
POINTWISE MULTIPLIERS FOR REVERSE HÖLDER SPACES

Stephen M. Buckley

Abstract. We classify weights which map reverse Hölder weight spaces to other reverse Hölder
weight spaces under pointwise multiplication. We also give some fairly general examples of weights

satisfying weak reverse Hölder conditions.

1. Introduction and Examples

In this paper our main task (Section 2) will be to classify those weights f for which fw is
in some reverse Hölder weight space for all w in some other reverse Hölder weight space. In
most cases, we will find that it is necessary and sufficient for f to be in some related weight
space. The weight spaces with which we shall be concerned are RHp (0 < p ≤ ∞), and larger
spaces which we shall denote as WRHp. The RHp condition, first examined by Gehring [G], is
quite useful in many areas of analysis, particularly in the theory of quasiconformal mappings.
It is intimately related to the Aq condition of Muckenhoupt [Mu] and their theory has in fact
been developed together (notably in [C-F]). If one tries to develop the theory of quasiregular
mappings as for quasiconformal mappings (see [B-I]), one is forced to consider a reverse Hölder
condition weaker than RHp, leading to the class of weights which we denote as WRHp. As
this condition is not as well understood as RHp, we shall give some fairly general examples of
WRHp weights.

Let us first introduce some terminology and notation. Let Ω ⊆ Rn be a fixed open set. By
a weight on Ω, we mean any non-negative function on Ω, which is not identically zero. Since
we are concerned with integrals throughout, a “set” will mean a measurable set, and sets of
measure zero do not concern us. A “cube” will always refer to a cube in Ω whose faces are
perpendicular to coordinate axes. The sidelength of a cube Q will be denoted by l(Q). We say
two cubes are adjacent if their closures intersect, but their interiors are disjoint. For any set E
and weight w, we write |E| for the Lebesgue measure of E, w(E) =

∫

E
w, and

‖w‖
p,E

=

(

1

|E|

∫

E

wp(x) dx

)1/p

, p ∈ R\{0}
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We also write ‖w‖
∞,Q

= ess sup
x∈Q

w(x). We shall be concerned with reverse Hölder conditions

of either of the two following forms

‖w‖
p,Q

≤ K‖w‖
q,σQ

, whenever σQ ⊆ Ω. (1.1)

‖w‖
p,Q

≤ K‖w‖
q,Q

, whenever σQ ⊆ Ω. (1.2)

Here 0 < q < p ≤ ∞, K > 1, and σQ is the concentric dilate of a cube Q by a factor
σ ≥ 1. If σ > 1 and σQ ⊆ Ω, we say Q is “σ-allowable” (or “allowable”). We denote the
Hardy-Littlewood maximal operator by M and, for any exponent 1 < p < ∞, we shall write
p′ = p/(p − 1).

We denote the class of weights satisfying (1.1) by WRHΩ
p,q;σ if σ > 1, and by RHΩ

p,q if σ = 1.

For σ > 1, we denote by RHΩ,loc
p,q;σ the class of weights satisfying (1.2). Given w ∈ WRHΩ

p,q, we

define WRHΩ
p,q;σ(w) to be the smallest constant K for which (1.1) is true; a similar notation is

employed for all other weight spaces (we shall term this best constant the “norm” of the weight
in the weight space). If A, B are positive quantities, we shall write A ≺ B to indicate that A
is bounded above by a constant dependent only on B; if the bound for A depends on a set S
of quantities, we write A ≺ S.

We shall use the following basic facts about the WRHΩ
p,q;σ, RHΩ,loc

p,q;σ , and RHΩ
p,q:

(A) All three types of weight spaces are independent of q (for 0 < q < p) and the first two
are independent of σ > 1. Therefore, we shall usually drop references to q and σ in
future, assuming q = p/2 and σ = 20 (this choice of σ simplifies the proof of Theorem
2.6). Also, WRHΩ

p,q;σ(w) ≺ {p, q, σ, n, WRHΩ
p,p/2;20(w)}, and the corresponding control

statements for RHΩ
p and RHΩ,loc

p are also true.

(B) If w ∈ RHΩ
p then w ∈ RHΩ

p+ε for some ε, where 1/ε ≺ {p, n, RHΩ
p (w)} (for any 0 < p <

∞). The corresponding results for the other spaces are also true.
(C) If w ∈ RHΩ

p for some p > 1, then w ∈ AΩ
s for some 1 < s < ∞; conversely, if w ∈ AΩ

p

for some 1 ≤ p, then w ∈ RHΩ
s for some 1 < s < ∞. This result is also true for RHΩ,loc

p

and AΩ,loc
p .

The space AΩ
p mentioned in (C) is the space of weights satisfying

‖w‖
1,Q

≤ K‖w‖
1−p′,Q

whenever Q ⊆ Ω.

This is the well-known weight condition of Muckenhoupt. AΩ,loc
p is defined by the obvious

modification to the scope of this inequality. For RHΩ
p , (A) is trivial; (B) and (C) are contained

in [G] and [C-F]. For WRHΩ
p , (A) is due to Iwaniec and Nolder [I-N], and (B) can be found

in [B-I]. Using (A)–(C) above, it is easy to show that RHΩ
1 =

⋃

p<∞ AΩ
p ≡ AΩ

∞ and also that

w ∈ RHΩ
p if and only if wp ∈ AΩ

∞ for any 0 < p < ∞. It also follows that if w ∈ RHΩ
p for some

p > 0, then 1/w ∈ RHΩ
q for some q > 0.

Most of the versions of (A)–(C) for RHΩ,loc
p follow immediately from the corresponding

version for RHΩ
p , since w ∈ RHΩ,loc

p if and only if w ∈ RHQ
p , for all allowable Q (with a
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uniform RHp norm), and AΩ,loc
p is “local” in a similar sense. The one exception is the fact

that RHΩ,loc
p is independent of σ > 1. To see that this is true, one simply dissects an arbitrary

(1 + σ)/2-allowable cube into 2n σ-allowable subcubes. By combining the defining inequality

over all the subcubes, it follows easily that RHΩ,loc
p,q;σ ⊆ RHΩ,loc

p,q;1+σ

2

. Since the reverse implication

is trivial, iteration gives the required result.

