine lung (H515) was 

included as a negative control in this experiment. Shown are the weight data for infected 

animals in each group; wild-type (A), or ∆pes3 (B), or control group (C). The weight was 

recorded as a % of the original starting weight, whereby weight gain is > 100 %, and 

weight loss is < 100 %. The weight for each of the 5 animals in each group is displayed. 

Animals infected with ∆pes3 exhibited a greater weight loss compared to wild-type over 

the course of the experiment, and two animals were culled early due to severe weight loss 

(animal 2 and animal 3). 
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Figure 3.20. Fungal burden in the murine lung following infection in the HCA model 

of IA.  

The threshold cycle values (Ct) from qPCR performed on DNA extracted from 

corresponding lung tissues of infected animals are given. The values shown represent Ct 

fungal BT/ Ct murine actin (X – axis). The lungs of animals infected with ∆pes3 display a 

greater fungal burden than those infected with wild-type, as observed by a lower Ct value 

for ∆pes3 (p = 0.02). The fungal burden associated with the negative control (H515) was 

significantly lower than for all other strains (p = 0.03). 
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3.3.11.3 The deletion of pes3 within A. fumigatus does not affect virulence in a murine 

neutropenic model of Invasive Aspergillosis (IA). 

 Neutropenic mice (n = 5 for each strain) were infected with conidia (104) of wild-

type, ∆pes3, or H515 strains of A. fumigatus and weight of the animals was monitored daily 

as in the HCA model. In this model of IA, there is no difference in weight between animals 

infected with either wild-type or ∆pes3. Animals in the wild-type and ∆pes3 group show 

similar weights over the course of the experiment (Figure 3.21). Weight loss was observed 

for animals in both groups by day 5 of the experiment, but the overall trends in weight loss 

were the same for both groups. Animals in the negative control group (H515) showed no 

overall weight loss or gain, with all weights remaining more or less stationary over the 

course of the experiment (Figure 3.21). Fungal burden was also assessed in the neutropenic 

mice following infection, and in agreement with the weight loss data, there appears to be no 

difference in fungal burden between animals infected with wild-type or ∆pes3 (p = 0.5204) 

(Figure 3.22). Taken together, these data indicate that there is no attenuation of virulence or 

hypervirulence associated with A. fumigatus ∆pes3 in neutropenic mice. 
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Figure 3.21. A. fumigatus ∆pes3 is equally as virulent as wild-type in a neutropenic 

model of IA. 

Neutropenic animals (n = 5) were infected with either wild-type or ∆pes3 and weight was 

measured daily. A. fumigatus H515 (a strain unable to germinate in the murine lung) was 

included as a negative control in this experiment. The weight data for infected animals in 

each group is shown; wild-type (A), or ∆pes3 (B), or control group (C). The weight was 

recorded as a % of the original starting weight, whereby weight gain is > 100 %, and 

weight loss is < 100 %. Overall, animals infected with A. fumigatus wild-type or ∆pes3 

exhibited moderate weight loss over the course of the experiment. However, no differences 

in weight loss or gain were observed for animals infected with either strain, indicating 

equal virulence of both strains in a neutropenic model of IA. Animals in the control group 

(H515) showed no net weight loss or gain, and weights were close to the starting weight by 

day 5 of the experiment. The weight for each of the 5 animals in each group is displayed. 
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Figure 3.22. Fungal burden in the murine lung following infection in the neutropenic 

model of IA.  

The threshold cycle values (Ct) from qPCR performed on DNA extracted from 

corresponding lung tissues of infected animals are given. The values shown represent Ct 

fungal BT/ Ct murine actin (X – axis). The lungs of animals infected with ∆pes3 display a 

similar fungal burden to those infected with wild-type, as observed by a lower Ct value for 

∆pes3 (p = 0.5204). The fungal burden associated with the negative control (H515) was 

significantly lower than for all other strains (p = 0.04). 
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 In summary, the data presented here shows that A. fumigatus ∆pes3 is more virulent 

than wild-type in both an insect and animal model of IA. Initially, virulence testing was 

performed using the Galleria wax moth larvae as a model, and measuring larval survival as 

an indicator of virulence. In this model, ∆pes3 led to a dramatic reduction in survival 

compared to wild-type and this reduction in survival was observed as early as 24 hr 

following infection, and difference in survival was maintained throughout the course of the 

experiment (p < 0.001). Virulence was subsequently investigated in two murine models of 

IA, a hydrocortisone acetate (HCA) immunosuppressed model, and a neutropenic model. 

Using weight loss as an indicator of virulence, it was revealed that A. fumigatus ∆pes3 is 

more virulent than wild-type in the HCA model compared to wild-type with 2 animals 

infected with ∆pes3 being sacrificed before the end of the experiment due to severe weight 

loss (> 20 % of starting weight). There is an obvious increase in weight loss in animals 

infected with ∆pes3 compared to wild-type in this model and this coincided with increased 

fungal burden in the lungs of ∆pes3 infected mice (p = 0.02). In contrast, no difference in 

weight loss or fungal burden was observed between groups of animals infected with either 

A. fumigatus wild-type or ∆pes3 in a neutropenic model, with overall weights remaining 

similar for both groups, and similar fungal burden in the lungs in animals infected with 

either strain. 

 

3.3.12 A. fumigatus ∆pes3 is immunologically silenced compare to wild-type. 

 It was decided to investigate if A. fumigatus ∆pes3 manifested as immunologically 

silenced or less immunogenic upon inoculation in comparison to wild-type in order to 

explain the observed hypervirulence. In order to investigate this, a series of experiments 

were carried out whereby murine bone-derived macrophages (BMMØS) were co-incubated 

with A. fumigatus wild-type or ∆pes3 for 18 hr and cytokine production was measured as 
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described (Section 2.2.13). In all cell signalling experiments, known TLR ligands were 

included and a list of these is presented in Table 3.5. BMMØS were usually stimulated with 

fungal cells (either germlings or conidia) at a ratio of 5:1 fungal cells: macrophages. The 

set-up of the immune signalling experiments is represented schematically in Figure 3.23.  

 Less TNF-α was produced in response to ∆pes3 germlings which had been 

germinating for 9 hr, prior to incubation with macrophages, in comparison to the wild-type 

counterpart, with approximately 40 % less TNF-α  released from BMMØS when incubated 

with ∆pes3 (Figure 3.24). TNF-α was also measured from BMMØS exposed to A. 

fumigatus conidia, either live or heat-killed. No overall difference was observed between 

the levels of TNF-α induced by wild-type and ∆pes3 exposure regardless of whether 

conidia were alive or dead (Figure 3.24). Similarly, less IL-6 (68 % reduction) was 

produced by BMMØS in response to ∆pes3 germlings (pre-incubated for 9 hr) and no 

differences were observed in the response of BMMØS to conidia of either strain, with 

respect to IL-6 (Figure 3.25). Production of IL-6 by BMMØS was also measured in 

response to A. fumigatus culture supernatant (SN) in which conidia of wild-type and ∆pes3 

had been germinating for either 6 hr or 9 hr. In all cases, no IL-6 was produced in response 

to SN, with less than < 100 pg/ml for all samples (Figure 3.25). 

 The levels of RANTES (CCL5) and an anti-inflammatory cytokine IL-10 were 

measured following stimulation of BMMØS, in order to get a wider view on the extent of 

the reduced immune response towards ∆pes3. As observed for both TNF-α and IL-6, the 

production of RANTES and IL-10 were also reduced upon exposure of BMMØS to A. 

fumigatus ∆pes3 compared to wild-type (Figure 3.26). A 25 % reduction in RANTES was 

observed when macrophages were co-incubated with ∆pes3 germlings which had been 

germinated for 9 hr prior to co-incubation. A 10 % reduction in IL-10 was observed 

following macrophage exposure to ∆pes3 germlings which had been germinated for 9 hr.  
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Table 3.5. Known TLR ligands used in this study. 
 

Ligand Toll Like Receptor  (TLR) Activated Final Concentration  

LPS TLR 4 100 ng/ml 

Pam-2-cys TLR 2 1 µg/ml 

Poly IC TLR 3 10 µg/ml 
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Inoculate A. fumigatus  
wild-type and ∆pes3 
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Inoculate A. fumigatus  
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co-incubate with 
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Figure 3.23. Schematic representation time-line for immune signalling experiments.  

Conidia of A. fumigatus wild-type (ATCC 46645) and ∆pes3 were harvested and used to inoculate cultures of AMM in order to allow 

germling formation as described (Section 2.2.13.3). Conidia were allowed to germinate for either 6 hr or 9 hr after which an aliquot of 

the culture corresponding to 5 x 106 conidia was added to murine BMMØS and co-incubated for 18 hr. Supernatants were then 

collected from cells, and cytokines of interest were determined by ELISA. 
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Figure 3.24. ELISA determination of TNF-α released from BMMØS following co-

incubation with A. fumigatus germlings and conidia. 

A. Less TNF-α is produced when murine BMMØS are exposed to A. fumigatus ∆pes3 

germlings (2,900 pg/ml) in comparison to wild-type germlings (4,900 pg/ml) following a 9 

hr germination period of conidia prior to 18 hr co-incubation with BMMØS. A. fumigatus 

germlings following 6 or 9 hour germination from conidia were added to BMMØS at a 

ratio of 5:1. Cells are responsive towards the TLR 4 and TLR 2 ligands LPS and pam-2-cys 

respectively. Data is representative of two independent experiments. 

B. No overall differences between the level of TNF-α produced by BMMØS was observed 

in response to A. fumigatus wild-type or ∆pes3, whether conidia were live or dead. Conidia 

of wild-type or ∆pes3 (1 x 107) were added to BMMØS at 5: 1 ratio. Data is representative 

of two independent experiments. 
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Figure 3.25. IL-6 production from BMMØS is reduced following exposure to A. 

fumigatus ∆pes3 germlings. 

A. BMMØS produce less IL-6 (68 % reduction) upon exposure to A. fumigatus ∆pes3 

germlings compared to wild-type, when macrophages are exposed to germlings which had 

undergone 9 hr germination prior to stimulation of cells. BMMØS produced 3,400 pg/ml 

IL-6 upon exposure to A. fumigatus ∆pes3 in comparison to wild-type (10,100 pg/ml). The 

mean ± standard error of two experiments is shown. Cells are responsive towards the TLR 

4 and TLR 2 ligands LPS and pam-2-cys respectively. Cells did not produce IL-6 in 

response to dead hyphae of either wild-type or ∆pes3, and similarly did not produce IL-6 in 

response to A. fumigatus culture supernatant (SN) of either strain, following germination of 

conidia of each strain for either 6 hr or 9 hr in AMM media.  

B. Conidia of wild-type or ∆pes3 (1 x 107) were added to BMMØS and incubated for 18 hr, 

after which IL-6 levels were measured by ELISA. No overall differences between the level 

of cytokine produced in response to wild-type or ∆pes3, whether conidia were live or dead. 

Data is representative of two independent experiments. 
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Figure 3.26. RANTES (CCL5) and IL-10 production by BMMØS is reduced upon 

exposure A. fumigatus ∆pes3 compared to wild-type. 

A. BMMØS produce less RANTES (24 % reduction) upon exposure to A. fumigatus ∆pes3 

germlings compared to wild-type, when macrophages are exposed to germlings which had 

undergone 9 hr germination prior to stimulation of cells. BMMØS produce 152 pg/ml IL-6 

upon exposure to A. fumigatus ∆pes3 in comparison to wild-type (115 pg/ml). Data is 

representative of two independent experiments. 

B. BMMØS produce less IL-10 (10 %) reduction) upon exposure to A. fumigatus ∆pes3 

germlings compared to wild-type, when macrophages are exposed to germlings which had 

undergone 9 hr germination prior to stimulation of cells. BMMØS produce 507 pg/ml IL-

10 upon exposure to A. fumigatus ∆pes3 in comparison to wild-type (528 pg/ml). Data is 

representative of two independent experiments. 
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3.4 Discussion. 

 This work has confirmed that pes3 is expressed in A. fumigatus ATCC 46645 under 

a range of growth conditions. pes3 was subsequently disrupted and restored. Comparative 

metabolite profiling was undertaken in order to identify a peptide that might be encoded by 

the NRP synthetase, Pes3. Despite thorough metabolite profiling using conditions in which 

pes3 was found to be expressed, no differences were detected between A. fumigatus wild-

type and ∆pes3, strongly suggesting that Pes3 does not encode a secreted peptide, or one 

that is stored intracellularly. This hinted that Pes3 encodes a peptide with a structural role in 

the fungus. Extensive phenotypic revealed that pes3 is involved against protection against 

voriconazole toxicity (p < 0.001), suggesting an alteration in the cell wall of A. fumigatus 

∆pes3 rendering it more susceptible to voriconazole. This phenotype supports the 

hypothesis that Pes3 encodes a structural peptide within A. fumigatus. Extensive phenotypic 

analyses convincingly eliminated a role for pes3 in siderophore biosynthesis and oxidative 

stress resistance, despite NRP synthetases previously reported to have roles in these 

pathways. Surprisingly, A. fumigatus ∆pes3 is more virulent compared to wild-type in both 

insect and mammalian models of infection, and this is accompanied by an increased fungal 

burden in animals infected with ∆pes3 compared to wild-type. This observation suggested 

that ∆pes3 was immunologically silenced compared to wild-type, which explains the 

reduced fungal clearance observed in lungs of infected animals. Immune signalling 

experiments revealed that murine macrophages produce less pro- and anti-inflammatory 

cytokines when exposed to A. fumigatus ∆pes3 compared to wild-type. Reduced immune 

responses towards A. fumigatus ∆pes3 further supports the hypothesis that pes3 plays a 

structural role in A. fumigatus, since immune recognition of A. fumigatus is mediated by 

recognition of fungal cell wall components by pattern recognition receptors (PRRs) of the 

innate immune system.  
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 pes3 transcripts were detected at both 24 and 48 hr following liquid culture in 

Czapek’s broth and AMM media. Expression of pes3 was also observed following 48 hr 

growth in Czapek’s broth in A. fumigatus Af293 (Cramer et al., 2006b). The housekeeping 

gene used by Cramer et al., (2006), was actin, and pes3 (referred to as NRPS-8 in that 

study) was found to be expressed at a low relative abundance in comparison to actin (< 10 

%). The data presented here also shows that pes3 has a low relative abundance (10 %) in 

comparison to the housekeeping gene, calmodulin (calm) (Burns et al., 2005). Cramer et 

al., (2006) also reported a high level of pes3 expression in ungerminated spores relative to 

the housekeeper gene, actin (> 60 % relative abundance), and this pattern of expression was 

unique in comparison to all the other NRP synthetase genes examined in A. fumigatus. As 

the overall starting goal of this work was to identify a peptide that may be the product of 

the Pes3 NRP synthetase, it was necessary to confirm the expression of pes3 in the strain of 

choice. NRP synthetase and other secondary metabolite encoding genes are often not 

expressed under standard laboratory conditions and may require certain triggers for their 

activation (Schroeckh et al., 2009). Knowing that pes3 was expressed in the ATCC 46645 

strain was sufficient to further characterise the gene in this strain.  

 pes3 was successfully disrupted by a bipartite gene deletion strategy (Nielsen et al., 

2006), designed to delete 1.5 kb of the 25 kb gene. This resulted in the generation of a 

mutant strain (∆pes3) and pes3 disruption was confirmed by Southern blotting and gene 

expression analysis. Subsequently, complementation of pes3 was undertaken, to restore the 

locus. Strategies that are commonly used to complement gene deletions involve amplifying 

the entire gene of interest by PCR, cloning it into a plasmid vector which usually contains a 

resistance cassette for selection and transforming this construct (either linearised or intact) 

into protoplasts of the recipient strain (Personal communication, Dr. Markus Schrettl). This 

method can be used to replace genes (either targeted or ectopically) which have been 
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partially or completely deleted, and can be useful when the gene of interest is of a suitable 

size for amplification by PCR. This approach has been reported recently for the 

complementation of A. fumigatus dvrA (AFUA_3G09820) (Ejzykowicz et al., 2010).  

 A similar strategy was used to complement the A. fumigatus glucokinase and 

hexokinase encoding genes; glkA and hskA respectively, whereby the entire genes were 

amplified, cloned into a vector, subsequently fused to a resistance cassette, and the entire 

construct was transformed into protoplasts of the recipient strain (Fleck & Brock, 2010). In 

these cases the genes of interest were usually about 2 kb in size, making them suitable for 

whole amplification by PCR. However, to alleviate problems in attempting to amplify a 25 

kb construct for pes3, a strategy was designed to specifically replace only the region that 

was deleted in ∆pes3. The advantage of this is to ensure a specific targeted replacement of 

pes3. The strategies employed are summarised (Table 3.1) and eventually successful 

complementation of pes3 was achieved. A bipartite replacement strategy was employed, 

whereby two overlapping DNA fragments, flanking the pes3 disrupted region were 

generated by PCR. These were simultaneously transformed into protoplasts of ∆pes3 along 

with a plasmid conferring phleomycin resistance (Pan 8.1), to allow for selection of 

transformed colonies. This complementation strategy represents a unique approach towards 

reconstituting deleted genes, and is a very useful way for restoring large coding regions 

which have undergone partial deletion, and overcomes the difficulty in amplifying very 

large genes by PCR. Complementation of pes3 was confirmed thoroughly by Southern 

blotting, gene expression analysis, and restriction mapping of part of the pes3 locus.  

 Comparative metabolite profiling of A. fumigatus wild-type and ∆pes3 by RP-

HPLC was undertaken in order to identify a specific non-ribosomal peptide (NRP) 

produced by Pes3. Extensive comparative analysis was performed at both NUIM, and with 

a collaborating group at the Danish Technical University. A wide range of growth 
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conditions, and metabolite extraction methods were explored. In all cases, the metabolite 

profiles generated for wild-type and mutant were identical. The plug extraction method 

used in this study has been found to be sufficient to determine all secondary metabolites 

reported to be produced as well as some previously unknown metabolites from 395 fungal 

isolates (Smedsgaard et al., 1997). Furthermore, this work included comparative analysis 

between wild-type and ∆pes3 using culture conditions in which pes3 expression was 

detected in this study and others (Cramer et al., 2006b). Comparison of wild-type vs. ∆pes3 

ungerminated spores, where pes3 expression was found to be most abundant (Cramer et al., 

2006b) was also included in this study, and this also revealed no differences in metabolite 

profiles. Taken together, these findings imply that the NRP synthetase, Pes3, does not 

produce either a secreted or an intracellularly stored metabolite in A. fumigatus.  

 This is a unique finding for an NRP synthetase, as to date, documented NRP 

synthetase-encoded peptides can usually be found in the culture supernatant (or located 

intracellularly) of the producing organism under specific culture conditions. For example, 

A. fumigatus uses the NRP synthetase encoded siderphore, hydroxyferricrocin, to store iron 

in conidia (Schrettl et al., 2007). The lack of a pes3 candidate peptide despite extensive 

metabolite analysis hinted that the Pes3-encoded peptide might be structural in nature, an 

unusual property for a non-ribosomal peptide. Ergot alkaloids, a family of secondary 

metabolites of NRP synthetase origin have been found to be associated with A. fumigatus 

conidia (Panaccione and Coyle, 2005), but they were extracted relatively easily by 

sonication of conidia in methanol (Panaccione and Coyle, 2005). It is highly likely that the 

Pes3-encoded peptide is more tightly bound to the A. fumigatus cell wall, perhaps 

covalently, as it was not extracted by any of the means used in this study.  

 A range of phenotypic analyses were performed in order to compare A. fumigatus 

wild-type and ∆pes3, to identify a biochemical role for pes3. Since little is known about the 
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roles of the individual NRP synthetases in A. fumigatus, a starting point for investigation 

was to probe pathways in which NRP synthetases are already known to be involved. Two 

non-ribosomal peptide synthetases have been proven to play essential roles in siderophore 

biosynthesis in A. fumigatus, namely the genes encoding SidD and SidC (Schrettl et al., 

2007; Reiber et al., 2005). A role for Pes3 in this pathway was investigated. Plate assays 

were performed with various iron conditions; high iron, low iron, and depletion of iron by 

the addition of an iron chelating compound, BPS, which blocks reductive iron assimilation 

in A. fumigatus. Wild-type and ∆pes3 showed exactly the same growth rate in all conditions 

tested. Schrettl and co-workers found that in the absence of siderophore mediated iron 

mobilisation, reductive iron assimilation is absolutely essential for the growth of the fungus 

in iron starvation conditions (Schrettl et al., 2007). Taking this into account, it is highly 

likely that the pes3 mutant is able to produce siderophores, as it can grow normally in the 

presence of BPS, therefore eliminating a role for Pes3 in the siderophore biosynthesis 

pathway.  

 Other phenotypic analyses performed were oxidative stress testing, heavy metal 

stress testing, and testing with various cell wall damaging agents. The outcomes of these 

assays are summarised in Table 3.4. Plate assays were carried out to measure radial growth 

rates of A. fumigatus wild-type and ∆pes3 upon exposure to the various stresses. Strains 

were compared for response to oxidative stress as fungal NRP synthetases have previously 

been reported to be involved in protection against oxidative stress. A. fumigatus Pes1 has 

been found to confer protection against oxidative stress (Reeves et al., 2006) and NPS6 in 

the plant pathogen Cochliobolus heterostrophus, is involved in both virulence and 

resistance to oxidative stress (Lee et al., 2005,  Oide et al., 2006). Also, Indigoidine, a blue 

pigment involved in virulence produced by the plant pathogenic bacteria, Erwinia 

chrysanthemi, is produced non-ribosomally, and increases tolerance to oxidative stress in 
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this species (Reverchon et al., 2002). A. fumigatus Pes3 doesn’t appear to play a role in 

protection against oxidative stress, with disruption of pes3 leading to no alteration in 

sensitivity towards hydrogen peroxide or menadione. A. fumigatus ∆pes3 did exhibit 

increased resistance to the oxidising agent diamide, with a significant difference between A. 

fumigatus wild-type and ∆pes3 (p < 0.05) at 72 hr growth in the presence of diamide (0.1 

mM). One possibility is that an altered cell wall in A. fumigatus ∆pes3 hinders diamide 

entering the cell, and so A. fumigatus ∆pes3 is exposed to less diamide-induced oxidative 

stress than wild-type, leading to the increased growth observed. More recently, a mutagenic 

compound NG-391, produced by a hybrid PKS-NRPS, from the fungal entomopathogen 

Metarhizium robertsii, was described, which appears to play no role in virulence or 

protection against oxidative stress caused by hydrogen peroxide in this species (Donzelli et 

al., 2010).   

 Sensitivity to cell wall damaging and membrane perturbing agents (calcafluor 

white, congo red, sodium dodecyl sulphate (SDS) or caffeine) was investigated. Congo red 

and calcafluor white were used following a recent protocol for identification of fungal cell 

wall mutants (Ram & Klis, 2006). Testing for altered sensitivity to Congo red (CR) and 

calcafluor white (CFW) is routinely used to identify fungal cell wall mutants (Ram and 

Klis, 2006). Increased susceptibility to these agents has indicated cell wall defects in many 

species including S. cerevisiae, C. albicans (Popolo & Vai, 1998) various Aspergillus 

species (Oka et al., 2005; Shaw & Momany, 2002), and Cryptococcus neoformans (Gerik 

et al., 2005). CR and CFW have been shown to interact with ß-linked glucans in vitro 

(Wood, 1980), whereas in vivo they have been shown to interact with growing chitin chains 

(Herth, 1980). Exposure to these cell wall damaging agents has been shown to induce cell 

wall-related morphological changes, and leads to incomplete mother and daughter cell 

separation in S. cerevisiae (Roncero & Duran, 1985; Vannini et al., 1983) and it is 
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suggested that this may be due to inhibition of chitin synthesis (Ram & Klis, 2006). These 

compounds also caused swelling or lysis of the hyphal tips in the filamentous fungi A. niger 

and Geotrichum lactis, due to cell wall weakening and internal turgor pressure (Damveld et 

al., 2005; Pancaldi et al., 1984; Roncero & Duran, 1985). Exposure to CR or CFW 

ultimately leads to the activation of the cell wall stress response, whereby cell wall-

reinforcing genes are activated, and increased chitin is deposited in the cell wall (Levin, 

2005) Caffeine inhibits cAMP phosphodiesterases (Parsons et al., 1988), which have been 

found to be important in the regulation of the cell wall organisation in both S. cerevisiae 

and C. albicans (Jung et al., 2005). Caffeine has also be found to stimulate dual 

phosphorylation of Slt2, the MAP kinase involved in the cell wall integrity signal 

transduction pathway and mutants in this pathway are found to be more sensitive to 

caffeine (Martin et al., 1993). SDS compromises the integrity of the cell membrane, and 

testing with SDS indicates the accessibility of SDS to the membrane through the cell wall 

and has been used for identifying cell wall mutants from a mutant library in C. albicans 

(Plaine et al., 2008).  

 Sensitivity testing to all of the cell wall damaging and membrane perturbing agents 

discussed here revealed no differences in growth between wild-type and ∆pes3 under all 

conditions tested, ruling out an essential role for Pes3 in cell wall or membrane 

maintenance, integrity or synthesis. However, anti-fungal susceptibility testing revealed 

that A. fumigatus ∆pes3 was more sensitive to voriconazole (0.5 µg/ml) than wild-type (p < 

0.001). Voriconazole blocks ergosterol biosynthesis, thereby hindering cell membrane 

synthesis, resulting in membrane leakage. Perhaps one hypothesis could explain the 

increased susceptibility of A. fumigatus ∆pes3 to voriconazole; an altered cell wall in A. 

fumigatus ∆pes3 leads to increased entry of voriconazole, resulting in increased exposure to 

the membrane damaging effects of voriconazole. Pes3 does not play any role in protection 



 228

against the other anti-fungals examined in this study, and this may be due to the differences 

in targets for these drugs. A similar hypothesis might explain the increased resistance to 

diamide; an altered cell wall may alter diamide entry into the cells, possibly resulting in 

differences in the intracellular diamide concentration between A. fumigatus and ∆pes3. 

 Growth rate comparisons between wild-type and ∆pes3 strains were performed in 

this study. Both vegetative and conidial germination rates were assessed by performing 

growth curves in liquid media and microscopic examination of germinating conidia in 

culture (Reeves et al., 2004; Professor Robert Cramer Jr. – personal communication). 

Conidial germination was investigated as previous gene expression analysis on all of the 

NRP synthetase genes within A. fumigatus revealed that pes3 displayed a unique pattern of 

gene expression in comparison to the other NRP synthetase genes, with a high level of 

transcripts occurring in ungerminated spores (Cramer et al., 2006b). This observation 

hinted that pes3 could possibly be playing a role in conidial germination in this fungus, and 

if so, that the pes3 mutant might exhibit a different germination rate to the wild-type. 

However, no differences with respect to rates of germination were observed in this study. 

Similarly, no differences in vegetative growth between wild-type and ∆pes3 indicating that 

pes3 does not appear to be important for germination of conidia into mycelia over a longer 

time period. Interestingly, a transcriptomic analysis of genes expressed within A. fumigatus 

fresh or one-year old conidia at various stages of germination did not find pes3 transcripts 

to be stored constitutively in the conidia or indeed in any of the other conditions analysed in 

the study (Lamarre et al., 2008). The strain of choice in this study was A. fumigatus Af293, 

as was used in the study mentioned earlier (Cramer et al., 2006b). 

