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Abstract

Adaptive learning systems attempt to adapt learning content to suit the needs

of the learners using the system. Most adaptive techniques, however, are con-

strained by the pedagogical preference of the author of the system and are always

constrained to the system they were developed for and the domain content. This

thesis presents a novel method for content adaptation. A personal profile is de-

scribed that can be used to automatically generate instructional content to suit

the pedagogical preference and cognitive ability of a learner in real time. This the-

sis discusses the manifestation of measurable cognitive traits in an online learning

environment and identifies cognitive resources, within instructional content, that

can be used to stimulate these manifestations.

There exists two main components for the learning component: Content Anal-

yser and a Selection Model. The Content Analyser is used to automatically gen-

erate metadata to encapsulate cognitive resources within instructional content.

The analyser is designed to bridge the perceived gap found within instructional

repositories between inconsistent metadata created for instructional content and

multiple metadata standards being used. All instructional content that is analysed

is repackaged as Sharable Content Object Reference Model (SCORM) conforming

content. The Selection Model uses an evolutionary algorithm to evolve instruc-

tional content to a Minimum Expected Learning Experience (MELE) to suit the

cognitive ability and pedagogical preference of a learner. The MELE is an approx-

imation to the expected exam result of a learner after a learning experience has

taken place. Additionally the thesis investigates the correlation between the cog-



nitive ability and pedagogic preference of an author of instructional content and

the cognitive resources used to generate instructional content. Furthermore the

effectiveness of the learning component is investigated by analysing the learners

increase in performance using the learning component against a typical classroom

environment.
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Definition of Terms used in thesis

The usage of the following terms differs in the general use, in computer science

research, and in educational research. The following definitions describe the use

of these terms throughout this thesis.

Adaption Adaption refers to the generation of instructional

content based on identified cognitive metrics within

metadata describing instructional content associated

with the cognitive ability of a learner.

Adaptive strategy Adaptive strategy refers too the strategy that is

used in the construction of new course material

for an individual learner.

Blended learning The use of both traditional class room teaching

and on-line learning throughout a course.

Cognitive ability The cognitive ability of a learner is defined as the

metrics associated with how a learner consumes information.

Cognitive overload Cognitive overload occurs when a learner is presented

with too much information that causes interference

to a learning experience.

Cognitive traits The cognitive traits of a learner are individual traits

that combine to form the cognitive ability of a learner.

Instructional object Instructional object refers to a single unit of learning

material. A SCORM compliant instructional object is

described as a unit of learning material that must contain

functionality to be tracked by a SCORM run time

environment.

xii



Learning experience A learning experience is the output of a learner

interacting with a learning environment.

Mathemagenic Mathemagenic content is defined as content that is

generated for a learner that will enable the learner to

consume the information optimally.

Pedagogical preferences The pedagogical preference of a learner refers

to the learning style that a leaner uses to enhance their

learning experience. In particular the pedagogical

preference of learner in this thesis is involved with the

classification of a learners VARK preference associated

with an online learning environment.

Protocol Refers to the steps involved with a learner interacting

with the learning component throughout a learning

experience.

Specification A Specification is a description of an instructional

course. The Specification contains characteristics that

control the adaptive strategy when generating content

for a learner. The Specification does not contain any

instructional material.
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Chapter 1

Introduction and Research

Question

Adaptive learning systems have been in development since the early 1990s but

have seen rapid development in more recent years. Coupled with an extensive

increase of people entering into higher education, adaptive online learning systems

may offer a potential avenue for higher eduction, either as a pure online strategy or

a blended course (online course that typically has some traditional components).

With the introduction of specifications like the Sharable Content Object Refer-

ence Model (SCORM), the Advanced Distributed Learning initiative (ADL) has

attempted to standardize metadata specifications for learning content. However,

it was found by Norm Friesen [2] that only fifty nine percent of people complete

keywords in SCORM compliant learning objects, thus creating an impossible task

for automated adaptive learning systems to use the metadata associated with the

learning objects as an indication of the content. Furthermore the ADL team built

SCORM (like all metadata standards) as a black-box specification where no pro-

cess investigates the validity of the instructional content being referenced by the

SCORM metadata, or the type of content contained within the Sharable Content

1



Literature Review Introduction and Research Question

Object (SCO).

This research project is involved with the following research question:

Is it possible to construct an automated learning component that generates instruc-

tional content suited to the cognitive ability and pedagogical preference of a learner?

The goal of this thesis is to describe a suitable personal profile, consisting of the

cognitive ability and pedagogical preference of a learner that has associated cog-

nitive metrics found within instructional content. This thesis discusses the design,

construction and evaluation of an automated learning component that is built to

automatically generate instructional content using an evolutionary strategy, suited

to the defined optimal personal profile.

1.1 Literature Review

In this section, the key literature relevant to this thesis is reviewed, in chronological

order. The research completed within this research project has two distinct paths:

identifying suitable cognitive traits and the investigation of suitable adaptation

systems. In particular, this thesis is involved with the identification of suitable

cognitive traits and pedagogical preferences of an individual that has an associative

cognitive metric that can be automatically identified within instructional material.

The literature review starts with early attempts of classifying the structure and

capacity of Working Memory with Millers work [3] from 1956 and follows this

research to the current thinking of how information is processed; for example,

an investigation on the research conducted by Baddely[4], Cowan[5] and Ericsson

and Kintsch[6] is carried out on the workings of memory capacity and storage

2



Literature Review Introduction and Research Question

limitations. Adaptive content strategies and systems are investigated in some

detail, from the early work of Peter Brusilovsky [7] to Patels work [8] on improving

cognitive traits by summative and formative assessment.

1.1.1 Cognitive traits and eduction philosophy

Miller [3] describes one bit of information as the amount of information that is

needed to make a decision between two equally likely different alternatives. It

is further suggested that N bits of information is required to decide between 2N

alternatives. Miller gives an account of a number of experiments determining the

absolute judgment of unidimensional stimuli in contrast to the results found in

determining the absolute judgment of multidimensional stimuli. Miller found that

the span of absolute judgment and the span of immediate memory impose se-

vere limitations on the amount of information that humans are able to perceive,

process, and remember. If the stimuli are organized into several dimensions and

successively into chunks of learning objects, the span of absolute judgment and

the span of immediate memory are increased significantly.

Baddely et∼al [4] introduced the multicomponent model of working memory. This

model is composed of two slave systems and a central executive system to control

the flow of communication between the slave systems and to coordinate cogni-

tive processes when more than one task must be completed at one time. The

slave systems consist of a phonological loop and a visuo-spatial sketch pad. The

phonological loop stores phonological information and prevents the decay of such

information by constantly refreshing the information. The visuo-spatial sketch pad

stores visual and spatial information and is used for the construction and manip-

ulation of visual images. The sketch pad can be broken down further into two

subsystems: a visual subsystem, responsible for shape, colour and texture and a

3



Literature Review Introduction and Research Question

spatial subsystem dealing with location.

This research thesis is involved with learning within an online learning environ-

ment. Considering working memory as a possible trait and the limited capacity

associated with that trait as described above [3], the constructs of learning must

also be considered. Dijk and Kinstch [9] discuss the tasks that must occur for

basic text comprehension. The tasks that they identified are: perceptual features,

linguistic features, propositional structure, macrostructure, situation model, con-

trol structure, goals, lexical knowledge, frames, general knowledge and episodic

memory for prior text. Consequently, each of these tasks would impede on the

general idea of working memory containing a limited bound.

Cowan [10] investigates the conceptions of memory storage, selective attention

and their constraints within human information processing system. In particular

the intersection of memory and attention was discussed, thus moving away from a

simple static model for working memory capacity.

Ericsson and Kintsch [6] believe that there exists two structures within mem-

ory: working memory and long-term memory. However, they argue that there

must exist some retrieval structures to allow for the expansion of working mem-

ory during certain conditions. They classify this expansion as having the ability

to utilise long-term working memory (LTWM). For example, text comprehension

requires all the following to take place: perceptual features, linguistic features,

propositional structure, macrostructure, situation model, control structure, goals,

lexical knowledge, frames, general knowledge and episodic memory for prior text

[9]. Each of these components by themselves would exceed the capacity of short-

term working memory, but are clearly needed in text understanding. This supports

4



Literature Review Introduction and Research Question

the concept of an additional storage device that can be used within certain circum-

stances. Ericsson and Kintsch [6] proposed that in certain situations of expertise

that individuals can overcome the limitations of working memory and utilise the

storage capacity of long-term memory. This storage facility can then be accessed

through cues from the immediate memory. These proposals were supported by

various experiments with text comprehension, mental calculations, and chess.

Kintsch et∼al [11] discuss extensions to earlier research relating to the complex

task of text comprehension [9]. Kintsch considers that every reader is able to form

an episodic text structure during text comprehension, if the text is well written

and if the content is familiar. Forming an episodic text structure allows the use of

long-term working memory thus explaining how a complex process like text com-

prehension can be performed on a daily basis. Additionally, forming the episodic

structure reduces the concept of a granular chunk as previously defined by Miller

[3].

Baddeley furthered his model in 2000 [12] by introducing an episodic buffer as an

additional component. This buffer is a temporal storage of phonological, visual,

spatial and semantic information. The buffer is comprised of a limited capacity

system that provides temporary storage of a multimodal code, that is the bind-

ing of information from the initial subsystems and long-term memory. The key

characteristics of the new model focuses attention on the process of integration

of information rather than viewing the sub-systems in isolation. This new model

emphasis the importance of creating the link between the long-term memory and

the sub-systems.

Laurillard [13] discusses the most common pedagogic strategy used in higher educa-
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tion, Knowledge acquisition. Knowledge acquisition, through lectures and reading,

is referred to as a rhetorical activity seeking to persuade learners of an alternative

way of looking at a world they already know through experience. Laurillard ar-

gues that this way of learning presupposes that a learner must be able to interpret

a complex discourse of words, symbols, and diagrams in the required manner if

the learner is to comprehend the correct meaning of the educational content. A

number of studies carried out on the learners interpretation between structure and

meaning have identified two contrasting approaches to studying a text: one known

as a holistic approach where the learner views the educational content as a whole

thereby preserving the structure of the content but learners may have difficulties

with cognitive overload. The other known as an atomistic approach where the

learner breaks the content up into granular pieces of information, hence distorting

the structure of the content and losing the meaning. Laurillard investigates the

potential of higher education and the problems associated with this protocol of

imparting knowledge.

Cowan [5] regards working memory as part of long-term memory and not another

component. Representations in working memory are a subset of the long-term

memory. Working memory consists of two distinct levels. The first level consists

of long-term memory representations that are activated. There is no limit to ac-

tivation of representations in long-term memory. The second level is described as

the focus of attention. The focus is regarded as capacity limited and can hold up

to four of the activated representations at any given instant. This view of working

memory is thus centered on the concept of monitoring the focus of attention and

reducing the possibility of interference with the focus of attention throughout a

learning experience.
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Ericsson and Kintsch [6], as discussed earlier proposed that in situations of ex-

pertise, individuals can overcome working memory limitations. Guida et∼al [14]

using the theory of text comprehension have proposed the personalisation method

as a way to operationalise the LTWM. The personalisation method was tested with

two groups in text comprehension. The personalised group recalled more objects

and showed no sensitivity to interference (delay) and memory load than the non-

personalised group.

Owen et∼al [15] showed that using an N-Back algorithm method for testing work-

ing memory capacity stimulates the same regions of the human brain when com-

pared with the more established working memory tests, by performing a meta-

analysis of normative functional neuroimaging studies.

1.1.1.1 Conclusion

This section of the thesis investigated the research associated with suitable cog-

nitive traits and pedagogical strategies associated with online learning. In partic-

ular, the section was investigating the evolution of working memory throughout

the last fifty years in order to establish the underlying principles of the opera-

tions of working memory and the associated capacity. Chapter three investigates

these strategies for working memory to construct a suitable personal profile that

contains cognitive traits, with associated cognitive metrics. The following section

investigates the research associated with adaptive content strategies.

1.1.2 Content Adaptation using technology

Alty [16] stresses the importance of a user centered approach to multimedia in-

terface design.The importance of various perspectives on multimedia interfaces is

discussed and Alty posits that a multimedia interface should be viewed as a multi-
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sensory, multichannel, multitasking and multiuser approach to systems design and

the emphasis should be on what such an approach offers to the user rather than

what it technically comprises of. Additionally, the role of media within a learn-

ing environment is discussed. The role of media is seen to be complementary to

education and cognitive development, however this importance is discussed in the

recognition of the type of media to be used in the particular instance of instruction

to properly convey the idea or concepts being put forward and also through the

power of media combination.

Peter Brusilovsky et∼al [17] describes an approach for developing an adaptive

electronic textbook and presents their implementation of Interbook. The authors

identified the main problem associated with web-based courseware being that the

content is typically developed to suit the typical pedagogy in most universities.

The authors distinguish three different levels or steps of increasing complexity

when developing their adaptive courseware. The design framework of Interbook is

based on the architecture of ELM-ART and is fully discussed in the paper. The

Interbook adaptive courseware approach was implemented and evaluated in several

systems. It was found that the adaptive guidance provides significant assistance

for novices, while adaptive navigation support provides significant assistance for

the more experienced users.

The authors describe the environmental contexts of a learning environment [18].

These contexts include: the nature of the subject discipline and the level of its

learning, the role of the human teacher and the suitability of an Intelligent Tu-

toring System (ITS) for the construction of a particular type of knowledge. It is

suggested that in any joint cognitive learning space points of divergence are likely

to arise due to the different teaching styles of educational designers and imple-
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menters thus inferring that different teachers could constrain the learning process

in different ways, including defining the appropriate grain size for the particular

individual being taught to maintain a cognitive load balance. The authors be-

lieve that the problem of designing learning resources should be addressed in the

context of the nature of subject discipline instead of the overall educational theory.

The Adaptive Hypermedia Architecture (AHA) [19], as discussed by De Bra and

Calvi consists of a user model defined by the learners knowledge about domain

relevant concepts. This user model is created by the learner reading some content

and then taking short quizzes. Every page that is displayed to the leaner contains

two pieces of information: firstly, what user model elements must exist to allow a

link to that page, and secondly, what the desired outcome would be after complet-

ing the page. This task of creating a one-size-fits all approach to learning based

on experience gained through learning achieved after completing a learning unit

is very inefficient and complex. The success of the AHA system is dependent on

the ability of an author of instructional material to categorise and identify suitable

passages through an instructional space.

Peter Brusilovsky and John Anderson [20] present an electronic ACT-R bookshelf,

a system which supports learning ACT-R, a well-known theory in the field of cog-

nitive psychology over the web. This paper uncovers concept-based knowledge

representation behind adaptive electronic textbooks on the bookshelf, describes

the main functionality of the system, provides some evaluation data, and specu-

lates about possible extensions of bookshelf systems.

Ashok PATEL et∼al [21] discuss the potential, and pitfalls of various forms of

assessment in a Cognitive Apprenticeship Based Learning Environment (CABLE).
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The authors suggest the use of formative assessment to bridge the gap between

the ‘Gulf of Execution’ and the ‘Gulf of Evaluation’ with respect to the learning

of a new concept. A correlation is drawn between the outcome of traditional ped-

agogical strategies and summative assessment. It is suggested that badly designed

summative systems can encourage wide spread adoption of shallow learning. Due

to the rapid growth of technology the authors express the need for a ‘just-in-time’

ethos to learning. It is also suggested that a stronger emphasis is placed on for-

mative assessment rather than on summative assessment.

Peter Brusilovsky [22] describes a concept-based course maintenance system that

was developed for Carnegie Technology Education. The system is used to check

the consistency and quality of a course through its life cycle. The problem that is

being addressed in this paper is that all the tools available for content development

are typically oriented implicitly for single author development. The author also

discusses the potential advantages and pitfalls when indexing educational content

with respect to some examples of some real world tools.

