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applications in a modified Kaluza-Klein type approach in which the internal space

consists of a finite number of points. Motivated by the chiral nature of the standard

model spectrum we investigate manifolds that do not admit spinors but do admit

Spinc structures. It is shown that, by twisting with appropriate bundles, one gen-

eration of the electroweak sector of the standard model, including a right-handed

neutrino, can be obtained in this way from the complex projective space CP2. The

unitary Grassmannian U(5)/ (U(3) × U(2)) yields a spectrum that contains the cor-

rect charges for the Fermions of the standard model, with varying multiplicities for

the different particle states.
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1. Introduction

Non-commutative geometry has recently come to the fore as contender for a possible

modification of physics with applications in attempts to unify gravity and gauge the-

ories (for reviews see [1]). Long before the current surge of interest via superstrings

it was suggested by Connes and Lott that the standard model of particle physics

could be derived from non-commutative geometry, [2] [3]. A related concept is that

of “matrix manifolds”—these are a version of non-commutative geometry in which

continuous spaces with an infinite number of degrees of freedom are replaced with

finite dimensional non-commutative matrix algebras approximating the continuum

space. As the size of the matrices is taken to infinity the algebra becomes commu-

tative and the continuum space is recovered. These algebras are often called “fuzzy

spaces” but we shall refer to them as “matrix manifolds” in order to avoid the neg-

ative connotations of the word “fuzzy”. The matrix manifold approach has much in
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common with generalised coherent states in quantum mechanics, [4] [5] and exam-

ples of manifolds which admit a finite matrix approximation are S2 [6] [7], and more

generally CPn, [9] as well as unitary Grassmannians

U(n)

U(k) × U(n− k)
(1.1)

[10] (star products on continuous complex projective spaces and unitary Grassmanni-

ans were constructed in [11] [12]). One of the attractive features of matrix manifolds

is that they have the same symmetries as the continuum space, so a matrix version

(G/H)M of a coset space G/H has all the same symmetries of its continuous parent,

despite being a finite approximation. Matrix manifolds are also closely related to har-

monic expansions of functions on coset spaces, indeed the matrix algebras are nothing

more than cunning rearrangements of the expansion coefficients into a matrix, and

it is natural to ask if matrix manifolds might have a rôle to play in Kaluza–Klein

theory. This question was investigated in [13] and is one of the motivations for the

present work. Another motivation is the calculation of the spectrum of the Dirac

operator on CP2
M in [14] [15], the calculation in the latter reference being built on a

construction which bears a remarkable resemblance to the electroweak sector of the

standard model. This naturally leads one to ask if there might be a larger matrix

manifold which could incorporate the whole standard model in its spectrum.

One of the problems with the Kaluza–Klein programme was the realisation that

it was unlikely to generate a chiral gauge theory in 4-dimensions without some mod-

ification, [16]. To obtain a chiral gauge theory it seems necessary to introduce fun-

damental gauge fields and then one is faced with the difficulty of anomaly cancella-

tion, which is more difficult in higher dimensions because there are more potentially

anomalous graphs to worry about. The introduction of fundamental gauge fields also

negates the whole Kaluza–Klein philosophy whose aim is to derive the gauge fields

purely from a metric. If the internal space is a matrix manifold however fundamen-

tal gauge fields are more natural, as a matrix manifold has no simple definition of a

metric, but it does have symmetries. To call a theory with a matrix manifold as an

internal space a Kaluza–Klein theory is really a misnomer as all it has in common

with the usual Kaluza–Klein approach is an ‘internal’ space with a symmetry—if

a metric is not defined there are no induced gauge fields so they must be added

by hand. Nevertheless there is a symmetry, the symmetry of the isometries and

holonomy of the coset space are there even at the finite level— like the grin of the

Cheshire cat the symmetries remain even though the metric has gone.1 For this

reason we shall continue to refer to matrix Kaluza–Klein theory because the concept

has much in common with continuum Kaluza–Klein theory, though there are also

strong differences.

1For brevity we shall refer to G and H as the isometry and the holonomy group, even when no

metric or connection are defined.
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Fundamental gauge fields are therefore natural in matrix Kaluza–Klein theories,

but we must still worry about anomalies. To our knowledge the question of gauge

anomalies on matrix manifolds has not yet been investigated, though chiral anomalies

have been [7] [8]. If one takes a model consisting of 4-dimensional Minkowski space-

time with a matrix internal space one can hope that it may be sufficient for the

4-dimensional gauge anomalies to cancel, without worrying about graphs with more

external legs that would be important if the internal space were continuous. To a

large extent this is a question of dynamics on the internal space, if the dynamics

reproduces that of the continuum in the continuum limit (though it doesn’t have

to if we don’t want to take that limit) then these other graphs would have to be

important in the limit. But as long as the internal space consists of a (small) number

of finite degrees of freedom it seems not unreasonable to assume that only the usual

4-dimensional graphs contribute to a potential anomaly. For example the matrix

manifold representing the 2-sphere S2
M has an approximation consisting of only 2

points. A matrix Kaluza–Klein theory based on S2
M would look like two copies of

Minkowski space with an SU(2) action on the 2 points (much like the Higgs sector

in Connes’ version of the standard model). There seems no compelling reason to

believe that such a model would exhibit a six-dimensional gauge anomaly.

For the reasons outlined above it seems worthwhile investigating the possibility

of obtaining chiral gauge theories in 4-dimensions from a matrix Kaluza–Klein theory

with internal space (G/H)M and fundamental gauge fields. The tool that we use will

be standard differential geometry and the Atiyah–Singer index theorem for the Dirac

operator on continuous manifolds. Though the aim is to apply the concepts to finite

matrix geometries it is not unreasonable to expect that the usual index theorem

applies since it makes statements about topology by counting finite data. Indeed

a Dirac operator can be defined on matrix manifolds, even though they are finite

dimensional.