 In vivo virulence testing of A. fumigatus wild-type and ∆pes3 was carried out to 

investigate if pes3 contributed towards A. fumigatus virulence. NRP peptides have been 

widely reported as being important virulence factors for the producing species, whereby 
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NRP synthetase mutants strains exhibit reduced virulence compared to wild-type. For 

example, the NRP bassianolide from Beauveria bassiana is important for the virulence of 

this pathogen in its insect host (Xu et al., 2009). Non-ribosomally synthesised siderophores 

are essential for virulence in A. fumigatus (Schrettl et al., 2004), and the ETP gliotoxin, 

also produced non-ribosomally in A. fumigatus, is implicated in the virulence of this 

pathogen (Kwon-Chung & Sugui, 2009). Virulence testing was initially performed using 

the well-established G. mellonella insect infection model (Cotter et al., 2000). Surprisingly, 

this work revealed that ∆pes3 was more virulent compared to wild-type in the G. mellonella 

model with a highly reduced larval survival rate associated with the ∆pes3 strain (p < 

0.001) (Figure 3.18). Virulence was observed at levels similar to wild-type when pes3 was 

complemented. Virulence was subsequently assessed in two murine models of invasive 

aspergillosis, including a hydrocortisone acetate immunocompromised (HCA) model, and a 

neutropenic model (Bergmann et al., 2009). Virulence testing in the HCA model revealed 

that the ∆pes3 mutant was more virulent as observed by the dramatic weight loss in animals 

infected with the ∆pes3 strain compared to the wild-type strain. Indeed, two of the animals 

in the ∆pes3 group reached critical weight loss (> 20% of starting weight) and had to be 

culled during the infection. Virulence was further measured by determination of fungal 

burden in the murine lung following 4 days infection. Increased virulence of the ∆pes3 

strain coincided with increased fungal burden in the lungs of these animals in comparison 

to wild-type (p = 0.02). Conversely, virulence testing in a neutropenic model for IA 

indicated no difference in survival between animals either infected with wild-type or ∆pes3 

in this model. The overall weights of animals in both neutropenic groups followed a similar 

trend over the course of the infection. These findings were also further investigated by 

determination of fungal burden in the lungs of neutropenic animals on day 4 of infection. 

Equal fungal burden was found in animals infected with either wild-type or ∆pes3, 
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indicating equal clearance of the fungus from animals in each group. In both models of 

infection, a para-aminobenzoic acid (PABA) mutant (H515 strain) was included as a 

negative control, as this strain is completely attenuated in virulence and unable to germinate 

in the murine lung (Brown et al., 2000). In both models of infection, the fungal burden 

associated with the H515 strain was much lower than for the two strains being investigated 

in this study.  

 In order to explain the increased virulence associated with the pes3 disruption, 

many possibilities were considered. Hypothesis 1: The hypervirulence of ∆pes3 observed in 

both Galleria and the HCA murine model, and the increased ∆pes3 fungal burden also 

observed in the HCA model might be explained if ∆pes3 exhibited an altered growth rate 

compared to wild-type. A reduced growth rate could potentially lead to a lower immune 

response, by virtue of less fungal components present and available for recognition by the 

pattern recognition receptors of the innate immune system in both Galleria and mouse. 

Similarly, an increased growth rate could mean more fungal material is available for 

recognition, for example increased β-glucan exposure for recognition by Dectin-1 (Hohl et 

al., 2005). This could lead to a hyperactive immune response, and therefore increased 

mortality associated with inflammation and over-activation of immune effectors (Vega & 

Martin, 2008). Alternatively, increased growth of the fungus could mean increased 

production of toxic secondary metabolites, which might also explain increased virulence. 

This study confirms that there is no difference in growth rate, either in a vegetative state, or 

in the process of conidial germination between wild-type and ∆pes3, eliminating this 

hypothesis as a reason for the increased virulence of ∆pes3. 

 Hypothesis 2: Pes3 encodes an immuno-suppressive peptide, and that loss of such a 

peptide from A. fumigatus ∆pes3 leads to an over-active immune response in the Galleria 

larvae and in the HCA murine model and this might contribute to increased disease and 
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mortality. This possibility was considered plausible by the fact that A. fumigatus is known 

to produce immunosuppressive mycotoxins, one of which is gliotoxin, of NRPS origin 

(Kamei & Watanabe, 2005). Fumagillin, also produced by A. fumigatus has also been 

shown to suppress neutrophil function (Fallon et al., 2010). However, extensive 

comparative metabolite analysis between wild-type and ∆pes3 undertaken here indicates 

that Pes3 does not produce and secrete a peptide in A. fumigatus, convincingly eliminating 

this possibility to explain the hypervirulence of the ∆pes3 strain. Further support for this 

comes from the fact that pes3 was not found to be under the control of LaeA, the master 

regulator for secondary metabolism in filamentous fungi, upon a transcriptional analysis of 

a LaeA deletion mutant (Perrin et al., 2007). Furthermore, the increase in ∆pes3 fungal 

burden observed in the HCA model would not be in agreement with an overactive immune 

response, as one might expect an overactive immune response to result in enhanced fungal 

clearance. Moreover, the scenarios above could only partially explain the increased 

virulence observed for ∆pes3, in that they do not explain why there was no increase in 

virulence observed in the neutropenic murine model. 

 Hypothesis 3: A more feasible hypothesis to explain the hypervirulence associated 

with A. fumigatus ∆pes3 is that this strain is immunologically silent in comparison to the 

wild-type strain. Increased fungal burden in the lungs of animals infected with A. fumigatus 

∆pes3 compared to wild-type in a HCA model of infection suggests that the immune 

system in unable to clear the fungus efficiently. Increased growth of A. fumigatus ∆pes3 has 

been eliminated as a cause for increased fungal burden, so it is more plausible that A. 

fumigatus ∆pes3 is not recognised by the immune system as efficiently as wild-type and 

that it is somehow escaping the immune response. This hypothesis was investigated and 

supported through in vitro cell signalling experiments. An overall reduction in cytokine 

production was observed when murine BMMØS (bone-marrow-derived macrophages) were 
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exposed to A. fumigatus ∆pes3, compared to wild-type. Reductions in TNF-α (40 %), IL-6 

(68 %), RANTES (25 %), and IL-10 (10 %) was observed following co-incubation of 

macrophages with A. fumigatus germlings which had been previously incubated for 9 hr in 

AMM media to allow germling formation, prior to co-incubation with macrophages for 18 

hr. Germination assays that were undertaken in this study revealed that by 8 hr, a 

germination rate of > 80 % was observed for both wild-type and ∆pes3, and beyond 8 hr it 

was difficult to visually enumerate germlings. Subsequently, 9 hr was chosen as a time 

point in the cell signalling experiments, as it is likely that close to 100 % germination is 

achieved at this point. Differences in the in vitro murine response to both strains, despite 

equal growth rates, and germination rates, implies that a structural difference between the 

strains is leading to a difference in immune recognition of pattern associated molecular 

patterns (PAMPs) on the cell surface. Specific reduction in TNF-α and IL-6 upon exposure 

to A. fumigatus ∆pes3 suggests a reduction in recognition through TLR4 as production of 

these pro-inflammatory cytokines from murine macrophages in response to A. fumigatus 

hyphae is largely dependant on TLR4 (Meier et al., 2003). It is currently not known which 

PAMPs are involved in recognition of Aspergillus through TLR2 and/or TLR4, but TLR4 

has been shown to recognise fungal mannan in vitro (Tada et al., 2002).   

 Interestingly, the literature revealed that the majority of A. fumigatus mutants for 

which hypervirulent phenotypes have been reported relate to a defect in the cell wall or 

conidial surface of the mutant. Disruption of ecm33 (AFUA4G06820), encoding the GPI-

anchored protein ECM33 in A. fumigatus resulted in a mutant strain that was more virulent 

than wild-type in an immunocompromised mouse model for IA (Romano et al., 2006). A. 

fumigatus ∆ecm33 exhibited rapid conidial germination, increased resistance to 

caspofungin, and increased cell-cell adhesion, and the authors suggest that deletion of 

ECM33 leads to a softer cell wall, allowing faster germination (Romano et al., 2006). α (1-
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3)-glucan is a major polysaccharide in the cell wall of A. fumigatus, and several α (1-3)-

glucan synthases (AGS) have been identified to date with AGS1 being responsible for α (1-

3)-glucan biosynthesis (Beauvais et al., 2005). AGS3, another α (1-3)-glucan synthase has 

since been identified and is involved in α (1-3)-glucan biosynthesis. Interestingly, an AGS-

3 deletion mutant was found to be hypervirulent in a murine model of IA and this coincided 

with increased melanin at the conidial cell wall, increased resistance to ROS and faster 

germination (Maubon et al., 2006). An A. fumigatus transcription factor, ACE2, which 

regulates pigment production, conidiation and virulence, was deleted and a range of mutant 

phenotypes were reported (Ejzykowicz et al., 2009), including the production of a yellow-

orange pigment on certain media, abnormal conidiation, accelerated germination, and 

difference in the conidial surface (∆ace2 conidia appeared smooth, while wild-type conidia 

generally have a rough undulating appearance). Furthermore, the ACE2 mutant was 

hypervirulent in a non-neutropenic mouse model of IA, but no difference in virulence was 

observed in neutropenic mice (Ejzykowicz et al., 2009). These findings indicate that, like 

A. fumigatus ∆pes3, the presence of neutrophils was necessary for the increased virulence 

of A. fumigatus ∆ace2. The fatty acid oxygenises PpoA, PpoB and PpoC synthesise 

prostaglandins and other oxylipins (Tsitsigiannis et al., 2005). PpoA, B and C silencing by 

RNAi lead to a hypervirulent strain of A. fumigatus (Maubon et al., 2006). ACE2 was 

shown to regulate the expression of genes encoding PpoA, PpoB and PpoC, ECM33, and 

AGS-3, which may explain the increased virulence observed in A. fumigatus ∆ace2 

(Ejzykowicz et al., 2009). Furthermore, A. fumigatus ∆ace2 exhibited abnormal conidial 

cell wall architecture (Ejzykowicz et al., 2009). The inner layer of the ∆ace2 conidial cell 

wall was 2-fold thicker than wild-type, and the authors suggest that the increased thickness 

of this layer is due to an increased amount of chitin, as ecm33 expression is decreased in 

∆ace2, and deletion of ecm33 is known to lead to increased chitin content in the cell wall 
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(Chabane et al., 2006; Ejzykowicz et al., 2009). Finally, genes encoding trehalose 

synthases (TPSs) were investigated in A. fumigatus, and a trehalose synthase double mutant 

(∆tpsAB), was hypervirulent in a non-neutropenic model of IA, consistent with greater 

pulmonary fungal burden (determined by measuring galactomannan content), and increased 

pulmonary inflammation. This mutant exhibited major alterations in the conidial and 

hyphal cell wall with loss of the electron dense outer layer. Furthermore, expression of 

AGS-3 was down-regulated in ∆tpsAB, possibly contributing to the increased virulence 

observed for ∆tpsAB (Al-Bader et al., 2010). Taking all the data presented here, and the 

hypervirulent mutants reported in the literature into consideration, it is highly plausible that 

the hypervirulence of A. fumigatus ∆pes3 is associated with an alteration at the cell surface 

of the mutant strain that interferes or reduces the recognition of the fungus by the innate 

immune system. 

  The similarity in virulence between both strains in the neutropenic model could be 

explained if the absence of the pes3 gene product resulted in a reduced immune response 

(and therefore higher fungal burden) via the neutrophil. This could also be stated as; the 

pes3 gene product elicits an intact immune response when present in A. fumigatus, and that 

the particular recognition and response mediated by pes3 is reliant on the neutrophil. 

Recognition of A. fumigatus by the innate immune system, leads to clearing of fungal 

burden and the neutrophils are extremely important in this process, as discussed earlier in 

this chapter. Full recognition of the wild-type strain could be dependent on pes3, and this 

eventually leads to recruitment of neutrophils, which are important in the defence against A. 

fumigatus. Upon exposure to ∆pes3, fungal recognition by the immune system is impaired, 

manifesting as a reduced neutrophil function which could slow the clearance of fungal 

burden, and increase virulence, as observed in this study. The fact that no difference is 

observed between wild-type and ∆pes3 in the neutropenic model is compatible with this 
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hypothesis. Certain hypotheses can explain the immunological silencing of A. fumigatus 

∆pes3. As described earlier, A. fumigatus dormant conidia are covered by a hydrophobic 

rodlet layer (Thau et al., 1994). This rodlet layer is made of hydrophobic proteins, and the 

rodlet layer maintains conidia in an immunologically silent state (Aimanianda et al., 2009). 

Recently, it has been shown that RodA (one of the rodlet hydrophobins) prevents A. 

fumigatus conidia from triggering NET formation by human neutrophils (Bruns et al., 

2010), indicating the importance of rodlet removal in leading to a neutrophil-mediated 

immune response.  

 Pes3 may encode a peptide which functions in removal of the rodlet layer from 

germinating conidia, thereby facilitating recognition of fungal PAMPs by the receptors of 

the innate immune system. Loss of a Pes3-encoded peptide could result in incomplete or 

delayed removal of the rodlet layer during conidial germination, thereby keeping A. 

fumigatus in a silent state, resulting in increased virulence, and reduced cytokine induction 

in response to A. fumigatus ∆pes3 as observed. Alternatively, Pes3 might encode a peptide 

which functions in linking the rodlet layer to the cell wall. Loss of Pes3 could result in 

aberrant linking of this rodlet layer to the cell wall, and may hinder other enzymes involved 

in the removal of the rodlet layer upon germination. Either hypothesis would lead to a 

reduction in exposure of fungal cell wall components, and would maintain the conidia of A. 

fumigatus ∆pes3 in an immunologically inert state. Either hypothesis could explain the 

abundance of pes3 transcripts in ungerminated conidia (Cramer et al., 2006b). The storage 

of pes3 transcripts in conidia would make them available for immediate translation of Pes3, 

allowing rapid removal of, or attachment of proteins to, the rodlet layer upon 

commencement of conidial germination. Failure to remove the rodlet layer in A. fumigatus 

∆pes3 would lead to the prevention of NET formation right through the infection process 

(Bruns et al., 2010), leading to hypervirulence of ∆pes3 and increased fungal burden as 
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observed. Furthermore, the involvement of a Pes3-encoded peptide in the rodlet layer might 

explain the reason no difference in virulence was observed between A. fumigatus wild-type 

and ∆pes3 in a neutropenic model of IA. Alternatively, a Pes3-encoded non-ribosomal 

peptide could be involved in binding or linking the fibrallar to amorphous polysaccharides 

in the cell wall, as to date, the linkages that are removed upon NaOH treatment are 

completely unknown (Latgé, 2010). It has been suggested that antibodies recognising 

specific linkages between the carbohydrates of the cell wall would be useful in elucidating 

the exact cell wall structure, and this has recently been used to elucidate the structure of 

plant cell walls (Knox, 2008). Unfortunately, one limitation in applying this technique to 

determine if pes3 is involved in linking components of the cell wall together is that the 

peptide encoded by Pes3 is unknown, and so it would be impossible to raise an antibody 

against it, at present. Nevertheless, the lack of information currently available on these 

linkages, together with the phenotypes observed for ∆pes3, and the high level of pes3 

transcripts present in conidia (Cramer et al., 2006b) do make these hypotheses valid and 

worthy of further investigation. 

 Interestingly, a genome-wide transcriptional analysis of the A. fumigatus genes 

differentially expressed in conidia upon exposure to human neutrophils did not record pes3 

expression as having changed in this study (Sugui et al., 2008). This finding could be seen 

to support the hypothesis that pes3 plays a structural role in A. fumigatus, because even 

though pes3 is important for immune recognition, and this does seem to involve the 

neutrophil in some way, i.e. its expression is not something that needs to be altered in 

response to neutrophil presence, as it is a structural component which is constitutively 

present. 

 The role of a fungal NRP synthetase in synthesising a peptide with a structural role 

has not been described before, so this may be a novel role for an NRP synthetase. 
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Phenotypic assays carried out in this study to investigate the response towards cell wall 

damaging agents revealed no difference between wild-type and ∆pes3. However, A. 

fumigatus ∆pes3 is more sensitive to the anti-fungal voriconazole than wild-type, which 

does point towards some alteration at the cell surface of this strain. In order to further 

validate the hypothesis that ∆pes3 is immunologically silenced, histological analysis of 

murine tissue during and following fungal infection would be very useful. Neutrophil 

infiltration is dependant on the production and release of cytokines such as TNF-α and 

chemoattractants (eg. IL-8) at the site of infection (Wagner & Roth, 2000), and reduction in 

TNF-α and the chemoattractant RANTES observed upon exposure to A. fumigatus ∆pes3 

should lead to impairment of neutrophil migration. If the hypothesis is correct, one might 

expect to see less infiltration of neutrophils in the tissue of animals infected with A. 

fumigatus ∆pes3, resulting in reduced clearance of the fungus, and the higher fungal burden 

observed.  Furthermore, an investigation of cytokine production in vivo in response to both 

strains is desirable. As well as in vivo cytokine measurements, it would be very useful to 

measure the expression of Toll like and other receptors known to be involved in the innate 

response against A. fumigatus infections, namely TLR 2, TLR 4 and Dectin-1 as discussed 

earlier. Further experiments to visualise A. fumigatus wild-type and ∆pes3 microscopically 

during different stages of growth; i.e. germination and mycelial growth would address and 

possibly confirm this hypothesis that the hyper-virulence and reduction in immune response 

associated with A. fumigatus ∆pes3 is related to a cell wall defect. 
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4.1 Introduction. 

4.1.1. pesL in the genome of A. fumigatus. 

 PesL (Cadre identifier: AFUA_6G12050) is a putative non-ribosomal peptide 

(NRP) synthetase encoded in the genome of Aspergillus fumigatus. A phylogenomic 

analysis of NRP synthetases within the genus Aspergillus revealed that PesL is one of two 

mono-modular NRP synthetases in A. fumigatus, and in this study PesL is referred to as 

NRPS11 (Cramer et al., 2006b; Stack et al., 2007). PesL is predicted to possess a single 

module containing an Adenlyation (A), Thiolation (T) and Condensation (C) Domain 

(Cramer et al., 2006b; Stack et al., 2007). The pesL open reading frame is 3,915 bp in 

length, including an annotated intron of 432 bp occurring 87 bp after the ATG start codon. 

Assuming the correct annotation of the intron, the translated protein encoded by pesL is 

comprised of 1,160 amino acid residues and has a predicted molecular weight of 

approximately 129 kDa. Blast homology searching at NCBI reveals that the PesL amino 

acid sequence is most homologous to a putative NRP synthetase (ACLA_017900) from the 

fully-sequenced genome of Aspergillus clavatus NRRL 1 strain. The next most 

homologous sequence is that of a putative NRP synthetase (NFIA_057990) from 

Neosartorya fischeri NRRL 181 strain. Similar results were found when using the blastp 

function at CADRE. Table 4.1 shows the Blast results obtained using the TBLASTN 

2.2.23+ program with the pesL translated nucleotide sequence as a query (Altschul et al., 

1997). Upon examining the Blast results, it is clear that for almost all of the homologues of 

PesL, there are no specific references for any of these genes relating the encoded NRP 

synthetase to a downstream peptide product. The lack of information relating NRP 

synthetases to a specific product highlights the large amount of work that remains to be 

done in order to elucidate the role of NRP synthetases in fungi in general, but also within 

the important pathogen, A. fumigatus.   
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Table 4.1. Blast results obtained using the TBLASTN 2.2.23+ program with the pesL translated nucleotide sequence as a query. The top 5 

Blast hits are included. 

# Accession Description Query 

coverage 

E value  Max 

identity 

1 XM_745991.1 Aspergillus fumigatus Af293 non-ribosomal peptide 

synthase, putative (AFUA_6G12050), partial mRNA 

100% 0.0 97% 

2 XM_001268512.1 Aspergillus clavatus NRRL 1 non-ribosomal peptide 

synthase, putative (ACLA_017900), partial mRNA 

95% 0.0 53% 

3 XM_001258345.1 Neosartorya fischeri NRRL 181 non-ribosomal peptide 

synthase, putative (NFIA_057990) partial mRNA 

83% 5e-152 35% 

4 XM_001270090.1 Aspergillus clavatus NRRL 1 non-ribosomal peptide 

synthase, putative (ACLA_095980), partial mRNA 

91% 2e-151 32% 

5 XM_001258342.1 Neosartorya fischeri NRRL 181 non-ribosomal peptide 

synthase, putative (NFIA_057960) partial mRNA 

84% 9e-150 35% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=VT7GUE90012&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark�
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=VT7GUE90012&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark�
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=VT7GUE90012&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark�
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=VT7GUE90012&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark�
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=VT7GUE90012&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=70992470&dopt=GenBank&RID=VT7GUE90012&log$=nucltop&blast_rank=1�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=121700496&dopt=GenBank&RID=VT7GUE90012&log$=nucltop&blast_rank=2�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=119472494&dopt=GenBank&RID=VT7GUE90012&log$=nucltop&blast_rank=3�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=121703653&dopt=GenBank&RID=VT7GUE90012&log$=nucltop&blast_rank=4�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=119472488&dopt=GenBank&RID=VT7GUE90012&log$=nucltop&blast_rank=5�
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  PesL was chosen for investigation in this study as it represents one of two 

monomodular NRP synthetases in A. fumigatus (Cramer et al., 2006b; Stack et al., 2007), 

and identification of the peptide encoded by PesL might provide information on the 

substrate specificity of fungal NRP synthetase adenylation domains, for which information 

is greatly lacking (Stack et al., 2007; Stack et al., 2009). Furthermore, with the publishing 

of the complete genome sequence of A. fumigatus, it was proposed that pesL was part of a 

secondary metabolite biosynthetic gene cluster containing four other genes (Nierman et al., 

2005). Table 4.2 shows the genes surrounding pesL in the genome of A. fumigatus and their 

putative functions. For convenience, this cluster is referred to as the pesL cluster during this 

thesis. The total cluster spanned from AFUA_6G12040 to AFUA_6G12080 and no 

orthologous clusters are found in two other Aspergillus species, A. oryzae or A. nidulans 

according to Nierman et al., (2005). This proposed cluster contains another putative NRP 

synthetase encoded by the gene AFUA_6G12080 which is referred to as NRPS 12 by 

Cramer et al., (2006a), and is also referred to as PesM (Stack et al., 2007). LaeA is a 

transcriptional regulator of secondary metabolite biosynthetic gene clusters in A. fumigatus 

and A. nidulans, and is known to influence transcription by acting on a chromatin 

remodelling level (Bok et al., 2005; Bok et al., 2006). pesL and all other genes in the pesL 

cluster were found to be under the regulation of the global secondary metabolite 

transcriptional regulator,  LaeA, in a transcriptional analysis of a LaeA mutant (Perrin et 

al., 2007). Therefore, it was likely that PesL encoded a secondary metabolite peptide in A. 

fumigatus. The next section will focus on the major secondary metabolites produced by A. 

fumigatus and will give an overview of the state on knowledge on the biosynthetic 

pathways involved in their biosynthesis. 
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Table 4.2. Transcript neighbourhood for A. fumigatus pesL. This table shows 5 genes 

proposed to be part of a secondary metabolite gene cluster with pesL in the genome of A. 

fumigatus Af293 (Nierman et al., 2005). Data was taken from CADRE (Mabey et al., 

2004). pesL (AFUA_6G12050) is underlined. 

Gene Number Function/Putative References 

AFUA_6G12040 MFS sugar permease, putative   N/A 

AFUA_6G12050 Non-ribosomal peptide synthase, putative, similar to 

non-ribosomal peptide synthase (GI:32264582) 

(Alternaria brassicae), (6.3.2.-)   

(Ames et 

al., 2010) 

AFUA_6G12060 MAK1-like monooxygenase, putative, similar to 

PIR:S70702: maackiain detoxification protein 1 

(Nectria haematococca) similar to Salicylate 

hydroxylase (EC 1.14.13.1) (Salicylate 1-

monooxygenase). (Swiss-Prot:P23262) (Pseudomonas 

putida;), (1.14.13.-)   

Ames et al. 

(2010) 

AFUA_6G12070 FAD binding domain protein, similar to 

GB:BAC61978.1: putative oxidoreductase, oxygen 

dependent, FAD-dependent protein (Vibrio 

parahaemolyticus), (1.5.3.-)   

N/A 

AFUA_6G12080 non-ribosomal peptide synthase, putative, similar to 

non-ribosomal peptide synthase (GI:32264582) 

(Alternaria brassicae) PMID: 14727058, (6.3.2.-)   

Ames & 

Walsh) 

2010 
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4.1.2. Secondary metabolite production in A. fumigatus. 

 At least 226 secondary metabolites in 24 distinct biosynthetic families have been 

reported from A. fumigatus (Frisvad et al., 2009). A recent metabolomic analysis of various 

isolates of A. fumigatus indicated that the metabolites consistently produced were 

fumiquinazolines A/B, C/D and F/G (100 %), fumigaclavine C (100 %), fumitremorgins 

(100 %), fumagillin (100 %), pseurotin A (100 %), melanins (100%) and helvolic acid (98 

%), with other metabolites such as gliotoxin and fumigatins produced by approximately 

half of the isolates examined (Frisvad et al., 2009). It has been widely reported that the 

production of secondary metabolites depends on the growth media used and environmental 

factors (Furtado et al., 2002; Furtado et al., 2005). Czapek’s yeast autolysate (CYA) agar 

and yeast extract sucrose (YES) were found to be suitable for the production of 

representatives of all known families of secondary metabolites in A. fumigatus detected 

using HPLC coupled with diode array detection (DAD) (Frisvad et al., 2007; Frisvad et al., 

2009). The three major groups of secondary metabolites produced by A. fumigatus; the 

fumiquinazolines, the fumitremorgins, and the ergot alkaloids will be discussed in more 

detail in the following sections. 

 

4.1.2.1. The fumiquinazolines. 

 Fumiquinazolines A-G were first detected from a strain of A. fumigatus isolated 

from the gastrointestinal tract of the marine fish Pseudolabrus japonicus (Takahashi et al., 

1995). The structures of these compounds were elucidated on the basis of spectral and X-

ray analyses and some chemical transformations (Takahashi et al., 1995). These 

compounds are among a variety of quinazoline-containing natural product scaffolds 

produced by fungi (Dyakonov & Telezhenetskaya, 1997). Upon examination of their 

structure it was proposed that anthranilate (Ant) (a non-proteinogenic aryl β-amino acid) 
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was a building block for these compounds (Ames & Walsh, 2010). These authors used a 

biochemical approach to confirm that an NRPS module (AnaPS module 1) from the known 

gene cluster for acetylaszonalenin from the Neosartorya fisheri NRRL 181 strain (Yin et 

al., 2009) activates Ant.  Subsequently, they chose an A. fumigatus NRP synthetase module 

as a candidate for Ant selectivity based on its similarity to AnaPS module 1, and this 

module corresponded to the first module encoded by A. fumigatus pesM (AFUA_6G12080) 

which is proposed to be part of a cluster with pesL. In contrast to earlier findings about the 

clustering of genes with pesL (Nierman et al., 2005), the authors state that pesM is actually 

part of an eight-gene cluster along with pesL, that they predict to be involved in the 

production of the Ant-containing alkaloid fumiquinazoline A (Ames et al., 2010). Module 1 

of a recombinantly expressed PesM was shown to preferably activate Ant (Ames & Walsh, 

2010). The authors propose that the three-module NRPS PesM is likely to produce 

fumiquinazoline F, and that PesL (AFUA_6G12050) could function in the conversion of 

fumiquinazoline F to fumiquinazole A, by activating alanine and acting with an N-

acyltransferase (AFUA_6G12100), which also encoded by the cluster, to couple alanine to 

the indole N1 of fumiquinazoline F (Ames & Walsh, 2010). More recently, these same 

authors have shown biochemically that recombinantly expressed PesL and an FAD-

dependant monoxygenase (encoded by AFUA_6G12060) are necessary and sufficient to 

convert fumiquinazoline F into fumiquinazoline A (Ames et al., 2010). The biosynthesis of 

fumiquinazolines in A. fumigatus will be discussed again later in this chapter. The chemical 

structures for a selection of quinazoline-containing fungal metabolites are presented in 

Figure 4.1. 
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Figure 4.1. Examples of fungal natural products that use anthranilic acid (Ant) as a 

building block. The Ant-derived portion is shown in red in A-C. A. Acetylaszonalenin 

biosyntheis is directed by a gene cluster in Neosartorya fisheri (Yin et al., 2009). B. 