Ashok Patel et∼al [8] discuss a possible categorization of learning resources to

match the different phases of skill acquisition. This paper also discusses an imple-

mentation of a cognitive apprenticeship-based learning environment by the Byzan-

tium project and an independent feedback on its use in the real world. The tests

that were carried out were in the numeric domain. The authors give a compar-

ison between the learning ethos of a typical student in a classroom environment

against the learning ethos of a life-long-learner. In constructing a sound peda-

gogical framework for their project they adapt Kurt VanLehn framework [23] for

reviewing cognitive skill acquisition. The framework is broken up into three dif-

ferent phases: early, intermediate and late phase. Throughout the early phase the
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emphasis is on the learners becoming familiar with the domain concepts. During

the intermediate phase the learner turns their attention to solving problems in-

tegrated with formative assessment. In the last phase the learner improves with

practice and the assessment changes from formative to summative. In an indepen-

dent study carried out at the University of Glasgow 71% of the students showed a

preference for the Byzantium project.

Kinshuk et∼al [24] describe the Multiple Representation Approach (MRA) for

presenting multimedia technology within intelligent educational systems. A strat-

egy for implementing MRA on systems using the Cognitive Apprenticeship (CA)

framework for task oriented disciplines where the main focus is on cognitive skill

acquisition is discussed. The authors give an account of the CA framework and list

examples of multimedia objects suitable for different tasks under the CA frame-

work. It is discussed how MRA can be utilized to enhance a learning experience

for learners with different domain competence levels, with respect to multimedia

object selection and navigational object selection. The authors discuss general

guidelines and recommendations on combining multiple multimedia objects to en-

hance the learning experience. The application of the approach in the design of

the InterSim system is also described.

Ashok Patel et∼al [25] discuss the key aspects of Collin, Brown and Newmans

Cognitive Apprenticeship Model and Pasks Conversation Theory [26] with respect

to their implementation of an intelligent learning system. The paper focuses on

the cognitive skills acquired through interactive learning and suggests that the

different phases of skill acquisition are due to semantically semi-synchronous con-

versations. It is suggested that if a course is delivered by fine grained modules, no

complex inferencing regarding the learners knowledge is required as a simple yes
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or no answer is adequate to apply adaptation strategies to the learners needs. The

system that was developed recognizes all valid paths to a solution, thus supporting

learners with different learning styles and adhering to the Pasks Conversation The-

ory. The advantages the World Wide Web offers in terms of Conversation Theory

are also discussed.

Ashok Patel et∼al [25] discuss the key aspects of Collin, Brown and Newmans

Cognitive Apprenticeship Model [27] and Pasks Conversation Theory [26] with re-

spect to their implementation of an intelligent learning system. The paper focuses

on the cognitive skills acquired through interactive learning and suggests that the

different phases of skill acquisition are due to semantically semi-synchronous con-

versations. It is suggested that if a course is delivered by fine grained modules, no

complex inferencing regarding the learners knowledge is required as a simple yes

or no answer is adequate to apply adaptation strategies to the learners needs. The

system that was developed recognizes all valid paths to a solution, thus supporting

learners with different learning styles and adhering to the Pasks Conversation The-

ory. The advantages the World Wide Web offers in terms of Conversation Theory

are also discussed.

He, S. et∼al [28] discuss the limitations of PBL learning environments. The au-

thors address the problem of the learners becoming overwhelmed by the granularity

of the problem and losing focus on the overall learning task by introducing adap-

tive technology into the PBL learning environments. A prototypical system was

built based on the original architecture of the web-based intelligent educational

systems incorporating a problem-based learning module. The system successfully

introduced the student adaptivity into the PBL environment.
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Peter Brusilovsky [7] provides a clear view on the process of Adaptive Hyper-

media System (AHS) starting from the early design stage. The author illustrates

the possible advantages AHS have over traditional Hypermedia Systems. The ba-

sic architecture of an AHS is composed of: a student model, knowledge space and

hyperspace. The different implementations of the various components are con-

trasted to suit the needs of different systems. The author also reviews a number

of modern AHS that are orientated to educational practitioners.

Lin et∼al [29] introduce the Cognitive Trait Model (CTM) that supplements

performance-based student models by allowing relevant information, such as cog-

nitive metrics about a particular student, to be transported to different domains.

To illustrate the procedure of the trait analyser, a definition of working memory

capacity is discussed. The effect the characteristics of working memory has on the

learning process is also discussed. A number of manifestations of working memory

capacity are identified from a broad range of researchers.

Kinshuk et∼al [30] discuss the process of modeling Inductive Reasoning Ability

in a Virtual Learning Environment. The characteristics of Inductive Reasoning

Ability are studied in relation to domain knowledge, generalization, working mem-

ory capacity, analogy, and hypothesis generation. The importance of supporting

Inductive Reasoning is discussed with reference to a number of researches that ad-

dress this problem. A limited list of manifestations of Inductive Reasoning Ability

is produced. The list is prohibited despite the vast amount of research carried out

on Inductive Reasoning Ability by the diverse viewpoints of inductive reasoning

as well as the requirement of translatability of each manifestation into machine

observable patterns.
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Hong and Kinshuk [31] presents a mechanism to identify a learners learning style

using the Felder Silver learning style theory. The learning style theory catego-

rizes an individuals preferred learning into five dimensions: sensing / intuitive,

visual / verbal, inductive / deductive, active / reflective and sequential / global.

Due to pedagogical reasons the inductive / deductive dimension has been deleted.

The developed system provides a questionnaire to enable learners to identify their

learning style based on this theory. There are three possible degrees available for

the four dimensions: mild, moderate and strong. The system assigns a default

preference for mild and treats moderate and strong preferences as the same. This

significantly reduces the combination of learning styles available.

Lin et∼al [32] categorizes adaptive techniques into two categories: adaptive naviga-

tion and content presentation. This paper investigates how and when the adaptive

techniques can be used to support a learners working memory capacity. Addi-

tionally, an overview of popular techniques employed in modern adaptive learning

systems is provided and the possible future trend of adaptive techniques is dis-

cussed.

Gabriela and Kenji [33] propose that there exists two type of adaptation in web-

based tutorials: static and dynamic. They propose static adaptations to personal-

isation factors such as: learning styles, intelligence types, knowledge background,

special interests, learning goals and beliefs. The authors propose, using the VARK

inventory learning styles [1], to design the presentation of knowledge.

Owen Conlan et∼al [34] discussed a method used for the personalisation of news

feeds using traditional adaptive hypermedia strategies and building semantic links

between available news items. They investigated the advantages of using a strict
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ontology, where semantic matching is very high, against a loosely defined ontology.

Their results showed that there did not exist a significant difference between the

two cases, especially not to warrant the use of a strict ontology which is signifi-

cantly more process intensive.

1.1.2.1 Conslusion

This section investigated adaptive learning systems and strategies. There exists a

trend across most of the reviewed adaptive systems focusing on creating a number

of threads through a learning space and then mapping these threads to a given

student. This process of an author of educational instruction being in control of

identifying and mapping instructional paths through a learning space is not very

efficient as the cognitive ability and pedagogical preference of that author will

influence the process. Chapters two and three investigate these adaptive strategies

in more detail in order to design a suitable protocol for adapting content to suit the

cognitive ability and pedagogical preference of a learner within an online learning

environment.

1.1.3 Summary

This section summarised some of the important research papers, both in the area

of adaptive hypermedia systems and techniques and within the classification of

working memory capacity. These two research areas are critical to the foundation

of the research carried out throughout this thesis. The following section details

the contribution made by this research project in the area of adaptive learning

technologies.
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1.2 Thesis Contributions

The contributions of this thesis are split into two distinctive sections: A) Inves-

tigating a number of cognitive traits and environmental contexts of a learning

environment that can be adapted to in an online learning environment, and B) the

design and implementation of an evolutionary algorithm to automatically gener-

ate instructional content suited to the cognitive ability and pedagogical preference

of a learner. Section A, is comprised of Chapters one through four, is concerned

with the classification of suitable cognitive traits and pedagogical strategies in-

dependent of domain that can be mapped to cognitive metrics that encapsulate

instructional content.. Section A also describes the design and implementation of

a Content Analyser (CA) that automatically generates metadata. The CA takes

as input an archive package and decouples the package to produce multiple SCOs.

Additionally, for each SCO produced a metadata file is generated detailing infor-

mation relating to the cognitive metrics found within the instructional content.

In the second of these sections, Section B, the design and implementation of an

evolutionary algorithm to automatically generate instructional content suited to

the cognitive traits and pedagogic preference of a learner to a minimum expected

learning experience is discussed. Section B is comprised of Chapters five through

seven. An investigation is carried out on the GA to determine the suitability of

the algorithm as the solution space (no. of possible suitable learning objects) in-

creases. Additionally, an analysis is performed firstly on the correlation between

the personal profile (cognitive ability and pedagogic preference) of an instructional

author and the metadata produced by the CA describing the cognitive metrics

found within content generated by the instructional author. Secondly, a compa-

rable analysis is performed on two cohorts of learners participating in a study to

determine the appropriateness of using online learning content against the tradi-
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tional rhetorical method of lecturing in a classroom environment.

1.3 Publications

Part of the work in this thesis has been published and presented in the publications

listed in this section.

Journal publications

K. Maycock, and J. G. Keating. “A Framework for Higher Education”, WSEAS

Transactions on Advances in Engineering Education, Issue 8, Volume 5,pp. 539-

548, August, 2008.

K. Maycock, and J. G. Keating. “Selection model to approximate a learner’s

performance prior to conducting learning experiences”, International Journal of

Learning, Issue 5, Volume 13,pp. 75–84, Jan, 2007.

K. Maycock, and J. G. Keating. “The Importance of Structure within an Adaptive

Profile”, WSEAS Transactions on Advances in Engineering Education, Issue 1,

Volume 3,pp. 8–15, Jan, 2006.

Conference papers

K. Maycock, and J. G. Keating. “On-Demand Mathemagenic content for learn-
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ers”,Proc. 5th WSEAS / IASME International Conference on Engineering Edu-

cation, Crete, July, 2008.

K. Maycock, and J. G. Keating. “Prototype of a learning component to maximise

learning experiences”, Proc. CAL0́7: Development, Distribute & Debate, Dublin,

March., 2007.

K. Maycock, and J. G. Keating. “On-demand mathemagenic content”, Poster

submission for CASCON, Dublin, December, 2006.

K. Maycock, Sujana Jyothi, and J. G. Keating. “Dynamic profiling to enhance

learning and reduce the cognitive load on each learner”, Proc. WEBIST, Interna-

tional conference on Web information Systems and Technologies, Portugal, April,

2006.

K. Maycock, and J. G. Keating. “Bridging the gap between Adaptive Hypermedia

Systems and the Sharable Content Object Reference Model”, Proc. 4th WSEAS

Int. Conf. on E-ACTIVITIES (E-Learning, E-Communities, E-Commerce, E-

Management, E-Marketing, E-Governance, Tele-Working) (E-ACTIVITIES ’05),

Miami, November, 2005.

K. Maycock, and J. G. Keating. “Building Intelligent Learning Management Sys-

tems to mimic the Teacher Student relationship ”, IEEE Learning Technology, Vol

7, Issue 1, Washington D.C., January, 2005.

18



Outline of the thesis Introduction and Research Question

1.4 Outline of the thesis

In Chapter two traditional adaptive educational systems and strategies are in-

vestigated. In particular, these strategies are examined in terms of the process

involved within the adaptive framework. The chapter investigates the lack of

adoption of such systems into real world implementations. The Sharable Con-

tent Object Reference Model (SCORM) is discussed in detail. In particular the

concept of granularity and learning object is investigated. Then follows a number

of chapters that describe a new domain independent method of content adaptation.

Chapter three discusses the environmental contexts of an online learning envi-

ronment and investigates different modes of learning that are stimulated in an

online learning environment. In the same chapter, an investigation is carried out

to identify suitable manifestations of cognitive traits that can be stimulated in an

online learning environment to identify suitable cognitive metrics found within in-

structional content. This chapter also proposes a suitable personal profile that can

be used to automatically evolve instructional content to suit the cognitive ability

and pedagogical preference of a learner in an online learning environment.

Chapter four discusses the perceived inconsistencies found within learning object

repositories and referencing standards. The chapter introduces a Content Analyser

(CA) that is designed to automatically analyse instructional content and gener-

ate metadata to describe cognitive metrics within the content associated with the

personal profile described in chapter three. In particular, Chapter four details a

protocol for generating instructional content to enable the automatic generation of

metadata. The CA automatically migrates the content being analysed to SCORM

compliant learning objects packaged as independent Sharable Content Objects.
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Chapter five describes in detail a Selection Model that is used to automatically gen-

erate content to suit the cognitive ability and pedagogical preference of a learner.

In the same chapter, a comprehensive analysis of multiple evolutionary algorithms

is explored to determine the most appropriate strategy for evolving instructional

content. The complexity of the problem is investigated including a strategy for

finding metrics for an evolutionary algorithm when dealing with an incomplete

solution space. The Chapter also investigates the success of the evolutionary al-

gorithm being able to evolve instructional content to a pre-determined minimum

expected learning experience. Additionally, the Chapter is involved with describ-

ing a protocol for an author using the learning component and their ability to

control the evolution process by establishing the minimum expected learning ex-

perience and the priority associated with the identified traits from the learners

personal profile as discussed in Chapter three.

In Chapter six, an investigation is carried out to determine a suitable Learning

Management System (LMS) / Content Management System (CMS) to incorporate

the learning component into. This chapter also discusses the tests used to calculate

a learners / authors personal profile (cognitive ability and pedagogic preference as

discussed in chapter three) in detail.

Chapter seven is involved with the evaluation of the necessity and performance

of the learning component. In particular, an analysis is carried out to determine

the consistency of an author when generating instructional content. Additionally

an investigation is carried out to determine the performance of the learning com-

ponent against a traditional lecturing environment. The environmental contexts

of the learning environment are discussed to ensure that no external influences

disrupt the learning experience.
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Finally, in Chapter eight the contributions this thesis have made to the field of

adaptive learning systems are summarised. In addition, this chapter uses the

learning component as a framework and suggests future possible projects that

take advantage of this framework.

1.5 Concusion

This Chapter introduced the thesis research question;

Is it possible to construct an automated learning component that generates in-

structional content suited to the cognitive ability and pedagogical preference of a

learner?.

The chapter discussed the main research papers in the fields of adaptive learn-

ing systems / adaptive techniques and working memory capacity. Further to the

initial research question, the output of the desired component should not be de-

signed by a single author; thus removing the typical problems associated with

traditional adaptive hypermedia systems. The chapter also discussed at a high

level the contributions of this research project to the area of adaptive learning

systems. The following Chapter investigates adaptive educational systems and

strategies in more detail.
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Chapter 2

Theory and Background

Currently there are roughly seventy million people in higher education worldwide.

This number is expected to more than double before the year 2025 to over 160

million people [35]. One possible solution to cater for the expected influx of people

entering into higher education is to automate the process of learning. In an ideal

situation as discussed Gilbert and Han [36] there would exist an infinite number

of teachers each having their own unique pedagogical strategies so that a learner

could choose a teacher that suited their own learning style. This is unrealistic

practically, and will certainly increase the demand for automated personal learn-

ing efficiency. However, this is not an elementary task. If we look at the results of a

number of studies carried out on the performance of individually tutored students

against the performance of an average student in a typical classroom environment,

we find that, the speed with which different students progress through instruc-

tional material varies by a factor of 3 to 7 [37]. An average student in a typical

classroom environment asks on average 0.1 questions every hour in contrast to

an individually tutored student asking on average 120 questions every hour [38].

Furthermore the achievement of individually tutored students will exceed that of

classroom students by as much as two standard deviations [39] - an equivalent
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which is equal to raising the performance of 50 percentile students to that of 98

percentile students. These results show the vast range of differences between the

learning capabilities of each learner and demonstrate that the delivery mode of the

educational experience is a critical factor in producing a positive learning experi-

ence.