We say a positive Borel measure µ is doubling (on the set Ω) if there is some C < ∞ for
which µ(σQ) < Cµ(Q), for all σ-allowable cubes Q and some fixed σ > 1. We denote this class
of measures by DΩ

σ , or simply DΩ. If f is a weight, we shall write f ∈ DΩ in place of the
more awkward f(x) dx ∈ DΩ. It is well-known that RHΩ,loc

p ⊂ DΩ (this result is essentially

contained in [C-F]). The following lemma is useful in dealing with the DΩ condition.

Lemma 1.3. DΩ
σ is independent of σ > 1. Moreover, for any r > 0, µ ∈ DΩ if and only

if there is some constant C = Cr such that µ(Q′) ≤ Aµ(Q) whenever Q, Q′ are adjacent,
l(Q′) ≤ r · l(Q), and (1 + 2r)Q ⊆ Ω.

Proof. Suppose 1 < τ < σ and let σ′ = (1 + σ)/2. If µ ∈ DΩ
σ then, by slicing an arbitrary

σ′-allowable cube Q into subcubes Qk (1 ≤ k ≤ 2n), each of sidelength l(Q)/2, we see that

µ(σ′Q) ≤ 2n
2n

∑

k=1

µ(σQk) ≤ C
2n

∑

k=1

µ(Qk) = Cµ(Q).

Thus DΩ
σ′ ⊆ DΩ

σ . By induction, we get DΩ
1+2−mδ ⊆ DΩ

σ for every m > 0, where δ = σ − 1. Let

τ1 = 1 + 2−m0δ, where m0 is the smallest integer m for which 1+ 2−mδ < τ ; also let τ2 = τ/τ1.
Then τ2 < τ1, since τ1τ2 = τ < τ2

1 . If Q is τ -allowable, then Q and τ2Q are both τ1-allowable
(and µ ∈ DΩ

τ1
). Therefore,

µ(τQ) ≤ Cµ(τ2Q) ≤ Cµ(τ1Q) ≤ C2µ(Q).

Conversely, iteration of the defining inequality for DΩ
τ gives DΩ

τn ⊆ DΩ
τ for all n > 0.

Choosing n so large that τn > σ gives DΩ
σ ⊆ DΩ

τn ⊆ DΩ
τ , as required.

Suppose that µ ∈ DΩ and that Q, Q′ are as in the statement of the lemma. Then Q′ ⊂
(1 + 2r)Q, and so µ(Q′) ≤ µ((1 + 2r)Q) ≤ Cµ(Q). Conversely, the annulus ((1 + 2r)Q)\Q can
be covered with a finite number (dependent on n, r) of cubes adjacent to Q, with sidelength r
times that of Q. Thus µ((1 + 2r)Q) ≤ Cµ(Q), and so µ ∈ DΩ, as required. �

Let us add the following to our list of basic facts about weight spaces:

(D) w ∈ WRHΩ
p if and only if wp ∈ WRHΩ

1 . In fact, for any 0 < q < p, WRHΩ
p,q;σ(w) =

(WRHΩ
1,q/p;σ(wp))1/p. The corresponding statements for RHΩ

p and RHΩ,loc
p are also

true.
(E) If w ∈ WRHΩ

p and wε ∈ DΩ for some ε > 0, then w ∈ RHΩ,loc
p .
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The first statement in (D) follows from the second statement and (A) above; the second
statement is simple to verify. (E) is trivial: if wε ∈ DΩ, then ‖w‖

p,Q
≤ K‖w‖

ε,2Q
≤ 2nK‖w‖

ε,Q

for all allowable Q.

The weight conditions RHΩ
p and AΩ

p have been extensively studied ([G-R] is a good source

for their theory), and are much better understood than WRHΩ
p . Therefore, we shall begin by

giving some fairly general examples of WRHΩ
p weights.

It is known that non-negative subharmonic functions on Ω (and more generally non-negative
subsolutions in Ω of any self-adjoint elliptic partial differential equations [Mo]) satisfy (1.1) with
p = ∞; therefore such fuctions are WRHΩ

∞ weights if they are not identically zero. Note that, in

contrast to RHΩ
p weights, WRHΩ

p weights can grow arbitrarily fast (for example, f ∈ WRHR
2

∞ ,

if f(z) = |eez | for all z ∈ C ≡ R2). Convex functions are subharmonic, and so if f is convex,
non-negative, and not identically zero, then f ∈ WRHR

n

∞ . We shall weaken the notion of
convexity to produce more examples of weights in WRHΩ

p (0 < p ≤ ∞). First, let us state the
following easy geometrical lemma.

Lemma 1.4. Suppose a cube Q is sliced into 3n subcubes of equal size. Let Q0 = (1/3)Q be the
central subcube and let {Qi}2n

i=1 be the corner subcubes, i.e. those which include a vertex of Q.
Furthermore, suppose xi ∈ Qi (i = 1, . . . , 2n). Then co

(

{xi}2n

x=1

)

⊇ Q0, where co S indicates
the convex hull of the set S.

Proof. We may assume without loss of generality that Q0 =
n
∏

i=1

[−1, 1] (so that Q =
n
∏

i=0

[−3, 3]).

The result is obviously true for n = 1, so we assume inductively that it is true for all dimensions
n ≤ k, where k ≥ 1. For dimension n = k + 1, let us order the corner subcubes Qi so that,

for all 1 ≤ i ≤ 2k, Qi = Pi × [−3,−1] and Qi+2k = Pi × [1, 3], where {Pi}2k

i=1 are the corner

subcubes of the Rk-cube P =
k
∏

i=1

[−3, 3]. For each 1 ≤ i ≤ 2k, the convex hull of {xi, xi+2k}
is a line segment which includes points yi,t = (ui,t, t) for all −1 ≤ t ≤ 1, where ui,t ∈ Pi. It

follows from the inductive hypothesis that co
(

{yi,t}2k

i=1

)

⊇ P0 × {t}, where P0 = (1/3)P . The

inductive step now follows easily, so we are done. �

Definition 1.5. If g is a real-valued function on Rn, and {x ∈ Rn | g(x) < α } is convex for
every α ∈ R, we say g is convex-contoured.