The spectrum of the Dirac operator on some specific matrix manifolds has al-

ready been investigated, notably S2
M [7] [8] and CP2

M , [14] [15]. The construction

of the spectrum on CP2 in [15] is built on a 4-dimensional reducible representation

of SU(2) × U(1) which is that of electroweak sector of the standard model of parti-

cle physics, including a state with the quantum numbers of a right-handed neutrino

which is a chiral zero-mode. As is well known CP2 ∼= SU(3)/U(2) is not a spin man-

ifold, it has an obstruction to the global definition of spinors, but coupling spinors

to an appropriate background U(1) gauge field allows spinors to be defined—a con-

struction which is called a spinc structure in the mathematical literature—and this

gives rise to the right-handed neutrino in [15]. Since CP2
M is a finite matrix algebra

approximation to continuum CP2, which captures all the topological features of the

continuum manifold, the topology is reflected at the matrix level and the emergence

of chiral spinors on CP2
M is a direct consequence of the Atiyah-Singer index theorem

for spinors on CP2.
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Since the holonomy group of CP2 is U(2) the spectrum of the Dirac operator can

be decomposed into representations of SU(2)× U(1) and the representations in [15]

are built on that of the electroweak sector of the standard model with the addition

of a right-handed neutrino

10 = VR 1−2 = eR 2−1 =

(

VL

eL

)

. (1.2)

There is a zero-mode state in the construction of [15], the 10, and its existence

requires a background Abelian ‘monopole’ field on CP2. In fact, as we shall see,

coupling Fermions to monopole fields of higher charge and non-Abelian background

fields as well allows every state in (1.2) to be realised as a zero-mode of the Dirac

operator on CP2. The fact that a right-handed neutrino appears naturally in the

construction is particularly appealing in view of the recent evidence for solar neutrino

oscillations [17] [18] whose simplest interpretation requires a right-handed neutrino.

Another manifold which has holonomy group U(2) and does not admit spinors

is
Sp(2)

U(2)
∼= SO(5)

SO(3) × SO(2)
. (1.3)

This space has a finite matrix approximation and has been proposed as a matrix

version of the cotangent bundle to S3 [19]. One might wonder if the spectrum in

(1.2) is generic for spinc structures on manifolds with holonomy U(2) and this space is

a counter-example. We shall see that a spectrum emerges which contains the correct

charges of the electroweak sector but the Dirac operator for electron-neutrino doublet

has zero index. Nevertheless it is useful to include this as an example of a space of

dimension 2 mod 4 which is not spin (the significance for chiral spinors of a distinction

between spaces of dimension 0 mod 4 and dimension 2 mod 4 was emphasised in [16]).

The last space which we shall examine is the matrix version of the unitary Grass-

mannian
U(5)

U(3) × U(2)
. (1.4)

This space has a finite matrix approximation and an explicit local formula for a

star-product, in terms of a finite sum of derivatives, was derived in [10]. It is not a

spin manifold but admits a spinc structure, and so seems a good candidate for chiral

spinors. Furthermore the holonomy group is exactly right for the standard model,

since
U(5)

U(3) × U(2)
∼= SU(5)

S[U(3) × U(2)]
(1.5)

and the particle spectrum of the standard model is really such that the Fermions

fall into a representation whose true group is precisely S[U(3)×U(2)], [20]. For this

space the spectrum contains one generation of the full standard model, including

a right-handed neutrino, though the multiplicities are different for different states,

some of them having zero index.
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Section 2 contains an index theorem analysis of spinors on CP2 and reproduces

the zero-mode spectrum (1.2). Section 3 contains a discussion of the 6-dimensional

manifold Sp(2)/U(2). Section 4 analyses spinc structures, and their non-Abelian

generalisations, on the unitary Grassmannian U(5)/(U(3) × U(2)) and its relation

to the standard model spectrum. Our results are summarised in section 5. The

analysis relies on the index theorem for the Dirac operator for various bundles over

these three spaces. The derivation of the relevant index for the cases under study is

given in four appendices, where a general discussion of spinc structures is also given

as an aid to those who may not be familiar with the construction.

2. Chiral Fermions on CP2

The complex projective space CP2 ∼= SU(3)/U(2) was actively investigated in the

1980s as an interesting candidate for an Euclidean gravitational instanton [21]. The

Euler characteristic of CP2 is χ = 3 and the signature is τ = 1. It is not a spin man-

ifold, there is a global obstruction to putting spinors on this space, but one can put

spinors on it provided fundamental gauge fields are introduced and an appropriate

topologically non-trivial background gauge field is introduced. This fact was used

in [21] to construct a “generalised spin structure”, where spinors with an Abelian

charge move in the field of the Kähler 2-form on CP2, which is somewhat analogous

to a monopole field on CP1 ∼= S2.

The holonomy group of CP2 is

U(2) ⊂ SO(4) ∼= SU(2) × SU(2)

Z2
. (2.1)

If spinors could be defined this would be lifted to SU(2)×U(1) ⊂ Spin(4) ∼= SU(2)×
SU(2), and the two different chiralities of Weyl spinors would transform under the

different factors of SU(2) × U(1) as, for example,

ψ+ = 11 + 1−1 and ψ− = 20, (2.2)

where the subscript denotes the U(1) charge. But since spinors cannot be defined

globally (cf. appendix B), the spinor bundle does not exist. This can be cured by

introducing a U(1) gauge field with non-trivial topology and correlating the charge

with that of the U(1) subgroup of Spin(4). Mathematically, on a complex manifold

X, we take the square root of the canonical line bundle K, as described in appendix

A, and tensor it with the the spin bundle S(X). Neither of these bundles exists

separately but S(X) ⊗K−1/2 does. In fact, if L is a generating line bundle (cf. the

appendix) with
∫

S2 c1(L) = −1, where S2 is a non-trivial two sphere embedded in

X,2 then S(X) ⊗ Lp is a well defined bundle for any half-integral p. For CP2 it is

2This is ambiguous if H2(X ;Z) has dimension greater than one, but in all the examples we shall

consider in this paper H2(X ;Z) is one dimensional and this integral is uniquely defined.
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shown in appendix B that

S(X) ⊗ Lp = ∧0,∗TX ⊗K1/2 ⊗ Lp = ∧0,∗TX ⊗ L−q, X = CP2 (2.3)

where q = −p− 3
2
, since the canonical line bundle for CP2 is given by K = L3.