Learning Management Systems (LMS) like Moodle [40], Sakai [41], Blackboard

[42], and Desire2Learn [43] act as a framework for educational providers to or-

ganize and deliver their instructional content in a standard way. They also offer

some blended learning facilities to promote a constructivist approach to learn-

ing, for example using discussion forums. No content adaptation is taken into

consideration, consequently these platforms only act to transfer the educational

sector into an online environment including an easy to use interface to enable the

management of educational material. Without an element of suitable adaptation

embedded into these systems, these technologies could disadvantage learners as

their learning would be constrained by the cognitive ability and pedagogical pref-

erence of the author of the instructional content and embedded into an organised

structure environment, that also requires learners to comprehend. Other learn-

ing technologies such as Adaptive Hypermedia Systems (AHS)[7] and Intelligent

Tutoring Tools (ITT) [44] [45] [46] [47] are focused on developing the learning po-

tential of a learner. In particular, AHS are designed to adapt to the needs of the

learner with respect to their domain experience, while recent ITT helps to develop

cognitive skills of a learner [44]. Traditional work carried out on intelligent tu-

toring in the 70s and 80s was restricted by the computational power of the time.

Buggy [45] and West [46] were involved with the identification of shortcomings in

the learning experience to infer strategies for increasing the learning experience,

including the introduction of stimulus to ignite the experience. Scholar [47] was
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involved with a highly connected network of facts, concepts and procedures to aid

in computer assisted instruction. Currently processing power is not an issue and

it is possible to implement strategies as seen in Buggy [45] West [46] and Scholar

[47] as an on-demand strategy. Although these learning technologies have their

strengths and weaknesses, they are constrained by the pedagogical preference of

the author of the learning technology and are all subject to the specific system for

which they are developed.

This thesis focuses on the foundation of the Advanced Distributed Learning (ADL)

initiative and their production of a standardized reference model to reference in-

structional material as learning objects. The ADLs goal to produce the highest

quality of instructional material tailored to the individual needs of each user any-

time anywhere [48] is evaluated. To bridge our perceived gap between traditional

adaptive learning technologies and SCORM, an explicit consideration is taken to

explore the different environmental contexts of a learning experience[49]. These

include the type of learning objects, the level the knowledge is being taught at and

the various methods of delivering the content to the users. In addition to evaluat-

ing adaptation techniques and the environmental contexts of a learning experience,

this thesis investigates the reusability of instructional content within educational

repositories, such as Multimedia Educational Resource for Learning and Online

Teaching (MERLOT) [50], Jorum [51] and the National Digital Learning Repos-

itory (NDLR) [52]. The thesis is mainly concerned with the introduction of a

Content Analyser (CA) that enables an easy transformation to a single referenc-

ing standard that automatically generates metadata concerned with stimulating

suitable cognitive resources within an online learning environment and a Selection

model that gives SCORM conforming Learning Management Systems / Content

Management Systems the capability of automatically generating instructional con-
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tent to a minimum expected learning experience.

The following sections investigate the strategies and adaptation techniques used in

Adaptive Hypermedia Systems (AHS) and the impact these systems have on the

real world. The function of AHS is questioned in terms of wide spread use and the

ability of the system to be used outside the scope of a simple project. An analysis

is carried out the on the Sharable Content Object Reference Model (SCORM) to

determine if that model would be suitable for referencing instructional content.

2.1 Adaptive Hypermedia Systems

Adaptive Hypermedia systems have been in development since the early 1990s

[7]. Despite the vast amount of research conducted in this area, there has been

a lack of adoption into real world systems. Reasons for this include: high cost

of production, lack of credible evidence to support the cost or benefit, and lim-

ited subject matter as discussed by Murray [53]. They extend the one-size fits all

[54] approach of hypermedia systems by using personalisation strategies to adapt

content to suit a given learner. Typically AHS [17][20][7][24][19][34][55] [56] oper-

ate on a closed world model, whereby, all the hypermedia is annotated prior to a

learning experience and the adapted strategy is already defined by the author of

the adaptive system. Eklund [57] distinguished two categories of features within

a hypermedia system suitable for adaptation: content adaptation and navigation

adaptation. Adaptive navigation techniques such as direct guidance, adaptive hid-

ing or re-ordering of links, link annotation, map adaptation [58], link disabling and

link removal [59] can be used to control both the size and level of the instructional

space available to each learner. Adaptive content presentation operates at the

domain level. The information can be adapted to various types of media and
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difficulty to meet the needs of each user. Adaptive systems typically alter the

navigation model or the presentation model for the content. They build a model

of the users preferences, goals and knowledge and use this model throughout the

interaction with the user.

In constructing any AHS there are three main components: the knowledge space,

the hyperspace and the student model. The knowledge space represents a collec-

tion of knowledge elements which represent individual concepts. Typically the first

step in building an adaptive hypermedia systems model is to annotate the instruc-

tional space according to some adaptation strategy. The simplest construction of

the knowledge space is an unconnected scatter of knowledge elements. The most

common type of link is a pre-requisite link giving the author of an AHS the ability

to make sure that a concept is known before the student moves onto the next

concept. Semantic links have also been applied to different AHS. The hyperspace

represents the actual content, which is available to be presented to the user. Using

some form of mapping, a mapping is created between the knowledge space and the

hyperspace. The student model represents the preferences, goals and knowledge of

each user. A mapping is also created between the student model and the domain

knowledge elements in the knowledge space.

AHS are very useful in any application area where users of the hypermedia sys-

tem have essentially different goals and knowledge and where the hyperspace is

reasonably large. AHS overcome this problem by using information stored in the

user model to adapt the information and links being presented to the given user.

Although AHS and similar learning technologies have their strengths and weak-

nesses, they are constrained by the pedagogical preference and cognitive ability

of the author of the adaptive learning technology. Additionally, traditional AHS
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citePBAdaptiveCourseware[20][7][24] are constrained within the application that

they were developed for, while more recent AHS [19] are build upon Java taking

advantage of platform independence and can be reused on any machine with the

same environment. The main problem associated with AHS and the lack of wide

spread adoption into the real world is that the systems are usually designed and

created by an author of instructional material and thus the AHS is constrained to

the cognitive ability and the pedagogical preference of that author. Chapter seven

shows the inconsistencies found with instructional authors in terms of the cogni-

tive metrics that are typically found within instructional content, when a number

of authors were required to generate a number of learning objects.

2.1.1 Summary

In summary, AHS despite their great interest and research in the area, have not

seen wide spread adoption into the real world. This lack of adoption is due to the

unproven benefits of AHS, poor or inconsistent implementations and the systems

being constrained to the cognitive ability and pedagogical preference of the au-

thor of the adaptive system. However, with the introduction of specifications like

SCORM, enhanced adaptive content presentation is possible given the fine gran-

ularity of learning objects. The following section discusses the Sharable Content

Object Reference Model (SCORM) in detail and particularly how this reference

model can be utilised to create content suited to content adaptation.

2.2 Sharable Content Object Reference Model

The Advanced Distributed Learning (ADL) initiative was established in November

1997. The ADL team were established to bring an element of consistency to the

online learning arena, their mission statement is as follows:
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“our mission is to bring the highest quality of instructional material, tailored to

the needs of each individual anytime anywhere”[48]

The ADL produced the Sharable Content Object Reference Model (SCORM) as

the backbone for producing reusable-learning objects. Each learning object is fully

described and delivered within a content package as seen in Fig 2.1. The content

package consists of a manifest. The Manifest, consists of: Metadata, Organiza-

tions, Resources and Sub Manifests. The metadata section is used to describe in

full the version of SCORM and type of content being delivered. The Organisations

section details the sequencing information of the various learning objects that are

encapsulated within the content package. The Resources section is fully described

using XML metadata elements to describe the content that is being delivered.

Sub manifests can also be used to create structured courses with different layers

of depth. Physical Files can also be stored locally within the manifest.

SCORM is built on the proven work of prominent organisations such as: Avi-

ation Industry CBT (Computer-Based Training) Committee (AICC)[60], Innova-

tion Adoption Learning (IMS)[61], IEEE Learning Technology Standards Commit-

tee (IEEE LTSC)[62] and ARIADNE[63]. The ADL captured the best components

of all the previous standards and used this as a framework for producing SCORM,

as seen in Figure 2.2. The goals of the ADL team were to:

• Identify and recommend standards for training software and associated ser-

vices purchased by Federal agencies and contractors.

• Facilitate and accelerate the development of key technical training standards

in industry and in standards-development organizations.

28



Sharable Content Object Reference Model Theory and Background

Figure 2.1: Components of a SCORM content package

Figure 2.2: Organisations and Standards that SCORM built their model on.
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• Establish guidelines on the use of standards and provide a mechanism to

assist DoD and other Federal agencies in the large-scale development, imple-

mentation, and assessment of interoperable and reusable learning systems.

The SCORM reference model bridges the gap of technological obsolescence with

various LMSs / CMSs / VLEs. SCORM provides an API (Application Program-

ming Interface) to allow content authors to create instructional content to monitor

the flow of a learning experience. Most widely used learning environments (Moo-

dle, Blackboard ...etc) conform to the SCORM reference model as a SCORM

component with additional support for other referencing standards. A learning

environment interacts with the SCORM throughout a learning experience. The

learning environment contains software that automates training event adminis-

tration through a set of services that; launches learning content, keeps track of

learners progress and sequences learning content.

Assets and Sharable Content Objects (SCOs) exist within the SCORM. An as-

set can represent anything from a text file to an image or a sound file. A SCO can

be represented as one or more assets that must contain at least one particular asset

that utilizes the SCORM RTE (Runt Time Environment), hence a SCO represents

the lowest level of granularity that can be tracked by a Learning Management Sys-

tem (LMS). By aggregating assets and SCOs together, courses and lessons can be

generated as seen in Figure 2.3.

Figure 2.4 illustrates a graphical representation of the reusability of assets and

SCOs aggregated from raw data elements into complete courses. It can be seen

that the reusability of the learning content decreases with an increase of context in

the learning content. Recommendations from the ADL team on levels of granular-

ity of instructional object are suited to producing content without any context as
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Figure 2.3: Aggregation of SCOs and Assets forming courses

Figure 2.4: Reusability of Assets and SCOs
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this would inherently increase the usability of the instructional content. However,

the granularity of the instructional content should demonstrate a single concept

and contain some context describing the concept. Various strategies associated

with the granularity of learning content and the possibility of adaption exists. In

particular, Laurillard [13] argues that the structure of the learning content embod-

ies the meaning of the content, in contrast to the ADLs best practice of designing

content with no context to increase the reusability of the content. However, in an

online learning environment to produce an adaptive system avoiding the traditional

frameworks of AHS (whereby an author of instructional content would generate a

number of paths through some instructional space), the structure of the content

needs to be modified. This process can be achieved by appropriately generating

instructional content at a granular level to embody some context with associated

metadata. If all the content was structured in such a way, simple adaptation could

be performed by strategically swapping SCOs or elements within SCOs depend-

ing on a learner interacting with the learning environment and the availability of

suitable instructional content.

The SCORM is defined within three books: The Content Aggregation Model

(CAM), SCORM Run Time Environment (SCORM RTE) and the Sequencing

and Navigation (SCORM SN).

• The CAM defines the learning content using specified metadata elements to

ensure:

– that the components are packaged in a suitable organisation for trans-

port from system to system.

– that adequate metadata is used to enhance the possibility of search and

discovery in order to maximize the reuse of granular learning objects.
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– to ensure that suitable sequencing and navigation strategies are de-

scribed to enhance the learning experience.

• The SCORM RTE ensures maximum portability of SCORM compliant learn-

ing content. The RTE contains support to allow an author to create func-

tionality to monitor the progress of the learner throughout an instructional

experience on multiple platforms.

• The Sequencing and Navigation (SN) defines the various methods of deliv-

ering courses to clients. Within the SN, SCORM defines four control modes

for delivering of instructional content:

– User choice

∗ The learner is able to choose any learning object within the infor-

mation space.

∗ This type of learning would suit a holistic learner enabling the

learner to freely navigate through the learning space.

– Flow navigation

∗ The Learning Management System (LMS) determines the next ac-

tivity to deliver with respect to the learners navigation request.

∗ This type of learning environment would suit an atomistic learner

constrained by their interactions with the learning environment.

– Choice exit

∗ When disabled, the learner cannot choose another activity while

the current activity is still in progress.

∗ This type of learning environment could be implemented in con-

junction with user choice or flow navigation to make sure that all

activities are completed.
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∗ It could also be useful when a content developer is delivering for-

mative assessment for a particular activity.

– Flow navigation

∗ Restricts a learner from revisiting a previously visited learning ob-

ject (user choice must be disabled).

2.2.1 Summary

The SCORM standard has been developed using the best practices of previous or-

ganisations such as Aviation Industry CBT (Computer-Based Training) Commit-

tee (AICC)[60], Innovation Adoption Learning (IMS)[61], IEEE Learning Technol-

ogy Standards Committee (IEEE LTSC)[62] and ARIADNE[63] and is controlled

and defined by data model elements which are monitored by the SCORM RTE.

The granularity of the learning objects is critical to the reuse of the instructional

content. The characteristics of the SCORM model as defined above make it an

ideal candidate for wide spread adoption of an automated learning component

that utilises the model as its referencing standard. Many current LMSs contain a

SCORM RTE , for example [40], [41], [42], for running SCORM content. Devel-

oping the automated learning component around the SCORM would enable easy

migration of adapted content into any LMS that contains a SCORM RTE, thus

adhering to the second goal of this research project.

2.3 Conclusion

This chapter investigated the potential of AHS and explored the lack of wide

spread adoption in real world systems. Furthermore the chapter discussed in detail

the SCORM referencing model used for referencing instructional material. In

conclusion, AHS have been researched for many years but are still evolved around
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a static model based loosely on the interpretation of an author of instructional

material and are typically constrained to the cognitive ability and pedagogical

preference of the author of the system. AHS require huge resources in their creation

from identifying suitable adaptation strategies and annotation styles to mapping

these to suitably defined student models associated with the domain in which the

AHS is involved with. AHS in their current format will remain a research topic

with little chance of wide spread adoption due to the constraints already discussed.

The chapter also discussed the Sharable Object Content Reference model that is

used to reference instructional material and the possibility of using this model to

build an automated learning component that is capable of generating adaptive

content across multiple platforms. The following chapter investigates the creation

of a personal profile that could be used to automatically generate instructional

content. In particular the chapter is concerned with the identification of suitable

cognitive traits and pedagogic preferences that have an associated cognitive metric

within instructional content that can be automatically identified. This strategy

will remove the reliance on metadata inconsistencies found within learning object

repositories such as: MERLOT, Jorum and NDLR, and overcome the black-box

problem associated with metadata creation.
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Optimal Personal Profile

One of the problems with most adaptive educational systems is that authors of ed-

ucational material are likely to have different ideas on the best teaching practices,

which can hinder the development of a learners learning experience. Additionally

instructional authors have their own cognitive ability and pedagogical preference

which would impede the learning experience of some learners. This thesis is in-

volved with the construction of a learning component that is capable of generating

instructional content suited to the cognitive ability and pedagogical preference

of a learner, to be able to produce mathemagenic content for any learner using

the learning component independent of domain. This chapter is focused on the

creation of a personal profile that could be used to automatically generate instruc-

tional content. In particular the chapter is concerned with the identification of

suitable cognitive traits and pedagogic preferences that have an associated cogni-

tive metric within instructional content that can be automatically identified. Once

suitable traits are identified these can be used as a framework for automatically

generating metadata associated with the personal profile of a learner, thus avoid-

ing the black-box method for metadata creation as discussed in Chapter 2.
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Initially the chapter is concerned with understanding the environmental contexts

of a learning environment and creating a mapping of these contexts to a suit-

able adaptive strategy. Additionally, this chapter investigates current adaptive

strategies used for increasing the potential learning experience and reducing the

possibility of interference occurring within the learning environment. Finally the

chapter introduces a Personal Profile that is used as the underlying framework for

the learning component.

3.1 Environmental contexts of a learning envi-

ronment

Most student models are focused on the specific domains with which they interact

with, for example, the domain concepts competence and domain skills required.

Such student models are referred to as performance based student models and

include the student competence state models [64] and process state models [65].