It is easy to see that convex functions are convex-contoured, as is any radially increasing
function. On the other hand, g(x) = arctan |x| is an example of a convex-contoured function
on Rn which is not convex (or even subharmonic). There are also, of course, subharmonic
functions which are not convex-contoured (for example, g(z) = | cos z| for z ∈ C).

Proposition 1.6. If u ∈ RHΩ
p for some 0 < p ≤ ∞, and g is a convex-contoured weight, then

w ≡ ug ∈ WRHΩ
p .
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Proof. Note first that any convex-contoured weight g is locally bounded. In fact, if Q0 is any
cube, then g attains its maximum value over Q0 at one of the vertices, v. Writing α = g(v),
Lemma 1.4 ensures that the set {g(x) ≥ α} includes one of the corner subcubes Qi of Q = 3 Q0.
Let us fix an exponent q such that 0 < q < p, and assume that Q is allowable. Since RHΩ

p ⊂ DΩ,

‖w‖
p,Q0

≤ α‖u‖
p,Q0

≤ Kα‖u‖
q,Qi

≤ K‖w‖
q,Qi

≤ 3n/qK‖w‖
q,3Q0

where K depends on RHΩ
p (w). �

The simple geometrical assumption in Proposition 1.6 that g is convex-contoured is not
crucial; it is easy to alter the above proof to handle certain weaker conditions. For example, it
suffices to assume only that there exist C, ε > 0 and σ > 1, such that for any σ-allowable Q,
there is a subset S of σQ for which |S|/|Q| > ε and

ess sup
x∈Q

g(x) ≤ C ess inf
x∈S

g(x).

In particular, it is easy to see that u · χ
S ∈ WRHΩ

p for all u ∈ RHΩ
p , if S ⊂ Rn is the

“checkerboard” set for which x ∈ S if and only if the sum of the integer parts of the coordinates
of x is even.

Obviously, RHΩ
p ⊆ RHΩ,loc

p ⊆ WRHΩ
p . Using Proposition 1.6, it is easy to see that the

second containment is always strict. For example, if σQ is an allowable cube, then w ≡ χ
Ω\Q ∈

WRHΩ
∞, but w 6∈ RHΩ,loc

p for any p > 0, since wp 6∈ DΩ. On the other hand, if w ∈ RHΩ,loc
p ,

then w ∈ RHΩ
q for some q < p, where q depends only on p, RHΩ,loc

p (w), and the dimension n;

this fact follows from Corollary 3.17 of [Sta]). For Ω = Rn, RHΩ
p = RHΩ,loc

p but, if Ω 6= Rn,

these spaces are distinct. For example, it is easy to see that wr(x) = (dist(x,Rn\Ω))−r ∈
RHΩ,loc

∞ , for all r > 0. However, wr 6∈ RHΩ
∞. In fact, if we choose a cube Q such that ∂Q∩ ∂Ω

is non-empty, then wr 6∈ Ln/r(Q), and so w 6∈ RHΩ
n/r. It follows that, if Ω 6= Rn, then

RHΩ,loc
p 6⊆ RHΩ

q for all 0 < p, q ≤ ∞.

2. Pointwise Multipliers

The examples of WRHΩ
p weights given in the first section lead us to ask what conditions

on a weight f guarantee that, for all 0 < p < ∞, f · RHΩ
p ≡ { fw | w ∈ RHΩ

p } is a subset

of WRHΩ
p . More generally, one can ask when it is true that f · S ⊆ T , where S, T are reverse

Hölder spaces. In this section, we shall show (Theorem 2.9) that a quantitative version of such
a containment can only occur if S ⊆ T . Thus, the only possible cases are f · RHΩ

p ⊆ RHΩ
q ,

f ·RHΩ
p ⊆ WRHΩ

q , f ·WRHΩ
p ⊆ WRHΩ

q , and local versions of the first two (for some particular
indices 0 < q ≤ p ≤ ∞ in each case). It is not hard to classify f in the first case (Theorem 2.3),
but the third case (Theorem 2.6) presents considerably more difficulties. In the second case,
we can only give a partial answer (Theorem 2.4). We need a couple of preliminary lemmas, the
first of which is the version of the Whitney covering lemma found in [Sa].
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Lemma 2.1. Given R ≥ 1, there is a dimensional constant CR such that if G is an open subset
of Rn, then G =

⋃

k

Qk, where the cubes Qk are disjoint,
∑

k
χ

RQk
≤ CR

χ
G and

5R ≤ dist(Qk, Gc)

diam(Q)
≤ 15R.

The next lemma shows that certain weak versions of the A∞ condition are equivalent to the
WRHΩ

1 condition. We shall only need the equivalence of (ii) and (iv), but we include (i), as it
is interesting for its own sake.

Lemma 2.2. For any fixed σ > 1, the following conditions on a weight w are equivalent.

(i) There exist constants 0 < α < 1 and 0 < β < 1/C2, such that if E is a subset of a
σ-allowable cube Q, and |E|/|Q| ≤ α, then w(E)/w(σQ) ≤ β. C2 is the constant in
Lemma 2.1, for R = 2.

(ii) There exist constants C, ε > 0 such that if E is a subset of an σ-allowable cube Q, then
w(E)/w(σQ) ≤ C (|E|/|Q|)ε.

(iii) w ∈ WRHΩ
p for some p > 1.

(iv) w ∈ WRHΩ
1 .