The net number of zero modes depends on q and for CP2 is given in (B.5) of

appendix B as

ν =
1

2
(q + 1)(q + 2). (2.4)

In fact q can be interpreted as the effective U(1) charge. The charge is not

p because there is a contribution from the angular momentum associated with the

spinor bundle S(X). To evaluate the charge we use a general argument concerning

spinor bundles over complex manifolds. We define the U(1) charge, which will be

identified later with the hypercharge Y , using the Chern character of the generating

line bundle raised to the appropriate power, in this case L−q, by taking a non-trivial

S2 embedded in the manifold X and defining

q =

∫

S2

ch(L−q) = −q
∫

S2

ch(L) since

∫

S2

c1(L) = −1. (2.5)

For comparison with the usual charge assignments of the standard model below,

we rescale this by 2/3 to Y = 2q/3. For q = 0 for example ν = 1 and, identifying

positive chirality with right-handed spinors, this would appear as a neutral right-

handed particle: a right-handed neutrino VR. A spinor with q = −3 also has ν = 1,

so would be right-handed, with Y = −2: the right-handed electron, eR.

If a fundamental SU(2) gauge field is added with the spinors taken to be SU(2)

doublets then spinors can be obtained from the bundle ∧0,∗TCP2 ⊗ F ⊗L−q, where

F is the rank 2 vector bundle defined by F ⊕ L = I3 (I3 denoting a trivial rank 3

bundle). The structure group of F is U(2) corresponding to a SU(2) × U(1)-gauge

field. In fact F is associated to the principal U(2) bundle induced by the coset

construction
U(2) −→ SU(3)

↓
CP2 .

(2.6)

The Dirac index for ∧0,∗TCP2 ⊗ F ⊗ L−q is derived in appendix B and is given by

(B.11)

ν = (q + 1)(q + 3). (2.7)

Zero modes would give rise to chiral SU(2) doublets.

The U(1) charge is now calculated as the Chern character ch(F ⊗L−q) evaluated

on a topologically non-trivial S2 embedded in CP2, the result is 2q+1. As the Chern

character involves tracing over a 2× 2 matrix the U(1) generator is (2q+1)
2

1, where 1

is the 2 × 2 identity matrix, so the individual charges are q + 1
2
. Re-scaling by 2/3,
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as above, gives Y = 2q+1
3

. In particular q = −2 yields Y = −1 with ν = −1 and,

identifying positive chirality with right-handed particles, we get a single generation

of a left-handed doublet with charge −1, the electron-neutrino doublet.

So we can obtain a single generation of the electroweak sector of the standard

model from CP2 by taking SU(2) singlets with q = 0 and q = −3 (ν = +1) and a

single SU(2) doublet with q = −2 (ν = −1), that is

10 = VR 1−2 = eR 2−1 =

(

VL

eL

)

, ν > 0 right-handed. (2.8)

3. Chiral Fermions on Sp(2)/U(2)

As an example of a six-dimensional space which does not admit a spin structure, but

does admit a Spinc structure, consider Sp(2)/U(2). This space has Euler character-

istic χ = 4. In fact
Sp(2)

U(2)
∼= SO(5)

SO(3) × SO(2)
(3.1)

and this space admits a matrix approximation. The spinor bundle does not exist

but a Spinc structure can be defined using S(X) ⊗ Lp, with L the generating line

bundle and p half-integral. The canonical line bundle is related to the generating

line bundle by K = L3 (see appendix C) so that

S(X) ⊗ Lp = ∧0,∗TX ⊗ L−q, X =
Sp(2)

U(2)
(3.2)

where q = −p− 3
2
.

The Dirac index of this bundle is derived in appendix C and is given in (C.18):

ν =
1

6
(2q + 3)(q + 1)(q + 2). (3.3)

The zero-modes will give rise to particles in 4-dimensions whose U(1) charge is q,

which we re-scale by 2/3 to bring it line with the usual standard model conventions

below. so, for example, q = −3 gives a single generation of negative chirality particles

with charge −2 while q = 0 would give a single generation of positive chirality neutral

particles.

As before we can also couple the Fermions to a fundamental SU(2) gauge field

by introducing a rank 2 vector bundle F associated to the principal bundle

U(2) −→ Sp(2)

↓
Sp(2)/U(2)

(3.4)

with structure group U(2). It is shown in appendix C that the index of ∧0,∗TX ⊗
F ⊗ L−q is now

ν =
2

3
q(q + 1)(q + 2). (3.5)
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The Chern character ch(F ⊗ L−q) evaluates to 2q + 1 on a non-trivial S2. Again

this is the trace of a 2 × 2 matrix and the individual states have charge q + 1
2

which

is rescaled by 2/3 to give the U(1) charge as Y = 2q+1
3

. For example q = 1 gives

Y = 1 and ν = 4 and thus four copies of positive chirality doublets while q = −2

gives Y = −1 and ν = 0.

We can try to get the electroweak charges from this construction. For example

interpreting positive chirality as left-handed the singlets would be the right-handed

electron eR and a left-handed anti-neutrino (V )L. But the doublets with Y = 1

would have to have negative chirality to fit with the standard model (the right-

handed positron and anti-neutrino) and ν is positive. If we interpret positive chirality

as right-handed, the doublet could the positron–anti-neutrino doublet

(

(V )R
(e)R

)

, but

then the singlet with Y = −2 has the wrong chirality to be the right-handed electron.