To create a truly adaptive learning environment across multiple domains suitable

cognitive traits and pedagogic preferences of a learner should be catered for and

mapped to the environmental contexts of a learning environment. These contexts

include the nature of the subject discipline and the level of its learning; the char-

acteristics of the learning material and the role of the human teacher [18]. Support

should also be available for dealing with a learners learning profile. The profile

should consist of the entire learners educational history, cognitive ability and ped-

agogical preference.

The teacher plays various roles in an educational system including providing learn-

ing objects, selecting and scheduling other learning technologies, managing the

curriculum and overseeing the learners progress through instructional material. A
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serialist teacher may feel more enthusiastic about a tightly constrained educational

system designed on the building blocks metaphor, while a holist teacher may be

motivated by a loosely constrained educational system that allows zooming in and

out of fine grained details. Similarly a pragmatist teacher may prefer a focus

on practical applications while a theorist teacher may prefer logical analysis [18].

Developing an educational system around the SCORM would easily be able to

overcome the problem of the teacher being in full control of the learning experi-

ence in terms of learning object delivery. SCORM SN as detailed in Chapter two,

describes multiple modes of suitable delivery options to suit various categories of

learners (for example, a holistic learner would have a User Choice sequencing en-

abled).

A learning style is defined as the unique collection of individual skills and prefer-

ences that affect how a student perceives and process learning material [66]. The

learning style of a student will affect the potential of the outcome of the learning

experience. Research has been carried out for decades on defining and classifying

learning styles. Many of these theories are in practice today, for example, the

Theory into Practice Database [67] provides 50 major theories of learning and in-

struction, such as Kolbs learning style theory [68], Gardeners Multiple Intelligence

theory [69], Felder-Silverman Learning style theory [70], Litzinger and Osif Theory

of learning styles [71], Myers-Briggs Type indicator [72]. There are many existing

systems that are able to adapt to students learning styles, for example [73][36][74] ,

however these systems are constrained to the domain in which they were developed

for.

.
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3.1.1 Summary

In summary, creating an automated learning component that automatically gen-

erates instructional content suited to the cognitive ability and pedagogical prefer-

ence of a learner, the environmental contexts of the learning environment should

be taken into consideration. Identifying suitable cognitive traits enables the pro-

duction of a general learning component with the desired adaptive functionality

that is independent of domain knowledge. Unlike traditional adaptive hypermedia

systems [17][20][7][24][19][34][55][56] once the traits of the learner have been iden-

tified the model can be used across multiple domains.

The following section discusses suitable adaptation strategies that are indepen-

dent of domain. In particular, two well known strategies for reducing the cognitive

load on a learner: Multiple Representation Approach (MRA) [24] and Exploration

Space Control (ESC) [75].

3.2 Adaptation independent of domain

To create a truly adaptive learning environment across multiple domains the cog-

nitive ability and the pedagogical preference of a learner should be taken into

consideration (see Maycock et al. [76]). Successful adaptation requires some cor-

relation between the environmental contexts of a learning environment and the

personal profile of a learner. These environmental contexts include the type and

delivery protocol of the learning content. Brusilovsky [17] distinguished two cat-

egories of features within a hypermedia system suitable for adaptation: content

adaptation and navigation adaptation. Adaptive navigation techniques such as di-

rect guidance, adaptive hiding or re-ordering of links, link annotation, map adap-

tation [58], link disabling and link removal [59] can be used to control both the
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size and level of the instructional space available to each learner. Adaptive con-

tent presentation operates at the domain level. The information can be adapted

to various types of media and difficulty to meet the needs of each user. However,

with the introduction of specifications like SCORM, enhanced adaptive content

presentation is possible given the fine granularity of learning objects. In addition

to theses strategies two main techniques are used; Multiple Representation Ap-

proach (MRA) [24] and Exploratory Space Control (ESC) [75] can be used to fine

tune learning experiences. The following section details the advantages of both

techniques and discusses how these techniques are incorporated into our proposed

learning environment architecture.

3.2.1 Multiple Representation Approach

MRA is used to change the presentation of domain knowledge concepts, in terms of

the complexity and granularity, to suit the learners cognitive ability and progress

through a learning experience. It enhances the educational systems design to suit

the learners perspective. There are various types of multimedia objects, each stim-

ulating different cognitive responses. Audio stimulates imagination, video clips

stimulate action information, text conveys details and diagrams convey ideas [16].

Generating MRA compliant learning objects in a learning environment can reduce

the cognitive load by using similar multimedia objects to convey domain concepts.

If any media objects are omitted during the MRA process they must be available

to a user on specific request, reducing the possibility of losing any relevant in-

formation. There are three different types of filtering used in MRA: restriction,

extension and approximation. Restriction is used when a learning object contains

an excessive number of media objects, thereby causing cognitive overload. A sub-

set of these media objects may be selected to produce an MRA compliant learning

object conveying the current domain concept. If several different MRA compliant
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learning objects are available then the combination of media objects offering the

best learning experience suited to that learners cognitive ability may be selected.

When the number of media objects is insufficient to produce an MRA compli-

ant learning object, extension may be used. An LMS will search learning object

repositories to find suitable learning objects that will enhance that learning object

and make it MRA compliant. If a learning object was poorly designed, and the

complete learning object cannot be made MRA compliant, the largest multimedia

rich subset is selected. The process of extension is then carried out on the reduced

learning object.

MRA is a great concept; delivering different learning objects to individuals based

on the learners personal profile. However, it is argued by Laurillard [13] that the

structure of the learning content embodies the meaning of the learning content. It

should not be possible for an adaptive learning environment to change the struc-

ture of learning content thereby potentially changing the meaning of the content

and subsequently changing the potential learning experience. However, if enough

learning objects exist and are created suited to the granularity level described in

Chapter two then multiple modifications can occur without impacting the on the

learning experience.

3.2.2 Exploration Space Control

ESC limits the learning space to reduce the cognitive load of each learner and to

make sure that learners do not get lost in hyperspace [75]. In our proposed sys-

tem, ESC is used in the exploration of further reading once a learning experience

has concluded. The exploration elements catered for are the learning content and

navigational paths. When dealing with the learning content, the ability of the

student to interpret the content exactly as the content developer expected, is a
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very complex task and depends on the learners cognitive ability. There have been

many studies carried out on how learners perceive instructional material, in partic-

ular, Phenomenography (Laurillard, 2002) (Marton and Booth, 1997) (Ramsden,

1988) (Ramsden, 1998). This is successful at illuminating how students deal with

structure and meaning. These studies have led to the identification of two con-

trasting approaches to studying content, i.e. an atomistic approach and a holistic

approach. Learners utilizing a holistic approach interpreting some content retain

the concepts that are trying to be conveyed but may suffer some cognitive over-

load. Learners utilizing an atomistic approach lose the structure of the content

being delivered, hence, may have a different interpretation to the actual meaning.

3.2.3 Critique of adaptive strategies

Kinshuk et al. [75] believe that the reduction of sensory resources describing an

instructional object depends on the ability of a learner. In 1956 however, Miller [3]

reviewed the current research to determine the Working Memory Capacity (WMC)

of an individual and found that an individual could store between 5 and 9 items

in their WMC for one-dimensional content. It was also discovered that when the

number of dimensions describing the content increases, the amount of items that

can be stored in the WMC of an individual increases exponentially. An adaptive

learning environment should not reduce the number of dimensions, potentially the

WMC of a learner, throughout a learning experience. The Virtual Learning Envi-

ronment (VLE) could enhance the learning experience by ensuring that multiple

modes of learning are simultaneously stimulated throughout a learning experience.

Table 3.1, adapted from [75], shows how resources in a learning environment can

be adapted to suit the cognitive ability of a learner and in particular shows the

relationships between WMC and Information Processing Speed (IPS).
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Resources / Cognitive Traits WMC IPS

H / L H / L

Paths + - + -

Path Relevance - + - +

Amount of Info. + - + -

Table 3.1: Relationship between Working Memory Capacity and Information Pro-

cessing Speed

In Table 3.1 the “+” symbol indicates an increase in the number of resources

to adapt to the cognitive ability, and the “−” symbol indicates a decrease in

the number of resources to adapt to the cognitive ability. If a learner has been

categorised to have high WMC then for the purposes of adapting to the number

of paths, relevance of paths and the amount of information, the learner would be

classified to having high IPS. Similarly, if a learner has been categorised as having

low WMC then for the purposes of adapting to the number of paths, relevance

of paths and the amount of information, the learner would be classified as having

low IPS. Content developers are responsible for producing small granular learning

objects that adequately describe a domain concept. Each learning object that

is created should take into consideration the different types of media and their

optimal effect on a learning experience.

3.2.4 Summary

This section discussed some of the contradictions found within the adaptive strat-

egy research. In particular, Kinshuk [75] proposing to modify the structure of the

content as an attempt to reduce the cognitive load of the learner is in stark contrast
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to Laurillards understanding that the structure of the content also embodies the

meaning [13]. The learning component that was developed within this research

project utilises the SCORM model and the granular structure of that model to

produce content. Unlike a closed model typically found within AHS the learning

component starts with no content and stitches a course together. Extending the

initial research question;

Is it possible to construct an automated learning component that generates in-

structional content suited to the cognitive ability and pedagogical preference of a

learner?

to include,

indepedent of domain and ensuring that no meaning is lost from adaptive strategies.

The following section investigates Working Memory Capacity, as an appropriate

cognitive trait that could be used within our personal profile. Both traditional

and modern research on the limitations and functionality of WMC is discussed. In

addition, trackable manifestation of WMC are discussed in order to identify au-

tomatic strategies that could be used to calculate the WMC of a learner utilising

the learning component without using pre-diagnostic testing methods.

3.3 Working Memory Capacity

Working Memory Capacity also known as Short-Term Store (STS) facilitates tem-

poral storage of recently perceived information, allows active retention of a limited

amount of information, (7 +/- 2 items), for a short period of time [3]. Since
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Millers early investigation of memory having a limited amount of space for imme-

diate storage and the possibility of greatly increasing this capacity by introducing

extra dimensions into the learning material there has been a vast amount of re-

search conducted. Especially through the introduction of neural imagery research,

which has been able to identify specific regions of the frontal cortex associated

with temporary memory. Coming from the vast amount of research, three main

models for working memory capacity have emerged: Baddelys model [4], Cowans

Model [77][5] and the theory of Ericsson and Kintsch [9].

3.3.1 Baddeley Model

Figure 3.1: Schematic of Baddeley’s Model

Alan Baddeley and Graham Hitch [4] introduced a multicomponent model for

working memory in 1974. This model is composed of two slave systems and a

central executive system to control the flow of communication between the slave
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systems and for coordinating cognitive processes when more than one task must

be completed at one time. The slave systems consist of a phonological loop and

a visuo-spatial sketch pad. The phonological loop stores phonological information

and prevents the decay of such information by constantly refreshing the informa-

tion. The visuo-spatial sketch pad is used to store visual and spatial information

and is used for the construction and manipulation of visual images. The sketch

pad can be broken down further into two subsystems: a visual subsystem, respon-

sible for shape, colour and texture and a spatial subsystem dealing with location.

Baddeley [12] furthered his model in 2000 by introducing an episodic buffer as an

additional component. This buffer represents a temporal storage of phonological,

visual, spatial and semantic information. The buffer is comprised of a limited ca-

pacity system that provides temporary storage of a multimodal code, that is the

binding of information from the initial subsystems and long-term memory. The

key characteristics of the new model focuses attention on the process of integration

of information rather than viewing the sub-systems in isolation. This new model

emphasis the importance of creating the link between the long-term memory and

the sub-systems. Figure 3.1 represents a schematic of Baddeleys model.

3.3.2 Nelson Cowan’s Model

Cowan [5] regards working memory as part of long-term memory and not another

component. Representations in working memory are a subset of the long-term

memory. Working memory consists of two distinct levels. The first level consists

of long-term memory representations that are activated. There is no limit to

activation of representations in long-term memory. The second level is described

as the focus of attention. The focus is regarded as capacity limited and can hold up

to four of the activated representations at any given instant. This view of working

memory is thus centered on the concept of monitoring the focus of attention and
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reducing the possibility of interference with the focus of attention throughout a

learning experience.

3.3.3 Ericsson and Kintsch

Ericsson and Kintsch believe that there exists two structures within memory: work-

ing memory and long-term memory. However, they argue that there must exist

some retrieval structures to allow for the expansion of working memory during

certain conditions. They classify this expansion as having the ability to utilise

Long-Term Working Memory (LTWM). For example, text comprehension requires

all the following to take place: perceptual features, linguistic features, proposi-

tional structure, macrostructure, situation model, control structure, goals, lexical

knowledge, frames, general knowledge and episodic memory for prior text [11].

Each of these components by itself would exceed the capacity of short-term work-

ing memory, but is clearly needed in text understanding. Kintsch et∼al [9] consider

that every reader is able to form an episodic text structure during text compre-

hension, if the text is well written and the content is familiar. Forming an episodic

text structure allows the use of long-term working memory thus explaining how

a complex process like text comprehension can be performed on a daily basis.

Guida et∼al [14] [9], using the theory of text comprehension have proposed the

personalisation method as a way to operationalise the LTWM.

3.3.4 Trackable Manifestations of WMC

The personal profile that is required for this research project must include the cog-

nitive ability and pedagogic preference of a learner that can be used both as the

driving framework for automatic metadata generation (i.e. profile that includes

cognitive traits that have associated cognitive metrics that can be identified within

instructional content) and appropriate manifestations to enable the automatic gen-
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eration of a learners profile by interacting with a learning environment. Working

Memory Capacity (WMC), as described above, contains the following manifesta-

tions:

• Constantly revisiting learned materials very shortly indicates signs of low

WMC [78].

• People with a greater tolerance to interference have higher WMC [79].

• Frequently missing steps or losing components during a long sequence calcu-

lation or procedure indicate signs of low WMC [80].

• Working Memory is known to vary with age [81].

• For learners with high WMC it is likely that they will follow the curriculum

sequentially, thereby reducing the number of trans-state violations [82] [83],

for example, moving to an unexpected state.

3.3.5 Personal Profile model

All three models of working memory have been subject to great acclaim however,

they are all trying to categorise the same cognitive process and have all completely

different interpretations of the same process. Cowans model is centered on the idea

that working memory is not disjunct from long term memory but is split into two

separate components. Cowans model is limited in capacity just like George Millers

from 1956. Ericsson and Kintsch believe that there exist two separate components

within memory: working memory and long-term memory. Their main distinctive-

ness is in the underlying process at which information is retrieved from long-term

memory, which describes certain conditions that enable an expansion of working

memory. Finally Baddeley describes a multicomponent model for working memory,
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consisting of two slave systems and a central executive for transporting informa-

tion between the slave systems.

The thesis is focused on investigating the possibility of constructing an automated

learning component that generates instructional content to suit the cognitive abil-

ity and pedagogical preference of a learner independent of domain. To evaluate

the learning component suitable metrics must be identified to create a personal

profile, however the learning component should be independent of the metrics se-

lected and extensible to any pedagogic strategy requirement. In order to establish

a suitable personal profile for testing the learning component, the environment in

which the learning takes place must be categorised and understood. The profile

should include the cognitive ability of the learner to ensure that adaptation can

occur across multiple domains. Cattel-Horn-Carroll definitions project is involved

with the classification of a taxonomy of human cognitive abilities, in terms of broad

and narrow categories [84]:

• Auditory Processing

• Fluid Intelligence / Reasoning

• General (domain specific) knowledge

• Kinesthetic Abilities

• Long-term Storage and Retrieval

• Olfactory Abilities

• Psychomotor Abilities

• Psychomotor Speed

49



Working Memory Capacity Optimal Personal Profile

• Reading / Writing Abilities

• Short-term Memory

• Tactile Abilities

• Visual-spatial Abilities

Taken the environmental contexts of the learning environment into consideration

as defined in this Chapter, these categories are reduced to the following categories:

• Auditory Processing

• Fluid Intelligence / Reasoning

• General (domain specific) knowledge

• Long-term Storage and Retrieval

• Reading / Writing Abilities

• Short-term Memory

• Visual-spatial Abilities

Additional reductions can be applied to the list of categories: the personal profile

should be independent of domain, the effects of robotic voices on online learning

environments is unknown, however it can be assumed that there would not exists

enough robotic voices to suit each individual learner, consequently placing some

learners at a disadvantage using the learning component and Fluid reasoning was

also eliminated as it is associated with mental operations to solve problems and

would be deemed more suitable to specific domains or gaming applications. The

reduced set of categories is defined as the following:

• Long-term Storage and Retrieval
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• Reading / Writing Abilities

• Short-term Memory

• Visual-spatial Abilities

The personal profile needed to be categorised as metrics that could be identified

automatically in instructional content for the generation of suitable metadata.