Proof. For the sake of simplicity, we shall assume σ = 2. To see that (i) implies (ii), let us first

write C = (500
√

n)n. It suffices to show that, for all positive integers k, w(E)/w(2Q) ≤ βkCk−1
2

whenever |E|/|Q| ≤ αk/Ck−1. The statement is true for k = 1, so we assume inductively that
it is true for k = k0 ≥ 1. If |E|/|Q| ≤ αk0+1/Ck0 , we apply Lemma 2.1, with R = 2, to the set
G = {x ∈ Q | Mχ

E(x) > α/(100
√

n)n } ⊃ E to get that G =
⋃

k

Qk, where the cubes Qk are

disjoint,
∑

k
χ

2Qk
≤ C2

χ
G and

10 ≤ dist(Qk, Gc)

diam(Q)
≤ 30.

It follows that 100
√

nQk intersects Gc and that |Ek|/|Qk| < α, where Ek = E ∩Qk. Therefore
w(Ek)/w(2Qk) ≤ β, and so

w(E) =
∑

k

w(Ek) =
∑

k

w(Ek)

w(2Qk)
w(2Qk) ≤ βC2w(G).

But by a standard weak-type estimate on M (see [Ste, p. 5]),

|G| ≤ (500
√

n)n

α
|E| ≤ αk0

Ck0−1
|Q|

and so w(E) ≤ βC2 · βk0Ck0−1
2 w(2Q), which completes the inductive step.
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Let us now prove that (ii) implies (iii). We work with an arbitrary but fixed cube Q and
normalise so that w(2Q) = |Q|. Letting Ek = {x ∈ Q‖2k ≤ w(x) < 2k+1}, it is clear that
|Ek| ≤ 2−kw(Q) ≤ 2−k|Q|, and so w(Ek) < C2−εkw(2Q). Thus,

∫

Q

w1+ε/2 ≤ w(2Q) +

∞
∑

k=0

2ε(k+1)/2w(Ek)

≤ w(2Q)

(

1 + 2ε/2
∞
∑

k=0

C2−εk/2

)

≤ C ′w(2Q) = C ′|Q|,

where C ′ = C ′(C, ε). Thus ‖w‖
1+ε/2,Q

≤ C ′′ = 2nC ′′‖w‖
1,2Q

, and so w ∈ WRHΩ
1+ε/2, as

required.

Since trivially (iii) =⇒ (iv) and (ii) =⇒ (i), and we know from Section 1 that (iv) =⇒
(iii), we need only prove that (iii) =⇒ (ii) to finish the proof. If E ⊆ Q, and w ∈ WRHΩ

p for
some p > 1, then

1

|Q|

∫

E

w = ‖wχ
E‖Q,1

≤ ‖w‖
p,Q

‖χE‖p′,Q
≤ C‖w‖

1,2Q

( |E|
|Q|

)1/p′

,

which proves (ii) with ε = 1/p′. �

It is important for our purposes to note that, in proving that (iv) implies (ii), we can choose
C and ε to depend only on n, σ and WRHΩ

1 (w). We are now ready to state and prove the
first, and easiest, of our pointwise multiplier theorems. The case p = q of this theorem was
previously answered by Johnson and Neugebauer [J-N].

Theorem 2.3.

(i) If 0 < q ≤ p < ∞, then f ·RHΩ
p ⊆ RHΩ

q if and only if f ∈
⋂

r<s
RHΩ

r , where s = pq/(p−q)

(s = ∞ if p = q).
(ii) If 0 < q ≤ ∞, then f · RHΩ

∞ ⊆ RHΩ
q if and only if f ∈ RHΩ

q .

Proof. We shall first prove (i). (D) allows us to reduce our task to the case q = 1, since
f · RHΩ

p ⊆ RHΩ
q if and only if f q · RHΩ

p/q ⊆ RHΩ
1 , and f ∈

⋂

r<s RHΩ
r if and only if f q ∈

⋂

r<(p/q)′ RHΩ
r .

Suppose that f ∈
⋂

r<p′

RHΩ
r , and that w ∈ RHΩ

p . Thus w ∈ RHΩ
t for some t > p; in fact,

‖w‖
t,Q

≤ C‖w‖
−ε,Q

for some 0 < ε < 1, and all Q ⊆ Ω. Since t′ < p′,

‖wf‖
1,Q

≤ ‖w‖
t,Q

‖f‖
t′,Q

≤ C ′‖w‖
t,Q

‖f‖
ε/2,Q

≤ C ′‖w‖
t,Q

‖wf‖
ε,Q

/‖w‖
−ε,Q

≤ C · C ′‖wf‖
ε,Q

,
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where the first and third inequalities are by Hölder’s inequality. Thus, w ∈ RHΩ
1,ε = RHΩ

1 .

Conversely, suppose that f · RHΩ
p ⊆ RHΩ

1 for some 1 < p < ∞. In particular, f · 1 =

f ∈ RHΩ
1 , and so f1/p ∈ RHΩ

p , which in turn implies that f1+1/p ∈ RHΩ
1 . Continuing this

iteration, we see that f ∈ RHΩ
rm

, where rm =
∑m

k=0 1/pk. But rm → p′ (m → ∞), and so

f ∈ ⋂

r<p′

RHΩ
r .

The proof of (ii) is quite similar. Choosing w = 1, we see that f · 1 ∈ RHΩ
q is a necessary

condition. To prove the converse, suppose first that q < ∞. If f ∈ RHΩ
q , then f ∈ RHΩ

tq for
some t > 1. Also, ‖w‖

t′q,Q
≤ C‖w‖

−ε,Q
, for some 0 < ε < q and all Q ⊆ Ω. Thus,

‖wf‖
q,Q

≤ ‖w‖
t′q,Q

‖f‖
tq,Q

≤ C‖w‖
t′q,Q

‖f‖
ε/2,Q

≤ C‖w‖
t′q,Q

‖wf‖
ε,Q

/‖w‖
−ε,Q

≤ C ′‖wf‖
ε,Q

,

and so wf ∈ RHΩ
q . If q = ∞, the proof follows in the same manner, except that the first use

of Hölder’s inequality is replaced by the inequality ‖wf‖
∞,Q

≤ ‖w‖
∞,Q

‖f‖
∞,Q

. �

It is easily seen from the above proof that if, for some weight f , f · RHΩ
p ⊆ RHΩ

q , then a

quantitative version of the same statement is true, namely RHΩ
p (fw) ≺ RHΩ

p (w). Similarly,
containment leads to quantitatively controlled containment in Theorem 2.6; in Theorem 2.4,
one obtains controlled containment, as long as f satisfies the stated sufficient condition.

