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Abstract— The recently introduced Complex Spectral Phase 

Evolution (CSPE) algorithm is a super-resolution technique for 

the estimation of the exact frequency values of sinusoidal 
components in a signal. However, if a component of the signal 

does not exist within the entire data set, it cannot be identified 
out by CSPE algorithm, even though it still may be visible in the 

FFT magnitude spectrum. In this paper, we identify the source of 
this problem and propose a novel approach to resolve this issue. 

Specifically, we will show how to use a window apodization 
function to improve the CSPE algorithm. Experimental results 

are presented to illustrate the performance enhancement. 
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I. INTRODUCTION 

Most often the estimation of the frequencies of a signal 

composed of sinusoidal components is done in the frequency 

domain using peak-picking from the magnitude spectrum of 

the signal. However, this accuracy of this approach is severely 

limited to cases where a component frequency is not a 

multiple of the windowed signal length divided by the 

sampling frequency. In essence, this means only when a 

component frequency is aligned exactly with the analysis 

frequencies of the DFT, can it be measured accurately. When 
the component frequency does not satisfy this constraint, a 

common solution that is used in Sinusoidal Modelling 

algorithms is to apply quadratic interpolation to the 

component spectral magnitudes immediately either side of the 

true frequency to find the correct frequency and magnitude 

values. However, the performance of this method is highly 

dependent on the window function used [1] and the length of 

the data for analysis. The CSPE algorithm was introduced by 

[2] as a method to accurately estimate the frequency of 

components that exist within a short time frame. It was also 

designed to be computationally efficient. It is actually related 
in some aspects to the cross-spectrogram technique of [3].  

However, the CSPE algorithm has been found to be unable 

to detect frequency components that do not appear throughout 

the entire signal source under analysis. This is puzzling 

because an associated peak can still appear for the component 

in the FFT magnitude spectrum. To resolve this issue it is 

necessary to investigate the CSPE algorithm in more detail 

and determine how it can be improved. 

This paper is organized as follows: Firstly, we give a 

general introduction to the CSPE algorithm followed by an 

experimental evaluation that compares the CSPE algorithm 

with the widely-used frequency estimation method introduced 

in [4]. Then, we will explain in more detail the problem of 

identifying components that do not exist for the complete data 

frame and introduce the idea of apodization to solve it. Lastly, 

we will show the improvement to the CSPE result by using 
the apodization function by providing some experimental 

results. 

II. CSPE AND ITS COMPARISON WITH ANOTHER 

FREQUENCY ESTIMATION APPROACH 

The principal of CSPE algorithm can be described as below: 

 

An FFT analysis is performed twice; firstly on the signal of 

interest, and the second time upon the same signal but shifted 

in time by one sample. Then, by multiplying the sample-

shifted FFT spectrum with the complex conjugate of the initial 

FFT spectrum, a frequency dependent function is formed from 

which the exact values of the frequency components it 
contains can be detected. This frequency dependent function 

has a staircase-like appearance where the flat parts of the 

graph indicate where the exact frequencies of the components. 

The width of the flat parts is dependent on the main-lobe 

width of window function used to select the signal before FFT 

processing. Mathematically, the algorithm can be described as 

follows:  

Assuming a real signal 
0s , and a one-sample shifted version of 

this signal 
1s . Say that its frequency is δβ += q  where q is 

an integer and δ is a fractional number. If b  is an initial phase, 

nw  is the window function used in the FFT, 
0swF is 

windowed Fourier transform of 0s , and 
1wsF is the windowed 

Fourier transform of  1s ,  then first writing 
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The frequency dependent CSPE function can be written as 
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The windowed transform requires multiplication of the time 

domain data by the analysis widow, and thus the resulting 

transform is the convolution of the transform of the window 

function, fw , with the transform of a complex sinusoid. 

Since the transform of a complex sinusoid is nothing but a 

pair of delta functions in the positive and negative frequency 
positions, the result of the convolution is merely a frequency-

translated copy of fw centred at β+ and β− . 