On the other hand choosing a doublet with q = −2 giving Y = −1, in addition

to the singlets above, gives ν = 0 for the doublet: in general the Dirac operator

will have no zero modes for this doublet though it may have for specific choices of

the U(2) connection, but even then the zero modes will occur in pairs of opposite

chirality. The spectrum contains one generation of the electroweak sector of the

standard model, but there is an additional unwanted doublet of the wrong chirality.

4. Unitary Grassmannians

The final source of examples that we wish to discuss is the unitary Grassmannians

U(n)

U(k) × U(n− k)
∼= SU(n)

S(U(n− k) × U(k))
(4.1)

of which the complex projective spaces, k = 1, are special cases. The first Chern

class of the tangent bundle for these space evaluates to n, [23], and the second

Stiefel-Whitney class is n mod 2—so these spaces admit a spin structure if and only

if n is even. We shall focus on the particular case of n = 5 and k = 2, this is an

interesting case because the holonomy group of SU(5)/S(U(3) × U(2)) is precisely

that of the standard model, [20]. This condition dictates that the Fermions actually

sit in representations of SU(3)×SU(2)×U(1) in which the generators are traceless—

whence S(U(3) × U(2)). As a matrix manifold SU(5)/S(U(3) × U(2)) was studied

in [10], where a star product was explicitly constructed in terms of derivatives.

The Grassmannian SU(5)/S(U(3) × U(2)) has Euler characteristic χ = 10 and

signature τ = 2. It is not a spin manifold but a Spinc structure exists. Taking the

bundle ∧0,∗TX ⊗ L−q, with X the Grassmannian and L the generating line bundle,

the Dirac index is calculated in appendix D as (D.27),

ν{q,1,1} =
1

144
(q + 1)(q + 2)2(q + 3)2(q + 4), (4.2)
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where the notation {q, 1, 1} indicates the U(1) × SU(3) × SU(2) structure of the

vector bundle.

The Chern character ch(L−q) evaluates to q on a 2-sphere so the U(1) charge

here is q which we shall rescale by a factor of 2 in order to reproduce the standard

model quantum numbers later,

Y{q,1,1} = 2q. (4.3)

In particular with q = 0 gives ν{0,1,1} = 1, and interpreting positive chirality as

right-handed gives a single generation of right-handed neutrino, while q = −1 gives

Y{−1,1,1} = −2 which would be the right-handed electron but ν{−1,1,1} = 0.

We can include fundamental SU(2) gauge fields by taking the spinors to trans-

form as a doublet and constructing the rank 2 vector bundle F with structure group

U(2) associated with the principal bundle

U(2) −→ U(5)/U(3)

↓
U(5)/(U(3) × U(2)) .

(4.4)

The Dirac index of the bundle ∧0,∗TX ⊗ F ⊗ L−q is calculated in the appendix and

shown to be (D.39)

ν{q,1,2} =
1

72
(q + 1)(q + 2)(q + 3)2(q + 4)(q + 5). (4.5)

The first Chern class c1(F ) evaluates to 1 and the Chern character ch(F ⊗ L−q) to

2q + 1 on a non-trivial S2 so, dividing by the rank of the bundle, the U(1) charge

here is q + 1
2

which is rescaled by a factor of 2 as before to Y{q,1,2} = 2q + 1. In

particular q = 0 gives Y{0,1,2} = 1 and ν{0,1,2} = 5 which we interpret as copies of the

positron–anti-neutrino doublet

(

(V )R
(e)R

)

.

Fundamental SU(3) gauge fields can be incorporated by a very similar procedure:

take the spinors to transform as an SU(3) triplet and construct the rank 3 vector

bundle E with structure group U(3) associated with the bundle

U(3) −→ U(5)/U(2)

↓
U(5)/[U(3) × U(2)] .

(4.6)

The index of the bundle ∧0,∗TX ⊗ E ⊗ L−q is (D.37)

ν{q,3,1} =
1

48
q(q + 1)(q + 2)(q + 3)2(q + 4). (4.7)

The bundles E and F are related by E ⊕ F = I5, so c1(E) of E evaluates to −1 so

integrating ch(E ⊗ L−q) over an S2 gives 3q − 1 giving U(1) charge q − 1
3

which we

rescale by 2 to give Y{q,3,1} = 2q − 2
3
.
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In particular q = 0 gives the right-handed dR but again

ν{0,3,1} = 0. (4.8)

The right-handed uR quarks arises from q = 1 giving Y{1,3,1} = 4/3 with index

ν{1,3,1} = 10. (4.9)

The left-handed quarks of the standard model are both SU(3) triplets and SU(2)

doublets so the bundle ∧0,∗TX ⊗ E ⊗ F ⊗ L−q is also considered in the appendix

(D.41), leading to

ν{q,3,2} =
1

24
q(q + 2)2(q + 3)(q + 4)(q + 5). (4.10)

The Chern character ch(E⊗F ⊗L−q) integrates to 6q+1 on a non-trivial S2, so the

U(1) charge is q+ 1
6

which is rescaled to Y{q,3,2} = 2q + 1
3
. The choice q = 0 leads to

the quark doublet,

(

uL

dL

)

, with Y{0,3,2} = 1/3, and

ν{0,3,2} = 0. (4.11)

To summarise we can find the standard model charge assignments with the uni-

tary Grassmannian U(5)/ (U(3) × U(2)), but the indices, and so the multiplicities,

are wrong:

VR ν{0,1,1} = 1, eR ν{−1,1,1} = 0, dR ν{0,3,1} = 0, uR ν{1,3,1} = 10,

(4.12)
(

(V )R
(e)R

)

ν{0,1,2} = 5,

(

uL

dL

)

ν{0,3,2} = 0. (4.13)

Obviously this is unsatisfactory as it stands: the multiplets with zero index will not

be zero-modes in general and even if they are they will be accompanied with zero-

modes of the opposite handedness but the same hypercharge; also 5 weak doublets

and 10 right-handed u-quark ‘families’ is clearly not compatible with the current

experimental picture.