We now state an analog of the above theorem for the case f · RHΩ
p ⊆ WRHΩ

q ; we omit the
proof which is easily obtained by a few minor modifications to the above proof (“Q” becomes
“σQ” in a few places). The one part which cannot be carried over is the iteration in the proof
of the converse part of (i); this is why we cannot give a full-strength analog of (i) (although it
seems likely that such an analog is true).

Theorem 2.4.

(i) If 0 < q ≤ p < ∞, a necessary condition for f · RHΩ
p ⊆ WRHΩ

q is that f ∈ WRHΩ
q ; a

sufficient condition is that f ∈ ⋂

r<s
WRHΩ

r , where s = pq/(p − q) (s = ∞ if p = q).

(ii) If 0 < q ≤ ∞, then f · RHΩ
∞ ⊆ WRHΩ

q if and only if f ∈ WRHΩ
q .

Various other analogs of Theorems 2.3 and 2.4 could be stated. For example, it follows as
an easy corollary to Theorem 2.3 that if we replace every RHΩ

∗ space with the corresponding

RHΩ,loc
∗ space, the statement of Theorem 2.3 remains valid. Also, one can prove the version of

Theorem 2.4 where RHΩ,loc
∗ replaces WRHΩ

∗ in exactly the same fashion as the original proof.

The following special case of Theorem 2.4 is interesting, as it answers the question posed at
the beginning of this section; it also sheds some light on the checkerboard set example given
after Proposition 1.6. We omit the obvious proof.
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Corollary 2.5. u ·RHΩ
p ⊆ WRHΩ

p for all 0 < p ≤ ∞ if and only if u ∈ WRHΩ
∞. In particular,

u = χ
S has this property if and only if there exists some ε > 0 for which |S ∩ (2 Q)| > ε|Q| for

all cubes Q for which |S ∩ Q| > 0.

Theorem 2.6.

(i) If 0 < q ≤ p < ∞, then f · WRHΩ
p ⊆ WRHΩ

q if and only if f ∈
⋂

r<s
RHΩ,loc

r , where

s = pq/(p − q) (s = ∞ if p = q).
(ii) If 0 < q ≤ ∞, then f · WRHΩ

∞ ⊆ WRHΩ
q if and only if f ∈ RHΩ,loc

q .

Most of the statement of this final theorem can be proved by modifying the proof of Theorem
2.3. There is however one major obstacle to be overcome: we must show that if f · WRHΩ

p ⊆
WRHΩ

q , then f ∈ DΩ. If we assume that WRHΩ
q (wf) ≺ WRHΩ

p (w), this is not difficult to

prove. Let us consider, for example, the case q = 1. If f /∈ DΩ, then Lemma 1.3 implies
that, for each positive integer k, there are adjacent allowable cubes Qk, Q′

k, for which l(Q′
k) <

l(Qk)/4k but f(Qk) < f(Q′
k)/k. Letting Sk = (Rn\3 Qk) ∪ Qk ∪ Q′

k, it is easy to see that
{WRHΩ

∞(χSk
)}∞k=1 is a bounded sequence of numbers (this is in fact Lemma 2.7 for a sequence

of length 1). Letting Q = (3/2)Qk and E = Q′
k, we see that E ⊆ Q, |E|/|Q| < (6k)−n, and

that
∫

E

fχ
Sk

= f(E) >
k

k + 1

(
∫

2 Q

fχ
Sk

)

.

By Lemma 2.2, the sequence {WRHΩ
1 (fχ

Sk
)}∞k=1 must be unbounded, which contradicts our

additional assumption.

To eliminate this quantitative control, we must essentially find a single weight w which does
the work of all the weights χ

Sk
above. If the cubes can be chosen so that the dilates 4 Qk are

disjoint, our task is easy: we let w = χ
S , where S =

⋃∞
i=1 Sk. Arguing as before, it follows that

wf /∈ WRHΩ
1 . Because of disjointness, it is not difficult to see that w ∈ WRHR

n

∞ , contradicting
our hypothesis.

This argument does not extend to the case where the cubes Qk intersect, or if they are
too close together, because the cubes will then “interfere” with each other. Some of the more
general cases can be handled by more elaborate versions of this argument; the task of altering
the cubes and the weight w, so that the cubes do not interfere with each other will necessitate
some extra technicalities. The more elaborate weights we shall construct will be associated with
certain sequences of quadruples {(Pk, P ′

k, Ak, dk)}k2

k=k1
, where −∞ ≤ k1 ≤ k2 ≤ ∞, Pk and P ′

k

are adjacent cubes, Ak is a cube containing the dilates 50 Pj for all j > k, and 2.9 ≤ dk ≤ 3.
These quadruples will be such that l(P ′

k) and l(Ak) are less than l(Pk) (in particular, the
sidelengths l(Pk) form a decreasing sequence), and Ak is k-conditioned, where we say a set A
is “k-conditioned” (or “conditioned with respect to (Pk, P ′

k, dk)”) if A is fully contained in one
of the sets Pk, P ′

k, Sk ≡ dkPk\(Pk ∪P ′
k), Rn\dkPk, which partition Rn. Letting Bk =

⋃

j>k

3 Pj,

the associated weights will have the form

w(x) =

{

ak, x ∈ Rn\(Sk ∪ Bk)

bk, x ∈ Sk\Bk.
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where 0 ≤ bk ≤ ak. Furthermore, we have the “continuity condition”

ak+1 =

{

bk, if Bk ⊂ Sk

ak, if Bk ⊂ Rn\Sk.