Fumiquinazoline A is produced by A. fumigatus and its biosynthesis appears to be directed 

by a gene cluster containing two NRP synthetases (Ames et al., 2010; Ames & Walsh, 

2010). C. Asperlicin was first detected in Aspergillus alliaceus (Chang et al., 1985) and has 

received much attention for its therapeutic potential in the treatment of a variety of human 

disorders (Herranz, 2003). D, E. Fumiquinazoline A, B and D are also produced by A. 

fumigatus and along with other fumiquinazolines were consistently found in 40 isolates of 

A. fumigatus examined (Frisvad et al., 2009). A-C from Ames & Walsh (2010). D-E from 

Frisvad et al., (2009). 

A. B. C. 

D. E. 
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4.1.2.2. The fumitremorgins. 

 The fumitremorgins are a family of tremorgenic mycotoxins, which are produced by 

A. fumigatus and other fungi (Horie & Yamazaki, 1981; Yamazaki et al., 1971). 

Tremorgenic mycotoxins, the most potent being verruculogen, cause tremors in animals, 

and are the reported cause of certain naturally occurring neurological disorders of farm 

animals (Perera et al., 1982). Fumitremorgins belong to a 20 member family of prenylated 

indole alkaloids derived from tryptophan and proline, including fumitremorgin A-C, 

verruculogen and derivatives, TR-2, tryprostatins, cyclotryprostatins and spirotryprostatins 

(Cui et al., 1996a; Cui et al., 1996b; Frisvad et al., 2009). There is interest in the 

fumitremorgin biosynthetic pathway, as some of the compounds; tryprostatin A and 

fumitremorgin C have been found to exhibit anti-cancer activity (Williams et al., 2000; 

Zhao et al., 2002).  

 It was hypothesised that these metabolites were derived from the diketopiperazine 

cyclo-L-Trp-L-Pro, derived from tryptophan and proline, known as brevianamide F 

(Williams et al., 2000). A prenyltransferase FtmPT1 (AFUA_8G00210) was characterised 

and found to convert brevianamide F into tryprostatin B and a biosynthetic gene cluster for 

fumitremorgins was proposed, which contained a di-modular NRP synthetase gene, 

hypothesised to form the di-peptide cyclo-L-Trp-L-Pro precursor of the fumitremorgins, 

Brevianamide F (Grundmann & Li, 2005). Since then, the dimodular NRP synthetase gene, 

ftmA (AFUA_8G00170), has been characterised and proven to be responsible for the 

condensation of tryptophan and proline into brevianamide F, which is the first committed 

step of the fumitremorgin biosynthetic pathway (Maiya et al., 2006). Since then, several 

enzymes in the fumitremorgin biosynthetic gene cluster have been characterised. Three 

p450 monooxygenases (FtmC, FtmE and FtmG) have been identified and these catalyse 

important steps in the conversion of tryprostatin B to tryprostatin A and eventually to 
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fumitremorgin C (Kato et al., 2009). FtmPT2 (AFUA_8G00250) is an N-prenyltransferase 

which catalyses the last step in the fumitremorgin biosynthetic pathway, resulting in the 

production of fumitremorgin B (Grundmann et al., 2008). There are still several genes 

within the cluster which remain to be characterised; ftmD, ftmF and ftmL, however gene 

deletion indicated that ftmL is probably not involved in this biosynthesis of fumitremorgins 

(Kato et al., 2009). ftmF, which encodes a putative oxygenase, is hypothesised to be 

involved in the biosynthesis of verruculogen, a fumitremorgin-related compound whose 

biosynthesis had not been fully elucidated to date (Kato et al., 2009). The proposed 

biosynthetic pathway for fumitremorgins in A. fumigatus is presented in Figure 4.2. 
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Figure 4.2. The fumitremorgin biosynthetic pathway in A. fumigatus (Grundmann et al., 2008).  Missing links in the original pathway which 

were later determined are added in red (Kato et al., 2009). 

/FtmA 

FtmC FtmE 

FtmG 
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4.1.2.3. The ergot alkaloids. 

 The ergot alkaloids are a complex family of indole-derived alkaloids that have long 

been known for their association with human suffering (Panaccione & Coyle, 2005), and 

ergots produced by the ergot fungus Claviceps purpurea are the causative agents of 

gangrenous and convulsive forms of ergotism known as St. Anthony’s fire (Walter, 1990). 

Ergot alkaloids are produced by many fungal species, covering two divergent ascomycete 

orders (Hypocreales and Eurotiales), including endophytic fungi of the genera 

Neotyphodium, Epichloë and Balansia, ergot Claviceps spp. (order Hypocreales) and A. 

fumigatus (order Eurotiales) (Clay & Schardl, 2002; Flieger et al., 1997; Kozlovsky, 1999; 

Panaccione & Coyle, 2005; Spilsbury & Wilkinson, 1961). Ergot alkaloids have been 

reported to be associated with conidia in A. fumigatus, and were found to be present on or 

in conidia in quantities that collectively represent about 1 % of the dry mass of the 

conidium (Panaccione & Coyle, 2005). Since these initial observations, deletion of the A. 

fumigatus brlA gene, which controls conidiophore development in A. nidulans (Adams et 

al., 1988; Boylan et al., 1987), resulted in a non-conidiating A. fumigatus mutant from 

which no ergot alkaloids were detected in mycelia, indicating that ergot alkaloids are not 

produced during the vegetative growth of A. fumigatus, and are solely associated with 

conidiation (Coyle et al., 2007).  

 Ergot-producing Claviceps species produce a wide variety of clavine and lysergyl-

derived ergot alkaloids but commonly accumulate ergopeptines or simple amides of 

lysergic acid, such as ergine and ergonovine (Coyle & Panaccione, 2005; Flieger et al., 

1997; Floss, 1976). The lysergyl moiety of ergot alkaloids, e.g. ergotamine, is derived from 

tryptophan and dimethyllallyphosphate (DMAPP) (Williams et al., 2000). Most of the 

clavine and lysergyl-derived ergot alkaloids contain the same four-member ergoline ring 

system, but they differ in the number, type and position of the side chains (Coyle & 
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Panaccione, 2005; Flieger et al., 1997; Floss, 1976). Ergopeptines are non-ribosomally 

synthesised peptides consisting of lysergic acid and three amino acids. A. fumigatus 

produces several clavine ergot alkaloids, such as festuclavine and fumigaclavines A, B and 

C (Cole et al., 1977; Panaccione & Coyle, 2005; Spilsbury & Wilkinson, 1961). One 

important difference between the ergot alkaloids of the clavicipitaceous fungi and A. 

fumigatus is the saturation of the fourth ring of the ergoline structure in A. fumigatus (Coyle 

et al., 2010). Festuclavine was first described in Claviceps purpurea (Flieger et al., 1997; 

Floss, 1976) and has also been found in Neotypodium species (Panaccione et al., 2003; 

Porter et al., 1981). However, none of the fumigaclavines produced by A. fumigatus have 

been found in any of the Claviceps species, and likewise, the end-products (ergopeptines 

and lysgeric acid amides) of the Claviceps and Neotyphodium spp. ergot alkaloid 

biosynthetic pathways have not been found in A. fumigatus (Coyle & Panaccione, 2005). 

This differential biosynthesis of alkaloids between different species is in agreement with 

the hypothesis that early steps of the ergot biosynthetic pathway are shared by these 

evolutionary diverse fungal species but later steps in the pathway are different for A. 

fumigatus and the Clavicipitaceous fungi (Coyle & Panaccione, 2005).  

 According to Frisvad et al. (2009), A. fumigatus produces 8 ergot alkaloids 

including agroclavine, festuclavine, elymoclavine, chanoclavine I and fumigaclavines A, B 

and C. Fumigaclavine C is the end product of the ergot alkaloid pathway in A. fumigatus, 

with festuclavine, fumigaclavine B and fumigaclavine A (in that specific order) acting as 

the final three intermediates in its biosynthesis (Panaccione, 2005; Unsold & Li, 2006). 

Chemical structures for a selection of ergot alkaloids produced by A. fumigatus are shown 

in Figure 4.3. Clustered arrangements of genes involved in ergot alkaloid (EA) biosynthesis 

have been found in A. fumigatus (Coyle & Panaccione, 2005), Claviceps fusiformis (Lorenz 

et al., 2007), C. purpurea (Tudzynski et al., 1999) and Neotyphodium lolli (Fleetwood et 
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al., 2007). The dmaW gene encodes dimethylallytryptophan synthase (DMAT synthase), 

which performs the determinant step in EA biosynthesis (Tsai et al., 1995; Vazquez et al., 

2003; Wang et al., 2004). DMAT synthase specifically catalyses the prenylation of 

tryptophan, and the biochemical properties of DMAT synthase have been characterised 

many times using purified proteins from different ergot alkaloid producing Claviceps 

strains (Cress et al., 1981; Gebler & Poulter, 1992; Lee et al., 1976).  Deletion of the dmaW 

gene in  Neotyphodium sp. Strain Lp1, resulted in complete loss of ergot alkaloids in the 

resulting mutant (Wang et al., 2004). Based on the high sequence identity of dmaW genes 

and clustering of other EA biosynthesis genes, it was proposed that the EA biosynthesis 

pathway in A. fumigatus has a common origin with the clavicipitaceous fungi (Coyle & 

Panaccione, 2005). However, the arrangement of the A. fumigatus EA cluster is 

dramatically different to that of C. purpurea and C. fusiformis (Liu et al., 2009a; Lorenz et 

al., 2007). This observation sparked phylogenetic analyses to be undertaken which revealed 

a monophyletic origin for the dmaW gene in fungi, implying that the A. fumigatus dmaW 

gene has the same origin as corresponding genes from the clavicipitaceous fungi (Liu et al., 

2009a). Functions for a few of the other genes in EA biosynthetic clusters have been 

characterised. The EA biosynthetis cluster in A. fumigatus was identified by functional 

analysis of the dmaW gene controlling the determinant step in the pathway and by 

analysing flanking regions of dmaW for other potential EA biosynthetic genes (Coyle & 

Panaccione, 2005). Current understandings on EA biosynthesic pathways will be discussed 

in more detail later in this chapter. 
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Figure 4.3. Chemical structure of a selection of fungal ergot alkaloids. Professor 

Thomas Larsen – DTU. 
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4.2 Aims and Objectives. 

The overall aims of this work were to functionally characterise and identify a non-

ribosomal peptide encoded by PesL in A. fumigatus. 

The specific aims that were addressed are listed below. 

 

1) To disrupt pesL function in A. fumigatus using a gene deletion strategy, to generate a 

pesL mutant strain (∆pesL), and to confirm corresponding loss of pesL expression upon 

disruption. 

2) To perform comparative phenotypic analysis between A. fumigatus wild-type and ∆pesL 

in order to identify a possible biological role for pesL. 

3) To undertake comparative metabolite analysis between A. fumigatus wild-type and 

∆pesL. 

4) To perform in vivo virulence testing in order to assess the virulence of ∆pesL, in the G. 

mellonella insect model system. 
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4.3. Results. 

4.3.1. Generation of pesL disruption constructs. 

 For inactivation of pesL, a bipartite gene disruption strategy was employed (Nielsen 

et al., 2006). An A. fumigatus strain (∆akuB) deficient in non-homologous end joining 

(NHEJ) was transformed with pesL disruption constructs. All primers used in this study are 

listed in Table 2.3. This strategy resulted in the deletion of nucleotides 1-2,875 of pesL 

corresponding to amino acids 1-959 of PesL. For this study, ptrA was released from the 

pSK275 plasmid via PstI and HindIII restriction digestion. PCR 1 resulted in a 1.2 kb DNA 

flanking the 5’ end of pesL. PCR 2 resulted in a 1.3 kb DNA fragment corresponding to a 

region at the 3’ end of pesL. PCR 1 and PCR 2 are shown in Figure 4.4. PCR 1 and PCR 2 

were restricted with PstI and HindIII respectively, and were ligated to ptrA via the same 

sites. Final pesL disruption constructs (PCR 3 and 4) were 2.6 kb and 2.1 kb, respectively 

(Figure 4.5). Transformation of A. fumigatus protoplasts was performed and transformants 

were selected on agar plates containing pyrithiamine as described (Section 2.2.3.2).  
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A. 

 

B. 

 

Figure 4.4. PCR 1 and PCR 2 for generation of pesL disruption constructs. 

A. PCR 1 products (1,194 bp). 

B. PCR 2 products (1,313 bp). 

M: Molecular weight marker (Roche VII). Lane 1-3: PCR products from three PCR 

reactions.  
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A. 

 

B. 

 

Figure 4.5. pesL Final disruption constructs PCR 3 and PCR 4. 

A. PCR 3 products (2.6 kb). 

B. PCR 2 products (2.0 kb). 

M: Molecular weight marker (Roche VII). Lane 1-3: PCR products from three PCR 

reactions.  
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4.3.2. Isolation of an A. fumigatus pesL mutant strain (∆pesL). 

 Potential pesL mutants were initially identified by resistance to pyrithiamine 

following transformation. There were 40 colonies that appeared resistant to pyrithiamine, 

and 10 of these were selected for further analysis. These colonies were isolated as described 

(Section 2.2.3.3) and Southern blot analysis was performed (Section 2.2.4). Genomic DNA 

(gDNA) from A. fumigatus ∆akuB and these transformants was restriction digested with 

XbaI and probed for the 3’ coding region of pesL with A DIG-labelled pesL probe (Section 

2.2.5). Expected hybridisation patterns for wild-type and ∆pesL were 6.6 kb and 3.3 kb, 

respectively. The expected ∆pesL pattern was observed in 4 of the 10 transformants, 

indicating that pesL had been successfully deleted. A schematic representation of the 

Southern blot and hybridisation patterns is shown in Figure 4.6. Following Southern blot 

analysis, colonies which yielded the expected signal for a pesL disruption were subjected to 

single spore isolation (Section 2.2.3.4). A second round of Southern blot analysis was then 

carried out on single-spored colonies using the probing strategy as outlined above. XbaI 

genomic DNA digestions and Southern blot analysis of a single spore transformant (∆pesL) 

is shown in Figure 4.7. 
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Figure 4.6. Southern blotting and hybridisation strategy used to identify A. fumigatus ∆pesL. 

This diagram illustrates the probing strategy that was used to identify ∆pesL. The pesL locus in wild-type (A) and ∆pesL (B) is shown. The 

entire pesL coding region is indicated as a blue bar and the 5’ and 3’ flanking regions are shown in yellow. Approx. 3.0 kb of pesL was 

deleted and replaced by the pyrithiamine resistance cassette (ptrA) from A. oryzae (Kubodera et al., 2000; Kubodera et al., 2002) ptrA is 

indicated in green. Black vertical lines indicate XbaI restriction sites in the genomic sequence of wild-type and ∆pesL. Genomic DNA from 

pyrithimane-resistance colonies was EcoRI digested and probed with a 1 kB DIG-labelled fragment corresponding to the 3’ flanking region 

of pesL. The probe is indicated with a black horizontal line. The positions for probe binding are indicated with red horizontal lines. Expected 

hybridisation patterns: wild-type-6.6 kb, ∆pesL-3.3 kb. 

Wild-type 
(∆akuB) 

∆pesL  

3.3 kb 

pesL 

ptrA 

A. 

B. 

6.6 kb 
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Figure 4.7. Isolation of an A. fumigatus ∆pesL mutant strain. 

XbaI digested genomic DNA (gDNA) was probed with a DIG-labelled PCR product 

corresponding to the 3’ flanking region of pesL. Horizontal arrows indicate the sizes (bp) of 

the DNA fragments visible on the blot. Lane 1: A. fumigatus wild-type (=A. fumigatus 

∆akuB), Lane 2: A. fumigatus ∆pesL single spore transformant. Expected hybridisation 

pattern: wild-type- 6.6 kb, ∆pesL: 3.3 kb. 
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4.3.3. Expression analysis of pesL in A. fumigatus. 

 Expression analysis was undertaken by a combination of RT-PCR and Real-Time 

PCR to confirm that disruption of pesL corresponded to a loss of pesL expression. The 

expression of pesL in a variety of growth conditions, and genes proposed to be a cluster 

with pesL (Nierman et al., 2005) were also investigated.  

 

4.3.3.1. Disruption of pesL leads to abolition of pesL expression in A. fumigatus. 

 RT-PCR and Real-Time PCR analyses were undertaken following growth of A. 

fumigatus wild-type and ∆pesL in either RPMI media or Czpaek’s Broth for 48 hr at 37 ºC. 

pesL / NRPS 11 expression had previously been observed under these conditions (Cramer 

et al., 2006b). Primers were used to amplify a 228 bp amplicon within the pesL coding 

region (Table 2.3). This analysis confirmed that pesL expression was completely abolished 

following pesL disruption, as observed by the lack of a pesL amplicon from ∆pesL cDNA 

preparations (Figure 4.8). 

 Real-Time PCR analysis was then undertaken (Section 2.2.6.6) using the same 

cDNA preparations in order to quantify the levels of pesL expression in the wild-type and 

once again confirm absence of pesL expression in ∆pesL. The expression of pesL was 

compared to the expression of calm in all samples, and relative expression is given as a 

multiple of 1, whereby a value of 1 indicates that pesL and calm were equally abundant in 

that sample. Real-time PCR provided further confirmation that pesL expression had been 

abolished in A. fumigatus ∆pesL (Figure 4.9) Also, pesL is expressed at a low level in 

RPMI with a low relative abundance compared to calm (30 % relative abundance), and 

pesL expression is extremely low in Czapek’s broth (Figure 4.9).  
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A. 

 

B. 

 

Figure 4.8. RT-PCR analysis confirms absence of pesL gene expression in A. fumigatus 

∆pesL. 

RT-PCR to examine expression of pesL in A. fumigatus ∆akuB (wild-type) and ∆pesL 

following growth in liquid RPMI (R) or Czapek’s Broth (CB) for 48 hr confirms the 

abolition of pesL expression in ∆pesL. 

A. calm is constitutively expressed in A. fumigatus was used as a control for RT-PCR 

experiments, and gDNA amplicon absence in cDNA confirms the absence of contaminating 

genomic DNA (gDNA) in cDNA preparations. 

B. RT-PCR analysis for pesL amplicon (228 bp). M: Roche 50 bp DNA ruler. 

Lanes: 1- wild-type (R), 2- ∆pesL (R), 3-wild-type (CB), 4- ∆pesL (CB).  
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Figure 4.9. Confirmation of absence of pesL gene expression in A. fumigatus ∆pesL by 

Real-Time PCR. 

Real-Time PCR analysis of pesL expression following A. fumigatus wild-type and ∆pesL 

growth in RPMI or Czapek’s broth media for 48 hr. The relative abundances of pesL and 

the house-keeping calm transcripts are given. pesL expression is evident in A. fumigatus 

wild-type following growth in RPMI, and lowly expressed in Czapek’s broth. pesL 

expression is absent in A. fumigatus ∆pesL in all conditions tested. 
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4.3.3.2. pesL is expressed under a range of conditions in A. fumigatus. 

 Once pesL was successfully disrupted, comparative metabolite profiling between A. 

fumigatus wild-type and ∆pesL could be undertaken, in order to identify a non-ribosomal 

peptide encoded by PesL. In order to do this, it was necessary to identify culture conditions 

where pesL was actually expressed. To this end, pesL expression was examined by RT-

PCR in a range of culture conditions, usually over a 96 hr time period. A summary of these 

conditions, and the status of pesL expression (qualitative) is presented in Table 4.3.  

 RT-PCR analysis indicated that pesL was expressed in almost all culture conditions 

examined. pesL was expressed at a constant level in Czapek’s broth over a 96 hr time 

period, whereas pesL expression varied greatly when A. fumigatus was grown in MEM 

(FCS) media (Figure 4.10). Under these conditions, pesL was most highly expressed at 48 

hr, less abundant at 24 and 72 hr, and expression was also evident to a lower extent at 96 hr. 

(Figure 4.10). pesL expression was also detected, albeit weakly in YG media at 48 and 72 

hr (Figure 4.11).  
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Table 4.3. A summary of all the culture conditions used to examine pesL expression. 

 
Culture condition Time period pesL expressed  

yes () / no (x) 

Minimal Eagle’s Media 

(MEM) supplemented with 5 

% Foetal Calf Serum (FCS) 

Shaking at 37 ºC  

24 hr 

48 hr 

72 hr 

96 hr 

 

 

 

 

 

Yeast Glucose (YG) media 

Shaking at 37 ºC 

24 hr 

48 hr 

72 hr 

96 hr 

X 

 

 

X 

 

Czapek’s Media 

Shaking at 37 ºC 

24 hr 

48 hr 

72 hr 

96 hr 

 

 

 

 

 

Aspergillus minimal media 

(AMM) 

Shaking at 37 ºC 

24 hr 

48 hr 

 

X 
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A. 

 

B. 

 

Figure 4.10. pesL is expressed in MEM-FCS culture media over a 96 hr time period.  

Expression of calm and pesL at 24, 48, 72, and 92 hr as indicated above. 

A. RT-PCR for the calm and gDNA amplicon absence in cDNA confirms the absence of 

contaminating genomic DNA (gDNA) in cDNA preparations. 

B. pesL cDNA amplicon (250 bp) indicates expression in MEM-FCS at all time points 

examined, with highest abundance at 48 hr. Expression appears somewhat similar at 24 and 

72 hr time-points, and pesL expression is least abundant at 96 hr. 
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4.3.3.3. The 5 genes in the putative pesL cluster are expressed in the A. fumigatus 

∆akuB strain. 

 When the genome of A. fumigatus was sequenced, the pesL cluster was proposed to 

contain 5 genes. These genes and putative assigned functions are presented in Table 4.4. 

RT-PCR analysis following growth of A. fumigatus in YG media over a 96 hr time period 

showed that all genes within the proposed pesL cluster were expressed (Figure 4.11). While 

no major changes in gene expression were observed over a 96 hr time period, it is clear that 

all 5 genes did not show the same pattern of expression. All genes are expressed at 48 hr 

and 72 hr, while all genes except pesL are expressed at 24 hr and 96 hr. Observation of 

gene expression was important as secondary metabolite gene clusters are often found to be 

suppressed and silent under standard laboratory conditions (Fisch et al., 2009; Tamano et 

al., 2008). 

 

Table 4.4. Putative genes in pesL cluster in A. fumigatus. Nierman et al. (2005). 

 

Cadre Identifier (Afu) Putative function 

AFUA_6G12040 maltose permease, putative 

AFUA_6G12050 non-ribosomal peptide (NRP) synthetase, putative, PesL 

AFUA_6G12060 MAK1-like monooxygenase, putative 

AFUA_6G12070 FAD binding domain protein 

AFUA_6G12080 non-ribosomal peptide (NRP) synthetase, putative, 
PesM 
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Figure 4.11. All genes in the proposed pesL cluster are expressed in A. fumigatus. 

A. RT-PCR was carried out for all genes in the pesL cluster, following growth in YG 

media. Amplicons were generated for all genes as indicated. Expression of all genes was 

observed over a 96 hr time period, with no major changes in expression occurring over the 

time period examined. However, the 5 genes disaply differential patterns of expression. 

B. RT-PCR for calm, confirms no contaminating gDNA in cDNA preparations and equal 

loading of cDNA in all PCR reactions.  
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4.3.4. Phenotypic characterisation of A. fumigatus ∆pesL. 

 A. fumigatus ∆pesL was compared to wild-type under a variety of growth conditions 

and environmental stresses in order to investigate if it displayed altered phenotypes under 

any condition. A summary of all conditions tested in this study and outcomes is provided in 

Table 4.5. For all phenotypic analyses, plate assays were used in order to compare A. 

fumigatus wild-type and ∆pesL (Section 2.2.8).  Conditions analysed were similar to those 

described for analysis of A. fumigatus ∆pes3 in the previous chapter. Under conditions of 

varying iron availability, A. fumigatus ∆pesL behaved comparably to wild-type, indicating 

no role for pesL in the biosynthesis of siderophores in A. fumigatus (Figure 4.12). This 

finding is important as NRPS has previously been shown to be important for siderophore 

biosynthesis in A. fumigatus (Schrettl et al., 2004; Schrettl et al., 2007), and these findings 

clearly demonstrate that pesL is not involved in this process. Other phenotypic analysis 

performed including testing for heavy metal stress in the presence of cobalt chloride, 

revealed no differences between wild-type and ∆pesL (not shown). A range of cell wall 

damaging and membrane perturbing agents, previously described in Chapter 3, were tested, 

and in all cases, A. fumigatus ∆pesL grew at equal rates compared to wild-type upon 

exposure to all of these agents (caffeine, SDS, congo red, calcafluor white, and growth at 

elevated temperatures), eliminating a role for pesL in cell wall synthesis, structure or 

integrity in A. fumigatus. However, some interesting phenotypes were observed for A. 

fumigatus ∆pesL and these will be dealt with individually in the subsequent sections.  
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Figure 4.12. A. fumigatus ∆pesL behaves comparably to wild-type (∆akuB) when 

grown on a range of varying iron conditions. 

Wild-type and ∆pesL were exposed to a range of varying iron conditions, as indicated on 

the graph. The graph shows that A. fumigatus wild-type and ∆pesL strains grew at 

comparable rates on all conditions tested. Radial growth (cm) of colonies was measured at 

20, 44 and 66 hr intervals as indicated above the graph.  
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4.3.4.1. pesL protects A. fumigatus against oxidative stress caused by hydrogen 

peroxide. 

 A. fumigatus ∆pesL was examined for sensitivity to oxidative stress by growth on 

AMM agar in increasing concentrations agents which are known to cause oxidative stress. 

Sensitivity to the oxidising agents described was tested by performing plate assays (Section 

2.2.8) using concentration ranges summarised in Table 4.5. In these investigations, A. 

fumigatus ∆pesL was more sensitive to H2O2 compared to the wild-type strain, and this is 

shown in Figure 4.13, as indicated by reduced growth upon exposure to 2 mM H2O2 at 72 

hr growth (p < 0.01). This phenotype is more pronounced when the strains are exposed to 3 

mM H2O2, at an earlier time of 62 hr (p < 0.05), and 72 hr (p < 0.01). Overall, these data 

indicated that pesL is involved in protection against the effects of H2O2 in A. fumigatus. 

Furthermore, the morphologies of wild-type and ∆pesL colonies were different following 

growth in the presence of H2O2. A loopful (5 µl) of a conidial suspension was spread onto 

an AMM plate supplemented with H2O2 (final concentration 2 mM) and incubated for 5 

days, and the plates were then photographed. Wild-type colonies were much darker green 

in colour, while ∆pesL were pale with less sporulation (Figure 4.13). These results 

indicated that exposure to H2O2 hinders conidial germination and further sporulation, 

strongly suggesting that pesL is important in the protection against oxidative stress caused 

by H2O2 in A. fumigatus.  

 In contrast, A. fumigatus ∆pesL exhibited increased growth compared to wild-type 

upon exposure to another oxidising agent, menadione, at all concentrations tested (Figure 

4.14). At 62 and 72 hr growth, A. fumigatus ∆pesL shows increased growth in comparison 

to the wild-type strain on 20 µM menadione (p < 0.05). This increased resistance of ∆pesL 

to menadione is more pronounced at a higher concentration (40 µM), and this is evident at 

an earlier time point of 44 hr growth (p < 0.01). Upon exposure to diamide, A. fumigatus 
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wild-type and ∆pesL grew at similar rates (Figure 4.15). There appears to be an increase in 

growth of A. fumigatus ∆pesL compared to wild-type upon exposure to diamide but this is 

also seen in the absence of diamide, and may be due to slight differences in the starting 

conidial concentration. No statistical significance was observed between wild-type and 

∆pesL upon diamide exposure. Overall, the oxidative stress phenotypic tests highlight a 

role for pesL in protection against hydrogen peroxide. The absence of pesL leads to greater 

growth of A. fumigatus in the presence of menadione, and no difference was observed upon 

exposure to diamide. Possible explanations for these contrasting findings will be discussed 

later in this chapter.  
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Figure 4.13. A. fumigutus ∆pesL exhibits increased sensitivity to hydrogen peroxide 

compared to wild-type.  