The VARK element represents the visual-spatial category, as the learning envi-

ronment conducts learning experiences within an online learning environment the

VARK learning style is restricted to suit the visual constructs of the learning unit.

The Long-term Storage and Retrieval category / Long-term memory is removed

as the learning component will initially generate content that is independent of

educational history. This category would have great benefit when considering the

associative learning skill of the learner, however as there does not exists enough

learning experiences from each student the associative learning skill cannot be

used. The reading / writing ability category is defined by the readability level

and the information processing speed of a learner. These elements along with the

working memory of learner identify the constructs for determining a chunk when

interacting in an online learning environment. In particular the readability level of

instructional content is used as a minor indicator of the suitability of instructional

content for a given learner.

All three above models for working memory have components that can be gen-

eralised and reused in an online learning environment. Our proposed personal

profile consists of: working memory capacity, pedagogic preference of a learner,

information processing speed and the readability level of the learner. The proposed

personal profile is thus mainly categorised into two categories: working memory

and pedagogic preference. Unlike Ericsson and Kintsch theory on WMC, form-
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ing episodic text structures may increase the working memory capacity, however,

could impede on the potential learning experience as the underlying structure of

a module encapsulates the learning outcomes [13] and should not be decoupled

(but could be modified) to potentially increase the working memory. If the lan-

guage used in the learning material is of a comparable standard to the learners,

the instructional space limited to suit the working memory capacity and if the

delivery protocol is directly related to the pedagogic preference of the learner, it

should be possible to determine the expected minimum learning experience prior

to conducting the learning experience.

The metrics that describe the element of the personal profile are:

• Working Memory Capacity

• Readability Level

• Information Processing Speed

• VARK

3.3.6 Summary

In summary, this section investigated WMC, from Millers work in 1956 [3] up

until the work of Baddely[4], Cowan and Ericson and Kintsh [9]. All three recent

above models for working memory have components that can be generalised and

reused in an online learning environment. The proposed personal profile for the

learning component consists of: working memory capacity, pedagogic preference,

information processing speed and the readability level of the learner. The proposed

personal profile is thus mainly categorised into two categories: working memory

and pedagogic preference. If the language used in the learning material is of a
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comparable standard to the learners, the instructional space limited to suit the

WMC and if the delivery protocol is directly related to the pedagogic preference

of the learner, it should be possible to determine the expected minimum learning

experience prior to conducting the learning experience.

3.4 Conclusion

This chapter described a suitable personal profile that could be used by the learn-

ing component to automatically generate mathemagenic content for each learner.

In particular, the chapter was focused on identifying suitable adaptive strategies

independent of domain knowledge. The personal profile for the learning component

was described. The following Chapter details a protocol to bridge the perceived

gap between the inconsistencies found in repositories and instructional content

within the repositories. Chapter four also investigates the use of SCORM as a

referencing standard and discusses statistics that yield a lack of consistency when

referencing instructional material. This leads to the analysis and development of

a Content Analyser that automatically generates SCORM compliant instructional

content with additional metadata describing the cognitive metrics found within

the instructional content to avoid using a closed loop system like traditional AHS.
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Chapter 4

Content Analyser

There exist many instructional content repositories, for example, Multimedia Edu-

cational Resource for Learning and Online Teaching (MERLOT) [50], Jorum [51]

and the National Digital Learning Repository (NDLR) [52]. These repositories con-

tain various types of instructional content including text files, word documents,

PDF documents, presentations, complete SCORM packages, SCOs etc... Metadata

can be defined as data describing other data and is typically produced external

to the creation of instructional content in a black-box fashion. This method of

metadata generation is insufficient as no guarantee exists between the actual con-

tent and the metadata describing the content. Furthermore it was found by Norm

Freisen [2] that only 57% of content authors complete keywords within Learning

Object Metadata (LOM) files associated with SCORM content, consequently this

results in a large amount of learning objects with insufficient metadata, for search

and discovery.

In general, the goal of creating suitable metadata is to allow a process to iden-

tify your instructional content for reuse. Metadata associated with a learning

object should be designed in such a way, firstly, to be easily recognisable as the
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instructional content in terms of domain specific searches (domain relevance), and

secondly the metadata should reflect cognitive stimulus required for interacting

with the learning object in an optimal learning experience. Without metadata

reflecting the internal design of the instructional content it would be impossible

to develop a reliable automated process for content adaptation. Neither of these

conditions are common practice, thus resulting in inconsistencies within learning

object repositories and insufficient consistent metadata for search and discovery.

The Content Analyser (CA) is focused on bridging the perceived gap between

repositories, standards and inconsistency of learning objects. The CA was de-

signed to automatically generate metadata for some instructional content that

stimulates the cognitive traits and pedagogic preference of each learner (as dis-

cussed in Chapter three), thus addressing the second condition stated above. The

following section explores the protocol of the CA in detail. A complete example

illustrating a sample piece of instructional content is described and the metadata

that was produced is examined to reflect the cognitive metrics found within the

instructional content.

4.1 Inside the Content Analyser

The CA was designed to automatically generate metadata for some instructional

content that stimulates the cognitive traits and pedagogic preference of each learner.

The CA takes as input some instructional content (.txt files, .doc files, .html files or

.zip files), decouples the content and generates Sharable Content Objects (SCOs)

with added metadata to describe the type of information, the amount of informa-

tion, the size of the instructional space, the readability level of the content and the

VARK representation of the instructional material. These metrics form the foun-
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dation of the evolutionary process described in Chapter five to evolve instructional

content to suit the needs of a learner.

Figure 4.1: Content Analyser

Figure 4.1 depicts a simple protocol for the Content Analyser (CA). Instructional

content is inputted into the content analyser, either as a single file submission or as

an archived package. If an archived package was inputted into the CA, the package

is decoupled and each file is treated as a single file entry. The CA automatically

generates metadata for each file describing the cognitive resources and type of in-
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formation required to stimulate the personal profile of a learner as described in

chapter three. Each file is repackaged as a Sharable Content Object (SCO). The

CA uses the Java Open Document (JOD)[85] JAR files to interact with OpenOf-

fice running as a background process listening on port 8100, to allow for easy file

transformation between multiple file formats. This is essential for calculating the

metadata associated with the learning objects.

The following subsection details the constraints involved when generating instruc-

tional content. These constraints are designed to reduce the computational com-

plexity time of automatically generating metadata for instructional content and

act as guidelines for content authors.

4.1.1 Developing compatible content for the CA

Instructional content is taken into the content analyser and SCOs are produced

with associated metadata to stimulate the cognitive ability and pedagogic prefer-

ence of a learner. The following list represents the constraints when developing

the instructional content:

• The final course that is outputted to the learner is constructed from a reposi-

tory of instructional content and not from external sources. When developing

a course the typical demographic of the learner should be taken into consid-

eration in terms of their educational competence. The author should not

presuppose any educational background that is not mentioned within the

specification.

• The input for the Content Analyser can be a single File submission or a .zip

submission. When submitting a zipped package the relevant path should not

be stored when creating the archive as seen in Figure 4.2.
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Figure 4.2: Excluding the relative path information

• A separate file should be generated for each learning object described in the

specification.

• It is recommended to use external links when constructing the content. Ex-

ternal links should act to either explain a concept in greater detail or to

further strengthen a concept. There can be a maximum of three links per

learning object. Each link must start with “link ” followed by the link name,

example, link Mylink.

• The main learning objects should be written as html documents. External

link can be either, .txt, .doc or .html documents. It is recommended that

all graphics be PNGs but it is not essential. When including an image in

your learning objects you should use the following syntax; “WIDTH=” and

“HEIGTH=”.
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• Images should be supported by textual information relating to the image.

The textual information explicitly relating to an image should be referenced

as follows within the main learning object, <p ID=“imageName”>textual

information </p>.

• When creating visual constructs such as <b>boldface </b>you should

leave a gap between the last element of the visual constructs and the ter-

mination symbol, as the regular expression for a word is one or more alpha

characters followed by a white space or a line termination symbol.

• When creating the instructional content time should not be spent creating

complex background designs as the instructional content will be stripped of

formatting constructs and reconstructed to suit the pedagogic preference and

cognitive ability of the learner.

4.1.2 Summary

In summary, this section introduced the Content Analyser (CA) that was used

to bridge the percieved gap between learning object repositories and the inconsis-

tencies found within metadata standards. The CA uses the JOD libraries [85] to

allow for multiple file formats to be included within the instructional content. The

CA uses the SCORM file format as the default output after analyzing files. In

addition, this section discussed the protocol for generating instructional content

compatible with the CA and listed some constraints imposed on authors of instruc-

tional content. The following section details the metrics found within instructional

content suited to the personal profile discussed in Chapter three. Additionally the

following section discusses an automatic process for generating metadata from in-

structional content and details the advantages this process has over a traditional

black-box method for metadata creation.
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4.2 Stimulating Cognitive Resources

Metadata for describing instructional content is typically created external to the

instructional content in a black-box fashion. This method of metadata generation

is insufficient for automated content generation as no guarantee exists between the

actual content and the metadata describing the content. The CA automatically

produces metadata to describe the cognitive metrics found within instructional

content suited to the personal profile described in Chapter three. In addition to

identifying these metrics the CA identifies the author of the instructional content

and keeps track of this information. Metadata 1 gives an example of a metadata

file that was generated by the Content Analyser (CA) and in particular shows the

author contact information.

Metadata 1 Contact information produced by the Content Analyser

-<SCOMetadata>

-<GeneralInfo>

<Author>Keith_Maycock</Author>

<Contact>kmaycock@ncirl.ie</Contact>

</GeneralInfo>

+<CognitiveResources></CognitiveResources>

</SCOMetadata>

The personal profile that was identified to be appropriate for an online learning

environment consists of Working Memory Capacity (WMC), Readability, Informa-

tion Processing Speed (Information Processing Speed) and the Pedagogic prefer-

ence, as discussed in detail in Chapter three. Metadata 2 gives an example of the

measurements describing the cognitive metrics found within instructional content.
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The IPS indicator is used as an estimation of the working memory of an individual.

The cognitive metrics found within instructional content that stimulate a learn-

ers personal profile are: the amount of content, the readability of the instructional

material and the VARK representation of the content. These metrics are described

below:

Metadata 2 Illustrating the cognitive metrics found by the Content Analyser

-<SCOMetadata>

+<GeneralInfo></GeneralInfo>

-<CognitiveResources>

<AvailableScreen>92.5</AvailableScreen>

<VisualTolkens>13</VisualTolkens>

+<images></images>

-<Readability>

<FleschReadingEase>39.83</FleschReadingEase>

<FleschKincaidGrade>12</FleschKincaidGrade>

</Readability>

<amount>127</amount>

<VARK>16.97</VARK>

+<links></links>

</CognitiveResources>

</SCOMetadata>

• amount: the amount is an indicator of the volume of words found within the

instructional content.

– This metric is used to calculate an approximation towards the WMC
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of a learner. Multiple file formats are catered for using the Java Open

Document (JOD) libraries to interface with Open Office. A regular

expression is defined to describe a suitable word and then a simple

calculation is performed.

– The working memory of an individual has been extensively researched as

described earlier. Three models of working memory that have emerged

from this area are: Baddelys model, Cowans Model and the theory of

Ericsson and Kintsch. Unfortunately all three models have their dif-

ferences and different interpretations of a capacity associated with the

WMC of a learner. The concept of a chunk of information is discussed

without referring to a specific definition of a chunk, especially in a gen-

eral term. Within online learning the problem is further increased as the

exercise is not to remember several digits but is related to text compre-

hension, which requires all of the following to take place: perceptual fea-

tures, linguistic features, propositional structure, macrostructure, situ-

ation model, control structure, goals, lexical knowledge, frames, general

knowledge and episodic memory for prior text [9]. All of these compo-

nents taken separately would exceed any limitation of working memory,

however Kintsch et∼al [11] believes that every reader is able to form

episodic text structures during text comprehension. Furthermore, if a

single sentence is considered, constructed using suitable visual stimu-

lus (suited to a learners pedagogic preference) and containing a level of

readability approximating the learners readability level this establishes

the foundation of understanding a chunk within an online learning en-

vironment. Additionally if the granularity of the learning content is

described as previously stated at the concept level, this will further en-

hance the working memory of the learner as a single concept should
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contain information relating to the concept and not contain too many

external interruptions diverging from the overall meaning of the instruc-

tional content.

• FleschReadingEase: is used as an indicator of the readability level of the

learner. All readability formulas are limited, especially when applied to

specific learners and settings. The readability level is used as a metric for

the adaption process to enhance the WMC metric. It should be noted that

the readability just like the other identified metrics could be removed from

the adaptive process and other traits be included.

– The metric is calculated as follows:

206.835− ((avgSyllables ∗ 84.5) + (avgWords ∗ 1.015))

where,

∗ avgSyllables: is the average number of syllables contained in each

word. A syllable is defined by the International Phonetic Alphabet

as one of the following: ea, i, e, a, o, aw, a, oo, u, ir, a’s, es, ee,

ar, er, ay, o, y, ough, oy, oor, air, our, ear, ere.

∗ avgWords: is the average number of words contained in each sen-

tence.

• VARK: This method takes as input an absolute file name and returns a

double value indicating the percentage of the screen that is composed of

visual elements.

– These visual elements are identifiers for the visual resources as described

by Neil Flemming describing the VARK learning preference [1].
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∗ The following elements are used for identifying visual identifiers:

“b”, “i”, “tt”, “sub”, “sup”, “big”, “small”, “hr”, “strong”,“em”.

∗ The image / objects are defined by: “IMG or img”,“AREA or

area”,“map or MAP”,“object or OBJECT”,“param or PARAM”.

– The value of the VARK representation is calculated as follows:

V ARK =

(
totalV isual

words

)
∗ availableScreen

where,

avaliableScreen = 100−
((

pixel

screensize

)
∗ (100)

)

and,

totalVisual = the total number of visual constructs as defined above

words = total number of words found within the instructional content

as defined above

pixel = total screen covered by the image or object constructs as defined

above

The following subsections detail the metadata associated with two components

within instructional material: images and external links. In particular, the follow-

ing subsections are concerned with the potential interruption that can occur due

to changing the structure of the instructional material as discussed by Laurillard

[13].

4.2.1 The importance of structure

Laurillard discussed the problems associated with decoupling instructional mate-

rial and modifying the possible meaning of instructional content [13], as discussed
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in Chapter three. However when the granularity of the learning material is at a

conceptual level and there exists enough learning resources, it should be possible to

insert or remove images (with associated textual information) without destroying

the overall meaning of the instructional content.

Ensuring that no meaning is lost in the addition or removal of an image, all as-

sociated references and text associated with the image must also but added or

removed. The metadata in Metadata 3 allows an automated process to automat-

ically insert or remove images and provides all the metadata required to update

the cognitive metrics found within the instructional content. It can be clearly seen

in Metadata 3 that an image has an associated name, dimensions, word count

and visual tokens. These metrics are used to calculate the impact that the image

will have on the evaluation of instructional content against the personal profile

of a given learner. Chapter five details the process for evaluation of instructional

content in more detail.

4.2.2 Controlling the instructional space

Metadata 4 shows metadata describing instructional content which contains two

links. The first link contains zero images but contains information relating to all

the cognitive metrics as described in Chapter three. In chapter four section 1.1, the

process for using external links to support the explanation of a concept in greater

detail or to further strengthen a concept was discussed. Unlike images external

links can simply be treated as another concept file without any embedding issues.