It follows that max
x∈Sk

w(x) = bk and max
x∈Rn\Sk

w(x) = ak. We shall denote by W the class of all

such weights. For our purposes, bk will be very small compared with ak.

The weights χ
Sk

previously considered are of this type (k1 = k2 = 0, a0 = 1, b0 = 0). Since
the weights in W generalize these weights, and the k-conditioning of the sets Ak is designed to
stop the cubes interfering with each other, the following result should come as surprise.

Lemma 2.7. If w ∈ W , then w ∈ WRHR
n

∞ . In fact, WRHR
n

∞ (w) ≤ Cn, where Cn depends
only on n.

Proof. We will prove the lemma with Cn = 5n/ln, where ln = 1 −
(

3
4

)n −
(

1
40

)n
. Without loss

of generality, we assume k1 = −∞ and k2 = ∞ (we can choose ak = bk, when k is outside a
given range). Fixing a cube Q, we have |Pk−1| ≥ |Q| > |Pk| for some integer k. Now, 20 Q is
j-conditioned for all except possibly one integer j < k. To see this, note that if l < k is the
largest exceptional integer, then 20 Q intersects 3 Pl, and so 20 Q ⊂ 50 Pl (since |Q| ≤ |Pl|).
Thus 20 Q ⊂ Aj for any j < l, and so 20 Q is j-conditioned for all j < l.

We therefore assume that 20 Q is j-conditioned for all j < k, j 6= l. If 4 Q is l-conditioned,
then the assumptions on w imply that w(x) ≤ c for all x ∈ 4Q, with equality for x ∈ 4 Q\Bk−1

(c is either ak or bk). It follows from our hypotheses that |Bk| < 10−n|Pk|, and so |Bk−1| <
|3 Pk| + |Bk| ≤ (3n + 10−n)|Q|. Therefore, |{x ∈ 4 Q | w(x) = c}| ≥ (4n − 3n − 10−n)|Q|, and
so ‖w‖

1,4Q
≥ ln‖w‖

∞,Q
.

We must now take care of the alternative case when 4 Q is not l-conditioned. Let us first
show that for any cube Q0 which is not l-conditioned, |(5 Q0)\Sl| > |Q0|. This is easy to see
if |Q0| ≥ |Pl|, so suppose |Q0| < |Pl|. If Q0 intersects Rn\(3 Pl), then |(5 Q0)\(3 Pl)| > |Q0|,
whereas if Q0 intersects Pl, then |(5 Q0) ∩ Pl| > |Q0|. The last way that Q0 can fail to be l-
conditioned is if Q0 intersects P ′

l . In this case, it is clear that |(5 Q0)∩P ′
l | > |Q0| if |P ′

l | ≥ |Q0|,
while |(5 Q0)∩Pl| > |Q0| if |P ′

l | < |Q0|. Letting Q0 = 4 Q, we see that |(20 Q)∩(Rn\Sl)| > |4 Q|.
Proceeding as in the previous case, we see that ‖w‖

1, 20Q
≥ 5−nln‖w‖

∞,Q
, which finishes the

proof of the lemma. �

We are now ready to prove the main theorem. In this proof, a dilate of a cube Q will refer
to rQ for any r > 0 (not just r > 1); when we need to be more precise, we refer to rQ as the
r-dilate of Q.

Proof of Theorem 2.6. We shall first prove (i). As in Theorem 2.3, it suffices to do so in the
case q = 1. If f ∈ ⋂

r<p′

RHΩ,loc
r , it follows that for some 0 < ε < 1, all r < p′, all allowable

Q, and some constant C = Cr, ‖f‖r,Q
≤ C‖f‖

−ε,2Q
. Suppose also that w ∈ WRHΩ

p , and so

w ∈ WRHΩ
t for some t > p. Since t′ < p′,
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‖wf‖
1,Q

≤ ‖f‖
t′,Q

‖w‖
t,Q

≤ C ′‖f‖
t′,Q

‖w‖
ε/2,2Q

≤ C ′‖f‖
t′,Q

‖wf‖
ε,2Q

/‖f‖
−ε,2Q

≤ C · C ′‖wf‖
ε,2Q

,

where the first and third inequalities are by Hölder’s inequality. Thus w ∈ WRHΩ
1 .

Conversely, suppose that f ·WRHΩ
p ⊆ WRHΩ

1 for some 1 < p < ∞. Modifying the iteration

argument of Theorem 2.3, we see that f ∈
⋂

r<s
WRHΩ

r . Because of (E), the desired result will

follow if we can show that f ∈ DΩ.

Let us first show that f(Q) > 0 for all allowable cubes Q. If not, then there exists an
allowable Q for which f(Q) = 0, but f(tQ) > 0 for all t > 1. We inductively construct a
sequence of cubes {Ck}∞k=1, with associated parameters

ak = inf{r | Ck ⊂ (1 + r)Q}
bk = sup{r | Ck and (1 + r)Q are disjoint}

satisfying

(1) a1 = 1/2,
(2) 0 < bk < ak/2,
(3) ak+1 < bk/(k + 1),
(4) f(((1 + ak+1)Q)\Q) < f(Ck)/k.

C1 is easily constructed since f(2 Q) > 0. Having chosen Cj , we choose aj+1 > 0 so small
that (3) and (4) are satisfied. Since f((1 + aj)Q) > 0, it is clear that we can choose a cube
Cj+1 which has positive f -measure and for which (2) is satisfied (for k = j + 1). Letting
S = Q ∪ (

⋃∞
i=1 Ck) ∪ (Rn\3 Q), it follows easily from (2) that w = χ

S ∈ WRHΩ
∞. Letting

Ek = Ck and Qk = (k/2)Ck, we see that

|Ek|
|Qk|

=

(

2

k

)n

→ 0 (k → ∞).

However, 2 Qk ⊂ bk−1Qk and so, by (2),

∫

Ek

fw = f(Ek) >
k

k + 1

∫

2 Qk

fw.

By Lemma 2.2, f /∈ WRHΩ
1 , contradicting our hypothesis.