A. The radial growth (cm) of strains exposed to increasing concentrations of H2O2 shows 

that ∆pesL is more sensitive to wild-type as indicated by reduced growth upon exposure to 

2 mM H2O2 at 72 hr growth (p < 0.01). Growth was monitored at 44, 62 and 72 hr as 

indicated. Increased sensitivity of ∆pesL is more pronounced when the strains are exposed 

to 3 mM H2O2, at an earlier time of 62 hr (p < 0.05), and 72 hr (p < 0.01). Overall, these 

data indicated that pesL is involved in protection against the effects of H2O2 in A. 

fumigatus. Key: * = p < 0.05, ** = P < 0.01. Data represents the mean ± standard error of 

three experiments.  

B. ∆pesL displays severely reduced growth in the presence of 2mM H2O2 compared to 

wild-type 5 days post-inoculation. Colonies of wild-type growing in 2mM H2O2 were much 

darker in colour and sporulating more extensively than ∆pesL. The data indicates that both 

germination and conidiation are reduced in ∆pesL when 2mM H2O2 is present, strongly 

implying a role for pesL in resistance to oxidative stress in A. fumigatus. 
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Figure 4.14. A. fumigatus ∆pesL is more resistant to the effects of menadione. 

The radial growth (cm) of A. fumigatus wild-type and ∆pesL exposed to increasing 

concentrations of menadione shows that ∆pesL is more resistant than wild-type as increased 

growth is observed for ∆pesL at all concentrations of menadione. Growth was monitored at 

44, 62 and 72 hr as indicated. Key: * = p < 0.05, ** = P < 0.01. Data represents the mean ± 

standard error of three experiments.  
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Figure 4.15. A. fumigatus ∆pesL behaves comparable to wild-type upon exposure to 

diamide. 

The radial growth (cm) of A. fumigatus wild-type and ∆pesL exposed to increasing 

concentrations of diamide shows no statistical difference between the growth rates of 

strains. It may be seen however, that  ∆pesL appears to exhibit a slightly enhanced growth 

rate compared to wild-type, particularly at the 72 time point. Data represents the mean ± 

standard error of three experiments.  
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4.3.4.2. pesL protects A. fumigatus against voriconazole toxicity. 

 Anti-fungal phenotypic testing was performed for A. fumigatus wild-type and ∆pesL 

upon exposure to the anti-fungal agents; voriconazole, amphotericin B and caspofungin as 

have been described in Chapter 3. The concentrations of anti-fungals used in this study are 

summarised in Table 4.5.  

 A. fumigatus ∆pesL exhibited increased sensitivity to voriconazole when compared 

to wild-type at all concentrations of voriconazole tested, corresponding to a lower growth 

rate upon exposure to voriconazole and this was most significant at concentrations of 0.5 

µg/ml following 44 hr (p < 0.05), 62 hr (p < 0.001), and 72 hr growth (p < 0.01). Exposure 

to the highest concentration of voriconazole tested (1.0 µg/ml) resulted in complete growth 

inhibition of ∆pesL after 44 hr growth (p < 0.05), and even though ∆pesL had began to 

grow by 62 hr, the growth rate was still only 50 % of the wild-type (p < 0.05).  A steady 

decrease in the overall growth of both strains was observed as the concentration of 

voriconazole increased, indicating that the concentration range used was sufficient to detect 

differences in susceptibility between strains. This data is presented in Figure 4.16, and 

strongly indicates a role for pesL in protection against voriconazole toxicity in A. 

fumigatus.  

 A. fumigatus ∆pesL exhibited slightly reduced growth compared to wild-type when 

exposed to 0.5 µ/ml amphotericin B (p < 0.05), but behaved comparably to wild-type at all 

other concentrations tested (Figure 4.17). Testing with caspofungin showed no differences 

in susceptibility between A. fumigatus wild-type and ∆pesL.  
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Figure 4.16. A. fumigatus ∆pesL displays increased sensitivity to the anti-fungal 

voriconazole. 

A. Radial growth (cm) of wild-type and ∆pesL following exposure to increasing 

concentrations of voriconazole show that ∆pesL exhibits increased susceptibility at all 

concentrations tested. Growth was monitored at 44, 62 and 72 hr time points as indicated. 

On AMM only, wild-type and ∆pesL grew at similar rates, while exposure to voriconazole 

led to significant differences in growth between the two strains (p < 0.001), with the mutant 

displaying reduced growth at all time points. Each graph displays the mean ± standard error 

of three experiments. Key: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

 44       62       72      44     62     72        44     62     72        44       62       72 
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Figure 4.17. A. fumigatus ∆pesL displays moderately increased sensitivity to the anti-

fungal amphotericin B. 

A. Radial growth (cm) of wild-type and ∆pesL following exposure to increasing 

concentrations of amphotericin B show that ∆pesL exhibits increased susceptibility 0.5 

µg/ml. Growth was monitored at 24, 48 and 72 hr time points and growth at 72 hr is shown. 

Data represents the mean ± standard error of three experiments. Key: * = p < 0.05. 

 

A. fumigatus akuB
pesL
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 Table 4.5. A summary of the phenotypic assays, and their outcomes, performed for A. fumigatus wild-type (∆akuB) and  

 ∆pesL  in this study. 

 
Phenotypic Test Reagents Used Concentrations 

Tested 

Result (i.e. growth of ∆pesL compared to 

wild-type) 

Role of pesL in 

Siderophore 

Biosynthesis 

Iron Stresses (High, Low, 

none) 

10 µM, 1.5 mM, 200 

µM BPS 

No difference. 

Oxidative Stress Menadione 20, 40 µM ∆pesL more resistant to menadione at all 

concentrations tested (p < 0.05). 

 Diamide 0.1, 0.2, 0.4, 1, 2 mM No difference. 

 Hydrogen Peroxide 

(H2O2)

1, 2, 3 mM ∆pesL displays increased sensitivity to H2O2 at 

62 hr (p < 0.05) and 72 hr (p < 0.01) growth. 

Anti-fungal 

Susceptibility 

Voriconazole (vrc) 0.25, 0.5, 0.75, 1.0 

µg/ml 

∆pesL displays increased sensitivity at all 

concentrations of vrc tested (p < 0.05). 

 

 

Amphotericin B 0.125, 0.25, 0.5, 1.0 

µg/ml 

∆pesL displays increased sensitivity at 0.5 

µg/ml (p < 0.05). 

 

 

Caspofungin 0.2, 0.5, 1.0 µg/ml No difference. 

Heavy Metal Stress Cobalt Chloride 0.1, 0.5, 1 mM No difference. 



 279

Phenotypic Test Reagents Used Concentrations 

Tested 

Result (i.e. growth of ∆pesL compared to 

wild-type) 

Cell Wall Stress Congo Red 5, 10, 15 µg/ml No difference. 

 Calcafluor White 100, 200 µg/ml No difference. 

 High temperature (48 º C) n/a No difference. 

 Caffeine 2, 5 mM No difference. 

Membrane Stress SDS 0.01, 0.02 % (w/v) No difference. 
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4.3.5. pesL contributes to A. fumigatus virulence in an insect model of infection. 

 To investigate if  pesL contributes to virulence in A. fumigatus, the survival of 

larvae (n = 20) of the greater wax moth G. mellonella was compared following infection 

with 107 conidia/larvae of A. fumigatus wild-type (∆akuB) or the same dose of ∆pesL. 

Larvae (n = 20) were injected with sterile PBS as an injection control. Larvae infected with 

wild-type had a lower survival compared to those infected with ∆pesL (p < 0.001) 

indicating decreased virulence of the ∆pesL strain. Larval survival (%) is shown in Figure 

4.18. Larvae injected with PBS exhibited 100 % survival throughout the experiment. At 24 

hr following infection, 97 % of larvae infected with wild-type remained alive, while 100 % 

survival rate was observed for those infected with ∆pesL. The difference in virulence 

between strains is more pronounced at 48 hr and 72 hr time-points, indicating reduced 

mortality upon the loss of pesL and its encoded peptide. At 48 hr post infection, 96 % of 

larvae infected with ∆pesL remain alive, in contrast to only 71 % of larvae infected with 

wild-type. By 72 hr, 82 % of larvae infected with ∆pesL are viable, versus 37 % in the 

wild-type group. The overall survival proportions between larvae infected with wild-type or 

∆pesL is highly significant (p < 0.001) (Figure 4.18). Survival curves were generated using 

Kaplan-Meier survival plot with the Log-Rank (Mantel-Cox) test for significance. The 

experiment was repeated three times. Overall, these findings show that loss of pesL and its 

encoded peptide leads to reduced virulence in the G. mellonella model, strongly suggesting 

that the peptide encoded by PesL contributes to the virulence of A. fumigatus. 
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Figure 4.18. A. fumigatus ∆pesL is less virulent than wild-type in the Galleria 

mellonella insect model. 

The survival proportions of larvae (n = 20) infected with either wild-type or ∆pesL are 

shown. A. fumigatus ∆pesL is less virulent than wild-type and larvae infected with ∆pesL 

exhibit increased survival compared to those infected with wild-type (p < 0.001). Larval 

viability (%) was assessed at 24 hr intervals following infection. At 48 hr post-infection, a 

25 % difference in survival was observed between groups of infected larvae (wild-type – 70 

% survival, ∆pesL – 95 % survival). By 72 hr, the difference was more pronounced with a 

45 % survival difference observed between between larval infected with wild-type and 

∆pesL. PBS was used as an injection control and all larvae in this group remained viable for 

the entire experiment.  
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4.3.6. Comparative metabolite profiling reveals that pesL encodes a peptide(s) that is 

up-regulated during oxidative stress caused by hydrogen peroxide. 

 The NRP synthetase encoded by pesL is likely to be involved in the biosynthesis of 

a secondary metabolite based on the observation that pesL and other genes within the 

proposed pesL cluster are under the transcriptional regulation of the master regulator of 

secondary metabolism in A. fumigatus, LaeA (Perrin et al., 2007). Availability of the A. 

fumigatus ∆pesL mutant facilitated comparative metabolite analysis to be undertaken 

between wild-type and mutant cultures to identify a potential PesL-encoded non-ribosomal 

peptide (NRP) (Section 2.2.10). A. fumigatus wild-type and ∆pesL were cultivated in a 

variety of growth conditions, in which pesL was known to be expressed (Tables 4.3, 4.6), 

and metabolite extractions were performed for analysis by RP-HPLC either at NUIM or at 

the Danish Technical University.  

 Initially, culture supernatants (SN) were collected following growth of A. fumigatus 

wild-type (∆akuB) and ∆pesL in  conditions A, B and C (Table 4.6) SN were either injected 

directly on the column or were subjected to organic extraction prior to injection (Sections 

2.2.7.1, 2.2.7.2). These analyses were conducted at NUIM, and in all cases, no differences 

were observed between wild-type and ∆pesL strains with respect to metabolite profiles, and 

all conditions are summarised in Table 4.6. Since all of the conditions tested in A-C were 

liquid culture conditions, these analyses alone were not sufficient to analyse metabolites 

which may be present on the surface of, or associated with, conidia. Conditions D and E 

were then explored whereby relevant A. fumigatus strains were grown on AMM agar for 6 

days and conidial extraction was carried out following the protocol of Moon et al., (2008) 

(Section 2.2.7.3). 
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Table 4.6. Summary of conditions used for comparative metabolite analysis of wild-type A. fumigatus and ∆pesL. 

 
 Growth Condition (all at 37 ºC) Extraction Solvent Injection 

Volume 

Outcome 

A. RPMI 48 hr incubation, 200 rpm 1) Organic extraction of culture supernatant (SN) 

with  SN: chloroform in a 1:1 ratio 

2) Neat culture supernatant injection. 

100 µl / 

20 µl 

No differences observed

B. Czapek’s 48 hr incubation, 200 rpm 1) Organic extraction of culture supernatant (SN) 

with  SN: chloroform in a 1:1 ratio 

2) Neat culture supernatant injection. 

100 µl / 

20 µl 

No differences observed

C. AMM 48 hr incubation, 200 rpm 1) Organic extraction of culture supernatant (SN) 

with  SN: chloroform in a 1:1 ratio 

2) Neat culture supernatant injection. 

100 µl / 

20 µl 

No differences observed

D. Incubation on AMM agar for 6 days  Conidial Extraction Method (Moon et al., 2008) 100 µl See section 4.3.6 

E. Incubation on AMM supplemented with 

H2O2 (final concentration 2 mM) for 6 days  

Conidial Extraction Method (Moon et al., 2008) 100 µl See section 4.3.6 

F. Incubation on AMM agar for 6 days  Plug Extraction Method (Smedsgaard, 1997) 1 µl See section 4.3.7 

G. Incubation on Czapek’s agar for 6 days  Plug Extraction Method (Smedsgaard, 1997) 1 µl See section 4.3.7 
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 For E, AMM agar was supplemented with H2O2 to a final concentration of 2 mM. 

This was done as phenotypic analysis revealed that A. fumigatus ∆pesL was more sensitive 

to H2O2 than wild-type (Section 4.3.4.1), so if  PesL produces a peptide which protects A. 

fumigatus against oxidative stress, this peptide is likely to be produced more abundantly 

when the fungus is exposed to H2O2, possibly aiding PesL NRP identification. These 

analyses revealed two peaks present in extracts of A. fumigatus wild-type (Rt = 14.479 min, 

and 15.927 min) that were absent in ∆pesL at 220 nm (Figure 4.19). Aside from these 

peaks, metabolite profiles were otherwise identical between the two strains. These peaks 

represented candidate PesL-encoded non-ribosomal peptide(s), and are referred to as 

peptide(s) due to the absence of more than one peak in ∆pesL. Examination of A. fumigatus 

wild-type and ∆pesL metabolite profiles at 280 nm indicated one of the candidate PesL-

encoded peptides exhibited absorbance at 280 nm, indicating the presence of aromatic 

amino acids, such as phenylalanine, tyrosine, or tryptophan (Figure 4.20). Furthermore, this 

material was more abundant (approximately 2-fold) in extracts from conidia which had 

been exposed to H2O2 (1,200 mAU) compared to extracts which were taken from AMM 

agar plates only (600 mAU) (Figure 4.21).  
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Figure 4.19. HPLC chromatograms detailing the fractionation of metabolites (0-30 min) following conidial extractions from A. fumigatus 

wild-type (A), and A. fumigatus ∆pesL (B), at 220 nm. Two peaks were present in wild-type (A: 14.479 min and B: 15.927 min) and absent 

in ∆pesL and these are indicated with red arrows.   
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B. 
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Figure 4.20. HPLC chromatograms detailing the fractionation of metabolites (0-30 min) following conidial extractions from A. fumigatus 

wild-type (A), and A. fumigatus ∆pesL (B), at 280 nm. One of the candidate PesL-encoded peptides (B: 15.919 min) also exhibits absorbance 

at 280 nm.    

 

 

A. 
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Figure 4.21. HPLC chromatograms detailing the fractionation of metabolites (0-30 min) following conidial extractions from A. fumigatus 

wild-type from AMM agar (A) or AMM agar supplemented with H2O2 (2 mM) (B) at 220 nm. Candidate PesL-encoded peptide (B: 15.927 

min), is indicated with a red asterisk, and is more abundant following conidial exposure to H2O2 with approximately two-fold increase in 

absorbance at 220 nm, indicated by a red arrow.  
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4.3.7. PesL is essential for Fumigaclavine C biosynthesis in A. fumigatus. 

 Following these observations, samples were prepared for analysis at DTU in order 

to identify these PesL candidate peptides.  A plug extraction method was used according to 

Smedsgaard, (1997) (Section 2.2.7.4), as this method was successful in generating extracts 

for the metabolite profiling of 395 fungal isolates (Smedsgaard, 1997) and allows 

simultaneous extraction of intracellular metabolites stored in mycelia, secreted metabolites 

that are present in the agar, and conidial associated metabolites (Professor Thomas Larsen – 

personal communication).  Plug extractions were prepared for A. fumigatus wild-type and 

∆pesL following Conditions F and G (Table 4.6). Briefly, metabolites were extracted from 

each strain following growth on either AMM or Czapek’s agar for 6 days. Extractions were 

carried out using two protocols; a mixture of 25 % acetonitrile and 75 % water (Section 

2.1.8.2.1), or a mixture of ethyl acetate, dichloromethane and methanol (Section 2.1.8.2.2). 

 Analysis of these samples at DTU revealed that the deletion of pesL led to the loss 

of fumigaclavine C production in A. fumigatus ∆pesL (Figure 4.22), and this was observed 

under both conditions, following growth on both AMM and Czapek’s media. Figure 4.22 

shows metabolite profiles following growth on Czapek’s agar, and extraction with ethyl 

acetate, dichloromethane and methanol. The RP-HPLC chromatograms clearly indicate that 

A. fumigatus wild-type produces fumigaclavine C, represented by a single peak at 5.13 min, 

and this peak is completely absent in A. fumigatus ∆pesL. Interestingly, a metabolite was 

observed in the A. fumigatus ∆pesL profile (approx 3.60 min) that was not found in wild-

type extracts (Figure 4.22). Identification of fumigaclavine C was confirmed by searching 

for the specific mass of fumigaclavine C; 367 [M + H] +, and a metabolite with this 

molecular mass was observed at a retention time of 5.17 min (Figure 4.23). Analysis of the 

UV spectrum of the peak at 3.60 min revealed that this peak represented a compound 

related to the fumitremorgin family of secondary metabolites, and is very similar to that of 
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Fumitremorgin C and TR-2 (Professor Thomas Larsen – personal communication) (Figure 

4.24).  
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Figure 4.22. Total ion chromatograms (0-25 min) representative of metabolites detected from A. fumigatus (A) wild-type ∆akuB and 

(B) A. fumigatus ∆pesL following 6 days growth on Czapek’s agar. Major differences between the extracts are annotated as follows: A; 

Fumigaclavine C (5.13 min), B; unknown peak (3.68 min). Red arrow highlights the absence of fumigaclavine C in A. fumigatus ∆pesL, 

while a blue arrow indicates the presence of a new peak appearing in ∆pesL at 3.68 min.  

A

B 

A 
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Figure 4.23. Fumigaclavine C identification by mass spectrometry. (A) Fumigaclavine C in A. fumigatus wild-type ∆akuB identifying at 

m/z 367 [M + H]+ (retention time 5.17 min) and (B) absence of relevant peak in A. fumigatus ∆pesL. Fumigaclavine C structure is also 

shown. Mass indicated on top right of each chromatogram. 
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Figure 4.24. A metabolite (3.68 min) observed in A. fumigatus ∆pesL has a similar UV 

profile to the fumitremorgin family of compounds.  

A. UV spectrum analysis for Fumitremorgin C.  

B. UV spectrum for the unidentified metabolite at 3.60 min. 

C. UV spectrum analysis for TR-2. 

A-C indicate that the new unidentified metabolite observed in A. fumigatus ∆pesL is closely 

related to the fumitremorgin family of compounds, deduced from the similar UV 

absorbance of this compound to Fumitremorgin C (A) and TR-2 (C). 

A. 

B. 

C. 
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4.3.8. PesL is not essential for fumiquinazoline production in A. fumigatus.  

 An investigation into the secondary metabolites produced by A. fumigatus and other 

closely related species (including A. lentulus, A. novofumigatus, A. fumigatiaffinis, 

Neosartoria fisheri and N. pseudofisheri) revealed that one of the major metabolite families 

produced by A. fumigatus were the fumiquinazolines (A-G), and all were consistently 

produced in all strains tested (Larsen et al., 2007). Recently, PesL has been implicated in 

fumiquinazoline biosynthesis in A. fumigatus (Ames et al., 2010; Ames & Walsh, 2010). 

The authors show that recombinantly-expressed PesL (Af12050) was able to activate L-

alanine as an adenylate, install it on its PCP domain and and acylate the oxidised indole of 

fumiquinazoline F for subsequent intramolecular cyclization to create fumiquinazoline A, 

thereby implying that PesL is essential for the conversion of fumiquinazoline F to 

fumquinazoline A (Ames et al., 2010). 

 With the availability of A. fumigatus ∆pesL, the metabolite profiles of wild-type and 

∆pesL were thoroughly examined for the presence of the fumiquinazoline compounds. 

Table 4.7 shows a list of the compounds in this family, molecular formula, and molecular 

weight. LC-DAD-MS analysis following plug extracts (Smedsgaard, 1997) of wild-type 

and ∆pesL, revealed the presence of all known fumquinazolines in both strains (Figure 

4.25). 
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Table 4.7. Structure and molecular weight (m/z) of the fumiquinazoline compounds 

produced by A. fumigatus (Larsen et al., 2007; Takahashi et al., 1995). 

 

Compound Molecular formula M/Z Retention time (RP-

HPLC) – this study 

Fumiquinazoline A C24H23N5O4 445.1744 7.32-7.34 min 

Fumiquinazoline B C24H23N5O4 445.1744 7.32-7.34 min 

Fumiquinazoline C C24H21O4N5 443.1588 7.6 min 

Fumiquinazoline D C24H21O4N5 443.1588 7.6 min 

Fumiquinazoline F C21H18O2N5 358.1430 6.12-6.15 min 

Fumiquinazoline G C21H18O2N5 358.1430 6.12-6.15 min 
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Figure 4.25. A. fumigatus PesL is not essential for production of any of the 

fumiquinazoline family of compounds. 

A-C. Mass spectrometry analysis of metabolites from A. fumigatus wild-type and ∆pesL. 

The molecular masses of fumiquinazolines A, B, C, D, F and G (Table 4.7) were searched 

and the major peak representing each compound is indicated with an arrow for each strain.  

A. Fumiquinazolines A and B: 446 [M + H]+ 

B. Fumiquinazolines C and D: 444 [M + H]+ 

C. Fumiquinazolines F and G: 359 [M + H]+ 

All fumiquinazolines were found in both A. fumigatus wild-type and ∆pesL 
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4.4. Discussion.  

 The overall objective of this work was to identify the peptide encoded by the mono-

modular NRP synthetase, PesL, within A. fumigatus. A bipartite gene deletion strategy 

(Nielsen et al., 2006) was employed to generate a pesL mutant (∆pesL). Corresponding loss 

of pesL expression was subsequently confirmed by RT-PCR and Real-Time PCR. In 

addition to this, pesL expression was observed in a range of culture conditions therefore 

providing an opportunity to compare A. fumigatus wild-type and ∆pesL to infer a biological 

function and/or peptide product produced by PesL. Extensive phenotypic analysis 

undertaken eliminated a role for pesL in siderophore biosynthesis in A. fumigatus, but 

provided evidence that pesL is important in protection against both oxidative stress caused 

by hydrogen peroxide, and voriconazole toxicity. A. fumigatus ∆pesL exhibited reduced 

virulence in the Galleria mellonella virulence model (p < 0.001). Comparative metabolite 

analysis undertaken indicated that fumigaclavine C, the end product of the complex ergot 

alkaloid pathway, was absent in A. fumigatus ∆pesL. This strongly implies a role for PesL 

in the biosynthesis of fumigaclavine C in A. fumigatus, despite the apparent absence of 

NRP synthetase genes in the A. fumigatus EA biosynthetic cluster described to date. 

Interestingly, despite recent reports linking PesL to fumiquinazoline biosynthesis (Ames et 

al., 2010), the entire family of fumiquinazolines were intact in both A. fumigatus wild-type 

and ∆pesL, therefore suggesting an alternative route to fumiquinazole biosynthesis in A. 

fumigatus, and indicating that the fumquinazoline biosynthetic pathway is more complex 

than currently thought. 

 A. fumigatus pesL was disrupted using a strain (∆akuB) which is impaired in the 

non-homologous end joining (NHEJ) pathway of DNA repair. Deletion of 3 kb of pesL was 

confirmed by Southern blot analysis. Corresponding abolition of pesL expression was then 

confirmed by RT-PCR and Real-Time PCR. Cramer et al., (2006b), reported that pesL 
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expression was observed following 48 hr growth in RPMI and Czapek’s broth. Expression 

was higher in RPMI (75 % relative abundance compared to actin), than Czapek’s broth, 

with approx. 35 % relative abundance compared to actin (Cramer et al., 2006b). In the 

work presented here, pesL was also found to be more abundant following growth in RPMI 

(approx. 25 % relative to calmodulin), while pesL expression was negligible following 

growth in Czapek’s broth. It should be noted however, that the A. fumigatus strain used in 

this study differed to that of Cramer et al., (2006b) who used the reference strain A. 

fumigatus Af293. Furthermore, the housekeeping genes used varied between the two 

studies. Calmodulin was the housekeeping gene used in this work, while actin was used by 

Cramer et al., (2006b). These experimental differences might explain the differences in 

pesL expression observed between the two studies. Importantly, conditions were identified 

under which pesL was expressed, providing a starting point for comparative metabolite 

profiling between A. fumigatus wild-type and ∆pesL.  

 pesL was proposed to be part of a putative five-gene SM cluster upon sequencing of 

the A. fumigatus genome (Nierman et al., 2005), and more recently as part of an eight-gene 

cluster proposed to be responsible for the biosynthesis of the fumiquinazoline family of 

secondary metabolites in A. fumigatus (Ames et al., 2010). However, neither group showed 

co-regulated expression of the cluster genes, with or without simulataneous secondary 

metabolite production, a feature that is a hallmark of SM biosynthetic gene clusters 

(Gardiner et al., 2004; Gardiner & Howlett, 2005). All genes in the proposed pesL cluster 

(AFUA_6G12040-AFUA_6G12080), according to Nierman et al., (2005), were found to be 

expressed in this study in yeast glucose media over a 96 hr time period, which means all 

genes are capable of being transcriptionally active. This observation was important as 

secondary metabolite gene clusters have been found to be transcriptionally silent under 

standard laboratory conditions, making identification of peptides very difficult (Schroeckh 



 298

et al., 2009). However, the proposed cluster genes did not all exhibit the same pattern of 

expression, suggesting that they are not co-regulated in the production of a particular 

secondary metabolite.  

 Since at least two NRP synthetases are known to be essential for siderophore 

production in A. fumigatus (Schrettl et al., 2004; Schrettl et al., 2007), a role for PesL in 

this process was investigated. Plate assays under varying iron conditions eliminated a role 

for PesL in siderophore biosynthesis in A. fumigatus. Further phenotypic analysis indicated 

that deletion of pesL resulted in increased sensitivity to the oxidising agent H2O2 (2 mM 

and above) (p < 0.01), while in contrast, A. fumigatus ∆pesL was more resistant to 

menadione at concentrations of 20 µM (p < 0.05) and 40 µM (p < 0.01). A third agent, 

diamide, known to cause oxidative stress, appeared to cause no difference between wild-

type and ∆pesL. A range of oxidising agents was chosen since no one agent can fully 

represent conditions of oxidative stress (Temple et al., 2005; Zhao et al., 2006). These data 

indicate that PesL is important for protection against H2O2-mediated oxidative stress in A. 

fumigatus, as has also been observed for another A. fumigatus NRP synthetase, Pes1 

(Reeves et al., 2006), but deletion of pesL did not hinder growth of A. fumigatus when 

exposed to the other oxidising agents in this study.  One possible explanation for the 

increased resistance of A. fumigatus ∆pesL to menadione is that exposure to menadione 

triggered an oxidant defence response that was somehow elevated in ∆pesL as a protective 

mechanism. In other words, the loss of pesL might have been compensated for upon 

exposure to menadione. The transcriptional responses to various oxidising agents, including 

the ones used here, was shown to differ substantially in S. cerevisiae, with respiratory genes 

being influenced by hydrogen peroxide, while menadione influenced the NADPH-

producing pentose phosphate pathway (Thorpe et al., 2004). Furthermore, a genome wide 

comparison of gene expression profiles upon exposure to menadione, hydrogen peroxide 
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and diamide in A. nidulans revealed that separate response gene groups existed for the 

different agents (Pocsi et al., 2005). Interestingly, the role of NRPS in protection of fungal 

species against oxidative stress has been widely reported. Another NRP synthetase, Pes1 

has found to be important for protection against hydrogen peroxide in A. fumigatus (Lorna 

Gallagher – personal communication). NPS6, in the plant pathogen Cochliobolus 

heterostrophus, was found to be involved in both virulence and resistance to oxidative 

stress (Lee et al., 2005). NPS6 was later shown to be responsible for extracellular 

siderophore biosynthesis in C. heterostrophus, which is essential for virulence on its host, 

maize (Oide et al., 2006). 