5. Conclusions

We have investigated zero modes of the Dirac operator on various manifolds which

admit finite matrix approximations. Such spaces are candidates for finite internal

spaces in non-conventional Kaluza-Klein theory, where the internal space consists of

a finite number of points. In this paper we have focused on manifolds that do not

admit a spin structure, as the inevitable twisting of bundles that enables spinors to

be defined (Spinc structures) unavoidably leads to chiral Fermions. The electroweak
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sector of the standard model emerges naturally in this construction from CP2 ∼=
SU(3)/U(2): the gauge group is U(2) and the usual Spinc structure gives rise to a

neutral singlet which is identified with the right-handed neutrino while tensoring the

standard Spinc bundle with the inverse of the canonical line bundle gives another

SU(2) singlet with the quantum numbers of the right-handed electron. The electron-

neutrino doublet arises by coupling spinors to a natural rank 2 bundle which is dual

to the generating line bundle—the curvature associated with this bundle represents

a U(2) instanton on CP2.

The resulting spectrum represents one generation of the electroweak sector of the

standard model. The smallest non-trivial matrix approximation to CP2 is the algebra

of 3×3 matrices, [9], acting on a three dimensional complex vector space which carries

the fundamental representation of the isometry group SU(3). It may be that this

could be interpreted as a horizontal symmetry giving rise to three generations. Note

that the philosophy here is rather different to the usual Kaluza-Klein approach where

the isometry group is identified with the gauge group—here the isometry group is

being identified with a horizontal symmetry group and the holonomy group is the

gauge group.

We have also investigated two other manifolds: a six dimensional manifold with

holonomy group U(2), Sp(2)/U(2); and a twelve dimensional manifold with holon-

omy group SU(3) × SU(2) × U(1), the unitary Grassmannian U(5)/(U(3) × U(2)).

These manifolds both admit finite matrix approximations and neither admits a spin

structure. The former gives a spectrum containing the correct charges for the elec-

troweak sector of the standard model, but the electron-neutrino doublet has zero

index: generically the Dirac operator would have no zero modes corresponding to

this doublet. There may exist particular connections for which the doublet is a zero

mode but this would necessarily be accompanied by a doublet of the opposite chi-

rality, unless some other mechanism could be invoked to eliminate it. The unitary

Grassmannian gives the correct representations and charges for the whole Fermionic

sector of the standard model, but again some multiplets have zero index and here

the multiplicities are different for the multiplets with non-zero index.

A number of questions remain to be addressed. Obviously it is of interest to

look further for other manifolds that might give a better fit to the standard model

spectrum with this approach. One possibility is to consider manifolds that admit

spinors directly, without the necessity of a Spinc structure. After all it is only the

electroweak sector of the standard model that requires different representations for

right and left-handed particles and, as we have seen, this can be obtained from CP2.

QCD does not require any such asymmetry and so could arise more directly, without

the introduction of chirally asymmetric Fermions. Indeed we hope to show elsewhere

that this is indeed the case [22].

There is also the question of the Higgs sector of the standard model, which we

have not addressed here. In Connes’ approach to the standard model, the Higgs
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field is associated with two ‘copies’ of space time, which could be viewed as coming

from an internal space consisting of two points acted on by the SU(2) symmetry of

weak interactions. This looks very much like a two dimensional vector space acted

on by a matrix approximation to the 2-sphere. Grand unified models could also be

investigated with the techniques used here.

Lastly we have assumed that the usual differential-geometric analysis of the

Atiyah-Singer index theorem on continuous manifolds will carry over to finite matrix

approximations without change. While this seems reasonable to us there is certainly

no proof that it is true in general, but this would require a much more involved

investigation than is presented here.

A. Spin and spinc structures on a manifold

In this appendix we provide details for the calculations presented in the main text;

useful references for this material are Borel and Hirzebruch [23], Michelson and Law-

son [24] and Bott and Tu [25].

This section describes, in brief, what is involved for a manifold X to admit

spinors—X is then said to have a spin structure or to be a spin manifold—and failing

that, we describe how X can have what is called a spinc structure. A manifold X has

a spinc structure when it admits a certain pair consisting of a U(1) connection and a

‘local spinor’—X is then said be a spinc manifold. Spin manifolds are automatically

spinc manifolds but the converse is false.

If an n dimensional manifold X (compact and closed in this discussion) is a spin

manifold then its tangent bundle

TX (A.1)

whose principal bundle we denote by

PSO(n)(X) (A.2)

has structure group SO(n). Sections of TX are then vectors on X.

The fact that X is spin means that TX possesses a lifting of its structure group

from the group SO(n) to the group Spin(n). Such a lifting, which need not be unique,

constitutes a choice of spin structure on X. This lifting induces from PSO(n)(X) a

Spin(n) principal bundle

PSpin(n)(X) (A.3)

on X; also induced from TX, and associated to PSpin(n)(X), is the bundle of spinors

S(X) (A.4)

over X. Finally sections of S(X) are called spinors.
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The existence of this lifting requires topological obstructions to vanish namely

that the first two Stiefel–Whitney classes of TX should vanish i.e.

w1(X) = 0, w2(X) = 0. (A.5)

The vanishing of w1(X) just guarantees that X is orientable and allows us to distin-

guish clockwise and anti-clockwise rotations; but the vanishing of w2(X) is needed

to make the double covering of of SO(n) by Spin(n) work globally.

If X is orientable but

w2(X) 6= 0 (A.6)

then global spinors do not exist and X is not a spin manifold.