Let us assume that f /∈ DΩ and arrive at a contradiction. By Lemma 1.3 there are, for every
k > 0, adjacent 20-allowable cubes Qk, Q′

k, for which l(Q′
k) < l(Qk)/2k but f(Qk) < f(Q′

k)/k.
In the discussion after the statement of Theorem 2.6, we saw that this leads to a contradiction
if the dilates 4Qk are disjoint. There is of course, nothing special about the dilation factors 3
and 4 in this argument. If the cubes Qk can be chosen so that, for some r > 1, their r-dilates
are disjoint, simple modifications to the above argument will give the required contradiction.
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Therefore, we shall assume that {Qk} cannot be chosen to have disjoint r-dilates for any r > 1.
We shall need to consider separately three types of cube sequences: cubes which stay about the
same size, cubes whose sidelengths tend to 0, and cubes whose sidelengths grow without bound
(by selecting a subsequence, all cube sequences reduce to one of these three types).

Suppose first that 0 < r < l(Qk) < R < ∞ for all 1 ≤ k. Since no subsequence of the cubes
has disjoint dilates, it follows that the sequence {Qk} is compactly supported in Ω. By choosing
a subsequence if necessary, we can assume that Qk → Q and Q′

k → {x}, for some allowable cube
Q and some x ∈ Ω (by which we mean that the vertices of Qk converge to the corresponding
vertices of Q, and the vertices of Q′

k all converge to x). But now, f(Qk) < f(Q′
k)/k → 0 as

k → ∞, and so f(Q) = 0 (by Lebesgue’s dominated convergence theorem) which, as we have
already seen, leads to a contradiction.

Suppose next that the cubes Qk, Q′
k can be chosen so that l(Qk) → 0 (k → ∞). Again,

we can assume the cubes Qk are compactly supported in Ω and so, by choosing a subsequence
if necessary, we can assume that Qk → {x} for some x ∈ Ω. Let Ak be the smallest cube
containing 50 Qj for all j > k, and so Ak → {x}. By taking a subsequence if necessary, we can
assume that for all k ∈ N, 2 Ak is a subset of Ω and that

(a) 1000 l(Ak) < l(Q′
k),

(b) 2f(Ak) < f(Q′
k),

(c) f(Qk) < 2−kf(Q′
k),

(d) |Q′
k| < 2−n(k+1)|Qk|.

For 1 ≤ k < ∞, we now construct adjacent cubes Pk, P ′
k and a dilation factor 2.9 ≤ dk ≤ 3 such

that Ak is k-conditioned. These cubes will be constructed by modest dilations of the cubes Qk,
Q′

k. More precisely, it will be true that

99

100
Qk ⊂ Pk ⊆ Qk, Q′

k ⊆ P ′
k ⊂ 102

100
Q′

k. (2.8)

In particular, Ak contains 50 Pj for all j > k.

We need to consider several cases for this construction. If Ak is conditioned with respect
to (Qk, Q′

k, 3), we let (Pk, P ′
k, dk) = (Qk, Q′

k, 3). Otherwise, if Ak intersects (101/100)Q′
k, let

P ′
k be the smallest dilate of Q′

k which contains Ak, let Pk be the dilate of Qk which is adjacent
to P ′

k, and let dk = 3. Otherwise, if Ak intersects Qk, we let Pk be the dilate of Qk which is
adjacent to Ak, let P ′

k be the dilate of Q′
k adjacent to Pk, and let dk = 3 (note that P ′

k does not
intersect Ak, because of the previous case). Finally, if Ak is only partially contained in 3 Qk,
the triple (Qk, Q′

k, 2.9) will suffice. In each case, it follows from (a) that our new cubes satisfy
(2.8). The new cubes satisfy conditions very similar to (a)–(d). Specifically,

(a′) 1000 l(Ak) < l(P ′
k),

(b′) 2f(Ak) < f(P ′
k),

(c′) f(Pk) < 2−kf(P ′
k),

(d′) |P ′
k| < 2−nk|Pk|.

Now let

wk(x) =







f(P ′
k)

2kf(3 Pk)
, x ∈ Sk

1, otherwise
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and w(x) =
∞
∏

k=1

wk(x). Clearly, w ∈ W ⊂ WRHΩ
∞. We get the desired contradiction by showing

that wf /∈ WRHΩ
1 . First note that

∫

3 Pk\P ′

k

fwk
∫

P ′

k

fwk
=

f(Pk) +
∫

Sk

fwk

f(P ′
k)

< 2−k + 2−k = 2−k+1.

By construction, w(x) ≤ wk(x) for x ∈ 3 Pk, with equality if x /∈ Ak. Thus

∫

3 Pk\P ′

k

fw ≤
∫

3 Pk\P ′

k

fwk.

Since wk is constant on P ′
k, it follows from (b′) that

∫

P ′

k

fw ≥ 1

2

∫

P ′

k

fwk,

and so
∫

3 Pk\P ′

k

fw
∫

P ′

k

fw
< 2−k+2.

Since P ′
k ⊂ 2Pk, it follows from (d′) and Lemma 2.2, that fw /∈ WRHΩ

1 .

Finally, we need to consider the case when |Qk| → ∞ (k → ∞). Since we are assuming that
no subsequence of these cubes can be produced to have disjoint r-dilates for any r > 1, we can
inductively produce a subsequence of these cubes whose 3/2-dilates are pairwise-intersecting.
We redefine Qk to be the k-th term of this subsequence. We can assume, in addition, that
l(Qk+1) > 6 l(Qk), from which it follows that 2 Qk ⊂ 2 Qk+1 (for all k ∈ N), and hence that
∞
⋃

k=1

(5/2)Qk = Rn.

We define Ak = 50 Qk−1 (and so Ak ⊇ 50 Qj for all j < k). We can also assume that these
new cubes Qk, Q′

k, and Ak satisfy conditions (a)–(d). As before, we can construct (Pk, P ′
k, dk)

so that Ak is k-conditioned, and

99

100
Qk ⊂ Pk ⊆ Qk, Q′

k ⊆ P ′
k ⊂ 102

100
Q′

k.