 A. fumigatus ∆pesL also exhibited increased sensitivity to the anti-fungal 

voriconazole, when compared to wild-type, with the most significant difference observed at 

a concentration of 0.5 µg/ml over a 72 hr time period (p < 0.01). This indicates that the 

peptide encoded by PesL is important in mediating resistance to the toxic effects of 

voriconazole. This phenotype was also observed for another A. fumigatus mutant, in which 

the NRP synthetase Pes1, was disrupted (Lorna Gallagher – personal communication). A. 

fumigatus ∆pesL exhibited moderately increased sensitity to amphotericin B at 0.5 µg/ml (p 

< 0.05). In contrast, sensitivity testing with caspofungin revealed no difference between A. 

fumigatus wild-type and ∆pesL. The specific mechanism by which PesL protects A. 

fumigatus against voriconoazole and amphotericin B toxicity was not investigated further in 

this study. 

 Availability of A. fumigatus ∆pesL facilitated comparative metabolite profiling in 

order to identify a PesL-encoded non-ribosomal peptide. Initial profiling experiments 

involving comparison of metabolites in A. fumigatus wild-type versus ∆pesL following a 

range of liquid culturing conditions revealed no differences in metabolite profiles. It was 

considered that PesL might encode a peptide associated with conidia rather than vegetative 
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growth. Disruption of a NRP synthetase, MaNPS1, in the insect pathogenic fungus 

Metarhizium anisopliae led to the discovery that serinocyclins, a family of peptides that are 

associated with the conidia of this fungus, are actually non-ribosomally synthesised 

(Krasnoff et al., 2007; Moon et al., 2008). The black mold fungus Stachybotrys chartarum 

produces trichothecenes which are associated with its spores (Sorenson et al., 1987). 

Furthermore, the ergot alkaloids (fumigaclavine A, B, C and festuclavine) of A. fumigatus 

are associated with the conidia (Coyle et al., 2007).  

 With these considerations, conidial extracts of A. fumigatus wild-type and ∆pesL 

were compared and two peaks representing candidate PesL-encoded peptides were 

identified by RP-HPLC which were absent in extracts of A. fumigatus ∆pesL. The 

abundance of one of these metabolites (retention time = 15.927 min) was elevated when A. 

fumigatus was grown in the presence of H2O2 (2 mM). These data together indicated that 

PesL is involved in the biosynthesis of peptide(s) which are found associated with the 

conidia of A. fumigatus, and up-regulated in response to oxidative stress caused by H2O2, in 

agreement with increased sensitivity to H2O2 upon deletion of pesL. LC-DAD-MS analysis 

at DTU revealed that the metabolite specifically absent in A. fumigatus ∆pesL was 

fumigaclavine C, the end product of the complex ergot alkaloid (EA) biosynthetic pathway 

(Frisvad et al., 2009). Complete loss fumigaclavine C in A. fumigatus ∆pesL was observed 

in all conditions explored where conidia were examined, in agreement with the known 

ergot alkaloid association with A. fumigatus conidia (Coyle et al., 2007). Interestingly, 

another NRP synthetase mutant generated at NUIM, A. fumigatus ∆pes1 

(AFUA_1G10380), exhibited similar phenotypes to the A. fumigatus ∆pesL phenotypes 

described here (Lorna Gallagher – personal communication), suggesting redundancy among 

NRP synthetases. 
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 The loss of fumigaclavine C biosynthesis in A. fumigatus ∆pesL and the 

corresponding sensitivity of ∆pesL to oxidative stress caused by hydrogen peroxide, and 

increased susceptibility to voriconazole and amphotericin B, strongly suggests that 

fumigaclavine C plays a role in protecting A. fumigatus against H2O2 -mediated oxidative 

stress, voriconazole and amphotericin B toxicity. Furthermore, initial experiments indicated 

that a metabolite absent in A. fumigatus ∆pesL was up-regulated following exposure to 2 

mM H2O2 (Figure 4.20). These findings are in agreement with previously established links 

between fungal secondary metabolism and oxidative stress (Reverberi et al., 2010).  

  With the observation that A. fumigatus PesL is essential for fumigaclavine C 

biosynthesis, it was necessary to review the EA biosynthetic pathway in A. fumigatus with 

a view to clarifying a role for PesL. The EA biosynthetic pathway is complex, and only 

some of the enzymes involved have been functionally characterised, mainly through in 

vitro biochemical characterisation of proteins (native or recombinant). This discussion will 

focus on the current understandings of the biosynthetic clusters which direct EA 

biosynthesis in A. fumigatus, C. purpurea and Neotyphodium lolli, Schematic 

representations of the arrangement of the published EA biosynthetic clusters in A. 

fumigatus, C. purpurea and N. lolli are shown in Figure 4.26. Although gene sequence is 

relatively conserved between the three EA gene clusters, there are differences in gene 

orientation and organisation, and the N. lolli cluster is more complex in structure and 

organisation (Fleetwood et al., 2007). Genes that are shared by C. purpurea and N. lolli, but 

absent from A. fumigatus – lpsA, lpsB, and cloA- have been shown to be necessary for steps 

leading to ergopeptine biosynthesis (Correia et al., 2003; Haarmann et al., 2006; 

Panaccione et al., 2001). The most striking difference between the three clusters is the 

presence of non-ribosomal peptide synthetase genes in the C. purpuea and N. lolli clusters, 

and the complete absence of NRP synthetase genes in the proposed A. fumigatus EA 
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cluster. The requirement for PesL in fumigaclavine C biosynthesis in A. fumigatus shown 

here indicates that the proposed A. fumigatus EA cluster has not been fully elucidated. 

 As there has been frequent renaming of genes within all three clusters, these clusters 

have been re-depicted and colour coded to show the different gene functions with the most 

recent gene names associated with putative functions, and this is shown in Figure 4.27. This 

information was compiled from publications that displayed one or more of these gene 

clusters, with or without gene function alignment (Fleetwood et al., 2007; Haarmann et al., 

2005; Lorenz et al., 2007).  
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Figure 4.26. The proposed EA biosynthetic gene clusters from A. fumigatus, C. purpurea, and N. lolli. A. Two NRP synthetase genes 

are present in the C. purpurea EA cluster; cpps2 and cpps1 (which occurs downstream of cpd1) and these are absent in the A. fumigatus EA 

cluster. Later, several other genes not shown here were found including two more NRP synthetases, lpsC (cpps3) and lpsA2 (cpps4), which 

is highly homologous to cpps1. cpimd was found, which likely encodes a protein of primary metabolism (Haarmann et al., 2005). B. EA 

gene cluster from A. fumigatus Af293 (Coyle & Panaccione, 2005; Unsold & Li, 2005), showing absence of NRP synthetase genes. C. EA 

cluster from N. lolli. This figure is the most up-to-date representation of the cluster with gene names. Genes with homologues between the 

clusters are marked in grey, while unique genes are in white. Figures adapted from (Wallwey et al., 2010b).  
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Figure 4.27. The proposed EA biosynthetic clusters in A. fumigatus, C. purpuea and N. lolli.  These colour coded clusters have been re-

drawn from various sources to highlight both the similarites and major differences between the clusters (Lorna Gallagher – NUI Maynooth). 

(Correia et al., 2003; Coyle & Panaccione, 2005; Fleetwood et al., 2007; Haarmann et al., 2005; Lorenz et al., 2007; Tudzynski et al., 1999; 

Unsold & Li, 2005; Wallwey et al., 2010b).  
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Ergotamine cluster 
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 A gene cluster directing EA biosynthesis in A. fumigatus was identified  

independently by two groups (Coyle & Panaccione, 2005; Unsold & Li, 2005)  Deletion of 

A. fumigatus dmaW resulted in loss of all known ergot alkaloids in the resultant mutant 

strain, and sequence analysis examining genes in the vicinity of dmaW in the genome led to 

the proposal of an EA cluster (Coyle & Panaccione, 2005). In that study, A. fumigatus 

dmaW was identified through sequence analysis and the deduced protein exhibited 50 % 

sequence identity to the DMAT synthase in C. fusiformis (Tsai et al., 1995), 53 % identity 

to DMAT synthase from C. purpurea (Tudzynski et al., 1999), and 59 % identity to DMAT 

synthase from Neotyphodium sp. strain Lp1 (Wang et al., 2004). Neotyphodium sp. strain 

Lp1 is a naturally occurring hybrid of Neotyphodium lolli and Epichloë typhina (Schardl et 

al., 1994).  

 In another study, the A. fumigatus fgaPT2 (dmaW) gene, was over-expressed to 

produce a heterologous DMAT synthase in S. cerevisiae, and biochemical analysis 

confirmed that FgaPT2 catalyses the conversion of L-tryptophan to 4-

dimethylallyltryptophan, the first committed step in ergot alkaloid biosynthesis (Unsold & 

Li, 2005). The specific substrates for FgaPT2 were L-tryptophan and dimethylallyl 

disphosphate (DMAPP) (Unsold & Li, 2005). FgaPT2 was the first enzyme involved in EA 

biosynthesis to be heterologously overproduced and purified to homogeneity (Unsold & Li, 

2005). The work presented by Unsold and Li (2005) showed that FgaPT2 was capable of 

converting L-tryptophan to 4-dimethylallyltryptophan in vitro. An EA cluster for A. 

fumigatus was also proposed and this cluster contained at least 7 genes which had 

orthologues in the C. purpurea EA biosynthetic cluster (Unsold & Li, 2005). These 7 genes 

are proposed to be responsible for the common steps in the biosynthesis of EA in both 

species (Unsold & Li, 2006). The EA cluster in A. fumigatus contains another homologue 

of cpd1 (the C. purpurea DMAT gene), termed fgaPT1, which is separated from fgaPT2 by 
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only 10 kb (Unsold & Li, 2005). Four genes referred to as fgaOX1, fgaOX2, fgaOX3 and 

fgaCAT were identified nearby fgaPT1 and fgaPT2, which appear to be homologues of 

cpox1, cpox2, cpox3 and cpcat2 from the C. purpurea EA biosynthetic cluster (Unsold & 

Li, 2005). Together with the DMATS, it is suggested that the four genes (fgaOX1, fgaOX2, 

fgaOX3 and fgaCAT), could be involved in the assembly of the clavinet skeleton, as this is 

a common structural feature of ergot alkaloids from all producing organisms (Coyle & 

Panaccione, 2005).  

 Interestingly, neither group reported the presence of NRP synthetase genes within 

the EA clusters of A. fumigatus (Coyle & Panaccione, 2005; Unsold & Li, 2005), 

presumably due to the absence of NRP synthetase genes in the genomic location of the 

characterised EA biosynthetic genes within A. fumigatus. There is, however, a gene 

encoding a catalase (AFUA_2G18030) in the EA cluster vicinity in the A. fumigatus 

genome (Mabey et al., 2004). A putative catalase gene (cpcat2) has also been identified in 

the EA cluster of C. purpurea, though no function has yet been assigned (Correia et al., 

2003). If these catalases play a role in the EA biosynthetic pathway, it may suggest a link 

between the production of EA and oxidative stress, since catalases are known anti-oxidant 

enzymes (Chauhan et al., 2006). This is also reflected in the increased sensitivity of A. 

fumigatus ∆pesL to H2O2-mediated oxidative stress. Furthermore, the inclusion of the 

catalase in the C. purpuea EA cluster, in contrast to the A. fumigatus EA cluster, suggests 

that the core EA cluster in general needs further refinement between different EA 

producing fungi. 

 Cloning and expression of an N-methyltransferase, FgaMT (AFUA_2G18060) from 

the A. fumigatus EA cluster confirmed that this enzyme catalyses the second step of EA 

biosynthesis by methylating the NH2 group of 4-DMAT to produce 4-dimethylallyl-L-

abrine in the presence of S-adenosyl methionine (SAM) (Rigbers & Li, 2008). FgaMT 
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homologues are found in the EA clusters of C. purpurea and C. fusiformis (53 % identity 

with easF) and N. lolli (60 % identity with easF), and it is expected that these homologues 

catalyse the same reaction as FgaMT (Rigbers & Li, 2008). A homologue of A. fumigatus 

FgaOX1 in C. purpurea (encoded by cpox1/easE) has been shown to convert N-

methylallyl-4-tryptophan to chanoclavine-1 (Lorenz et al., 2010). A similar reaction is 

likely to occur in A. fumigatus with FgaOX1 converting 4-dimethylallyl-L-abrine to 

chanoclavine-1 (Wallwey et al., 2010b), although this has not been biochemically proven. 

A. fumigatus FgaDH (AFUA_2G18000), a short-chain alcohol dehydrogenase, catalyses 

the conversion of chanoclavine-I to chanoclavine-I aldehyde (Wallwey et al., 2010a). The 

conversion of chanoclavine-I aldehyde to festuclavine is dependant on an old yellow 

enzyme FgaOX3 (a homologue of EasA from C. purpurea and C. fusiformis) and FgaFS (a 

homologue of EasG from C. purpurea and C. fusiformis) (Wallwey et al., 2010b). 

Disruption of A. fumigatus easA (fgaOx3) resulted in a mutant which failed to produce 

festuclavine or fumigaclavines A, B and C, which are ergot alkaloids typically specific to 

A. fumigatus (Coyle et al., 2010). However, chanoclavine-I, an important intermediate in 

EA biosynthesis, mentioned above, was found, in addition to accumulation of 

chanoclavine-I aldehyde, in mutant metabolite profiles (Coyle et al., 2010). Transformation 

of the C. purpurea easA homologue into the A. fumigatus easA mutant resulted in a distinct 

ergot alkaloid profile, resembling the typical profile of ergot alkaloids from C. purpurea. 

These important findings indicate that the old yellow enzyme controls the branch point 

between A. fumigatus and C. purpurea EA biosynthesis, and that chanoclavine-I aldehyde 

is the last shared intermediate between the two pathways (Coyle et al., 2010).  

 Comparison of EA biosynthesis clusters helps to find candidate genes that mediate 

later steps of ergot alkaloid production; that is, after agroclavine (C. purpuea) and 

festuclavine (A. fumigatus), and are useful to identify species-specific EA biosynthesis 
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pathway steps. This strategy was used to identify the acetyltransferase (FgaAT) that 

catalyses the conversion of fumigaclavine B to fumigaclavine A, and this was 

experimentally proven using a heterologously produced FgaAT (Liu et al., 2009b). FgaAT 

is encoded by a gene unique to the A. fumigatus EA cluster (AFUA_2G18020), and is in 

agreement with the presence of an acetyl moiety in the structure of fumigaclavine A and C, 

but not in the structure of the C. purpurea ergot alkaloids (Liu et al., 2009b). The second 

putative prenyltransferase gene fgaPT1 in A. fumigatus was proposed to function in 

orchestration of the additional prenyl moiety at C-2 of the indole nucleus in fumigaclavine 

C (Coyle & Panaccione, 2005). Since then, fgtPT1 has been cloned, heterologously 

expressed and biochemically characterised. FgaPT1 was shown to catalyse the prenylation 

of fumigaclavine A to fumigaclavine C, which is the last known step in EA biosynthesis in 

A. fumigatus (Unsold & Li, 2006). As mentioned earlier, many of the enzymes involved in 

EA biosynthesis have been biochemically characterised in vitro, and while FgaPT1 is 

sufficient to convert fumigaclavine A into fumigaclavine C in vitro, this step may require 

tethering of fumigaclavine A to a non-ribosomal peptide synthetase module, i.e. PesL, in 

vivo. The findings presented here clearly demonstrated that deletion of the NRP synthetase 

PesL, results in complete loss of fumigaclavine C, validating this hypothesis.  

 Two other unique genes in the A. fumigatus EA cluster (AFUA_2G17980 and 

AFUA_2G18010) encode putative P450 monooxygenases according to functions assigned 

at the CADRE database (Mabey et al., 2004), and functions for these within the EA 

biosynthetic pathway have yet to be assigned. The proposed biosynthetic pathways for A. 

fumigatus, and C. purpurea including all known steps is presented in Figure 4.28 (Wallwey 

et al., 2010b). 
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Figure 4.28. Proposed EA biosynthetic pathway for ergot alkaloids in A. fumigatus and C. purpurea with both common steps and divergent 

steps shown resulting in a different profile of ergot alkaloids for the two species as shown. As described in text, chanoclavine-I aldehyde is 

the last shared intermediate between the two pathways (Wallwey et al., 2010b). Enzyme names in black are for A. fumigatus pathway, while 

C. purpurea equivalents have been added in red.  
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  The functions of several genes of the C. purpurea EA cluster have now been 

proven experimentally. The gene cluster for EA biosynthesis was identified in C. purpurea 

by chromosome walking on the flanking regions of the DMAT synthase gene, cpd1, and 

the genetic organisation of putative EA genes were described (Correia et al., 2003; 

Tudzynski et al., 1999). A NRP synthetase gene, cpps1, was identified, which was shown 

to encode the tri-modular NRP synthetase LPS1, previously characterised by Riederer et 

al., (1996). Two ORFs encoding proteins of unknown function, and two putative 

oxidoreductase encoding genes, cpox1 and cpox2, were also identified (Tudzynski et al., 

1999). A putative P450 mono-oxygenase gene (cpP450-1), a putative catalase gene 

(cpcat2), another putative oxidase gene (cpox3), and another NRP synthetase gene, cpps2 

(LPS2), were later identified (Correia et al., 2003). RT-PCR and Northern blot experiments 

indicated that all genes are expressed under alkaloid producing conditions (Correia et al., 

2003; Tudzynski et al., 1999). Further sequencing of the C. purpurea cluster revealed the 

presence of a third NRP synthetase gene, lpsC (Lorenz et al., 2007), and a fourth NRP 

synthetase gene (Haarmann et al., 2005). C. purpurea dmaW (cpd1) was cloned and 

expressed in yeast and proven unambiguously to perform the first committed step for EA 

biosynthesis (Tsai et al., 1995). A lysergyl peptide synthetase complex (LPS) was purified 

as two NRP synthetase enzymes, lysergyl peptide synthetase 1 (LPS1) (cpps1) and LPS2 

(cpps2). (Riederer et al., 1996) These are responsible for the formation of the non-cyclo 

peptide precursor of ergotamine in C. purpurea from lysergic acid and three amino acids 

(Riederer et al., 1996; Walzel et al., 1997).  

 The early steps in the C. purpurea EA pathway are shared with A. fumigatus, as 

described above, and homologues for all steps are found in both species (Figure 4.24). 

Where festuclavine is produced by A. fumigatus, agroclavine is produced by C. purpurea. 

Agroclavine is converted to elymoclavine by an unknown enzyme. The cloA gene, 
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encoding the cytochrome p450 enzyme CloA, catalyses the conversion of elymoclavine to 

paspalic acid (Haarmann et al., 2006). The orientation of the COOH in paspalic acid is 

changed by an unknown reaction resulting in lysergic acid. Synthesis of the typical ergot 

alkaloids then occurs using lysergic acid as starting material. Synthesis starts with binding 

of D-lysergic acid to the monomodular LPS2 (also called LpsB) as thioester, and successive 

condensation of the D-lysergic acid with three amino acids by the trimodular NRP 

synthetase LPS1 (LpsA), and modification and cyclization of the resulting D-lysergyl tri-

peptide yields the peptide alkaloids (ergopeptines) that are characteristic of the C. purpurea 

EA pathway (Riederer et al., 1996; Walzel et al., 1997). Ergotamine, the typical end 

product of the C. purpurea EA pathway is specifically produced when alanine, 

phenylalanine and proline are condensed with D-lysergic acid by LPS1 (Walzel et al., 

1997). The cpps2 gene, encoding lysergyl peptide synthetase 2 (LPS2), the lysergic acid-

activating portion of the LPS complex, has been functionally characterised by cloning and 

deletion in C. purpurea, with deletion resulting in loss of ergopeptine biosynthesis (Correia 

et al., 2003).  Accumulation of D-lysergic acid was observed in the C. purpurea LPS2 

mutant (∆ccps2), as a result of blocking ergopeptine biosynthesis, which indicates that 

ergoline ring biosynthesis was unaffected by the loss of LPS2 (Correia et al., 2003).  

 Interestingly, a number of C. purpurea strains can produce both two different races 

of ergopeptines (derived from D-lysergyl alanine) simultaneously (Flieger et al., 1997), 

indicating the presence of two different biosynthesis systems within the one strain, which 

both use D-lysergic acid as substrate (Correia et al., 2003). Strains can produce a different 

suite of ergot alkaloids through processing of activated lysergic acid by either of the two 

trimodular NRP synthetases LPSA1/LPSA2, which appear to be two different variations of 

LPS1 (Haarmann et al., 2008). It was shown that the variability of alkaloid production 

observed by different chemical races of C. purpurea species P1 (ergotamine and 
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ergopeptine) and ECC93 (mainly ergocristine) corresponds to differences in the substrate 

specificity of the NRP synthetase modules (Haarmann et al., 2005). Comparison of the 

cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an 

ergocristine producer, showed high conservation of most of the cluster genes, but 

significant variation in the NRPS modules (Haarmann et al., 2005). The development of a 

C. purpurea ∆ku70 strain, deficient in nonhomologous end joining (NHEJ), aided the 

disruption of the first module of lpsA1, and inactivation of this gene led to loss of 

ergotamine, as expected (Haarmann et al., 2005) (Haarmann et al., 2008). Loss of lpsA1 did 

not affect the production of ergocryptine (Haarmann et al., 2008), supporting the 

hypothesis that evolution of chemical races correlates with evolution of NRP synthetase  

module specificity (Haarmann et al., 2005). LPS2-A most likely catalyses the synthesis of 

ergocryptine (Haarmann et al., 2008), while lpsC probably encodes a monomodular NRP 

synthetase that catalyses the formation of ergometrine, an ergopeptine with one amino acid 

side chain (Ortel & Keller, 2009). The observation of chemical races of ergot alkaloids in 

C. purpurea highlights that versatility exists in the EA biosynthetic pathway, a 

characteristic which might be occurring in other fungal secondary metabolite pathways, 

aiding to the diversity of the metabolites produced.  

 The ergot alkaloid pathway in N. lolli results in the production of the ergopeptine, 

ergovaline. Gene knockout of the DMAT synthase (dmaW) in N. lolli proved that DMAT is 

essential for the production of ergovaline, ergine (an alternative product of the EA 

pathway) and chanoclavine (Wang et al., 2004). Ergovaline production could be restored in 

the N. lolli dmaW mutant by transformation with the C. fusiformis dmaW homolgoue, 

indicating the conservation of the DMAT synthases (Wang et al., 2004). Ergovaline, 

similar to ergotamine in C. purpurea, is composed of activated lysergic acid and a 

tripeptide moiety. The tripeptide is composed of alanine, valine and proline (Brunner et al., 
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1979). The trimodular NRP synthetase, LPS1 (lpsA gene) has been characterised in 

Neophytodium sp. strain 1 (Damrongkool et al., 2005; Panaccione et al., 2001). The gene 

encoding LPS1 was deleted in Neotyphodium sp. Strain Lp1, and mutants did not produce 

ergopeptines and simple amides of lysergic acid but still produced clavinet ergot alkaloids 

(Panaccione et al., 2001; Panaccione et al., 2003). A putative gene cluster for EA 

biosynthesis has been proposed in N. lolli and this followed from the discovery of a second 

NRP synthetase gene, lspB, which encodes a monomodular NRP synthetase (Fleetwood et 

al., 2007). lpsB was functionally characterised by gene knockout and the lpsB mutant did 

not produce ergovaline (Fleetwood et al., 2007). The EA gene cluster in N. lolli is very 

similar to those described for C. purpurea (Correia et al., 2003; Haarmann et al., 2005; 

Tudzynski et al., 1999) and A. fumigatus (Coyle & Panaccione, 2005; Unsold & Li, 2005) 

(Figures 4.25, 4.26). However, the N. lolli cluster is more complex in structure organisation 

and gene orders varies in comparison with the other clusters (Fleetwood et al., 2007).  

 Reviewing the biosynthetic pathways for EA biosynthesis highlighted that the A. 

fumigatus EA cluster is not reported to contain NRP synthetase genes. However, deletion of 

pesL, a monomodular NRP synthetase gene, in this study, resulted in the complete loss of 

fumigaclavine C, the final product of the EA biosynthetic pathway in A. fumigatus. This 

indicates that NRPS does play a role in ergot alkaloid biosynthesis, after all, in A. 

fumigatus. No homologues for the C. purpurea NRP synthetase encoding genes cpps1 or 

cpps2 were found in the vicinity of fgaPT2 in the A. fumigatus EA gene cluster, thought to 

be consistent with the absence of a peptide moiety in fumigaclavines (Unsold & Li, 2005). 

However, the findings presented here contradict earlier hypotheses. We hypothesise that 

PesL is necessary to facilitate the reverse prenylation of fumigaclavine A by FgaPT1, 

possibly by tethering fumigaclavine A making it accessible to FgaPT1, to yield 

fumigaclavine C in A. fumigatus. Further characterisation of EA and other secondary 
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metabolite biosynthetic pathways in A. fumigatus and other fungi might reveal that NRP 

synthetases play an important role in tethering of biosynthetic intermediates in complex 

biosynthetic pathways, and these findings highlight the importance of gene deletion studies 

for functional assignment of NRP synthetases. 

 Gene clusters encoding secondary metabolites are usually co-regulated with the 

production of the specific metabolite(s) (Gardiner et al., 2004; Gardiner & Howlett, 2005), 

and this also been observed for the C. purpurea EA biosynthetic cluster (Correia et al., 

2003; Tudzynski et al., 1999). Such a study had not been reported for the genes involved in 

EA biosynthesis in A. fumigatus. PesL has been proposed to be part of a gene cluster, as 

described earlier, yet it does not show a co-regulated pattern of expression with other genes 

in the proposed cluster. However, the proven role for PesL in fumigaclavine C biosynthesis 

could suggest that PesL was once in a cluster with the other EA genes and has been 

translocated to its current location throughout the evolution of A. fumigatus.  

 Interestingly, transposable elements were found interspersed between the genes of 

the EA cluster in N. lolli and these have also been found upstream of Epichloë dmaW 

(Fleetwood et al., 2007). The transposable elements have created several repeated 

sequences that could be reminiscent of previous recombination events leading to the 

different organisation of the N. lolli EA cluster, compared to EA clusters in other fungi 

(Fleetwood et al., 2007). Perhaps transposable elements are a similar feature associated 

with the EA cluster of A. fumigatus, and have facilitated rearrangement of the cluster, 

leading to the translocation of the NRP synthetase gene pesL to its current position in the 

genome. A transcriptional analysis of the genes regulated by StuA, a regulatory protein 

controlling development in A. fumigatus and other fungi, revealed that the EA biosynthetic 

gene cluster is under the regulation of StuA (Sheppard et al., 2005) and, interestingly, there 

is a possible retrotransposon element between the EA cluster and an adjacent aflatoxin gene 



 315

cluster in the genome of A. fumigatus (Sheppard et al., 2005). This might allow gene 

rearrangements to occur between these two adjacent gene clusters and with other parts of 

the genome. In Magnaporthe oryzae, transposable elements have been found to influence 

recombination rate, loss of synteny and other features indicative of genome evolution 

(Thon et al., 2006). In fact, transposable elements have been reported to be associated with 

other biosynthetic gene clutsters in Epichloë (Fleetwood et al., 2007).  