Consequently, with a standard windowing function, the 

)( n

w DF  term is only considerable when β≈k , and it 

decays rapidly when k is far from β . Therefore, the analysis 

window must be chosen carefully so that it decays rapidly to 

minimize any spectral leakage into adjacent bins. If this is so 

it will render the interference terms, i.e. the second and third 

terms, to be negligible in (2). Thus, the CSPE for the positive 
frequencies gives: 
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Finding the angle of (2) leads to the CSPE frequency estimate 
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 The procedure of the CSPE algorithm is depicted in block 

diagram form in Figure 1. 
                                                                              

 
 

 
 
 
 

 

 
 

 
 

Fig. 1 The flow diagram of CSPE 

 

An example of the output of the CSPE algorithm is shown in 

Figure 2. Consider the signal 1S which contains components 

with frequency values (in Hz) of 17, 293.5, 313.9, 204.6, 

153.7, 378 and 423. The sampling frequency is 1024 HZ. A 

frame of 1024 samples in length is windowed using a 
Blackman window and is padded using 1024 zeros. The 

frequency dependent CSPE function is computed as per eq. 

(2). As shown in Figure 2, each component can be identified 

exactly and are labelled with an arrow in the graph. The 

largest error among all the estimates of the components 

frequencies is approximately 0.15 Hz. 
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Fig. 2 Frequency estimation of 1S  by CSPE     
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Notice too in Figure 2 that at the flat sections in the graph of 

the CSPE result, the width of flat sections where the arrows 
point are related to the width of the window’s main-lobe in the 
frequency domain.  
 

2.1 Accuracy of the CSPE algorithm 
An experiment was carried out to compare the accuracy of 

the Quadratic Interpolation Estimation Algorithm [4] with the 
CSPE algorithm. The procedure of this experiment can be 
described as below: defining twenty centre frequencies 

icf (0<
icf <

2

sF
) , for each 

icf , M  random frequencies 

were generated (each of which has a small random fluctuation of 
icf ) 

and thereafter M  signals were created based on these 

M frequencies. The RMS error of the frequency estimation 
by CSPE and Quadratic Interpolation Estimation Algorithm 

for these M  signals were calculated respectively for each 

icf  which shown in the figure below: 
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Fig. 3 Accuracy comparison of quadratic fit and CSPE frequency refinements 

As shown in figure 3, the CSPE estimate was found to be 

more accurate than the quadratic interpolation approach, over 

a factor of 310  in many cases. 
 

    From the above experiment, it is clear that the CSPE 

algorithm works very well when the components contained in 

signal are constant and stable for over the entire data length. 

However, there can be cases where some components will 

only appear in half or even a quarter of the data frame length. 

We can run another experiment on the signal 2S that has the 

same frequency components as 1S , but restricting each 

component to appear in half or a quarter of the frame. The 

resulting output of the CSPE algorithm is shown in Figure 4: 
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Fig. 4   Frequency estimation of 2S by CSPE 

 

    Frome figure 4, it can be seen that there is no flat region in 

any part of the graph, that is, none of frequency components 
can be identified by CSPE algorithm . However, if the FFT 

magnitude Spectrum of 2S  is plotted, as shown in figure 5, 

each frequency component is still visible which indicates that 

there should be some information related to the component 

present in any FFT-based frequency domain analysis. So, the 

next section will try to understand this problem and propose a 

novel approach to deal with it. 
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Fig. 5 FFT spectrum of the signal  

 

    

III. ANALYSIS OF THE  PROBLEM AND AN IMPROVEMENT ON 

THE CSPE ALGORITHM 

    Let’s suppose there are three signals: ][1 nx , ][2 nx , 

][3 nx  with the same length 1024 samples, with the same 

Sampling Frequency 1024 HZ, and all bearing the same 

frequency component at 123.5 HZ. The difference among the 

three signals being that the component appears over the entire 
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length of ][1 nx , while it only appears in a half and quarter 

length of signals ][2 nx , ][3 nx  respectively, the remaining 

values sample being zero. If we do a normal FFT analysis this 

component will not be centred on a frequency bin and instead 

will produce a representation with significant peaks at the 

124
th

 and 125
th

 bins with smaller components dying away 

either side of them. Thus, this signal is an ideal candidate for a 

CSPE algorithm analysis. 

It is possible to rewrite ][2 nx  and ][3 nx  in terms of the 

product of ][1 nx  and a step function. If ][1 nu  and ][2 nu  

are two different unit step functions then,  

];[][][ 112 nunxnx =                                                            (5) 

];[][][ 213 nunxnx =                                                            (6) 

Denoting )( 1xF and )(wF  as the FFT transform of ][1 nx  

and a suitable window function [ ]nwks , such as a Blackman 

window, the spectral representation of the signal ][1 nx  can 

be written as  

 

)(*)()( 11 wFxFxF
w

=                                          (7) 

 

where * denotes the convolution operator. 