When X is not a spin manifold the situation can be saved if X admits a generali-

sation of a spin structure known as a spinc structure; moreover this is quite a natural

structure if X is a complex manifold, though X does not need to be complex. An

orientable X admits a spinc structure if w2(X) is the reduction mod 2 of an integral

cohomology class in H2(X;Z). This is guaranteed for complex manifolds since their

Chern classes determine their Stiefel–Whitney classes via the relation

w2(X) = c1(X) mod 2. (A.7)

The underlying mechanism which makes a spinc structure work is easy to expose

when X is complex. Suppose then that X has a Kähler metric and is complex with

complex dimension n; let the canonical line bundle of X be K so that

K = ∧nT ∗X. (A.8)

Recall also for later use that c1(K) = −c1(X). Now suppose first that X is a spin

manifold so that

w2(X) = 0 ⇒ c1(X) is even (A.9)

and that the spinor bundle S(X) does exist; this in turn means that the canonical

bundle K has square roots: a choice of square root is a spin structure. Now consider

the bundle ∧0,∗TX of all forms of type (0, s)—i.e. anti-holomorphic s forms—so we

have

∧0,∗TX =
⊕

s

∧0,s T ∗X . (A.10)

The the spinor bundle S(X) is obtained by just tensoring ∧0,∗TX with K1/2 i.e.

S(X) = ∧0,∗TX ⊗K1/2. (A.11)

Hence spinors are K1/2-valued (0, s) forms—which we denote by Ωs(K1/2)—and are

sections of S(X). The full self-adjoint Dirac /D operator is loosely ∂̄K1/2 + ∂̄∗
K1/2 , the
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∂̄ operator acting on sections of S(X); the chiral Dirac operator is denoted by /∂ and

this setup now gives us

/D =

(

0 /∂

/∂∗ 0

)

/D ≡
√

2
(

∂̄K1/2 + ∂̄∗K1/2

)

(A.12)

/∂ :
⊕

p

Ω2p(K1/2) −→ ⊕

p

Ω2p+1(K1/2) (A.13)

/∂∗ :
⊕

p

Ω2p+1(K1/2) −→
⊕

p

Ω2p(K1/2). (A.14)

The chirality of a spinor now corresponds to its parity as a form.

All the above was for the case when X is spin. Now suppose that X is not spin

then we see that

w2(X) 6= 0 ⇒ c1(X) = −c1(K) is odd (A.15)

⇒ K1/2 does not exist (A.16)

⇒ S(X) does not exist. (A.17)

But, though S(X) = ∧0,∗TX ⊗K1/2 does not exist, the bundle ∧0,∗TX clearly does:

this is the spinc bundle which we denote by Sc(X) so that

Sc(X) = ∧0,∗TX. (A.18)

Now if we abuse notation temporarily and write down the tensor product of the two

non-existent bundles S(X) and K−1/2 we get the spinc bundle Sc(X) since we can

write

Sc(X) = S(X) ⊗K−1/2 (‘locally’) (A.19)

and this bundle Sc(X) does exist globally even though its factors do not. The point

is that the factors do exist locally and the failure of one factor to behave properly

(under, for example parallel transport round a closed loop) is compensated for by a

failure of the other; this mechanism renders the ‘product’ well defined. This picture

of Sc(X) makes it clear at once that the generalised spinors of a spinc structure are

also coupled to a local U(1) connection.

Finally, as we are interested in chiral Fermions, we want to point out that the

Dirac operator exists for generalised spinors and it is natural to denote it by

/∂K−1/2 . (A.20)

Just as a spin structure need not be unique nor need a spinc structure: one can

tensor the ‘bundle’ K−1/2 by any other genuine line bundle: all our manifolds X will

have one dimensional H2(X;Z) so that there is a ‘smallest’ line bundle L defined by

requiring

c1(L) = −1. (A.21)
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We shall call L the generating line bundle and, in each case, K will be some power

of L—this power will be odd if X is not a spin manifold—so that

K = Lm, m ∈ Z. (A.22)

Hence a general spinc structure will have the spinc bundle

∧0,∗TX ⊗ L−q = Sc(X) ⊗ L−q, q ∈ Z (A.23)

(the minus sign in the exponent is for later convenience). When q = 0 we have the

canonical spinc structure; there is also a dependence of the spinc structure on an

element of H1(X;Z2) but our examples have H1(X;Z) = 0 so we do not need to

consider this.

If we use the fact that K = Lm then the corresponding Dirac operator then

becomes /∂L−(q+m/2) which we shall neaten up slightly by writing it as

/∂Lp where p = −q −m/2. (A.24)

There is also an index formula for the zero modes of /∂Lp which involves the usual

Â genus of X and the ‘Chern class’ of the line bundle Lp. Let /∂Lp denote the Dirac

operator coupled to Lp then its index is given by 3

index (/∂Lp) = ch (Lp)Â(X)[X] (A.25)

= exp [pc1(L)] Â(X)[X]. (A.26)

We will also need the case where the Dirac operator is further coupled to a second

vector bundle E of rank possibly greater than one; in this case the requisite index

formula is

index (/∂Lp⊗E) = ch (Lp ⊗ E)Â(X)[X] (A.27)

= ch (E) exp [pc1(L)] Â(X)[X], (p = −q −m/2). (A.28)

In the next section we treat an actual spinc example in four dimensions.

3We could equally have used instead the formula for index (∂̄Lp) which would have involved

ch (L) and the Todd class td(X). In fact this realisation of the Dirac operator as ∂̄Lp enables one

to easily understand why index (/∂L−q−m/2) is equal to unity for q = 0: it is because, when q = 0,

index (∂̄L−m/2) gives the arithmetic genus
∑

(−1)sh0,s of the complex manifold X where the Hodge

number hr,s denotes the dimension of the space of holomorphic forms of type (r, s). Now for the

manifolds X we consider in this paper the only holomorphic forms are of type (s, s) a fact which

reduces the arithmetic genus to h0,0 which is trivially unity.
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B. Cohomology and spinc on CP2

On CP2 the Chern class is [25]

c(CP2) = 1 − 3c1(L) + 3c21(L) (B.1)

where the generating line bundle L has c(L) = 1 + c1(L) with −c1(L) generated by

the Kähler 2-form. The Euler characteristic is 3 so c21(L)[CP2] = 1 and in this case

c1(CP2) = −3c1(L) so m = 3. Since the coefficient of c1(L) is odd w2 6= 0 and CP2

does not admit a spin structure. The index of the Dirac operator coupled to Lp is

index (/∂Lp) = ch (Lp)Â(X)[X] = exp [pc1(L)] Â(X)[X] (B.2)