 The G. mellonella infection model (Cotter et al., 2000) was used in order to assess 

the contribution of pesL to A. fumigatus virulence. Reeves et al., (2004) employed this 

model to determine the virulence of different isolates of A. fumigatus, and strong 

correlations were observed between the G. mellonella and murine response to fungal 

infection (Brennan et al., 2002). Furthermore, correlations were observed between G. 

mellonella and murine models of infection with respect to A. fumigatus ∆pes3 (Chapter 3 of 

this thesis).  The virulence of A. fumigatus ∆pesL was attenuated compared to wild-type (p 

< 0.0001) in this model, consistent with increased survival of larvae following infection 

with ∆pesL over a 96 hr time period. The largest difference in larval survival was observed 

at the 72 hr time point with 38 % survival following infection with A. fumigatus wild-type 

compared to 82 % survival following infection with ∆pesL. Several explanations can be 

given for the reduced virulence observed upon deletion of pesL. A. fumigatus ∆pesL was 

more sensitive to H2O2-mediated oxidative stress, it is likely that it was less able to resist 

the reactive oxygen intermediates (ROS) produced by the Galleria NADPH oxidase 

complex during the innate immune response (Bergin et al., 2005). Furthermore, loss of 

fumigaclavine C, the end product of the ergot alkaloid biosynthetic pathway in A. 

fumigatus, is likely contributing to reduced virulence of A. fumigatus ∆pesL since ergot 

alkaloids have a long history of association with animal infection (Panaccione & Coyle, 

2005).  
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 In conclusion, the work presented here demonstrates for the first time, a role for an 

NRP synthetase in the ergot alkaloid biosynthetic pathway, specifically in fumigaclavine C 

biosynthesis, within A. fumigatus. Furthermore, it appears to be the first characterisation of 

a monomodular NRP synthetase in the Aspergilli, and characterisation of other such 

enzymes might reveal that they serve as discrete modules that might be used by several 

biosynthetic pathways in order to facilitate maximum diversity and evolution of secondary 

metabolite biosynthesis. Perhaps the appearance of an apparently new metabolite in A. 

fumigatus ∆pesL, which appears to be related to the fumitremorgin family of compounds, is 

an example of secondary metabolite diversity in action – since the available isoprene 

moieties not used for fumigaclavine C biosynthesis might be now available for biosynthesis 

of a new fumitremorgin-type metabolite. Since the new compound appears to be closely 

related to the fumitremorgins, it probably contains tryptophan, making this hypothesis 

plausible. To date, a role for ergot alkaloid biosynthesis in A. fumigatus pathogenesis has 

not been investigated, and the data presented here indicates that ergot alkaloids contribute 

to the virulence of A. fumigatus, and highlights the potential of the ergot alkaloid 

biosynthetic pathway as a novel drug target for the treatment of IA. 
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5.1. Introduction. 

 A. fumigatus is responsible for a range of human diseases, which have been 

described earlier in this thesis. Currently, there are several classes of anti-fungal therapy in 

use, and there is a growing concern following evidence of resistance to several major anti-

fungal drugs (Loeffler & Stevens, 2003; Morschhauser, 2010). Subsequently, there is a 

great need for both the discovery and development of new classes of drugs. Moreover, 

understanding the many biochemical pathways within the organism may reveal novel drug 

targets worthy of further investigation. 

 All living organisms encounter potentially damaging environmental stresses, by 

exposure to specific damaging agents present in their habitat (Folch-Mallol et al., 2004). 

Organisms are also callenged with the threat of cellular damage from the by-products of 

cellular metabolism (Dowling & Simmons, 2009). In order to overcome and survive these 

serious challenges, they need to possess highly effective defence systems which are able to 

both counteract and repair the damage caused by cellular insults. A clear understanding, 

and subsequent targeting, of these defence systems, particularly in pathogenic organisms 

such as A. fumigatus, may present novel drug targets for the treatment of human disease. 

The identification and elucidation of pathogen-specific pathways, absent in mammalian 

systems, can provide promising targets worthy of further investigation, as it may be 

possible to inactivate these systems therapeutically, thereby leading to new treatments for 

important pathogenic diseases, for example, inhibition of siderophore biosynthesis (Monfeli 

& Beeson, 2007).  

 Among the defence systems shared by all organisms is the well-characterised heat-

shock response, which is probably most thoroughly documented in the yeast model 

organism, Saccharomyces cerevisiae (Palotai et al., 2008). A. fumigatus also possesses a 

heat-shock system which has recently been investigated (Albrecht et al., 2010; Do et al., 
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2009). While further investigation of this system would shed interesting information on the 

biology of this fungus, the high level of conservation of the heat-shock response makes this 

system a poor choice of drug target, as drugs aimed at the heat-shock response of a 

pathogen will target the host cells also.  

 Other adaptive systems have been documented in microorganisms, including the 

adaptive response to alkylating DNA damage. Mono-functional alkylating agents such as 

N-methyl-N-nitrosourea (MNU), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), and the 

metabolically active form of dimethylnitrosamine are efficient mutagens and carcinogens 

(Demple et al., 1985). Chemical structures for the alkylating compounds mentioned in this 

study are shown in Figure 5.1. Electrophilic methylating agents can react with a number of 

nucleophilic sites on DNA molecules (Wyatt & Pittman, 2006). The major mutagenic 

lesion that results in DNA from MNU, MNNG and dimethylnitrosamine is O6-

methylguanine (O6MeGua), which leads to mis-pairing of thymine residues during DNA 

replication (Hall & Saffhill, 1983; Loechler et al., 1984). This mis-pairing results in G-C             

A-T transitions mutations, thereby disrupting the coding potential of affected DNA regions 

(Coulondre & Miller, 1977). Ethyl methanesulfonate (EMS) has been employed in 

numerous genotoxicity studies as a model alkylating agent (Recio et al., 2010). EMS is a 

direct acting clastogen, causing specific breaks in chromosomes. EMS can cause 

micronucleus (MN) formation in animal cells, and this is the basis of many genotoxicity 

assays (Recio et al., 2010). MN are surrogate markers of chromosomal aberrations that are 

associated with increased cancer risks (Bonassi et al., 2007). EMS readily reacts with DNA 

producing alkylated (specifically ethylated) nucleotides. Alkylation can occur at various 

locations on nucleotide bases, depending on the physico-chemical properties of the agent, 

leading to mutations in the DNA (Gocke et al., 2009). MMS and MNNG modify DNA by 

adding methyl groups to a number of nucleophilic sites on the DNA bases, although 
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MNNG produces a greater percentage of O-methyl adducts (Wyatt & Pittman, 2006). MMS 

and MNNG are known to cause sister chromatic exchanges (SCE) during the S-phase of the 

cell cycle (Kaina, 2004). An overview of the different lesions and adducts caused by some 

of the methylating agents discussed here is presented in Figure 5.2.  
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N-methyl-N-nitrosourea (MNU) 

 

N-methyl-N-nitro-N-nitrosoguanidine (MNNG) 

 

dimethylnitrosamine 

 

 

A. 

B. 

C. 
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Ethyl Methanesulfonate (EMS) 

 

Methyl Methanesulfonate (MMS) 

Figure 5.1. Chemical structures of the mono-functional alkylating agents. (A) MNU 

(B) MNNG and (C) dimethylnitrosamine, (D) EMS, (E) MMS. These structures were 

retrieved from the PubChem Compound database (http://pubchem.ncbi.nlm.nih.gov/). 
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Figure 5.2. Potential sites of chemical methylation in double-stranded DNA. The 

arrows point to each methyl adduct and describes whether each adduct is known to be 

predominantly toxic or mutagenic. The open arrows represent sites that are methylated by 

MMS, MNNG, and MNU. The filled arrows point to sites that are methylated by MNNG 

and MNU, but not detectably by MMS. Note that methylation of different sites on the same 

base at the same time is extremely rare. The size of the arrows roughly represent the 

relative proportion of adducts. In single-stranded DNA, the N1- adenine and N3-cytosine 

positions display a greater reactivity. (Wyatt & Pittman, 2006). 
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 Escherichia coli responds to alkylation damage by induction of an adaptive DNA 

repair pathway which increases the cellular resistance to the mutagenic and toxic effects of 

alkylating agents (Samson & Cairns, 1977). E. coli contains two genes which encode DNA 

methyltransferases, the inducible ada of the Ada regulon, and ogt, which is a constitutively 

expressed gene (Friedberg et al., 1995; Sedgwick & Lindahl, 2002). Since the focus of this 

work was the investigation of an adaptive response towards alkylating DNA damage, the 

literature reviewed here will focus mainly on the adaptive response in E. coli. As mentioned 

above, the key player in the E. coli adaptive response is the Ada protein, which has been 

extensively studied and well characterised over the last 30 years (reviewed in Sedgwick and 

Lindahl, 2002).  The Ada protein is 354 amino acids in length and has a molecular weight 

of 39 kDa. This protein has a dual function as a positive regulator of the adaptive response 

to alkylation damage, and as a direct DNA repair enzyme, by demethylating O6’-

methylguanine, O4’-methylthymine and phosphotriester residues formed by alkylating 

agents such as MNNG (Nakabeppu & Sekiguchi, 1986; Teo et al., 1984).  Ada positively 

regulates the adaptive response to alkylation damage by acting as a transcriptional activator 

for certain genes involved in the alkylation response pathway, namely alkB, alkA, and aidB 

and also ada itself. The alkA gene encodes a DNA glycosylase, which is constitutively 

expressed in low levels in E. coli (Karran et al., 1982; Samson & Cairns, 1977). AlkA 

removes O2- methylpyrimidines and 3-methylpurines (Evensen & Seeberg, 1982; Karran et 

al., 1982), lethal lesions that block DNA replication and thus cause cell death. A 

homologue of AlkA has been identified in mammalian cells. This is known as 

AAG/APNG/MPG and it removes 3-meA lesions (Chakravarti et al., 1991; O' Connor & 

Laval, 1990). Both AlkA and AAG have been shown to remove a wide range of lesions, 

e.g., 3-meA, N3-methylguanine, 1, N6-ethenoadenine and others (Dosanjh et al., 1994a; 

Dosanjh et al., 1994b; Hang et al., 1997). The alkB gene forms a small operon with ada 
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and is required for error-free replication of methylated single-stranded DNA (Dinglay et al., 

2000). The alkB gene counteracts this lethal alkylation damage independently of the 

adaptive response (Kataoka & Sekiguchi, 1985). More recently, it has been shown that E. 

coli AlkB repairs the cytotoxic lesions 1-methyladenine and 3-methylcytosine in single- 

and double-stranded DNA in a reaction that is dependent on oxygen, alpha-ketoglutarate 

and Fe (Trewick et al., 2002). The aidB gene encodes a product which appears to detoxify 

nitrosoguanines, reducing the level of methylation by these agents (Landini et al., 1994). 

Recent observations suggest that AidB might be able to bind double-stranded DNA and 

take part in its dealkylation (Rohankhedkar et al., 2006).   

 Ada acts as a DNA repair enzyme by repairing one of the two diastereoisomers of 

methylphosphotriesters in DNA, by transferring the methyl group on to one of its own 

cysteine residues (McCarthy & Lindahl, 1985). This self-methylation converts the Ada 

protein to methylated Ada (meAda), a form of Ada that is capable of binding the promoter 

regions of specific genes and enhancing their transcription (Teo et al., 1984). In this way, 

activation of Ada is a direct consequence of one of its DNA repair activities (Volkert & 

Landini, 2001). This transcriptional regulator function is mediated by the N-terminal 

domain of the Ada protein (Kataoka et al., 1986). Specifically, cysteine residue 38 (Cys-38) 

has been shown to be the critical residue for the self methylation of Ada, thereby turning it 

into an active transcriptional regulator (Takinowaki et al., 2004). N-Ada contains a zinc ion 

tightly bound to four cysteines, of which one is Cys-38. Metal coordination is linked with 

the methyl acceptor function of Cys-38, pointing to a novel mechanism involving metallo-

activation of the cysteine sulphur atom by its bound metal (He et al., 2003). The Ada 

protein also accepts methyl groups from the highly mutagenic lesions O6- methylguanine 

and O4- methylthiamine onto a different cysteine, known to be residue 321 (Cys-321), 

located in the COOH-terminal region of the protein (Demple et al., 1985). Transfer of a 
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methyl group from damaged DNA to the C-terminal cysteine (Cys-321) results in the 

inactivation of the O6-AlkG repair ability of Ada (Olsson & Lindahl, 1980), and as already 

stated, transfer to the N-terminal site (Cys-38) results in conversion of Ada to a strong 

transcriptional activator (Teo et al., 1984). Activated Ada binds to a conserved nucleotide 

sequence, known as the ada box, composed of an A-box and a B-box, which is associated 

with the regulatory regions of at least two genes in E. coli, ada itself, and alkA, an inducible 

3-methyladenine DNA glycosylase II (Nakamura et al., 1988; Teo et al., 1984). The 

induction of the adaptive response after exposure to alkylating agents protects E. coli from 

both the mutagenic and the lethal effects of alkylation damage (Samson & Cairns, 1977). A 

schematic diagram depicting the current understanding of this adaptive response in E. coli 

is presented in Figure 5.3. A diagrammatic representation of the transcriptional activator 

function of Ada, including the ada box region is depicted in Figure 5.4. 
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Figure 5.3. Schematic representation of the E. coli Ada response. The Ada protein is a 

positive regulator of the response by acting as a transcriptional regulator for the expression 

of enzymes including ada itself, alkB, alkA and aidB. Genes are depicted by various 

coloured boxes in diagram. Ada becomes activated (meAda) when it repairs 

methylphosphotriester (PTE) lesions in DNA, and the methyl group is transferred by Ada to 

Cys-38 in the N-terminal domain of the protein. meAda can bind the promoter region of 

specific genes (indicated by the grey boxes in the diagram). The activation of these genes 

results in increased repair of alkylating DNA damage and probable destruction of certain 

alkylating agents, as stated in the diagram. Adapted from Sedgwick and Lindahl (2002). 
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Figure 5.4. Schematic Representation of the transcriptional activator activity of E. coli Ada. 

Ada is composed of two domains, an N-terminal and a C-terminal domain, each possessing distinct functions. The N-terminal domain 

becomes methylated at Cys-38 (meAda) to become a strong transcriptional regulator for the adaptive response in E. coli. meAda can bind a 

defined region in the promoter of downstream target genes such as alkA, alkB, aidB and ada itself. This defined region is known as the ada 

promoter and is comprised of two regions, known as the A-box and B-box, and the sequence of the ada promoter is shown in the diagram 

above. 
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 Currently, there is a large amount of literature describing and characterising this 

adaptive response in E. coli. A similar adaptive response exists in the gram positive 

bacterium Bacillus subtilis (Morohoshi & Munakata, 1987). However, in B. subtilis, the 

dual activities described for Ada in E. coli are performed by two separate proteins, namely 

AdaB, an inducible O6-AlkG ATase, and AdaA, an Alk-PT ATase (Morohoshi et al., 

1990). In B. subtilis, the alkylated form of the Alk-PT ATase also promotes transcription of 

the ada operon (Morohoshi et al., 1990). Furthermore, there are differences in the 

organisation of the ada operon between E. coli and B. subtilis and no alkB gene has been 

found in B. subtilis (Demple et al., 1985). The yeast Saccharomyces cerevisiae does not 

possess an adaptive response to alkylating damage (Maga & McEntee, 1985; Polakowska et 

al., 1986). However, an AlkA homologue has been identified in S. cerevisiae through 

complementation experiments in E. coli adaptive response mutants (Berdal et al., 1990; 

Chen et al., 1990). This yeast AlkA homologue (MAG) was able to remove 7-

methylguanine as well as 3-methyladenine from dimethyl-sulphate treated DNA, 

confirming the related nature of this enzyme to the AlkA DNA glycosylase from E.coli. 

(Berdal et al., 1990). A gene for O6-alkylguanine DNA alkyltransferase has been cloned 

from S. cerevisiae by functional complementation of an E. coli ada ogt double mutant, and 

this gene has been designated MGT1 (Sassanfar & Samson, 1990; Xiao et al., 1991). 

Mutants, in whom the MGT1 gene is disrupted, are sensitive to killing and mutagenesis 

following exposure to alkylating agents. In agreement with the lack of an adaptive response 

in S. cerevisiae, MGT1 transcript levels were not increased in response to alkylation 

treatment (Xiao et al., 1991). An improved growth response in the presence of MNNG was 

observed for Aspergillus nidulans, following exposure with a sub-lethal dose (Hooley et al., 

1988), and DNA alkyltransferase activity was also observed in this fungus (Baker et al., 

1992; Swirski et al., 1988) This activity has been shown to be highly inducible, and 
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effective at repairing O6- methylguanine and O4- methylguanine lesions, suggesting that an 

adaptive response is present in A. nidulans. To date, no corresponding response has ever 

been described for the closely related human pathogen Aspergillus fumigatus.  

 

5.2. Aims and Objectives. 

1) Establish if an adaptive response towards alkylating DNA damage exists in Aspergillus 

fumigatus. 

2) Identify the candidate key genes responsible for any adaptive response. 

3) Investigate the function of putative DNA repair genes by using a targeted gene deletion 

strategy, for the generation of specific A. fumigatus DNA repair mutants. 

4) To perform phenotypic analysis for these mutants with respect to sensitivity to DNA 

damaging agents, in particular alkylating agents. 

5) To investigate gene expression levels of key response genes upon exposure to the DNA 

alkyating agent, MNNG. 

6) To clone key response genes from A. fumigatus into S. cerevisiae to investigate if the A. 

fumigatus genes are capable of complementing a yeast MGT1 deletion. 
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5.3. Results. 

5.3.1. Identification of candidate genes for an adaptive response to alkylation damage 

in A. fumigatus. 

 The E. coli Ada protein sequence (NCBI Accession No. E. coli NP_416717.1) was 

used as a query sequence in order to perform a Blast search against all the available 

Aspergillus protein sequences at the CADRE database (Mabey et al., 2004). Currently, 

there are nine available Aspergillus genomes. Blast homology searching using the 

BLASTX function at CADRE revealed that the top two homology hits for E. coli Ada were 

in the A. fumigatus genome and that these were encoded by the genes AFUA_5G06350 and 

AFUA_2G02090. According to annotation on CADRE, these genes encode for a putative 

DNA repair and transcription factor Ada, and a methylated-DNA-protein-cysteine 

methyltransferase respectively. Following this, the E. coli Ada protein sequence was 

aligned with the AFUA_5G06350 or the AFUA_2G02090 protein sequences to look for 

specific regions of homology. To this end, an online alignment program, SIM Alignment 

Tool at the Swiss Institute of Bioinformatics (http://www.expasy.ch/tools/sim-prot.html) 

was used. Partial alignments were obtained using this online program and these alignments 

are presented in Figures 5.5 and 5.6.  Alignment of Ada with AFUA_5G06350 indicated 

that there was 44.9% sequence identity in 136 residues of overlap between the two proteins 

(Figure 5.5). Alignment of Ada with AFUA_2G02090 indicated that there was 37.3 % 

sequence identity in 67 residues of overlap between the two proteins (Figure 5.6). 

Interestingly, the N-terminal domain of Ada aligned well with the putative DNA repair and 

transcription factor (AFUA_5G06350), while the C-terminal region of Ada aligned with the 

A. fumigatus putative methylated-DNA-protein cysteine methyltransfrease 

(AFUA_2G02090). AFUA_5G06350 is thus likely to encode the methylphophotransferase 

(MPT) and AFUA_2G0290 likely encodes an alkylguaninetransferase (AGT) analogous to 

http://www.expasy.ch/tools/sim-prot.html�
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the N- and C-terminal domains of E. coli Ada (Kataoka et al., 1986; Demple et al., 1985). 

These alignments also revealed that the critical residues for methyl acceptance in E. coli 

Ada are also present in AfMPT and AfAGT. The N-terminal Ada domain accepts methyl 

groups from methylphosphotriesters and this is mediated by cysteine residue 38 (cys-38), 

which is also present in AfMPT (Figure 5.5). The C-terminal Ada domain accepts methyl 

groups from O6- methylguanine and O4- methylthymine residues, for which the critical 

residue is cys-321, and this is also conserved in AfAGT (Figure 5.6). Examination of the 

upstream regions (approx. 300 bp) of the AFUA_5G06350 and AFUA_2G02090 open 

reading frames revealed that there are potential ada binding sites in the promoter regions of 

these genes, using the E. coli A-box and B-box sequences as possible binding sites. These 

potential ada box regions are shown in Figure 5.7. To look for other genes known to be 

involved in the adaptive response in E. coli, further protein blast (NCBI) searching using 

bacterial sequences of alkB and alkA proteins revealed that there were also homologues in 

A. fumigatus encoded by the genes AFUA_6G07990 and AFUA_4G06800 respectively. 

Based on these results, the A. fumigatus genes are now referred to as AFUA_5G06350 

(Afmpt), AFUA_2G02090 (Afagt), AFUA_4G06800 (AfalkA) and AFUA_6G07990 

(AfalkB). The presence of these 4 specific genes in the genome of A. fumigatus, which are 

homologous to the key adaptive response genes in E. coli, provided a strong basis for the 

further investigation of an adaptive response to alkylation in this filamentous fungus.                               
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E.coli NP_416717.1  12  RWQSVLARDPNADGEFVFAVRTTGIFCRPSCRARHALRENVSFYANASEALAAGFRPCKR 
AFUA_5G06350  
(AfMPT)        28  RWQAVVNRDATAN-TFVYAVLTTKIYCRPSCPARLARRANVRFYDTPSQAESAGFRPCKR 
                                                  *   *                          * 
             
            CH3 
E.coli NP_416717.1  72  CQPEKANAQQHRLDKITHACRLLEQET----PVTLEALADQVAMSPFHLHRLFKATTGMT 
AFUA_5G06350  
(AfMPT)             87  CKPEMHWAANPQVQLIQKACETINLEVLNGCKPTLQKLASEANLTPSHFHRVFKKVMGVT 
                        *             
         Helix – turn - Helix 
 
E.coli NP_416717.1  128 PKAWQQAWRARRLRES 
AFUA_5G06350        147 PGQYSAAAQDCRNRNA 
(AfMPT)                                                        

 

Figure 5.5. Partial alignment of the E. coli Ada and A. fumigatus AFUA_5G06350 proteins. Accession references are E. coli, 

NP_416717.1, A. fumigatus AFUA_5G06350. Identical and conserved residues are highlighted in yellow. Red stars indicate the cysteine 

residues that ligand Zn2+ (Cys-38, Cys-42, Cys-69 and Cys-72 in the E. coli protein). ‘CH3’     points to the methyl accepting cysteines, 

corresponding to Cys-38 in the E. coli protein, indicated in red for methylphosphotriester repair. A putative Helix-turn-Helix (HTH) binding 

motif exists in both proteins and this is underlined in blue. 
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         Arg       Asn 
             Finger    Hinge 
 
E.coli NP_416717.1  269 TAFQQQVWQALRTIPCGETVSYQQLANAIGKPKAVRAVASACAANKLAIIIPCHRVVRGD 
AFUA_2G02090 
(AfAGT)             41  TPYRRRVYRTLLSVPKGRWTTYSALATHLGS--SARAVGNAMRTNPFAPEVPCHRVLATN 
                                      *     
            Helix -turn - Helix        
                CH3 
E.coli NP_416717.1  329 GTLSGYR 
AFUA_2G02090        99  GTLGGYK 
(AfAGT)                                   
     
 

Figure 5.6. Partial alignment of the E. coli Ada and A. fumigatus AFUA_2G02090 proteins. Accession references are E. coli, 

NP_416717.1, A. fumigatus AFUA_2G02090. Identical and conserved residues are highlighted in yellow.     ‘CH3’ points to the methyl 

accepting cysteines, corresponding to Cys-321 in the E. coli protein, indicated in green for O6-meG repair. A putative Helix-turn-Helix 

(HTH) binding motif exists in both proteins and this is underlined in blue. Within the proposed HTH, there is a conserved ‘arginine finger’ 

which is implicated in nucleotide flipping. An invariant Asn-hinge couples the recognition helix in this protein to the active site cysteine in 

this domain (Daniels & Tainer, 2000). 
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A. 

AGAGCCAGCCCTTGCATTCCTCTTTTCAAATGACCACATGCTCAATCTCACTAATTATGTGTGGATACAGATGAGTGAGATCG

GTTACCTACCTAAGGCACCGTGGTGGTTGGTTCCAATCCTGGCAACTGATGGAAACGAGGGTCTGCTCTCAAAGTGGCCAAT

CAGCAGCGCAGACTGCACAAAGAGGGTTCAAGTTGTCGTATTCAATCAACAATCCCAAGTGTTGCAAAAATCCCATAACCCA

TCACTATCCTGGGTTACTCTTCATCCCATTATTGTCTGTAATACCTCAAAATGCATGTGGT…………etc. 

B. 

CTCTGATTTGCTACATTGAGAGCAGCGGCTTGAGCCACCCAAACAACAGTCTCTCATATAAAACAAGTCGCGTAGCCATTTGC

ACTCTTCTTAGACTACATAACTACCCAGAACAACTAGACTAGGTGAGTCTCATCATTCCACTGATAAAGTTCATATTATTGAT

GAAAGATATAGGTCCCTGTATGATCACATGCGATCCACCTCTGCAAAGGTCACATCACCGTTATCCAATACTTGCAGAAGAG

AGCTTGGTGGTTCATATTGGATAACCACCCGAGAATAACTATGGCATCTCTTATGAGAACCAA……..etc. 

 

Figure 5.7. Potential Ada promoter binding site(s) in the 5’ upstream region of A. fumigatus AFUA_5G06350 and A. fumigatus 

AFUA_2G02090 

A. 300 bp sequence upstream of AFUA_5G06350 start site.  

B. 300 bp sequence upstream of AFUA_3G02090 start site. 

Possible ada promoter sites are highlighted in yellow. Start site (ATG) for each gene is underlined in black. 



 335

5.3.2. Confirmation of an adaptive response towards alkylating agents in Aspergillus 

fumigatus. 

 The presence of key genes in the A. fumigatus genome, the high degree of sequence 

conservation of the encoded proteins with the well described E. coli Ada (Sedgwick and 

Lindahl, 2002), and the observed adaptive response in Aspergillus nidulans (Hooley ey al., 

1988; Swirski et al., 1988; Baker et al., 1992) strongly suggested the presence of a similar 

adaptive response to alkylating agents in A. fumigatus. This possibility was investigated 

initially on the phenotypic level by performing plate assays containing the highly 

mutagenic alkylating agent, MNNG. To this end, A. fumigatus Af293 conidia were used to 

inoculate MEA agar plates or MEA plates supplemented with a non-lethal dose of MNNG 

(0.5 µg/ml). This dose of MNNG has been used by others as an inducing dose for the 

induction of alkyltransferase activity in A. nidulans (Baker et al., 1992). Following 

overnight growth, plugs were taken from these plates and transferred to fresh MEA plates 

supplemented with concentrations of MNNG (0-4 µg/ml). Plates were incubated for a 

further 72 hr until colonies became clearly visible. The radial growth of the colonies was 

measured (mm) at 72 hr. A. fumigatus colonies which had been pre-incubated/adapted 

overnight on MEA containing an inducing dose of MNNG (0.5 µg/ml) exhibited a greater 

growth rate than colonies which were pre-incubated on MEA media only (p < 0.001). This 

work provides evidence for the presence of an adaptive response towards the alkylating 

agent MNNG in A. fumigatus (Figure 5.8).  