Then, the spectral descriptions of the other signals can be 
written as  

 

)(*)(*)(

)(*)()(

11

22

wFuFxF

wFxFxF w

=

=
                              (8) 

 

And likewise, 
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Examining equations (8) and (9) it is possible to interpret the 

terms )(*)( 1 wFuF  and )(*)( 2 wFuF  as the actual 

windowing operation that are applied to the signal ][1 nx  in 

the frequency domain. Now if we compare the original and 

alternative window functions frequency response that are all 

effectively applied to ][1 nx  we can see that there is an 

important difference between the original window and the 

others in terms of the main lobe size and the height of the side 

lobes. These are shown in Figure 6. 
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Fig. 6 Magnitude Response of three different actual window functions 

    

 From figure 6, when the signal doesn't appear over the entire 

frame, its actual window function spectrum is significantly 

different from the original window function. Specifically, the 

side-lobe hasn’t been suppressed in a large extent and the 

width of main-lobe has been increased. This impacts the 

CSPE algorithm then in that the interference terms outline in 

eq. (2) are not sufficiently suppressed. Thus, because these 

terms are larger, the CSPE output is useless for finding the 

exact signal frequency of ][2 nx  and ][3 nx . Motivated by the 

idea of introducing window function in the first place Fourier 
analysis, we can introduce a second window function to 

suppress the greater side-lobes caused by the convolution 

effect of the spectrum with the unit step functions. This 

practice is known as apodization [6]. It is more commonly 

known in image processing than in 1-D signal processing. 

Normally, an Apodization Function is used to suppress the 

effects of side-lobes at the expense of lowering the spectral 

resolution. Some researchers, particularly in image processing 

[7], [8] have shown that the Kaiser window Function is a 

better for apodization than other window functions such as the 

Poisson, Gaussian or Tukey. The Apodization factor using the 

Kaiser Function can be written as 

 

[ ] ),(1 β−= Nkaisernwks    (10) 

 

The side lobe suppression of the Kaiser window is dependent 

on the parameter β . The apodization of the signal analysis 

window is then given by 

 

[ ] [ ] [ ]( )α
nwnwnw ksA =    (11) 

 

Experimentally the relationship between different values of  

β  and effect of raising [ ]nwks to an integer power α, to 

enhance the suppression effects, was evaluated. An example 

of the effects of suppression of the side-lobes is depicted in 

Figure 7. From the figure 7, we can find when [ ]nwks  is 
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raised to a cubic power, α =3, with β  = 0.01, it has a side-

lobe attenuation level greater than 300 dB.  
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Fig. 7 Magnitude Response of Kaiser window function 

 

    Next, the signal 2S can be analysed with the function 

[ ]nwA  (beta = 0.01, α = 3) and the CSPE frequency detection 

result is shown in Figure 8 where the arrows label the detected 

frequency components. It can be seen that now the frequency 

components are identified in the CSPE function. 
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Fig. 8 Frequency estimation by improved CSPE 

 

It was determined experimentally then that when components 

exist at a different proportion over a frame, the value of  β  

and the power of [ ]nwks  have to be adapted to get a 

satisfactory result. Table 1 summarizes this configuration as a 

reference for users, where Y means a component can be 

detected, while N means that it cannot; and α means the 
power of the Kaiser window. 

 
 

 

 

 

 

TABLE I 

CONFIGURATION OF β  AND T FOR THE DETECTION OF 

DIFFERENT PROPORTION OF A FRAME 

 
The   Proportion of  one Frame 

          

   

2

1    

4

1             

8

1     

16

1  

β =0.01, α = 1 Y N N N 

β =0.01, α = 3 Y Y N N 

β =0.01, α = 10 Y Y Y N 

β =0.01, α = 18 Y Y Y Y 

 
 

 

IV. CONCLUSIONS AND FUTURE WORK 

    This paper has addressed a problem discovered with the 

CSPE algorithm, that is, when frequency component does not 

exist throughout the entire length of the data frame, that 

although it appears in the FFT magnitude spectrum, the CSPE 

algorithm is not capable of detecting this component. By 

focusing on changing the analysis window’s frequency 

response, the idea of Apodization Function was introduced 

that was shown to over this difficulty. An experimental result 
has demonstrated that the performance of the CSPE algorithm 

has been improved by applying this solution. In future, the 

intention is to try to extend this CPSE algorithm to correctly 

identify the dynamic frequency evolution of a frequency 

modulated signal.  
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