It can be clearly seen that a link contains all the required information associated

with the cognitive metrics found within the instructional material and can also

contain additional links. Chapter five details strategies for estimating the poten-

tial effect that the size of the instructional space can have on a learner interacting

with the learning component.
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Metadata 3 Metadata produced by the CA associated with an image

-<SCOMetadata>

+<GeneralInfo></GeneralInfo>

-<CognitiveResources>

<AvailableScreen>92.5</AvailableScreen>

<VisualTolkens>13</VisualTolkens>

-<images>

<NoOfImages>1</NoOfImages>

-<image>

<imgtitle>usecase</imgtitle>

<imgDimensions>200:300</imgDimensions>

-<imgText>

<imgWords>76</imgWords>

<imgVT>13</imgVT>

</imgText>

</image>

</images>

+<Readability></Readability>

<amount>127</amount>

<VARK>16.97</VARK>

+<links></links>

</CognitiveResources>

</SCOMetadata>
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External links create a complex and expansive instructional space, however, if all

the instructional content on the internet was filtered through the Content Analyser

(CA) there would exist a huge pool of resources within the learning object

repositories. The problem now changes from generating instructional metadata

suited to the cognitive ability and pedagogic preference to creating efficient algo-

rithms to reconstruct the learning objects in a suitable fashion to ensure no loss

of meaning from the instructional space.

4.2.3 Summary

This section identified suitable metrics associated with the personal profile, de-

scribed in Chapter three, found within instructional content. The section was also

focused on components within instructional content that could be used to modify

instructional content without effecting the meaning of the desired instructional

content. In addition this section discussed the complexity issues introduced if the

CA was used to migrate huge volumes of data consequently changing the problem

of creating suitable metadata that reflects the cognitive ability and pedagogical

preference of a learner to an evolutionary problem.

4.3 Conclusion

In conclusion, the Content Analyser was designed and constructed to bridge the

perceived gap between the inconsistencies found with instructional content within

content repositories and the lack of consistency found with metadata creation.

Consequently, this creates an environment whereby traditional Adaptive Hyperme-

dia Systems (AHS) cannot be used in the real world as their closed loop approach

is too restrictive, however if a closed loop approach was not used AHS would still
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Metadata 4 Metadata produced by the CA associated with a Link

-<SCOMetadata>

+<GeneralInfo></GeneralInfo>

-<CognitiveResources>

<AvailableScreen>92.5</AvailableScreen>

<VisualTolkens>13</VisualTolkens>

+<images></images>

+<Readability></Readability>

<amount>127</amount>

<VARK>16.97</VARK>

-<links>

<NoOfLinks>2</NoOfLinks>

-<link>

-<LinkCognitiveResources>

<Linkname>link_name</Linkname>

<LinkAvailableScreen>100.0</LinkAvailableScreen>

<LinkVisualTolkens>0</LinkVisualTolkens>

-<LinkImages>

<NoOfImages>0</NoOfImages>

</LinkImages>

-<LinkReadability>

<LinkFleschReadingEase>0.0</LinkFleschReadingEase>

<LinkFleschKincaidGrade>12.0</LinkFleschKincaidGrade>

</LinkReadability>
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Metadata 4 Metadata produced by the CA associated with a Link

<Linkamount>121.0</Linkamount>

<LinkVARK>0.0</LinkVARK>

<LinkNoOfLinks>0</LinkNoOfLinks>

</LinkCognitive Resources>

</link>

+<link></link>

</links>

</CognitiveResources>

</SCOMetadata>

not be ready for wide spread adoption as the information available is inconsistent

(multiple referencing standards) with insufficient metadata. In chapter three, a

unique personal profile was described that included the cognitive traits and ped-

agogical preference of a learner, which had associated cognitive metrics within

instructional content designed for an online learning environment. Chapter four

detailed the process of reading in multiple file formats and reducing the content

to a simple format using the JOD library and creating suitable metadata for the

content. Once the metadata is created the content is repackaged as SCORM com-

pliant content. Additionally the chapter discussed complexity issues associated

with the content analyser harvesting too much information. The problem now

changes from generating instructional metadata suited to the cognitive ability and

pedagogic preference to creating efficient algorithms to reconstruct the learning

objects in real time. The following chapter investigates various evolutionary algo-

rithms, in order to traverse a potentially unsearchable space to construct a course

adapted to the individual needs of each learner. Additionally, an analysis is per-

formed on the metrics of such an algorithm to ensure that the algorithm is an
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optimal solution.
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Chapter 5

Selection Model

The Content Analyser, discussed in detail in Chapter four, enabled the automatic

generation of metadata to suit the cognitive resources found within instructional

content. This analyser bridged the perceived gap between the inconsistency of

content found within instructional repositories and also the inconsistency with

metadata generation for SCORM content. This analyser is a critical component

to the research question of the thesis;

Is it possible to construct an automated learning component that generates instruc-

tional content suited to the cognitive ability and pedagogical preference of a learner?

Using the CA repositories of learning objects can be generated with the appropri-

ate metadata associated with suitable cognitive resources as discussed in Chapter

three. This Chapter is involved with a Selection model that is used to harvest

the instructional material within generated repositories. The Selection model is

the nucleus of the learning component, it identifies and reengineers instructional

content, using a genetic algorithm to produces mathemagenic content suited to the

individual needs of each learner. This chapter firstly investigates the use of evo-
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lutionary algorithms as an appropriate method of evolving instructional content.

Secondly, a high level protocol is discussed for interacting with the learning com-

ponent. Additionally, the various metrics governing the genetic operators of the

GA are investigated to ensure an optimal evolutionary strategy. Identifying suit-

able metrics (rate of Mutation, Selection operator, type of CrossOver method) for

the genetic operators is a complex process especially when there exists an incom-

plete solution space. This strategy is achieved by creating a suitable comparable

problem that has a complete instructional space. The genetic operators are then

examined using this pseudo problem. Finally, the chapter concludes with a discus-

sion investigating the performance of the algorithm to find suitable instructional

content.

5.1 Suitable searching strategies

The core function of the Selection model is to search an instructional repository

and take chunks of instructional material suited to the individual needs of a learner,

until the final course that is delivered scores a fitness value above the Minimum

Expected Learning Experience (MELE), that is set by an author of the specifica-

tion. To achieve this functionality the following conditions have been identified as

necessary components for a searching strategy:

• An author controlled adaptive threshold metric to allow the author set the

exit requirement for suitable courses. This allows multiple authors the free-

dom to choose the appropriate exit requirement, for example, MELE is above

seventy percent.

• An author controlled adaptive metric to favor instructional content based on

the cognitive resources within the content. With the expected growth in e-

learning this metric will allow authors using different pedagogic strategies the
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freedom to control the evolutionary strategy based on strengths of individual

cognitive traits.

• The functionality should allow for fast identification of suitable objects, the

dissemination of the instructional content and recombination of various com-

ponents while keeping track of the authors of the instructional content.

• One of the biggest problems when an automated process is mining through

very large instructional spaces is the possibility of the process arriving at a

local minimum (crowding problem). The functionality should consider this

when constructing the evolutionary algorithm.

• The content that is produced does not need to be a perfect match to an ideal

specification (a specification that has been modified to include the metadata

associated with the learners personal profile).

The classification of suitable algorithms for solving such problems are known as

evolutionary algorithms. Evolutionary algorithms, unlike traditional methods like

linear programming scale extremely well. Additionally the evolution process is not

a linear evolution, during the initial phase (early epochs) the evolutionary strategy

excels exponentially and over time the evolution rate degrades. Generating course

content is suited to this model as the MELE should never be set at 100%, as a

learner interacting with the learning component should be given the opportunity

to exceed the expectations of the learning component. By definition the MELE

estimates the minimum threshold for a learning experience not the maximum.

The following subsections briefly explore some evolutionary algorithms and their

applications to identify a suitable candidate for evolving instructional content.
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5.1.1 Ant colony optimisation

Ant Colony optimisation technique is based on the natural habits of a colony of

ants searching for food. Initially the ants would move randomly searching for food.

Once a successful search was returned to the colony the ant would leave a trace

of pheromones showing the path from the colony to the food. Over time success-

ful paths become probabilistically favored for subsequent travel. These types of

algorithms have been used to solve various combinatorial optimisation problems,

including the Traveling Salesman Problem [86]. Ant colony optimisation algo-

rithms would be suitable for the initial identification of suitable learning objects,

however they would not be suitable for the dissemination and reengineering of the

content while keeping track of the individual authors of the instructional content.

5.1.2 Cultural algorithm

Cultural Algorithms are an extension of genetic algorithms which include extra in-

formation regarding the Belief Space [87]. The knowledge held by the population

about the Belief Space is classified into several categories: Normative knowledge,

domain specific knowledge, situational knowledge, temporal knowledge and spatial

knowledge. After each epoch of the evolution strategy the Belief Space is updated.

Cultural algorithms have been successfully applied to solve the Royal Road prob-

lem [88] as suggested by Holland [89].

The Content Analyser (discussed in Chapter four) details the construction of an

automated component to migrate content into a suitable format for the Selection

model. This allows for an easy translation for instructional content thus result-

ing in an immeasurable amount of learning objects. Using Cultural algorithms

as a suitable approach would be an ideal solution, as additional information re-
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garding the domain knowledge could easily tracked. However, the experiments

implemented are in a controlled environment and do not require any additional

information relating to the domain knowledge thus negating the requirement for

Cultural Algorithms as the extra overhead associated with interfacing between the

population and the belief space would be considered insufficient.

5.1.3 Extremal optimisation

Extremal Optimisation (EO) algorithms were initially designed as local search

algorithms for combinational problem spaces, but include mutation strategies to

shift the search optimising strategy to focus on another segment of the instructional

space [90]. Self Organised Criticality (SOC) is an optimisation heuristic based on

a single attractive critical point throughout the evolutionary process. The strategy

is based on the evolution of a single solution unlike genetic algorithms were there

exists a population of solutions. The main drawback of using EO or SOC as an

effective algorithm for generating instructional content would be the that EO does

not support the dissemination and reengineering of instructional content during

each epoch of the evolutionary process.

5.1.4 Reactive Search Optimisation

Reactive Search Optimisation (RSO) is the common name for a family of local

search algorithms. RSO algorithms, unlike most typical evolutionary algorithms

do not require the initial stage of fine tuning metrics associated with the search

strategy, for example, using a genetic algorithm a researcher would initially need

to run experiments to estimate the appropriate rate of mutation, the appropriate

selection operator and crossover strategy suitable for each problem [91]. RSO

achieves this unique fine tuning throughout the search by constantly reflecting

on past experiences when navigating through the solution space. RSO was not
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deemed suitable for evolving instructional content as the overhead associated with

fine tuning throughout the evolution process would be considered inefficient as the

learning component needs to be an on-demand application that can be executed

any number of times.

5.1.5 Simulated annealing

Simulated Annealing (SA) is a generic probabilistic method used for locating a

good approximation to the global minimum of a solution space. The inspiration

for SA comes from the annealing in metallurgy, whereby a material is initially

heated and then proceeds to a controlled cooling to reduce the inconsistencies

found within the material. SA works by works by evolving towards to global

minimum. The probability of selecting a less fit neighbour is reduced as the initial

time (T) approaches zero. Initially SA allows this migration to a less fit solution

to avoid arriving at a local minimum. SA was deemed not to be suitable for

evolving instructional content as the time bound associated with the SA limits the

evolutionary process especially where the solution space is large. Once the time

degrades the search strategy becomes a greedy search. SA has been successfully

applied to many problems, example solving the Traveling Salesman Problem [92].

5.1.6 Genetic Algorithms

Genetic Algorithms are a search optimisation technique based on natural evolu-

tion. Initially a population of candidate solutions are randomly generated from the

solution space. These candidate solutions are then evaluated using some fitness

criteria and then genetic operators such as, Crossover, Mutation and Selection

occur on the population each epoch until some predefined threshold is met. This

process seems to be appropriate for evolving instructional content as the thresh-

old can be controlled by the authors and there is not any extra influence on the
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evolutionary process like time. However, there exists a few problems:

• The instructional space for learning objects is potentially vary large and

incomplete as there exists an unlimited amount of variables for the constructs

within the learning objects.

• Genetic Algorithms have a tendency to approach a local minimum [93].

Firstly, when estimating the metrics for the genetic operators it is essential to

have a complete instructional space. When there exists a complete instructional

space it is simple a repetitive process of trying different metrics for the genetic

operators and running the evolutionary process. With an incomplete instructional

space, a comparable problem (a similar problem in terms of the structure and

genetic operator constructs) was created that had a complete instructional space.

Once these metrics are found for the comparable problem the same metrics can be

used for evolving instructional content. Secondly to avoid the problem of crowding

(arriving at a local minimum) multiple demes (populations) are created across the

solution space and run in parallel communicating after each epoch.

5.1.7 Summary

This section investigated evolutionary algorithms to solve the problem introduced

by the Content Analyzer (CA) as discussed in Chapter four, if the CA was used

to migrate huge volumes of instructional content. Initially the requirements for

the evolutionary algorithm were identified and discussed as the foundation require-

ments of the evolutionary process. Genetic Algorithms were identified as a suitable

evolutionary strategy to tackle the problem of evolving instructional content to

suit the personal profile of a learner. Additionally, this section also discussed ad-

ditional problems associated with Genetic Algorithms, for example an incomplete

instructional space and avoiding the algorithm arriving at a local minimum. The
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following section discusses a suitable respreentation of the elements required for

representing a specification of a course being used by the Selection Model. Addi-

tionally a high level protocol is discussed that details the flow of communication

for a learner interacting with the learning component using the Selection model to

drive the creation of a suitable instructional course.

5.2 Selection model to automatically generate

content

Given a learner profile consisting of the cognitive ability and pedagogical preference

of the learner, it should be possible to construct a course to suit the cognitive abil-

ity and pedagogical preference of the learner. The selection model of the learning

component uses a genetic algorithm to automatically evolve instructional content

to suit a learners personal profile and is based on specifications. A specification

contains a list of concepts in an unconnected hierarchical structure. Each specifi-

cation contains a number of SCORM Learning Object Metadata (LOM) elements

describing the content (as seen in Table 5.1); however there is no instructional

information stored within the metadata files.

The metadata elements used to describe the specification are typical SCORM

metadata elements as defined by the SCORM Run Time Environment (SCORM

RTE). Additionally there exists metadata requirements associated with a specifica-

tion to control the evolution process for optimal content generation. The Minimum

Expected Learning Experience (MELE) is set by an author when constructing the

specification. The MELE is an approximation of the learners capacity for a suc-

cessful learning experience measured as a percentage. The MELE is used by the

GA as a threshold for the fitness function. On each epoch of the evolution process
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Full name The full name of the specification is displayed at the top of

the screen and in the specification listings.

Short name The specification short name is used as a reference to a

specification, specifically when sending emails.

ID number The ID number of a specification is only used when

matching this specification against other similar specifications,

consequently the ID number forms part of a specifications

signature.

Summary The summary for the specification is stored in the database

and retrieved only when a learner chooses a specification

MELET MELET is measured as an approximation towards a learners’

expected minimum learning experience prior to conducting a

learning experience. MELET represents a percentage for the

expected outcome.

Cognitive Traits Cognitive Traits is used to allow an author to set the

weights for different cognitive traits. This will ensure that each

course generated for each leaner will be more focused on a

particular cognitive trait.

Duration this represents the duration of the course

Enrollment Key this setting is set as an extra security feature for access to

a specification

Force Language this setting is used for creating content in a specified language

Table 5.1: SCORM Metadata elements used to define a Specification.
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the current generation of content is evaluated and measured against the MELE. If

the content is not suitable (i.e. the fitness value of the most optimal course gen-

erated is less than the MELE), the evolutionary process continues. The genetic

algorithm uses the MELE as a threshold for the evolutionary process. The author

also sets the Cognitive Traits field, indicating which cognitive trait is of greater

importance. For example, if the author needs to generate instructional content

that is focused on the working memory of the learner then the author would select

the appropriate CT value.

Table 5.2 describes all the metadata associated with a concept defined within

a specification. All the elements are defined by the SCORM RTE with the ex-

ception of the Typical learning time. The element is estimated for each individual

throughout the evolutionary process to ensure that a suitable course is constructed

for a given time period. The following sub section describes briefly a high level

protocol for the learning component and an individual learner interacting with the

system.
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Title The title element describes the title of a concept.