 Gene expression analysis was performed in order to investigate if this adaptive 

response seen in the plate assays described above coincided with the induction of specific 

genes upon treatment of A. fumigatus cultures with MNNG.  A. fumigatus Af293 cultures (n 

= 9, 100 ml each) were incubated overnight at 37 ºC. MNNG (0.5 µg/ml final 

concentration) was added the following morning to four of the cultures in order to induce 
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the adaptive response. Prior to the addition of MNNG to any of the cultures, one was taken 

and harvested as an uninduced reference at T = 0 hr. The remaining eight cultures (four of 

which had MNNG added) were harvested at the following time points: 30 min, 1 hr, 2 hr 

and 3 hr post induction (Section 2.2.1.1). Total RNA was isolated (Section 2.2.11.1) and 

quantified using spectrophotometry. RNA was DNAse treated, reverse-transcribed to 

cDNA and RT-PCR was performed (Sections 2.2.11.3, 2.2.11.4, 2.2.11.5). RT-PCR 

indicated that AFUA_5G06350 (Afmpt) and AFUA_2G02090 (Afagt) were up-regulated in 

the presence of MNNG, while neither AFUA_6G07990 (AfalkB) or AFUA_4G46800 

(AfalkA) gene expression appeared to be altered upon exposure to MNNG (Figure 5.9). 

Induction of Afagt was observed at 30 min following MNNG addition and this elevated 

gene expression was maintained for at least 3 hr following MNNG addition (Figure 5.9). 

Afmpt expression was elevated at one hour following addition of MNNG and this was also 

persistent throughout the 3 hr period investigated in this work (Figure 5.9). The calmodulin 

(calm) gene, expressed constitutively in A. fumigatus, was used as a control for all RT-PCR 

experiments (Section 2.2.11.15) as described previously. 
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Figure 5.8. An adaptive response towards alkylating agents exists in Aspergillus 

fumigatus.  

Radial growth (mm) of Aspergillus fumigatus Af293 on MEA agar supplemented with 

increasing concentrations of the alkylating agent MNNG (0-4 µg/ml). Growth was 

monitored at 72 h incubation at 37 ºC following at overnight induction with a sub-lethal 

dose of MNNG (0.5 µg/ml). This data displays the mean of three independent experiments 

± the standard error or the mean. Key *** = p < 0.001. 
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Figure 5.9. RT-PCR analysis of A. fumigatus genes (Afmpt, Afagt, AfalkA and AfalkB) 

with or without addition of an inducing dose of MNNG (0.5 µg/ml). 

A. RNA integrity was determined by the presence of intact 26S and 18S ribosomal subunits 

(rRNA).  

B-E. RT-PCR products (5 µl) for A. fumigatus genes as listed. 

F. RT-PCR for the calmodulin (calm) gene confirms absence of genomic DNA (gDNA) in 

cDNA preparations.  

T = 0: RT-PCR analysis from overnight un-induced cultures. 

U = 30 min, U = 1 hr, U = 2 hr, U = 2 hr: RT-PCR analysis from un-induced cultures at 

relevant time points. 

I = 30 min, I = 1 hr, I = 2 hr, I = 3 hr: RT-PCR analysis from induced cultures at relevant 

time points. 

All RT-PCR products were resolved on 2 % (w/v) agarose gels. 
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5.3.3. Deletion of Afmpt and Afagt from the genome of A. fumigatus. 

 For inactivation of AFUA_5G06350 (Afmpt) and AFUA_2G02090 (Afagt), a 

bipartite gene disruption strategy was employed (Section 2.2.4). The fully sequenced A. 

fumigatus Af293 strain was used in this study. Respective fragments including flanking 

regions were amplified from A. fumigatus genomic DNA by PCR (Section 2.2.2.3) 

Ligations were carried out overnight with T4 DNA Ligase (Promega) and ligation products 

were used as the DNA template for the generation of the final bipartite disruption 

constructs (Section 2.2.2.7). ptrA was released from the pSK275 plasmid (a kind gift from 

Professor Sven Krappmann) via restriction digestion (Section 2.2.6). PCR reactions were 

performed using the Expand Long Range Template PCR System (Roche).  

 

5.3.3.1. Generation of AFUA_5G06350 and AFUA_2G02090 bipartite disruption 

constructs. 

 The AFUA_5G06350 and AFUA_2G02090 have coding regions of 687 bp and 453 

bp in length respectively. The disruption strategies that were employed in this work resulted 

in the deletion of the entire coding region of these genes from the genome. For both genes, 

PCR 1 and PCR 2 amplified 1.2 kb corresponding to the 5’ and 3’ flanking regions. For 

AFUA_5G06350, PCR 1 and PCR 2 were engineered to contain an MfeI and a HindIII site 

respectively. For AFUA_2G02090, PCR 1 and PCR 2 were engineered to contain an XmaI 

and a KpnI site respectively. PCR products and pSK275 were digested with either MfeI or 

HindIII (for AFUA_5G06350), or XmaI or KpnI (AFUA_2G02090). pSK275 was digested 

with MfeI and HindIII or XmaI and KpnI to release ptrA. Digested PCR products and ptrA 

were ligated to yield Ligation 1 (PCR 1 ligated to ptrA) and Ligation 2 (PCR 2 ligated to 

ptrA). These ligations were used as a template for the PCR amplification of the final 

bipartite disruption constructs. Agarose gel images of PCR 1, 2, 3 and 4 products and 
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digested ptrA for the generation of AFUA_5G06350 disruption constructs can be visualised 

in Figure 5.10, while disruption constructs for AFUA_2G02090 are displayed in Figure 

5.11. 
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Figure 5.10. AFUA_5G06350 disruption constructs. 

A. PCR 1 and PCR 2 products and ptrA released from pSK275 plasmid. 

Lane 1: purified PCR 1 product, Lane 2: purified PCR 2 product, Lane 3: pSK275 digested 

with MfeI and HindIII, yielding 2 fragments; 2.9 kb (pSK275 backbone) and 2.0 kb (ptrA). 

B. Lane 1-5: PCR 3 products (2.6 kb). 

C. Lanes 1-5: PCR 4 products (2.2 kb). 

M: Molecular weight marker (Roche VII).  
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A. 

 

B. 

 

 

Figure 5.11. AFUA_2G02090 disruption constructs. 

A. PCR 1 and PCR 2 products and ptrA released from pSK275 plasmid.  

Lane 1: pSK275 digested with XmaI and KpnI, yielding 2 fragments; 2.9 kb (pSK275 

backbone) and 2.0 kb (ptrA), Lane 2: purified PCR 1 product, Lane 3: purified PCR 2 

product.  

B. Lane 1: PCR 3 (2.6 kb), Lane 2: PCR 4 products (2.3 kb). 

M: Molecular weight marker (Roche VII).  
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5.3.3.2. Identification of A. fumigatus AFUA_5G06350 and AFUA_2G02090 mutant 

strains. 

 For generation of A. fumigatus mutant strains, protoplasts were transformed with 5 

µg DNA for of each side of the bipartite construct and transformed protoplasts were 

selected in the presence of pyrithiamine (0.1 µg/ml) (Section 2.2.23). Transformants were 

isolated and Southern blot analysis was performed as described earlier. The identification 

of AFUA_5G06350 and AFUA_2G02090 mutant strains will be dealt with separately in 

the two following sections. 

 

5.3.3.2.1. Identification of A. fumigatus AFUA_5G06350 mutant strain (termed 

∆Afmpt). 

 Ten colonies were picked from transformation plates and Southern blot analysis was 

performed on these. gDNA from A. fumigatus Af293 and these transformants was 

restriction digested with AfeI and Southern blotting was performed. A DIG-labelled probe 

was generated using the primers AFUA_5G06350 Primer 2 R and AFUA_5G06350 Primer 

5 F, which amplified a 1 kb product, corresponding to the 5’ flanking region of 

AFUA_5G06350. This probe was used to hybridise AfeI digested DNA. A schematic 

representation of the Southern blot strategy and hybridisation patterns is shown in Figure 

5.12. DIG Detection was performed in order to detect hybridisation of DIG-labelled probes 

(Section 2.1.18). Using this detection strategy, expected hybridisation patterns were as 

follows: Af293: 3,951 bp, ∆Afmpt: 5,172 bp. This analysis revealed one integration of the 

disruption construct in colony number 10, by the observation of a band at the correct size of 

5,172 bp and the absence of a wild-type band (3951 bp) (Figure 5.13). Colony number 10 

was single spore isolated as described in Methods section, and Southern blot analysis was 

performed on 5 of these colonies, number 10.1 – 10.5. gDNA from these colonies was 
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digested with StuI and probed for the pyrithimine coding sequence. Using the primers, 

OptrA1 and OptrA2, a 560 bp DIG-labelled probe corresponding to ptrA was prepared by 

PCR using pSK275 as a template. This probe was used to hybridise StuI digested DNA. 

This analysis confirmed a single integration of ptrA into 4 of the single spored 

transformants 10.1 – 10.4, and no ptrA in wild-type as expected (Figure 5.13). 
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Figure 5.12. Southern blotting and hybridisation strategy used to identify A. fumigatus ∆Afmpt. 

The Afmpt locus in wild-type (A) and ∆Afmpt (B) is shown. The entire Afmpt coding region is indicated as a blue bar and the 5’ and 3’ 

flanking regions are shown in green.  The entire Afmpt gene was deleted and replaced by the pyrithiamine resistance cassette (ptrA) from A. 

oryzae (Kubodera et al., 2000; 2002). ptrA is indicated in red. Black vertical lines indicate AfeI restriction sites in the genomic sequence of 

wild-type and ∆Afmpt. Genomic DNA from pyrithiamine-resistance colonies was AfeI digested and probed with a 1 kb DIG-labelled 

fragment corresponding to the 5’ region of Afmpt. The probe is indicated with a black horizontal line. The positions for probe binding are 

indicated with yellow horizontal lines. Expected hybridisation patterns: Af293 wild-type-3.95 kb, ∆Afmpt-5.1 kb. 
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Figure 5.13. Southern blot confirming deletion of AFUA_5G06350 (∆Afmpt) in A. 

fumigatus. 

A. AfeI digested gDNA probed with the 5’ flanking region of AFUA_5G06350. WT: Af293 

gDNA, 10, 14: gDNA from 2 of the pyrithiamine resistant transformants. 

B. StuI digested gDNA probed with a pyrithimine coding region probe. 10.1 – 10.5: gDNA 

from 5 single spore colonies from transformant 10. WT: Af293 gDNA. 

M. Molecular weight marker (Roche VII). 
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5.3.3.2.2. Identification of A. fumigatus AFUA_2G02090 mutant strain (termed 

∆Afagt). 

 Fifteen colonies were picked from transformation plates and Southern blot analysis 

was performed on these. gDNA from A. fumigatus Af293 and these transformants was 

restriction digested with MfeI and Southern blotting was performed. A 1.2 kb DIG-labelled 

probe was generated using the primers AFUA_2G02090 Primer 1 and AFUA_2G02090 

Primer 2, corresponding to the 5’ flanking region of AFU_2G02090. This probe was used 

to hybridise MfeI digested DNA. Using this detection strategy, expected hybridisation 

patterns were as follows: Af293: 3,969 bp, ∆Afagt: 2,619 bp. A schematic representation of 

this strategy is shown in Figure 5.14. This analysis revealed several integrations of the 

disruption construct in many of the transformants, but three transformants (transformants 9, 

11 and 24) in particular appeared to contain only one integration by the visualisation of the 

correct band size and absence of a wild-type band. Hybridised gDNA from transformants 9, 

11 and 24 are circled in red in Figure 5.15. Colonies number 9, 11 and 24 were single spore 

isolated (Section 2.2.25) and Southern blot analysis was performed on 9 representative 

colonies from these transformants. gDNA from these colonies was digested with MfeI and 

probed for the 5’ flanking region of AFUA_2G0290. This blot is shown in Figure 5.15 and 

confirms the disruption of AFUA_2G02090 in all single spored transformants, with the 

correct hybridisation pattern seen in all lanes. 
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Figure 5.14. Southern blotting and hybridisation strategy used to identify A. fumigatus ∆Afagt. 

The Afagt locus in wild-type (A) and ∆Afagt (B) is shown. The entire Afmpt coding region is indicated as a blue bar and the 5’ and 3’ 

flanking regions are shown in pink.  The entire Afagt gene was deleted and replaced by the pyrithiamine resistance cassette (ptrA) from A. 

oryzae (Kubodera et al., 2000; 2002). ptrA is indicated in red. Black vertical lines indicate MfeI restriction sites in the genomic sequence of 

wild-type and ∆Afagt. Genomic DNA from pyrithiamine-resistance colonies was MfeI digested and probed with a 1.2 kb DIG-labelled 

fragment corresponding to the 5’ region of Afagt. The probe is indicated with a black horizontal line. The positions for probe binding are 

indicated with yellow horizontal lines. Expected hybridisation patterns: Af293 wild-type-3.9 kb, ∆Afmpt-2.6 kb. 
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Figure 5.15. Southern blot confirming deletion of AFUA_2G02090 (∆Afagt) in A. 

fumigatus. 

A. Southern blot on gDNA of pyrithimaine resistant transformants. gDNA was digested 

with MfeI, and subsequently probed for the 5’ flanking region of AFUA_2G02090. WT: 

Af293 gDNA, 1-24: gDNA from each of the transformants. 

B. Southern blot analysis on single-spored colonies confirming disruption of 

AFUA2G02090 (∆Afagt) in A. fumigatus. gDNA of Transformants 9, 11 and 24 (Figure 

13A) was digested with MfeI, and subsequently probed for the 5’ flanking region of 

AFUA_2G02090. WT: Af293 gDNA, 9.1-3, 11.1-3, 24.1-3: gDNA from 3 representative 

colonies of each of transformants 9, 11 and 24. 

M.   Molecular weight marker (Roche VII).  
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5.3.4. A. fumigatus ∆Afmpt and ∆Afagt are impaired in the response to alkylating DNA 

damage. 

 To establish a role for Afmpt in mediating the adaptive response to MNNG that was 

observed, plate assays were performed in increasing concentrations of MNNG as described 

(Section 2.2.26) and A. fumigatus wild-type and ∆Afmpt were compared by radial growth of 

colonies. Both strains showed identical growth rates in the absence of MNNG (Figure 

5.14). The experiment indicated that ∆Afmpt was completely deficient in the adaptive 

response (Figure 5.14). ∆Afmpt showed identical growth rates on all concentrations of 

MNNG tested regardless of whether this strain was pre-treated or not with an inducing dose 

of MNNG. In addition, these growth rates were significantly lower than growth of the wild-

type strain (p < 0.001). In fact, the ∆Afmpt strain showed complete inability to grow at the 

highest MNNG concentration tested (4 µg/ml) (Figure 5.14). This experiment also revealed 

that the ∆Afmpt mutant was more sensitive to MNNG than wild-type at all concentrations 

tested when both strains were uninduced (p <0.001) (Figure 5.14).  
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Figure 5.16. Afmpt is essential for the adaptive response to MNNG in A. fumigatus. 

Radial growth (mm) of Aspergillus fumigatus wild-type Af293 or ∆Afmpt on MEA agar 

supplemented with increasing concentrations of the alkylating agent MNNG (0-4 µg/ml). 

Growth was monitored at 72 hr incubation at 37 ºC following at overnight induction with a 

sub-lethal dose of MNNG (0.5 µg/ml). Data represents the mean ± standard error of three 

experiments. Key *** = p < 0.001. 
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 Upon observing that the ∆Afmpt mutant was more sensitive to MNNG than wild-

type at all concentrations tested even when both strains were uninduced, sensitivity to a 

range of other DNA alkylating and damaging agents was tested in the mutants, and a 

summary of the conditions tested is presented in Table 2.2. Alkylating agents tested include 

EMS and MMS. Other agents that may lead to DNA damage by indirect means were also 

tested in this study to investigate the extent of disruption of the alkylation damage response. 

The various agents examined in this study were gliotoxin, phleomycin and hydrogen 

peroxide. Gliotoxin, described earlier, is a member of the epipolythiodioxopiperazine 

(ETP) family of highly reactive molecules which have been reported to lead to oxygen free 

radical formation during redox cycling (Munday, 1982). Hydrogen peroxide is a strong 

oxidising agent, and is known to cause oxidative stress in cells, of which one of the 

downstream effects is DNA damage (Klaunig et al., 2010). Phleomycin blocks S-phase 

entry in the cell cycle (Robles et al., 1999). Although the mechanism of action of 

phleomycin has not been clearly defined, it reportedly damages DNA by causing strand 

breakage and degradation (Sleigh, 1976; Sleigh & Grigg, 1976). Both ∆Afmpt and ∆Afagt 

were extremely sensitive to MNNG at all concentrations tested, compared to wild-type (p < 

0.001) (Figure 5.17a and 5.17b). Neither of the mutants exhibited increased sensitivity to 

MMS (Figure 5.18), EMS (Figure 5.19), phleomycin or gliotoxin when compared to wild-

type. MNNG, MMS and EMS plates shown in the figures contain two concentrations of 

conidia (5000 spores (top of plates) or 50 spores (bottom of plates)) of the relevant strain 

and each plate was inoculated in duplicate. Both ∆Afmpt and ∆Afagt displayed a slight 

sensitivity to the highest concentration of hydrogen peroxide tested (3 mM), when 

compared to wild-type (p < 0.01) (Figure 5.20). 
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Figure 5.17a. Phenotypic analysis of A. fumigatus strains exposed to the DNA damaging agent MNNG. Rows A: A. fumigatus Af293, 

B: A. fumigatus ∆mpt, C: A. fumigatus ∆agt. Columns 1: 0 MNNG, 2: 0.5 µg/ml MNNG, 3: 1 µg/ml MNNG, 4: 2 µg/ml MNNG. All plates 

were photographed following 72 hr incubation at 37 ºC. 
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Figure 5.17b. A. fumigatus ∆Afmpt and ∆Afagt are extremely sensitive to MNNG 

exposure. 

Radial growths of A. fumigatus strains following MNNG exposure indicates that both 

∆Afmpt and ∆Afagt are more sensitive to all concentrations tested (p < 0.001) compared to 

wild-type Af293. Data represent the mean ± standard error of three experiments.  

Key: *** = p < 0.001. 

B. 
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Figure 5.18. Phenotypic analysis of A. fumigatus strains exposed to the DNA damaging agent MMS. Rows A: A. fumigatus Af293, B: 

A. fumigatus ∆mpt, C: A. fumigatus ∆agt. Columns 1: 0 MMS, 2: 0.01 % (w/v) MMS, 3: 0.02 % (w/v) MMS, 4: 0.04 % (w/v) MMS. All 

plates were photographed following 72 hr incubation at 37 ºC. 
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Figure 5.19. Phenotypic analysis of A. fumigatus strains exposed to the DNA damaging agent EMS. Rows A: A. fumigatus Af293, B: A. 

fumigatus ∆mpt, C: A. fumigatus ∆agt. Columns 1: 0 EMS, 2: 0.02 % (w/v) EMS, 3: 0.04 % (w/v) EMS, 4: 0.08 % (w/v) EMS. All plates 

were photographed following 72 hr incubation at 37 ºC. 
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                                           AMM Only            AMM (3 mM H2O2) 

Figure 5.20. A. fumigatus ∆Afmpt and ∆Afagt display increased sensitivity to 3 mM 

Hydrogen peroxide (H2O2). 

A. Exposure of A. fumigatus strains to increasing concentrations of H2O2. Radial growth 

was measured (cm) and graph depicts growth at 72 hr incubation at 37 ºC. This data 

displays the mean radial growth from three independent experiments ± standard error of 

three experiments. Key: *** = p < 0.001, ** = p < 0.01. 

B. Colonies following 72 hr growth on AMM plates containing hydrogen peroxide. Bottom 

colony in each photo represents Af293 (wt), while ∆Afagt and ∆Afmpt are on the upper left 

and right portion of the plate respectively. 

A. 

B. 
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5.3.5. A. fumigatus mpt is essential for the induction of A. fumigatus agt in response to 

alkylating DNA damage. 

 To investigate if the loss of an adaptive response to MNNG in ∆Afmpt and 

increased sensitivity of both ∆Afmpt and ∆Afagt to MNNG coincided with a loss of 

protective gene expression of Afmpt and Afagt, RT-PCR analysis was performed on 

cultures which were exposed to MNNG (0.5 µg/ml). The set-up of this experiment is 

described earlier in this chapter, and this was repeated for both mutant strains. This gene 

expression analysis indicated that in ∆Afmpt, loss of Afagt induction upon MNNG addition 

was apparent. Figure 5.21 displays the expression of Afagt in the ∆Afmpt mutant strain 

either with or without the addition of MNNG to growing cultures. The expression of calm 

is also shown. Similar to calm, Afagt shows almost constitutive transcript levels when 

cultures were un-induced or induced. This is in contrast to the pattern of Afagt expression 

observed in induced cultures wild-type Af293 (Figure 5.9). As observed for A. fumigatus 

Af293 (Figure 5.9), no changes in gene expression of AfAlkA or AfAlkB was observed in 

any of the strains tested with or without addition of MNNG. In addition, Afmpt gene 

expression in A. fumigatus ∆Afagt (Figure 5.22) shows a similar pattern to that of A. 

fumigatus Af293 (Figure 5.9). Afmpt expression is increased in response to MNNG addition 

and this elevated gene expression is maintained over the 3 hr time period observed in this 

study (Figure 5.22). Afmpt expression was absent in the ∆Afmpt strain (Figure 5.21), and 

Afagt expression was absent in the ∆Afagt strain (Figure 5.22). 
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Figure 5.21.  Expression of Afagt is not induced upon MNNG exposure in the ∆mpt 

strain. 

RT-PCR analysis of Afagt and Afmpt gene expression with or without MNNG exposure in 

A. fumigatus ∆mpt. 

A. Expression of the housekeeper gene calmodulin (calm).  

B. Afagt expression.  

C. Afmpt expression 

The time points as which gene expression was examined is as follows, and these time 

points are relevant for A, B and C. 

T = 0: RT-PCR analysis from overnight un-induced cultures. 

U: Un-induced cultures: U = 30 min U = 2 hr. 

I: Induced cultures: I = 30 min, I = 1 hr, I = 2 hr (post MNNG addition). 

All RT-PCR products were resolved in 2 % (w/v) agarose gels. 
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Figure 5.22.  A. fumigatus mpt is induced upon exposure to MNNG and this is not 

dependant on Afagt. 

RT-PCR analysis of Afmpt and Afagt gene expression with or without MNNG exposure in 

in A. fumigatus ∆agt. 

A. Expression of the housekeeper gene calmodulin (calm).  

B. Afmpt expression. 

C. Afagt expression. 

The time points as which gene expression was examined is as follows, and these time 

points are relevant for A, B and C. 

T = 0: RT-PCR analysis from overnight un-induced cultures. 

U: Un-induced cultures: U = 30 min, U = 1 hr, U = 2 hr. 

I: Induced cultures: I = 30 min, I = 1 hr, I = 2 hr, I = 3 hr (post MNNG addition). 

All RT-PCR products were resolved in 2 % (w/v) agarose gels. 
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5.3.6. Cloning of AFUA_5G06350 and AFUA_2G02090 into PC210 vector for 

expression in Saccharomyces cerevisiae. 

To introduce Afmpt (AFUA_5G06350) and Afagt (AFUA_2G02090) into S. 

cerevisiae, plasmids were constructed with either of the A. fumigatus coding regions 

inserted under the control of a constitutive yeast promoter. Plasmid pC210 harbours the 

SSA1 coding sequence under the control of the constitutive SSA2 promoter. The cloning 

strategy is described in Section 2.2.19. Colony PCR (Section 2.2.16) confirmed the 

presence of Afmpt or Afagt in the majority of plasmids screened (Figure 5.23). 

Recombinant plasmids were checked for the orientation of Afmpt or Afagt by restriction 

digestion with Age1 and Sph1 and the expected fragments for were: 4,500 bp and 2,892 bp 

for pC-AFUA_2G02090 and 4,500 bp and 2,892 bp for pC-AFUA_5G06350 respectively. 

These restriction digests are shown in Figure 5.23. This confirmed directional cloning of 

the A. fumigatus genes into pC210 vector, which resulted in pC-AFUA_5G06350 and pC-

AFUA_2G02090. The pC-AFUA_5G06350 construct from colonies 1 and 3, and the pC-

AFUA_2G02090 construct from colony 5 were chosen for sequencing, and the integrity of 

these constructs was by sequencing by commercial arrangement.  
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Figure 5.23. Cloning and confirmation of AFUA_5G06350 and AFUA_2G02090 into 

pC210. 

A. Preparation of A. fumigatus genes and pC210 for cloning. Lane 1: Undigested pC210, 

Lane 2: pC210 cut with NdeI and SphI, Lane 3: AFUA_5G06350 PCR product, Lane 4: 

AFUA_2G02090 PCR product.  

B. Colony PCR to check for presence of A. fumigatus genes in E. coli transformants. Lanes 

1-6: AFUA_5G06350 amplified from E. coli colonies. Lanes 7-9: AFUA_2G02090 

amplified from E. coli colonies. Lane 10: AFUA_5G06350 amplified from genomic DNA, 

Lane 11: gDNA control. 

C. Restriction digestion to check for directional cloning of A. fumigatus genes into pC210. 

Lanes 1-3: Plasmids from E. coli colonies (AFUA_5G06350) 1-3. Lane 4: pC210 uncut. 

Lane 5-6: Plasmids from E. coli colonies (AFUA_2G02090).  

M. Molecular weight marker (Roche VII). 
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5.3.7. Transformation of pC-AFUA_5G06350 and pC-AFUA_2G02090 into S. 

cerevisiae. 

 Directional cloning of AFUA_5G06350 or AFUA_2G02090 into pC210 resulted in 

two plasmids; pC-AFUA_5G06350 and pC-AFUA_2G02090 respectively. Once the 

generation of pC-AFUA_5G06350 and pC-AFUA_2G02090 was confirmed, these 

constructs were individually transformed into S. cerevisiae (Section 2.2.20). The S. 

cerevisiae strain used in this study was BY4741 (Table 2.4). This yeast strain has a deletion 

in the MGT1 gene (analogous to the constitutive ogt alkylation repair gene from E. coli) 

(Sedgwick and Lindahl, 2002). Eight colonies from each transformation plate were 

selected, restreaked on fresh selective medium and subjected to colony PCR (Section 

2.2.16) to ensure the presence of either AFUA_2G02090 or AFUA_5G06350. PCR 

reactions were performed using the primer pairs AFUA5G06350 PC210 F and 

AFUA5G06350 PC210 R or AFUA_2G02090 PC210 F and AFUA_2G02090 PC210 

R.These PCR reactions should yield products sizes of approximately 700 bp and 460 bp 

indicating successful transformation of pC-AFUA_5G06350 and pC-AFUA_2G02090 

respectively. PCR products were resolved on 1% (w/v) agarose gels (Figure 5.24). This 

confirmed that either pC-AFUA_5G06350 or pC-AFUA_2G02090 had been successfully 

transformed in all yeast colonies selected. 
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A. 

 

B. 

 

 

Figure 5.24. Confirmation of S. cerevisiae transformed with pC-AFUA_5G06350 and 

pC-AFUA_2G02090.  

A. PCR reactions from yeast colonies transformed with pC-AFUA_5G06350. Lane 1-8: 

PCR reactions from transformed yeast colonies 1-8, Lane 9: genomic DNA positive 

control, Lane 10: S. cerevisiae BY4741 negative control. 

B. PCR reactions from yeast colonies transformed with pC-AFUA_2G02090. Lane 1-8: 

PCR reactions from transformed yeast colonies 1-8, Lane 9: genomic DNA positive 

control, Lane 10: S. cerevisiae BY4741 negative control. 

M. Molecular weight marker (Roche VII). 
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5.3.8. Aspergillus fumigatus Afmpt and Afagt are capable of complementing an MGT1 

deletion in Saccharomyces cerevisiae. 