=

(

1 + pc1(L) +
1

2
p2c21(L)

) (

1 − p1(X)

24

)

[X], X = CP2 (B.3)

=
1

8
(4p2 − 1), (B.4)

where p1 is the Pontrjagin class and p1(X) = c21(X)−2c2(X) = 3c21(L) on CP2. This

index is integral for half-integral p and, setting p = −q − 3/2, we obtain

index (/∂Lp) =
1

2
(q + 2)(q + 1). (B.5)

We can define a non-trivial rank 2 bundle F over CP2 with structure group

U(2) by F ⊕ L ∼= I3 where I3 is the trivial rank 3 bundle. Then c(F ) c(L) = 1 so

c1(F ) = −c1(L) and c2(F ) = c21(L); tensoring this with p copies of the generating

line bundle L then gives, for the Chern character,

ch(Lp ⊗ F ) = ch(Lp)ch(F ) (B.6)

=

(

1 + pc1(L) +
1

2
p2c21(L) + · · ·

) (

2 − c1(L) − 1

2
c21(L) + · · ·

)

(B.7)

= 2 + (2p− 1)c1(L) +

(

p2 − p− 1

2

)

c21(L) + · · · , (B.8)

leading to

index (/∂Lp⊗F ) = ch (F ⊗ Lp)Â(X)[X] = exp [pc1(L)] ch (F )Â(X)[X] (B.9)

=

(

2 + (2p− 1)c1(L) +

(

p2 − p− 1

2

)

c21(L)

)

(

1 − p1

24

)

[X]

=
1

4
(2p− 3)(2p+ 1), X = CP2 (B.10)

= (q + 1)(q + 3), again using p = −q − 3/2. (B.11)
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C. Cohomology and spinc in six dimensions

In this section X is the complex manifold given by

X =
Sp(2)

U(2)
(C.1)

whose real dimension is 6. The cohomology ring of X is generated by the even

dimensional classes σ1 ∈ H2(X;Z) and σ2 ∈ H4(X;Z) subject to the single relation

σ2
1 = 2σ2. (C.2)

Now X is not a spinc manifold because we can compute that

c(X) = 1 + c1(X) + c2(X) + c3(X) (C.3)

= 1 + 3σ1 + 8σ2 + 4σ1σ2 (C.4)

⇒ c1(X) = 3σ1 = −3c1(L). (C.5)

We note that σ1 generates H2(X;Z) and so deduce that c1(X) is odd and so

w2(X) 6= 0 ⇒ X is not spin. (C.6)

We also see that

K = L3 (C.7)

so that the integer m of appendix A is equal to 3.

The index of the Dirac operator /∂Lp can now be computed from the expansions

of ch (Lp) and Â(X) giving us the formula

index (/∂Lp) =

(

1 + pc1(L) +
1

2
p2c21(L) + · · ·

) (

1 − p1(X)

24
+ · · ·

)

[X] (C.8)

=

(

−pc1(L)
p1(X)

24
+

1

3!
p3c31(L)

)

[X]. (C.9)

But we can calculate that

p1(X) = c21(X) − 2c2(X) (C.10)

= 9σ2
1 − 16σ2, (C.11)

with σ1 = −c1(L). Hence we find that

index (/∂Lp) =

(

p

24
σ1(9σ

2
1 − 16σ2) −

1

3!
p3σ3

1

)

[X] (C.12)

= −(4p3 − p)
σ3

1

24
[X] (C.13)

= − 1

12
(4p3 − p) = − 1

12
p(2p− 1)(2p+ 1), (C.14)
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where we have used the Gauss–Bonnet theorem which says that

c3(X)[X] = χ(X) (C.15)

= 4 = 2σ3
1[X] (C.16)

to deduce that σ3
1 [X] = 2. Before finishing we should check that the index is integral.

Recall that

p = −q −m/2, q ∈ Z, m = 3 (C.17)

This fact immediately gives us the formula

index (/∂Lp) =
1

6
(2q + 3)(q + 1)(q + 2), q ∈ Z (C.18)

and this is easily checked to give an integer index for integral q as it should.

If we tensor product with a further rank 2 bundle F , with c1(F ) = σ1 then we

find that

index (/∂Lp⊗F ) = ch(Lp ⊗ F )Â(X)[X] (C.19)

= ch(Lp) ch(F )Â(X)[X] (C.20)

= − 1

12
(2p+ 3)(2p− 1)(2p+ 1) (C.21)

=
2

3
q(q + 1)(q + 2), p = −q − 3/2, q ∈ Z (C.22)

and again this gives an integral index.

D. Cohomology and generalised spinors for a 12 dimensional

Grassmannian.

In this section X is the 12 dimensional Grassmannian given by

X =
U(5)

U(3) × U(2)
. (D.1)

X is a perfectly standard complex manifold (of complex dimension 6) and its coho-

mology ring H∗(X;Z) has 3 generators

σi ∈ H2i(X;Z), i = 1, 2, 3 (D.2)

which obey the single relation

σ3 = 2σ1σ2 − σ3
1. (D.3)

Its Chern class is given by

c(X) = (1 + c1(X) + c2(X) + c3(X) + c4(X) + c5(X) + c6(X)) (D.4)

= (1 − 5σ1 + 12σ2
1 − 15σ3

1 + 8σ4
1 + 2σ2

1σ2 + 7σ2
2 + 4σ5

1 − 25σ1σ
2
2 (D.5)

−29σ6
1 + 7σ2

1σ
2
2 + 56σ4

1σ2 − 27σ3
2) (D.6)
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from which we see that

c1(X) = −5σ1 (D.7)

and hence we deduce, as we did in the previous section, that

w2(X) 6= 0 (D.8)

and so X is not spin.