Description The description element describes the target SCORM

Content Model Component.

Keyword The keyword element is used to add specific words or

phrases to ensure the reusability of the learning content.

Coverage The coverage element is used to describe time, culture,

geography or region to which the SCORM Content

Model Component applies..

Structure The structure element describes the underlying structure

of the SCORM Content Model Component.

Aggregation level Defines the aggregation constraints on the material.

Size The size element represents the size of the digital SCORM

Content Model Component in bytes.

Interactivity type Represents the dominant mode of learning.

Learning resource type Represents the specific kind of SCORM Content

Model Component.

Interactivity level The interactivityLevel represents the degree of interactivity

characterizing the SCORM Content Model Component.

Semantic density Represents the degree of conciseness of the SCORM

Content Model Component.

Context Represents the principal environment within which

the learning should take place.

Typical learning time Represents an approximation of the typical time it takes

to work through the SCORM Content Model Component.

Table 5.2: SCORM metadata elements used to describe Sharable Content Objects

(SCO) within a specification.
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5.2.1 High level protocol for learning component

Figure 5.1: A Learner interacting with the Learning Component

Figure 5.1 shows a high level description of a learner interacting with the learning

component. A learner logs into the LMS. If the learners personal profile is not

known then the learner must complete four short online tests: VARK test, N-Back

test, readability test and an information processing test. Chapter 6 details the

design of the four tests. However, if the personal profile of the learner is known,

the learner can choose a previously defined course or select a specification. If the

learner selects a specification the LMS retrieves the learners personal profile and

updates the specification to create a unique specification suited to the cognitive

ability and pedagogical preference of the learner. This specification is also called

an ideal specification as discussed earlier. The LMS uses a genetic algorithm to

find optimal learning objects as defined by the LOM files contained within the

specification. Once suitable learning objects are defined the course is delivered to

the learner.

82



Genetic Algorithms Selection Model

5.2.2 Summary

This section defined a specification that could be used with the Selection model

and the corresponding SCORM data model elements that are included within the

specification. In addition a high-level description of the protocol for the Selection

model was discussed detailing the interaction of a learner with the learning com-

ponent. The following section discusses Genetic Algorithms and the associated

genetic operators in detail.

5.3 Genetic Algorithms

Genetic Algorithms (GA) [93] are search optimising algorithms based loosely on

natural evolution. Initially a sample population of hypothesis are generated from

the solution space. These hypotheses depend greatly on the problem being solved.

Members of the initial population give rise to the members of subsequent popula-

tions by performing genetic operations such as, Selection, Crossover and Mutation.

GAs have been successfully applied to a variety of learning tasks and optimisation

problems, for example Grefenstette [94] has successfully applied GAs that learn

sets of rules for robot control.

5.3.1 Genetic Algorithms explored

Genetic Algorithms address the problem of searching a solution space of hypothe-

ses candidates to identify a predefined best hypothesis. This best hypothesis is

found by calculating the fitness value for each individual in a population on each

epoch and is returned once a pre-determined fitness value is reached. The solu-

tion space available for the candidate population is a number of metadata files

describing the contents of instructional content. These metadata files consist of

information relating to the cognitive ability and pedagogic preference of the ideal
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specification of a learner. A typical genetic algorithm is described in Table 5.3.

The inputs for the algorithm are the fitness function, a threshold for the evolution-

ary process, the number of the individuals to be included in the population, the

rate of mutation and the proportion of the population to be involved in crossover.

It should be noted that the main loop within the above algorithm produces a new

population after each epoch. Producing the new population requires the use of

three different genetic operators: Selection, CorssOver and Mutation.

Selection occurs on the population with various strategies. Typically the pop-

ulation replicates selecting individuals for the new population according to some

probability function. The selection operator that is described in the Table 5.3 is

called roulette wheel selection, whereby an individual is selected depending on the

ratio of its fitness value towards the other individuals in the population. Vari-

ous methods of using fitness to select hypothesis from the population have been

proposed. For example, Tournament selection randomly selects two individuals

from the population a number of times (typically the number of individuals in the

population) and selects the individual for progression based on a random function

dependant on the fitness values for the two individuals. Tournament often yields

a more diverse population than roulette wheel [95]. In another method called

Rank and Truncation the population is simply ranked according to the fitness val-

ues of the individuals within the population. The next generation of individuals in

the population is simply the best half of the previously ranked population doubled.
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Genetic Algorithm(Fitness Function, Fitness Threshold, p, r, m)

Fitness Function: assigns a fitness value to an individual from the population.

Fitness Threshold: This specifies the termination criteria for the evolutionary process.

p: the number of hypothesis to be included in the population.

r: the fraction of the population to be replaced by CrossOver after each generation.

m: the rate of mutation.

•Initialise the Population (P), creating p candidate hypothesis.

•Using a Fitness Function evaluate each hypothesis (h) within P

•While MaxFitness(h) <Fitness Threshold

1: Using a Selection strategy select candidate hypothesis to proceed to the next

generation.

2: Select (r*p/2) pairs of hypothesis from the population.

For each pair of hypothesis (h1, h2), produce two new hypothesis by applying

the CrossOver strategy. Add the new offspring to the new Population.

3: Perform Mutation on the Population. Mutation selects m candidate

hypothesis from the population with a uniform probability and implements

a mutation on each of the selected candidates

4: Perform an evaluation on the new population that has been created,

compute fitness (h).

•Return the hypothesis from the population that yields the highest fitness.

Table 5.3: Typical Genetic Algorithm.
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Figure 5.2: CrossOver strategies used with genetic algorithms

CrossOver is implemented on a proportion of the population. CrossOver swaps

portions of individuals to form new individuals for the next epoch. Figure 5.2 shows

three different CrossOver strategies: Single-point crossover, Two-point crossover

and Uniform crossover. Single-point crossover selects at random a position along

the crossover mask and randomly selects two individuals from the population.

Once the individuals are selected the tails of the individuals are swapped to form

two new individuals. Two-point crossover selects two random positions along the

crossover mask and randomly selects two individuals from the population. Por-

tions of these two individuals are swapped according to the positions from the

crossover mask to form two new individuals. Uniform crossover selects a random

amount of crossover points along the crossover mask and selects at random two

individuals from the population. Two new individuals are formed by swapping

elements between the two individuals according to the crossover points along the
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crossover mask. Mutation occurs on a percentage of the population. The rate

of mutation varies depending on the problem being solved. Mutation randomly

selects a number of individuals from the population on each epoch. Once an in-

dividual is selected a portion of the individual is selected to mutate. The mutate

operator is dependant on the problem being solved. Mutation is very useful in the

evolutionary process to avoid the GA evolving to a local maximum and simply

takes in content from the solution space that was not in the original population.

The fitness function defines the criteria for ranking the potential hypotheses from

the population. If the problem was to control traffic flow then the fitness function

would be an estimation of the throughput of all the junctions for a given setup of

traffic lights.

5.3.2 Summary

This section describes the general functionality of a Genetic Algorithm (GA). In

particular, the genetic operators of a GA were described in detail. The following

section describes the problem for evolving instructional content. The inconsis-

tencies of the instructional space is discussed, and consequently the associated

problems involved with training the GA (identifying suitable metrics for the ge-

netic operators). The following section also describes a suitable comparable prob-

lem that is used as the framework for identifying suitable metrics for the GA,

for evolving instructional content. Additionally, the performance of the GA for

evolving instructional content is analysed and discussed.

5.4 Using a GA for course construction

Building a genetic algorithm that evolves course content suited to the cognitive

ability and pedagogical preference of a learner requires the identification of suitable
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metrics found within instructional content as discussed in Chapter four. Unfortu-

nately, the complete instructional space is infeasible to create as there is no upper

bound on the content that stimulates the learners personal profile. Without having

the complete instructional space finding suitable metrics becomes an issue. The

approach that was followed to identify suitable metrics was to describe a suitable

comparable problem with a complete instructional space and train the GA over

this problem. The following subsections detail the identification of suitable met-

rics associated with the comparable problem and subsequently detail the strategies

associated with the genetic operators for evolving instructional content.

5.4.1 Comparable problem with complete solution space

A genetic algorithm to determine the largest common sub graph between two

isomorphic graphs was developed as the framework for our genetic algorithm to

identify the correct domain knowledge elements suited to the cognitive ability and

pedagogic preference of a learner. Both problems are identical as all SCORM learn-

ing objects contain an activity tree consisting of the structure and navigational flow

of the learning content. The graphical representation of a learning object would

consist of Sharable Content Objects connected in a hierarchical structure, however

the cognitive resources within the SCOs would represent arcs joining the SCOs.

In designing the genetic algorithm to find the isomorphic relevance between two

graphs, experiments were conducted to determine the rate of mutation, the correct

selection operator and the effectiveness of gene repair to maximize the structure

matching technique. The following sub sections detail the experiments conducted

to estimate the relevant metrics associated with the genetic operators.
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5.4.1.1 Mutation rate

Twenty five experiments were conducted to estimate the correct mutation rate. All

experiments were carried out on isomorphic graphs with twenty lines. The graphs

were randomly generated using a domain range of zero to twenty, ensuring that

the graphs were highly connected. The initial population consisted of one hundred

individuals. Single point mutation was carried out on each of the randomly selected

individuals from the population. Rank and Truncation selection was implemented.

To ensure that all the lines are being matched up a genetic operator called gene

repair was implemented. For each set of isomorphic graphs ten different rates of

mutation were tested in steps of two, from zero to twenty. A mutation rate of eight

percent was found to be most optimal for the structure matching technique.

5.4.1.2 Effectiveness of Gene Repair

One hundred experiments were carried out on isomorphic graphs with twenty lines

to determine the effectiveness of gene repair. The graphs were randomly generated

using a domain range of zero to twenty, ensuring that the graphs were highly con-

nected. The initial population consisted of one hundred individuals. Single point

CrossOver was conducted on each of the randomly selected individuals with a Mu-

tation rate of eight percent using Rank and Truncation selection. All experiments

were stopped after one thousand generations when gene repair was incorporated

into the evolution strategy. It was found that, on average with gene repair imple-

mented the GA would arrive at a fitness value of ninety percent.

It can be seen from Figure 5.3 that all three iterations when gene repair was

incorporated reached one hundred percent mapping (scoring a fitness value of 40)

in less than one thousand epochs. In contrast, without gene repair implemented

the maximum fitness reached after ten thousand epochs was a seventy five percent
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(a) (b)

Figure 5.3: Investigating the performance of gene repair on isomorphic graphs:

(a) three best implementations with gene repair incorporated, (b) three best im-

plementations without gene repair incorporated.

mapping. This is a significant reduction in the computational time required for

identifying isomorphisms between the graphs.

5.4.1.3 Identifying a Selection Operator

Ten experiments were carried out to determine the most optimal selection operator

for the LCS problem. All experiments were carried out on isomorphic graphs with

twenty lines, and each of the generated graphs were tested using Rank and Trun-

cation selection, Roulette Wheel selection and Tournament selection. The graphs

were randomly generated using a domain range of zero to twenty, ensuring that

the graphs were highly connected. The initial population consisted of one hun-

dred individuals. Single point crossover was carried out on each of the randomly

selected individuals with a mutation rate fixed at eight percent. Gene Repair was

implemented in all experiments. It can be clearly seen in Table 5.4 that all three

selection operators performed well for finding the LCS between the isomorphic
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Exp Max Fitness Rank and Truncation Roulette Wheel Tournament

1 95% 100% 100%

2 100% 90% 82.5%

3 100% 80% 100%

4 100% 82.5% 100%

5 100% 87.5% 82.5%

6 100% 90% 77.5%

7 100% 82.5% 100%

8 100% 90% 82.5%

9 100% 87.5% 100%

10 85% 90% 82.5%

Table 5.4: Selection Operator Performance.

graphs. Rank and Truncation selection was selected as the most suitable selection

operator with an average success rate of ninety eight percent.

5.4.2 Genetic Operators for evolving content

Genetic operators are described as the components of a GA that perform bit op-

erations to aid in the evolution of some problem until a predefined threshold is

arrived at. The bit operations vary depending on the problem. The GA for evolv-

ing instructional content will use a Mutation rate of eight percent, Single point

CrossOver, Rank and Truncation and will incorporate Gene Repair. However in-

stead of allowing duplications to arrive into the population before Gene Repair is

implement all genetic operators will explicitly avoid duplications.

One of the criteria for the search algorithm described at the start of Chapter
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five is that a track record of the author of the instructional content should be

kept throughout the evolutionary process. Metadata 1 in Chapter four gives a

sample metadata file that was generated. It can be clearly seen under the segment

GeneralInfo that both the authors contact information and name are represented.

During a genetic operation this information is passed along with the genetic modifi-

cation. Thus ensuring when a course is constructed all authors could be potentially

rewarded as per unit of instruction. The follow sub sections detail the individual

constructs and strategy for Mutation, CrossOver and the Fitness Function used in

the GA for evolving instructional content.

5.4.2.1 Mutation Operator for evolving content

The rate of Mutation that has been selected for the GA to evolve instructional con-

tent is eight percent as previously discussed above. This means that on each epoch

of the evolutionary process eight percent of the population is going to be mutated.

Mutation performs an extremely import function as it acts as the only method

to avoid the evolutionary process arriving at a local minimum. To calculate a

percentage of the population depends on the representation of the problem being

solved. For example, in our GA the population consists of Individuals, each indi-

vidual represents a candidate course consisting of a number of Sharable Content

Objects. Consequently, the granularity of a single object subjected to possibly mu-

tation is defined as an individual SCO, therefore eight percent of the total number

of SCOs within the population are mutated at each epoch of the evolution process.

Three different types of Mutation can occur when a Mutation is implemented:

• Complete Concept Mutation: this is where a concept is randomly selected

from the population and removed from the population. The Mutation func-

tion then selects a suitable random Sharable Content Object from the in-
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structional space. This newly selected learning object replaces the removed

object.

• Links Mutation: this mutation is focused on the extra information support-

ing the learning object. A learning object is randomly selected from the

population. Throughout a links mutation either the complete set of links

associated with a learning object are removed or replaced, or a single link is

randomly deleted or inserted. Metadata 4 in Chapter four shows an example

of the metadata associated with a link as created by the Content Analyser.

• Image Mutation: A learning object is randomly selected from the population.

The Mutation function then randomly removes or inserts an Image. Meta-

data 3 in Chapter four gives an example of the metadata associated with

an image as produced by the Content Analyser. After an image mutation

has occurred all the relevant fields within the SCO metadata are updated to

reflect the newly modified learning object.

5.4.2.2 CrossOver Strategy used for evolving content

The CrossOver strategy that has been selected to be the most appropriate strat-

egy for evolving instructional content is single point crossover. It was decided that

single point crossover would be most suitable as there exists a limited number of

possible CrossOver points within the metadata describing the instructional con-

tent, to ensure that the completed course produced consists of complete learning

objects. The CrossOver strategy performs n / 2 crossovers on each epoch of the

evolutionary process, where n represents the number of individuals within the pop-

ulation. The possible points where crossover can occur are at: concept level, links

level.

• Concept level: When CrossOver occurs at the concept level two individuals
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are randomly chosen from the population (candidate courses) and single point

crossover occurs as described earlier to produce two new candidate courses.

• Links Level: When CrossOver occurs at the links level two individuals are

randomly chosen from the population. A crossover point is then chosen from

within the individuals and then single point crossover occurs as described

earlier to produce two new candidate courses.

Figure 5.4: Candidate metadata files randomly selected for link crossover

Figure 5.4 gives an example of two randomly created metadata files. These files

have been selected for links crossover. Figure 5.5 show the resultant new candidate

courses produced after crossover has occurred on the initial two randomly chosen

individuals.
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Figure 5.5: New Candidate metadata files produce after crossover has occurred
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5.4.2.3 Evaluating a Candidate course

The success of a genetic algorithm in solving any problem is centered on the effec-

tiveness of the fitness function being able to calculate the fitness of each candidate

solution. The fitness function that was developed for calculating the fitness of a

candidate course generated to suit the cognitive ability and pedagogical preference

of a learner focuses on the cognitive metrics found within the instructional content

and the structure of the content (including all links). The algorithm is described

as follows:

• let P denote the population,

• let w denote the metric representing the learners working memory as de-

scribed within their personal profile,

• let v denote the metric representing the learners VARK score as described

within their personal profile,

• let r denote the metric representing the learners Readability level as de-

scribed within their personal profile.