We can actually choose dk ≡ 3, since (a) implies that Ak ⊂ (5/2)Qk.

We shall inductively define weights uk for k > 0, and then define w(x) = lim
k→∞

uk(x). This

limit will exist for all x ∈ Rn, because the weights uk will be defined so that uk(x) = uj(x) for
all j > k, x ∈ 3 Pk. We define u0 ≡ 1, to start the induction. If k = 1 or if Ak ⊂ Pk ∪ P ′

k, we
define

uk(x) =







f(P ′
k)uk−1(x)

2kf(3Pk)
, x ∈ Sk

uk−1(x), otherwise.
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Otherwise (i.e., if k > 1 and Ak ⊂ Sk ≡ dkPk\(Pk ∪ P ′
k)), we define

uk(x) =







uk−1(x), x ∈ Sk

2kf(3Pk)uk−1(x)

f(P ′
k)

, otherwise.

We also write

wk(x) =







f(P ′
k)

2kf(3Pk)
, x ∈ Sk

1, otherwise.

Notice that, for each k < 0, uk is a constant times
∏k

i=1 wi, but is normalized to ensure
that w 6≡ 0. Clearly, w ∈ W ⊂ WRHΩ

∞ (our sequence of quadruples is indexed in the reverse
order to that in the definition of W , but this does not matter). The proof that fw /∈ WRHΩ

1

is similar to the case |Qk| → 0. First,

∫

3Pk\P ′

k

fwk < 2−k+1

∫

P ′

k

fwk.

Next, there exists a constant ck > 0 such that w(x) ≤ ckwk(x) for all x ∈ 3Pk, with equality if
x /∈ Ak. Since 2f(Ak) < f(P ′

k), it follows as before that

∫

3Pk\P ′

k

fw < 2−k+2

∫

P ′

k

fw,

and so fw /∈ WRHΩ
1 . This finishes the proof of (i).

For (ii), it is obvious that f ∈ RHΩ,loc
q is a necessary condition for containment. For the

converse, the case q < ∞ can be reduced to the case q = 1, which can then be proved by
straightforward modifications to the proof of (i) (the main task, proving that f ∈ DΩ, has
essentially been proven already, since all of the weights w we constructed are WRHΩ

∞ weights).

The case q = ∞ also follows easily. If f ·WRHΩ
∞ ⊆ WRHΩ

∞ ⊂ WRHΩ
2 , then f ∈ RHΩ,loc

2 ⊂ DΩ

(by the case q < ∞), and also f · 1 = f ∈ WRHΩ
∞. It follows that f ∈ RHΩ,loc

∞ . �

The following theorem shows more or less that if S and T are reverse Hölder spaces, f is a
weight, and f · S ⊆ T , then S ⊆ T .

Theorem 2.9. Suppose f is a weight and 0 < p, q ≤ ∞.

(i) If f · RHΩ
p ⊆ WRHΩ

q , and WRHΩ
q (fw) ≺ RHΩ

p (w), then q ≤ p.

(ii) f · WRHΩ
p 6⊆ RHΩ,loc

q .

(iii) If Ω 6= Rn, then f · RHΩ,loc
p 6⊆ RHΩ

q .

Proof. Let us prove (i). We can assume without loss of generality that p = 1. Suppose, for the
purposes of contradiction, that f is a weight for which WRHΩ

q (fu) ≺ RHΩ
1 (u), for some q > 1.

Thus, f = f · 1 ∈ WRHΩ
q . Let us fix a 3-allowable cube Q, normalize f so that ‖f‖

1, 2Q
= 1,
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and fix s satisfying 1/q < s < 1. For any a ∈ Rn, pa(x) = |x − a|−sn ∈ A1 ⊂ RH1, and
RH1(pa) is independent of a. We shall denote by C any constant independent of a. If Qa ⊆ Q
is a cube centered at a, and ua = fpa, then

ua(Qa) ≤ |Qa| · ‖ua‖q,Qa

≤ |Qa|1−1/q|Q|1/q‖ua‖q,Q

But, by hypothesis, {WRHΩ
q (ua)}a∈Q is bounded, and so

‖ua‖q,Q
≤ C‖ua‖1/2, 2Q

≤ C‖pa‖1, 2Q
‖f‖

1, 2Q
≤ C|Q|−s.

Therefore

ua(Qa) ≤ C

( |Qa|
|Q|

)1/q′

|Q|1−s.

Since pa(x) > cn|Qa|−s for x ∈ Qa,

f(Qa) ≤ C

( |Qa|
|Q|

)s+1/q′

|Q|.

If we split Q into subcubes Pk (1 ≤ k ≤ Nn), each of sidelength l(Q)/N , this last inequality
implies that

f(Q) =

Nn

∑

k=1

f(Pk) ≤ Nn · C|Q|/Nn(s+1/q′) = C|Q|/Nn(s−1/q),

where C is independent of N . Letting N → ∞, this implies that f(Q) = 0 for all allowable
cubes, a contradiction since f 6≡ 0.

To prove (ii), suppose that f · WRHΩ
p ⊆ RHΩ,loc

q for some weight f . Thus, f ∈ RHΩ,loc
q ,

and so 1/f ∈ RHΩ,loc
s for some s > 0. It follows from Theorem 2.3 that

WRHΩ
p = f−1 · f · WRHΩ

p ⊆ RHΩ,loc
s RHΩ,loc

q ⊆ RHΩ,loc
t ,

where t = sq/(s + q) if q < ∞, and t = s if q = ∞. Since WRHΩ
∞ 6⊆ RHΩ,loc

r for any r > 0,
this gives us the required contradiction.

We saw at the end of Section 1 that if Ω 6= Rn, then RHΩ,loc
p 6⊆ RHΩ

t for any p, t > 0. The
proof of (iii) now follows in a similar fashion to that of (ii), so we omit it. �
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