We now pass to the spinc bundle Sc(X) and to the calculation of the index of its

Dirac operator /∂Lp where L is the generating line bundle as it was in the previous

section. But this time we need the fact that σ1 is actually a negative generator of

H2(X,Z) with our orientation conventions and so we have

c1(X) = −5σ1, σ1 negative, σ1 = c1(L) (D.9)

⇒ K = L5 (m = 5) (D.10)

Â(X) =

(

1 − p1(X)

24
+

1

5760
(7p2

1(X) − 4p2(X)) (D.11)

− 1

210 · 945
(16p3(X) − 44p1(X)p2(X) + 31p3

1(X)) + · · ·
)

(D.12)

as well as

p1(X) = c21(X) − 2c2(X) = σ2
1 + 2σ2 (D.13)

p2(X) = −2c1(X)c3(X) + c22(X) + 2c4(X) = 10σ4
1 − 20σ2

1σ2 + 15σ2
2 (D.14)

p3(X) = 2c1(X)c5(X) − 2c2(X)c4(X) + c23(X) − 2c6(X) (D.15)

= 51σ6
1 + 72σ2

1σ
2
2 − 144σ4

1σ2 + 68σ3
2. (D.16)

This information allows to compute that

index (/∂Lp) = exp [pc1(L)] Â(X)[X] (D.17)

= − 1

60480
σ3

2 [X] −
(

41

15120
+

1

360
p2

)

σ2
1σ

2
2[X] (D.18)

+

(

353

161280
+

3

320
p2 − 1

288
p4

)

σ4
1σ2[X] (D.19)

+

(

− 407

967680
− 11

3840
p2 − 1

576
p4 +

1

720
p6

)

σ6
1 [X]. (D.20)

Now use the cohomology generators and the fact that X clearly has Euler char-

acteristic 10 we discover that

σ3
2[X] = 1 (D.21)

σ2
1σ

2
2[X] = 2 (D.22)

σ4
1σ2[X] = 3 (D.23)

σ6
1[X] = 5. (D.24)
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This all gives the formulae

index (/∂Lp) = − 1

1024
+

19

2304
p2 − 11

576
p4 +

1

144
p6 (D.25)

=
1

9.210
(4p2 − 9)(4p2 − 1)2 (D.26)

=
1

144
(q + 1)(q + 2)2(q + 3)2(q + 4), using p = −q − 5/2,(D.27)

and this index is an integer for integral q as required.

We shall finish by calculating the index when we couple the Dirac operator to

some higher rank bundles. We shall give the results for two bundles E and F which

are naturally associated to X and also for the tensor product E ⊗ F .

Let E be the rank 3 vector bundle over

X =
U(5)

U(3) × U(2)
(D.28)

whose fibre over a point x ∈ X is the 3-plane x itself. This describes the bundle E.

Now consider the product rank 5 bundle X×C5 then F is the rank 2 bundle created

by forming the quotient
X ×C5

E
. (D.29)

The bundles E and F satisfy

E ⊕ F ∼= I5 (D.30)

where I5 is a trivial rank 5 bundle and it is not difficult to work out that

c(E)c(F ) = 1 (D.31)

i.e. (1 + c1(E) + c2(E) + c3(E))(1 + c1(F ) + c2(F )) = 1 (D.32)

ch(E) + ch(F ) = 5. (D.33)

In fact equation (D.33) can be used to derive the relation (D.3) since the classes σi

are just the classes ci(E) and so this allows all of c(E) and c(F ) to be expressed in

terms of the σi.

The Chern characters of E and F are given by

ch(E) = 3 + c1(E) +
1

2

(

c21(E) − 2c2(E)
)

+
1

3!

(

c31(E) − 3c1(E)c2(E) + 3c3(E)
)

+
1

4!

(

c41(E)

−4c21(E)c2(E) + 4c1(E)c3(E) + 2c22(E)
)

+
1

5!

(

c51(E) − 5c31(E)c2(E) + 5c21(E)c3(E)

+5c1(E)c22(E) − 5c2(E)c3(E)
)

+
1

6!

(

c61(E) − 6c41(E)c2(E) + 6c31(E)c3(E)

+9c21(E)c22(E) − 12c1(E)c2(E)c3(E) − 2c32(E) + 3c23(E)
)

ch(F ) = 5 − ch(E).
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Now we can calculate the index of the appropriate Dirac operators: Forming the

product Lp ⊗ E we have

index (/∂Lp⊗E) = ch (Lp ⊗ E)Â(X)[X] (D.34)

= ch (E) exp [pc1(L)] Â(X)[X], (D.35)

and we find that

index (/∂Lp⊗E) = − 15

1024
+

3

128
p+

59

768
p2 − 5

48
p3 − 5

64
p4 +

1

24
p5 +

1

48
p6

=
1

3.210
(2p+ 5)(2p− 1)(4p2 − 9)(4p2 − 1) (D.36)

=
1

48
q(q + 1)(q + 2)(q + 3)2(q + 4), (p = −q − 5/2) (D.37)

and for the product Lp ⊗ F

index (/∂Lp⊗F ) =
5

512
− 3

128
p− 41

1152
p2 +

5

48
p3 − 5

288
p4 − 1

24
p5 +

1

72
p6

=
1

9.29
(2p− 5)(2p− 1)(4p2 − 9)(4p2 − 1) (D.38)

=
1

72
(q + 1)(q + 2)(q + 3)2(q + 4)(q + 5), (p = −q − 5

2
).(D.39)

Finally for the bundle Lp ⊗ E ⊗ F we have

index (/∂Lp⊗E⊗F ) = − 25

512
− 25

384
p +

103

384
p2 +

13

48
p3 − 29

96
p4 − 1

24
p5 +

1

24
p6

=
1

3.29
(4p2 − 25)(2p− 3)(4p2 − 1)(2p+ 1) (D.40)

=
1

24
q(q + 2)2(q + 3)(q + 4)(q + 5), (p = −q − 5/2) (D.41)

and in each case one can verify that the index is an integer.
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