 S. cerevisiae BY4741 strains bearing Afmpt or Afagt are referred to as Sc + Afmpt 

and Sc + Afagt respectively. The BY4741 YDL200c strain was also transformed with the 

pPRS315 vector containing the SSA2 promoter but no downstream gene. This strain is 

referred to as Sc +Empty Vector and served as the control strain for yeast dot growth 

experiments.  Dot growth assays (Section 2.2.21) were performed on these strains in the 

presence of increasing concentrations of MNNG in order to determine if either of the A. 

fumigatus genes could complement the yeast MGT1 deletion. Cells were tested for growth 

on YPD (Section 2.1.1.23) containing MNNG at concentrations of 0, 4, 8, 16, 32 and 64 

µg/ml. Growth was monitored at 2 and 3 days post incubation at 30 ºC. Cells were 

photographed at 3 days post incubation and this is displayed in Figure 5.25. All strains 

displayed equal growth rates on YPD (Figure 5.25 A).  Sc + Afagt was the only strain to 

display growth at all concentrations of MNNG tested (Figure 5.25 B-F). At MNNG 

concentrations of 4-8 µg/ml, Sc + Afagt displayed increased growth compared to the 

control and Sc + Afmpt strains. At 8 µg/ml MNNG, the control strain displays severely 

hindered growth, with no growth whatsoever from 16 µg/ml MNNG and above. At MNNG 

concentrations of 8 µg/ml and 16 µg/ml, Sc + Afmpt displays greater growth compared to 

the control strain (Figure 5.25 C-D).  
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Figure 5.25. Complementation of Saccharomyces cerevisiae MGT1 deletion with A. 

fumigatus adaptive response genes..  

A-F: S. cerevisiae strains were spotted onto YPD agar plates containing increasing 

concentrations of the alkylating agent MNNG; A: YPD only, B: 4 µg/ml MNNG, C: 8 

µg/ml MNNG, D: 16 µg/ml MNNG, E: 32 µg/ml MNNG, F: 64 µg/ml MNNG. The order 

of strains from top to bottom of each panel is Sc + Empty Vector, Sc + Afmpt and Sc + 

Afagt. 

Sc + Empty Vector 

Sc + Afmpt 

Sc + Afagt 0 µg/ml MNNG 

4 µg/ml MNNG 

8 µg/ml MNNG 

16 µg/ml MNNG 

32 µg/ml MNNG 

64 µg/ml MNNG 

A. 

B. 

C. 

D. 
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 5.4. Discussion. 

 The Ada protein of E. coli confers resistance to the biological effects of alkylating 

agents through its dual functions as both a transcriptional activator of the adaptive response 

genes (ada, aidB, alkA and alkB), and as a direct repair enzyme for the mutagenic lesions 

caused by alkylating agents such as N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG) (Teo 

et al., 1984; Nakabeppu et al., 1986). Bioinformatic analysis indicated that there are 

homologues of ada in the genome of A. fumigatus, and two genes in particular, Afmpt 

(AFUA_5G06350) and Afagt (AFUA_2G02090) encode proteins which seem to 

correspond to the transcriptional activating domain or the methylguanine transferase 

domain of E. coli Ada respectively. Also, there were genes homologous to E. coli alkB and 

alkA in the A. fumigatus genome; AFUA_6G07990 (AfalkB) and AFUA_4G46800 

(AfalkA), respectively. The presence of these four genes strongly suggested that an adaptive 

response to alkylating agents was present in A. fumigatus, despite no previous reports of 

this in the literature.  

 Protein sequence alignment of A. fumigatus AfMPT indicated a high level of 

sequence conservation with the N-terminal transcriptional activator domain of E. coli Ada, 

strongly indicating that AfMPT could be acting as a transcriptional activator for the 

adaptive response in A. fumigatus. Alignment of AfAGT with E. coli Ada indicates that 

AfAGT is likely to be a functional homologue of the C-terminal domain of Ada, possessing 

the O6- methylguanine and O4- methylthiamine methyltransferase activities. Indeed, both 

AfMPT and AfAGT possess the conserved cysteine residues which have been proven to be 

the critical sites for acceptance of the methyl groups in E. coli Ada. The N-terminal Ada 

domain accepts methyl groups from methylphosphotriesters and this is mediated by 

cysteine residue 38 (cys-38) (Takinowaki et al., 2005), which is conserved in AfMPT. The 

C-terminal Ada domain accepts methyl groups from O6- methylguanine and O4- 
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methylthymine residues, thereby detoxifying these bases in the DNA. The critical C-

terminal residue in Ada is cys-321 (Demple et al., 1985), and this is also conserved in 

AfAGT.  

 It has been reported that an adaptive response exists in the closely related fungus, 

Aspergillus nidulans (Hooley et al., 1988). DNA alkyltransferase activity was also 

observed in this fungus (Baker et al., 1992; Swirski et al., 1988). This activity has been 

shown to be highly inducible, and effective at repairing O6- methylguanine and O4- 

methylthymine lesions, indicative of an adaptive response present in A. nidulans (Baker et 

al., 1992). However, there have not been any functional genomic studies performed to 

investigate what genes are responsible for this response in a filamentous fungus. Hooley 

and co-workers have shown an improvement in the growth of wild-type A. nidulans upon 

MNNG challenge following a pre-treatment or induction with a non-lethal dose of MNNG 

(Hooley et al., 1988). The same approach was taken in the work presented here to 

investigate if an adaptive response was functional in A. fumigatus. In all experiments in this 

study, adaptation or induction of the adaptive response was mediated by culturing A. 

fumigatus strains in MNNG at a concentration of 0.5 µg/ml. Indeed, pre-treatment of A. 

fumigatus Af293 with MNNG led to a significant improvement in radial growth on 

subsequent exposure to MNNG (0.5-4 µg/ml) compared to un-induced cultures (p < 0.001). 

On all MNNG concentrations tested, wild-type induced cultures displayed 1.5-2 fold 

greater radial growth compared to un-induced controls. This clearly demonstrates a 

functional adaptive response to alkylating agents in A. fumigatus.  

 The adaptive response was further investigated by examining the expression levels 

of genes likely to be responsible for this response. The expression levels of Afmpt, Afagt, 

AfalkB and AfalkA was examined following addition of MNNG (0.5 µg/ml) to overnight 

liquid cultures. Gene expression was monitored over a three hour time period, specifically 
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at 30 min, 1, 2 and 3 hr following addition of MNNG as this dose was non-lethal and 

sufficient to induce the adaptive response on agar plates. Total RNA was extracted and 

reverse-transcribed to cDNA and RT-PCR was carried out for the 4 genes of interest. RT-

PCR indicated that the expression levels of Afmpt and Afagt were increased upon exposure 

to MNNG, while no obvious change in gene expression was observed for AfalkB or AfalkA. 

This suggests that Afmpt and Afagt are important in the adaptive response in A. fumigatus. 

The alkB and alkA homologues could also play important roles in repair of alkylation 

damage but did not appear to be induced in the conditions used in this study. Induction of 

Afagt was observed at 30 min following MNNG addition and this elevated gene expression 

was maintained for at least 3 hr following MNNG addition. This indicates that the repair 

activity of Afagt is initiated rapidly following exposure to MNNG and that this response is 

persistent for several hours. Afmpt expression was elevated at 1 hr following addition of 

MNNG and this was also persistent throughout the 3 hr investigated in this work.   

 After confirming an adaptive response, and identifying two key genes highly 

induced upon exposure to MNNG, the roles of the Afmpt and Afagt encoded proteins within 

A. fumigatus were investigated further using a gene disruption approach. Both these genes 

were individually deleted in A. fumigatus Af293 (Nierman et al., 2005) using a bipartite 

strategy and the pyrithiamine resistance marker (ptrA) for selection (Kubodera et al., 2000; 

Kubodera et al., 2002; Nielsen et al., 2006). Single homologous integrations of ptrA in 

place of either Afmpt or Afagt were confirmed by Southern blot analysis, and abolition of 

corresponding gene expression was confirmed by RT-PCR. These mutant strains were 

termed ∆Afmpt and ∆Afagt respectively. ∆Afmpt was characterised for adaptation to 

alkylating agents, specifically MNNG, while both ∆Afmpt and ∆Afagt were characterised 

for sensitivity to a range of alkylating and other DNA damaging agents. Gene induction of 

adaptive response genes in response to MNNG was also investigated in these mutants.  
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 When tested for an adaptive response, ∆Afmpt failed to adapt to MNNG following 

induction with a non-lethal dose when compared to wild-type A. fumigatus Af293. This was 

significant at all concentrations of MNNG tested (p < 0.001). In fact, ∆Afmpt displayed 

almost identical growth rate on MNNG from 0-4 µg/ml whether or not it was induced with 

MNNG (0.5 µg/ml) overnight, indicating complete loss of the adaptive response when 

Afmpt was absent, and confirming that adaptation, at least to MNNG, is solely mediated by 

this protein within A. fumigatus.  

 Both ∆Afmpt and ∆Afagt were tested for sensitivity to a range of alkylating agents, 

including MNNG, Methyl methanesulfonate (MMS) and Ethyl methanesulfonate (EMS). 

Deletion of either Afmpt or Afagt lead to significantly increased sensitivity to MNNG (0.5-2 

µg/ml) when compared to wild-type (p< 0.001). No growth was observed for any strain at 4 

µg/ml indicating that the concentration range chosen was adequate for illustrating 

differences between the mutant strains. No differences were observed between wild-type, 

∆Afmpt or ∆Afagt regarding sensitivity to MMS or EMS, indicating that AfMPT or AfAGT 

are most likely not involved in protection against or repair of the specific lesions caused by 

these alkylating agents. The equal reduction in growth rate of all strains when tested on 

increasing MMS concentrations indicates that the range of MMS concentrations used (0.01 

– 0.04 %) was a useful range to detect any differences in the mutant strains compared to 

wild-type. Other agents were also tested which are known to caused DNA damage or 

oxidative stress. Phleomycin, which is known to cause DNA breakages (Sleigh, 1976; 

Sleigh & Grigg, 1976), was tested, and no difference was observed between wild-type and 

either mutant. Sensitivity to hydrogen peroxide (H2O2) was also tested. For the most part, 

wild-type and both mutants displayed similar growth rates on H2O2. A. fumigatus ∆Afmpt 

and ∆Afagt, however, displayed a reduced growth rate on the highest concentration (3 mM) 

of H2O2 tested, when compared to wild-type (p < 0.01). This result was not investigated 
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further but it was an interesting observation. One possible explanation is that the mutant 

strains have a slightly reduced fitness, which is undetected in our study, but which is 

amplified in the presence of H2O2. Of course, it cannot be ruled out that there is a link 

between the oxidative stress response and the adaptive response to alkylating damage in A. 

fumigatus. Overall, these phenotypic analyses indicate that the roles of Afmpt and Afagt are 

specific in the response to and protection against specific alkylation lesions caused by 

MNNG, of which the main lesion is O6-methylguanine.  

 RT-PCR analysis was performed to determine gene expression of Afmpt, Afagt, 

AfalkB and AfalkA in A. fumigatus ∆Afmpt and ∆Afagt upon addition of MNNG as 

described previously for wild-type gene expression analysis. As expected, no change in 

AfalkB or AfalkA expression was observed in either mutant strain, once again indicating that 

these genes are not affected following MNNG addition. This result was expected since 

examination of the upstream non-coding regions (300 bp approximately) of either AfalkA or 

AfalkB did not reveal any potential Ada-promoter binding sites. While Afagt expression 

was evident in A. fumigatus ∆Afmpt, there was no difference in the level of expression 

between un-induced and induced conditions, indicating loss of Afagt induction upon 

MNNG addition in the ∆Afmpt mutant strain. This result is indicating that Afmpt is essential 

for the elevated transcription of Afagt upon exposure to MNNG in A. fumigatus, providing 

solid support for its role as the fungal equivalent of the E. coli Ada transcriptional activator 

of the adaptive response (Teo et al., 1984). Complete absence of Afagt or Afmpt expression 

was observed in ∆Afagt or ∆Afmpt, under both un-inducing and inducing conditions, which 

supports the gene disruption strategy used in this study. As expected, the expression level 

of Afmpt was markedly increased in the ∆Afagt strain under inducing conditions and this 

increased expression was maintained throughout the 3 hr time period examined in this 

study. Once again, this indicates the importance of Afmpt gene expression upon exposure to 
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MNNG, and it also indicates that Afmpt expression in response to MNNG is not dependent 

on the presence of Afagt. At this point, it cannot be excluded that Afmpt could be affecting 

the transcription of other gene targets when Afagt is deleted. However, the severely 

increased sensitivity towards MNNG in A. fumigatus ∆Afagt discussed earlier unarguably 

proves that Afagt is essential for repair of DNA lesions caused by MNNG. AfMPT 

expression levels could be elevated in ∆Afagt in an attempt to repair the damage caused by 

MNNG. Overall, the gene expression analysis undertaken in this study has yielded the 

following: Afmpt and Afagt are induced upon exposure to MNNG, the induction of Afagt is 

lost when Afmpt is deleted, proving that Afmpt is transcriptionally activating the adaptive 

response in A. fumigatus. Despite the reported roles of AlkA and AlkB in the adaptive 

response in E. coli, these genes do not seem to be involved in the adaptive response in A. 

fumgatus, at least to MNNG. Expression of these genes in response to other alkylating 

agents (e.g. MMS or EMS) was not examined in this study. However, plate assay analysis 

of MMS and EMS indicated that deletion of Afmpt had no adverse effect towards these 

agents. If AfalkA or AfalkB are somehow involved in response to these agents, they do not 

appear to be transcriptionally regulated by Afmpt, as observed in E. coli (Sedgwick & 

Lindahl, 2002). 

 This work also investigated whether each of the A. fumigatus alkylation repair genes 

could complement a yeast MGT1 deletion. As mentioned earlier in this chapter, MGT1 is a 

gene which encodes an O6-alkylguanine DNA alkyltransferase in S. cerevisiae (Xiao et al., 

1991) (Sassanfar and Samson, 1990). The MGT1 gene is constitutively expressed, and is 

not up-regulated in response to exposure to alkykating agents, in agreement with the lack of 

an adaptive response in S. cerevisiae (Xiao et al., 1991).  Protein blast searching of the A. 

fumigatus genome at CADRE using the S. cerevisiae MGT1 protein sequence as a query 

revealed that the top hit in the A. fumigatus is the AfAGT protein, and that these two 
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proteins share 41 % sequence identity. Yeast dot growth assays indicated that Afagt confers 

resistance to MNNG in a yeast MGT1 deletion strain. Assays were performed using MNNG 

concentrations between 4 – 64 µg/ml, and a yeast strain expressing Afagt (Sc + Afagt) 

exhibited increased resistance to MNNG compared to an empty vector control at all MNNG 

concentrations. The empty vector control failed to grow at concentrations greater than 8 

µg/ml MNNG, while Sc + Afagt grew at all MNNG concentrations tested. These findings 

confirm that Afagt is capable of complementing the yeast MGT1 deletion, and confirms that 

these two proteins are functionally related in agreement with the sequence similarity 

observed through Blast analysis. Interestingly, this work also revealed that Afmpt can also 

confer resistance to MNNG when transformed into the MGT1 deletion strain. The increased 

resistance to MNNG observed in this strain is intermediate between the Sc + Afagt and the 

empty vector control strains, and is evident at MNNG concentrations up to 16 µg/ml. This 

is an interesting observation as S. cerevisiae is reported not to possess an adaptive response 

to alkylating agents (Polakowska et al., 1986). Furthermore, no homologues of Afmpt were 

identified in S. cerevisiae through Blast searching at NCBI. It is not possible to say exactly 

how this increased resistance is mediated by Afmpt, but the results imply that AfMPT can 

repair MNNG-induced alkylation damage to some extent, perhaps transfer of methyl onto 

cys-38 of Afmpt might be sufficient to repair some of the alkylation damage, leading to 

slightly enhanced growth observed for Sc + Afmpt. Another possible explanation is that 

there may be some S. cerevisiae genes with an ada promoter binding site, or similar sites, 

which are adequate for the binding of Afmpt when this gene is transformed into the yeast 

strain (Sc + Afmpt).  Some of these genes may be involved in protection against DNA 

alkylation damage, and could be transcriptionally activated by the AfMPT protein to confer 

the increased resistance to MNNG that is observed in this strain. Further investigation into 

this would require extensive bioinformatic analysis as a starting point, followed by whole-
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genome transcriptional analysis, which was beyond the scope of this study. Nevertheless, 

the yeast experiments undertaken here do confirm the important role of the Afagt in DNA 

alkylation repair, and the complementation of the yeast MGT1 deletion by the Afagt 

supports undoubtedly that the phenotypes observed in the A. fumigatus ∆agt strain are 

specifically due to the deletion of Afagt. 

 In conclusion, this work provides the first evidence of an adaptive response to 

alkylating DNA damage in the opportunistic pathogen A. fumigatus. The key components 

of this adaptive response have been identified through homology searching with E. coli 

adaptive response genes, and investigated further using a targeted gene deletion strategy. 

The adaptive response appears to be very similar to the adaptive response which has been 

well documented in E. coli. The A. fumigatus adaptive response has been characterised 

genetically and phenotypically in this study. Previous work reported an adaptive response 

to MNNG, in A. nidulans, however, there are no further reports of this in A. nidulans. The 

findings reported here represent the first molecular characterisation of an adaptive response 

to alkylating agents in a eukaryotic organism. Lack of an equivalent adaptive response 

pathway in mammalian systems makes this pathway an interesting topic for further 

characterisation, as it could prove to be an interesting drug target.  
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 This work describes the functional characterisation of two NRP synthetases; Pes3 

and PesL, within the important human pathogen A. fumigatus. An adaptive response 

towards alkylating DNA damage in A. fumigatus was also characterised, representing the 

first functional characterisation of this pathway in a eukaryotic organism.  

 

 pes3 (25 kb in size) is the largest gene in A. fumigatus, encoding a multi-modular 

NRP synthetase, and represents a gene unique to A. fumigatus. Pes3 contains 6 adenylation 

domains, and is therefore predicted to encode a peptide with 6 amino acid residues, 

however, the non-traditional domain architecture of Pes3 has led to suggestions that it may 

produce a complex final product (Cramer et al., 2006b). Pes3 does not appear to encode a 

secreted secondary metabolite, and we hypothesise that the Pes3-encoded peptide plays a 

structural role within A. fumigatus. Support for this hypothesis comes from several 

observations, as discussed in Chapter 3. In summary, A. fumigatus ∆pes3 exhibits 

hypervirulence compared to wild-type in both murine (p = 0.02) and insect models (p < 

0.001) of IA, coinciding with increased fungal burden in murine lungs in vivo, and reduced 

cytokine production by murine macrophages upon exposure to ∆pes3 in vitro, indicating 

reduced immune recognition of A. fumigatus ∆pes3. This is likely due to an alteration at the 

cell wall surface, resulting in a modified pathogen associated molecular pattern, and 

reduced immune recognition. Further support for a structural role for the Pes3 peptide 

comes from our observation that pes3 protects A. fumigatus against voriconazole toxicity, 

as deduced from the reduced growth of A. fumigatus ∆pes3 compared to wild-type (p < 

0.001). An earlier observation that pes3 expression was most abundant in ungerminated 

spores of A. fumigatus (Cramer et al., 2006b) hinted that pes3 may be involved in 

germination or cell wall structure in A. fumigatus.  
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 There has been one other report in the literature describing a fungal NRP synthetase 

gene which is likely to encode an NRP with a structural role. An NRP synthetase gene, 

AbNPS2 in the plant pathogen Alternaria brassicola, was identified, and encodes a large 

multi-modular NRP synthetase containing 4 adenylation domains, 6 thiolation (PCP) 

domains, 6 condensation domains, and 3 epimerisation domains (Kim et al., 2007). 

Deletion of AbNPS2 resulted in several altered phenotypes in the resultant mutant; reduced 

virulence on cabbage leaves, lower conidial germination rates, reduced hydrophobicity of 

conidia, and an altered conidial surface. The conidial surface in the wild-type was smooth 

and had a compact cell wall whereas the surface of  AbNPS2 mutant conidia was fluffy and 

the cell wall layers were separated, discernable by TEM (Kim et al., 2007). The authors 

hypothesised that the AbNPS2-encoded NRP may be a component of, or facilitates linkage 

of, the outermost layer and the middle layer of the fungal conidial cell wall, a hypothesis 

that is similar to the suggestions made for the Pes3-encoded NRP in Chapter 3; Pes3 may 

encode a peptide which is involved in removal of the rodlet layer from the surface of A. 

fumigatus conidia, or in linking the rodlet layer to the conidial cell wall. The exact nature of 

AbNPS2 and the encoded NRP remains to be elucidated (Kim et al., 2007), highlighting the 

challenge that exists for relating NRP synthetases to their respective NRP product. Future 

experiments will include hydrophobicity analyses of A. fumigatus wild-type and ∆pes3, and 

SEM and/or TEM to investigate if differences at the conidial cell wall can be seen between 

A. fumigatus wild-type and ∆pes3. 

 

 pesL, encoding a mono-modular NRP synthetase in A. fumigatus, was found to 

protect A. fumigatus against H2O2-mediated oxidative stress (p < 0.01) and voriconazole 

toxicity (p < 0.01). Comparative metabolite profiling revealed that PesL is essential for 

fumigaclavine C biosynthesis in A. fumigatus, as deletion of pesL (A. fumigatus ∆pesL) 
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resulted in the complete loss of fumigaclavine C from A. fumigatus ∆pesL metabolite 

extracts. We propose that PesL anchors or tethers fumigaclavine A to facilitate reverse 

prenylation by FgaPT1 (Unsold and Li, 2006).   

 The absolute requirement for a mono-modular NRP synthetase, such as PesL, for 

the biosynthesis of fumigaclavine C in A. fumigatus suggests that similar roles might be 

played by NRP synthetases in other complex biosynthetic pathways, whereby NRP 

synthetase modules tether biosynthetic intermediates, facilitating subsequent modification 

by down-stream acting enzymes. Functional characterisation of NRP synthetases by gene 

deletion studies is required in order to investigate this. PesL has recently been implicated in 

fumiquinazoline biosynthesis (Ames et al., 2010), and the observed role for PesL in 

fumigaclavine C biosynthesis reported here suggests redundant roles for PesL. It remains to 

be seen whether this is a feature of the remainder of the uncharacterised NRP synthetases 

within A. fumigatus and other fungi. This is supported by observations that NRP 

synthetases shows less strict substrate selection and incorporation than other adenylating 

enzymes as mentioned previously (Stachelhaus et al., 1999).  

 A. fumigatus ∆pesL exhibited reduced virulence compared to wild-type in the G. 

mellonella infection model (p < 0.001), indicating an important role for EA in the 

pathogenesis and virulence of A. fumigatus, a finding which is in agreement with the long 

standing association of EA with human infection (Panaccione & Coyle, 2005), and which 

suggests that EA may be a suitable drug target in A. fumigatus, and other EA producing 

fungi. Furthermore, the work presented here indicates a link between the production of EA 

metabolites and protection against oxidative stress; links between fungal secondary 

metabolite production and oxidative stress have attracted attention in recent reviews 

(Reverberi et al., 2010).  
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 The availability of the complete genome sequence of A. fumigatus (Nierman et al., 

2005) allows the identification of genes, which might be involved in previously 

uncharacterised pathways, through Blast searching against other sequenced genomes. This 

approach led to the identification of genes within the A. fumigatus genome which are are 

homologous to genes known to mediate an adaptive response to alkylating DNA damage in 

E. coli (Sedgwick & Vaughan, 1991; Sedgwick & Lindahl, 2002) and other bacteria. This 

work reports the presence of two key genes which were found to mediate an adaptive 

response towards alkylating DNA damage in A. fumigatus; a methylphosphotransferase 

(Afmpt), and an alkylguaninetransferase (Afagt) which are homologous to the N- and C- 

terminal domains of E. coli Ada protein respectively. Both were found to be inducible by 

exposure to MNNG in this study. Targeted gene deletions of Afmpt and Afagt followed by 

extensive phenotypic analysis confirmed that these genes are responsible for the adaptive 

response, and expression analysis confirmed that the presence of Afmpt is essential for the 

induction of Afagt upon exposure to the alkylating agent MNNG, a finding that is paralleled 

with earlier findings in E. coli (Teo et al., 1984), and implying that Afmpt is a 

transcriptional regulator for the adaptive response in A. fumigatus. Furthermore, 

introduction of Afmpt or Afagt into an S. cerevisiae strain deleted for a constitutive  O6-

alkylguanine DNA alkyltransferase (MGT1) (Xiao et al., 1991) (Sassanfar and Samson, 

1990), led to an increased growth of S. cerevisiae following exposure to MNNG compared 

to empty vector controls, proving the function of these genes in A. fumigatus.  

 Prior to this work, other workers observed an improved growth response of A. 

nidulans in the presence of MNNG following pre-exposure with a sub-lethal dose of 

MNNG (Hooley et al., 1988), and DNA alkyltransferase activity was also detected, 

suggesting a repair mechanism towards alkylating DNA damage (Swirski et al., 1988). 

However, no functional characterisation of this response was undertaken, and an adaptive 
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response to alkylating agents such as the E. coli response had not been described in a 

eukaryotic organism to date. The identification of key genes involved in the adaptive 

response, coupled with the lack of a corresponding adaptive response in mammalian cells 

highlights the potential of this response as a novel drug target for the treatment of 

Aspergillus-related infection. 

 

 Overall, the findings presented in this thesis raise many interesting issues. This 

work showed that an NRP synthetase, PesL is essential for fumigaclavine C biosynthesis, 

while another group have shown that a recombinant PesL can activate L-alanine to catalyse 

fumiquinazoline F biosynthesis in vitro (Ames et al., 2010). This suggests that PesL might 

exhibit relaxed substrate specificity, with the ability to activate alanine for fumiquinazoline 

biosynthesis (Ames et al., 2010), and the apparent tethering of fumigaclavine A by an 

unknown mechanism. Also, it suggests that PesL may be active in more than one 

biosynthetic pathway in A. fumigatus. The findings also actually indicate that 

fumiquinazoline A may have more than one biosynthetic route in A. fumigatus. Returning 

to an earlier point; secondary metabolite gene cluster rearrangements mediated by 

transposable elements might be a phenomenon not restricted to the EA clusters. This could 

allow for evolution of secondary metabolite gene clusters, and might allow NRP 

synthetases to be used by more than one biosynthetic pathway, thereby increasing the 

diversity of secondary metabolites that can be produced by an organism. This hypothesis 

could aid in explaining how such a large repertoire of secondary metabolites can arise from 

14 NRP synthetases in A. fumigatus. 

 

 Current understanding of NRP synthetases and secondary metabolite gene clusters 

might need to be reconsidered in light of the findings and ideas presented here, and the 
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current paradigm may not be as straightforward as one NRP synthetase – one peptide as has 

previously been found for NRPS in other pathways, (e.g. gliotoxin biosynthesis) (Balibar & 

Walsh, 2006; Cramer et al., 2006a). The notion of cluster cross-talk is beginning to emerge 

with the confirmation of cross-talk between two separate NRP synthetases involved in 

siderophore biosynthesis in a bacterial species (Lazos et al., 2010). More recently, cross-

talk was identified between two SM clusters on different chromosomes in A. nidulans 

(Bergmann et al., 2010). Importantly, the study presented here highlights that gene 

knockout is the most appropriate means to unambiguously show an essential biosynthetic 

function for any given gene. The role of non-cluster encoded NRP synthetases (e.g. PesL) 

in A. fumigatus EA biosynthesis suggests that secondary metabolite pathways in general 

might involve clustered genes as well as non-clustered genes in biosynthesis. This may 

have implications for partially characterised SM gene clusters to date, or in situations where 

it has been difficult to conceptualise a biosynthetic pathway based on the genes proposed to 

be in the biosynthetic cluster.  

 Furthermore, despite advances in the field of secondary metabolite biosynthesis, 

there still remains a large deficit relating NRP synthetases to peptide products in the 

important human pathogen A. fumigatus, an observation previously noted by others 

(Cramer et al., 2006b; Stack et al., 2007). This work has contributed to the list of 

characterised NRP synthetase genes in A. fumigatus, and brings the number to 7 out of a 

total of 14. Evidence for NRP synthetase redundancy (PesL) and a possible structural NRP 

(Pes3) implies that the biosynthetic and functional potential for NRP synthetases is greater 

than previously thought. As more NRP synthetases are functionally characterised one can 

predict that this potential will become even more apparent.  
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