• let a denote the multiplier associated with the strength of the working mem-

ory for evolving instructional content,

• let b denote the multiplier associated with the strength of the VARK score

of the learner,

• let c denote the multiplier associated with the strength of the Readability of

the learner,

• let wn denote the number of metadata fields associated with the working

memory of a learner,
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• let vn denote the number of metadata fields associated with the VARK score

of the learner,

• let rn denote the number of metadata fields associated with the Readability

of the learner.

• let wi denote the value associated with the parameter describing the cognitive

metric associated with the working memory.

• let vi denote the value associated with the parameter describing the cognitive

metric associated with the VARK,

• let ri denote the value associated with the parameter describing the cognitive

metric associated with the Readability,

• let num denote the number of elements that are being assessed taken into

account the strength of the multipliers.

Additionally, there exist two functions called getActual and getStructure. These

methods allow the fitness function to calculate an overall score associated with the

complete learning objects as a unified course structure.GetActual takes as input

a double value and returns a representation of the score taken into account the

complete structure of the learning object. GetStructure determines the complete

structure of the learning object element independent of the individual elements de-

scribed within the learning object (see http://www.cs.nuim.ie/kmaycock/fitnessfunction

for more details).

The fitness function is described as follows:

fitness function(P, w, v, r, a, b, c, num, boolean [] needed)

For every learning object in each individual the fitness is calculated for all the
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elements associated with working memory, VARK or the Readability level of the

learner,

The working memory elements are calculated as follows:

wn∑

wn=1

(
getActual (‖w − wn‖ ∗ 0.4) ∗ a

2

)

denoted by tw ; representing the total score achieved by the working memory ele-

ments.

The readability elements are calculated as follows:

rn∑

rn=1

(
getActual (‖r − rn‖) ∗ c

2

)

denoted by tr ; representing the total score achieved by the readability elements.

The VARK elements are calculated as follows:

vn∑

vn=1

(
getActual (‖v − vn‖) ∗ b

2

)

denoted by tv ; representing the total score achieved by the VARK elements.

Each individual within the population consists of a number (n) of learning ob-

jects as described above. The following formula gives the fitness of an individual
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within the population:

n∑

i=0

((
(tv + tr + tw)

a + b + c

)
+ getStructure (LOi)

)

5.4.2.4 Mapping the Personal Profile

VARK Score Personal Profile Metric

VRK

VAK 35

VAR

VK

VA 50

VR

VvStrong 100

Vmild 60

VARK 25

Anything else 0

Table 5.5: VARK score mapping to suitable elements for fitness function.

Chapter three discussed a suitable Personal Profile that could be used to gener-

ate instructional content in an online learning environment. The profile consists

of: Working Memory Capacity, Information Processing Speed, VARK and the

Readability. The fitness function as described above performs calculations on the

elements of the personal profile and consequently a mapping is required to a suit-

able format. Table 5.5 represents the mapping from the results of the VARK test

to a suitable format for the fitness function. It can be clearly seen that: for a

single strong visual preference the learners score is 100, for a single visual mild
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preference the learners score is 60, for a bi-modal preference including the visual

elements the learner is given a score of 50, for a tri-modal preference including the

visual element the learners score is 35, for a multi-modal preference including all

elements the learners score is 25, and for all other categories the learners score is

0.

N-Back Score Category Personal Profile Metric

2-2.5 vLow 50

2.6-2.9 Low 100

3-3.5 Medium 150

3.6-3.9 High 200

4+ vHigh 250

Table 5.6: N-Back score mappings to suitable elements for fitness function.

Table 5.6 shows the categories of results for the Working Memory Capacity asso-

ciated with the learners profile. The Information Processing Speed is calculated

as a percentage of accuracy for a learner interacting with instructional content

in an online learning environment and is multiplied with the N-Back score. It

can be clearly seen that the categories of learners results from the N-Back score

map into numerical elements that can be manipulated in the fitness function. The

Readability score that the learner gets is used directly in the calculations with the

fitness function.

5.4.3 Avoiding a the crowding problem

The Crowding problem exists with genetic algorithms typically when the solution

space is large and the initial population is constrained by the distribution of the
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candidate hypotheses. Mutation is used to reduce the possibility of the evolution-

ary process arriving at a local minimum (state of Crowding). However, if Mutation

is implemented crowding can still occur. To reduce the possibility of crowding a

parallel implementation should be considered. The following sub sections briefly

describe the possibilities for a parallel implementation and then describe the de-

sign of the solution created to reduce the possibility of the learning component

arriving at a local minimum.

5.4.3.1 Parallel possibilities for a GA

Genetic Algorithms are very suited towards a parallel processing implementation.

There exist two main approaches to parallelisation: course grain parallelization

and fine-grained parallelisation. Coarse grain approaches typically create multiple

populations or split the population into subdivisions, called demes and have an

associated processor for each deme. Cross fertilisation occurs between demes at

regular intervals and each member of the population is updated to the successful

sub-divisions within the population. Fine-grained implementations typically have

an associated processor for every individual within the population and cross fer-

tilisation occurs at different intervals.

The parallel implementation that was implemented to reduce the possibility of

the learning component arriving at a local minimum was a coarse grain implemen-

tation. When the initial populations are being generated, each population selects

candidate hypotheses from unique portions of the solution space. The populations

communicate once a suitable learning object is found ensuring that a suitable

asynchronous protocol is implemented.
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5.4.4 GA for Optimal Learning Objects

A sample population of learning objects was generated to test the genetic algo-

rithm. This population consisted of twenty different concepts each containing one

thousand randomly generated LOM files to mimic a real world problem where the

full learning space is not available. A specification was randomly selected from

the population with an expected minimum learning experience of 71.2%. The

specification contained eight learning objects. The genetic algorithm was run one-

hundred times; the best three implementations of the algorithm are seen in Figure

5.6.

Figure 5.6: Genetic Algorithm to find optimal learning objects

On average the genetic algorithm took 43502 milliseconds to run for ten thousand

epochs. The maximum obtainable fitness value that an individual in the popula-

tion can attain is fifty six (for one hundred percent expected minimum learning

experience.), however as the limit was set for 71.2 % the expected fitness value

is forty. It can be clearly seen from Figure 5.6 that all three iterations ran to

a maximum fitness value of above forty in less than one hundred epochs, taken

on average 435.02 milliseconds. An analysis was carried out on the courses that
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were developed and it was found that in all iterations the genetic algorithm was

successfully able to identify suitable learning objects within one thousand epochs

for the selected time interval.

5.4.5 Summary

In summary, this section identified suitable metrics for the genetic operators as-

sociated with a GA for evolving instructional content. The section described a

comparable problem that was used as the framework for training the GA, as the

solution space for evolving instructional content was incomplete. The traditional

genetic operators, such as, Selection, CrossOver and Mutation were extended to

represent suitable genetic operators associated with evolving instructional content.

The optimal metrics found within the training GA were applied to the GA for gen-

erating instructional content. This GA was used to evolve instructional content

for a pseudo content repository, consisting of twenty thousand metadata files, de-

scribing learning objects. The GA was able to identify suitable courses within 435

milliseconds. In addition, this section addressed parallel construction possibilities

for the evolutionary algorithm.

5.5 Conclusion

In conclusion, this chapter described the deign and implementation of a suitable

evolutionary strategy capable of generating instructional material suited to the

personal preference of a learner as described in chapter four. A Genetic Algorithm

was deemed to be the most suitable evolutionary strategy for evolving instruc-

tional content, and consequently strategies for each of the genetic operations were

discussed in detail. Due to the incompleteness of the instructional space a suitable

comparable problem domain with a complete solution space was defined and a
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GA was trained to solve the problem. These metrics acted as the foundation for

the GA for evolving instructional content and were able to construct instructional

courses from twenty thousand learning object metadata files within 435 millisec-

onds.

The following chapter is involved with the integration of the learning component

into a suitable learning management system. The chapter describes the tests used

to construct a learner profile. In particular, the chapter is involved with the con-

struction of a repository of learning content and an evaluation of the consistency

of the instructional authors when generating instructional content in terms of the

cognitive metrics found within the generated instructional content.
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Chapter 6

Learning Component

Environment

This chapter investigates the suitability of a Content Management System as a

shell for the learning component. This chapter is also focused on describing the

personal profile tests, as described in chapter three, used to calculate the Working

Memory Capacity (WMC), Information Processing Speed (IPS), the Readability

level and the VARK representation for each learner / author prior to interacting

with the learning component.

6.1 Moodle

The learning component was build as an evolutionary strategy for evolving instruc-

tional content but requires a CMS / LMS to import the learning component for

easy use for a large population of learners. The requirements for a suitable CMS

/ LMS for the learning component are limited:

• the chosen LMS / CMS is required to be able to handle SCORM compliant

content, i.e. the LMS / CMS must contain a SCORM RTE.
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• the architecture of the chosen environment must be Open Source and de-

signed in a modular fashion to enable integration of the learning component.

Figure 6.1: Total known Moodle cites worldwide

A number of CMS were considered, for example Moodle [40], and Sakai [41]. Moo-

dle was chosen as the preferred CMS to import the learning component function-

ality, due to the rapid acceleration and adoption of Moodle throughout the higher

education community. The system that imports the learning component only acts

as a shell environment and could be easily incorporated into any such environ-

ment, providing the pre-conditions outlined above are taken into consideration.

Moodle is an open source CMS designed around a social constructivist framework.

Figure 6.1 (taken from moodle.org) shows the growth of the total known Moodle

sites around the globe. Currently, Moodle is being used by 32 million users in

over 205 countries and has been translated into 80 different languages [40]. Moo-

dle was selected as a suitable CMS for the learning component due to the simple

modular design and Moodles status as being an open sources CMS that complies
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with SCORM content. The learning component was developed as a number of

applications that are all accessed through a Moodle block.

6.1.1 Summary

In summary, this section identified a suitable environment (Content Management

System / Learning Management System) that would enable the learning compo-

nent to interact with learners. In particular this section identified the requirements

for such an environment. Firstly, the environment should support SCORM com-

pliant content and secondly the environment should be an Open Source project

and be designed in a modular fashion to allow for easy integration. Moodle [40]

was chosen as the preferred CMS. The following section discusses the tests involved

with generating the personal profile of a learner as discussed in chapter three.

6.2 Personal Profile

The learning component that was developed overcomes the current problems with

the inconsistencies between referencing standards for metadata creation (see Chap-

ter four), improper use of metadata creation and also the typical rhetorical method-

ology of lecturing in third level education [13]. In order for learners to take ad-

vantage of the learning component a number of traits must firstly be calculated

to represent the working memory capacity, the information processing speed and

accuracy of knowledge acquisition, the readability level of the learner and the ped-

agogic preference of the learner. These metrics form the basis for our proposed

personal profile as discussed in Chapter three.

The following subsections detail the methods of calculating the metrics for the

cognitive ability and pedagogic preference of a learner as described in the personal
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profile. The relationship between the metrics and the evolutionary process is also

discussed.

6.2.1 Personal Profile Tests

Once the learner logs into the learning environment the learner must complete all

the tests relating to the personal profile before the learner can view any available

specifications.

Figure 6.2: Tests to calculate the Personal Profile traits

However, if the learner has already completed these tests then the learner can

choose a pre-defined course for that learner or choose a new specification. If a new

specification is chosen the learning component will harvest the repositories created

by the Content Analyser and produce the required course suited to the personal
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profile of the learner. Figure 6.2 represents a snap shot of the view the learner has

once logged into the learning component, prior to conducting the initial tests. The

learner must click on the associated link to take the test relating to the element of

the personal profile being tested. The following subsections details each test that

must be completed before the learner can view the available specifications.

6.2.2 Working Memory Capacity Test

The working memory capacity of the learner is calculated using an N-Back algo-

rithm. Owen et∼al [15] showed that using an N-Back algorithm method for testing

working memory capacity stimulates the same regions of the human brain when

compared with the more established working memory tests, by performing a meta-

analysis of normative functional neuroimaging studies. The N-Back strategy was

chosen as the most appropriate method as the delivery of the N-Back test will be

conducted in the same method and environment that the learner will interact with

the instructional content. It was decided that only a visual representation would

be given to learners throughout the N-Back test as typical machine voices are very

robotic and it is beyond the scope of this research to investigate the effectiveness of

a robotic voice engaging with a learner throughout a learning experience. Figure

6.3 depicts the learners view once the Working Memory test has been selected.

The initial screen briefly explains to the leaner the simple protocol of an N-Back

algorithm, whereby learners are shown images one-by-one and must remember

every image location in terms of how many images have appeared since a given

image. As can be seen in Figure 6.3 the leaner is being shown images of fruit and

must remember the order in which the images appeared. The selection of fruit and

vegetables to be displayed as the components for the working memory test was

chosen as the demographic of a typical third level student would be familiar with

all the elements of the test. It was important everyday elements were selected as
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Figure 6.3: NBack algorithm for calculating the working memory of an individual

the WMC would be different depending on the ease at which the elements were

perceived. Using such elements it is believed would be more representative of our

WMC model as throughout our online engagement with learners, learners will be

given instructional content mapped close to their personal profile.

Learners start the working memory test with a two back implementation. The

learners are shown a sequence of twenty images within a two back implementa-

tion. A point is awarded to the learners score if the learner selects an appropriate

image that has appeared N-Back and the learner is also awarded a point if the

learner successfully does not select an image that has occurred N-Back. Learners

are also decremented points if they falsely select or do not select an image. The
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learners proceed onto the next level of the N-Back test if they successfully succeed

to get a score of eighty percent in any nback iteration.

6.2.3 IPS and knowledge acquisition Test

The IPS and knowledge acquisition is centered on creating a metric that represents

the information processing of the learner. Once the learner has selected the

Figure 6.4: Tests to calculate the Information Processing Speed

IPS Test the learner is shown Figure 6.4. The IPS Test evaluates the learners

ability to read unfamiliar, diverse pieces of instructional content delivered to the

learner in the same manner as a typical learning experience using the learning

component. The result of the test indicates how long it took the learner to read
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through the instructional content using the system clock and the accuracy of the

knowledge acquisition.

After each piece of instructional content the learner is given four sentences to

choose which sentence most accurately describes the previous piece of instructional

content. The learner is awarded marks depending on the sentence selected. The

pieces of instructional content that are displayed to the learner throughout the IPS

test were chosen as the typical demographic of learners taken part in the testing

of the effectiveness of the selection model will have little experience in the testing

domain, consequently the testing material included instructional content relating

to Genetic Algorithms, Limes Disease and Cryptography as a typical first year

Computing student would have very little understanding of the testing material.

This methodology was also applied to the selection of the domain content.

6.2.4 Readability Test

The readability level of the learner is calculated using the Flesch reading ease

metrics [96]. The Readability level of the learner acts to reinforce the WMC of

the learner in our model, as the learners will be given instructional content were

no prior knowledge exists but the content will be adapted to suit their own style

of writing thus reducing the possibility of interference throughout the learning

experience. Interference can occur within a learning experience when the flow of

instructional content is untimely broken: either as an external migration of domain

knowledge or difficulty in understanding the textual information. The level of the

language used will only act as a minor indicator for the evolving content. The

learner is given an empty text area to compile a piece of text as seen in Figure 6.5.

The exercise is not time bound and once the learner is completed the metrics are

calculated and the personal profile is updated.
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Figure 6.5: Calculating the Readability level

6.2.5 VARK Test

The pedagogic preference of the learner is represented as an estimation of the deliv-

ery mode of the learning content and is mapped to reflect the WMC of the learner

and also the VARK process of calculating a preference for a mode of learning. The

VARK component of the pedagogic preference of the learner is calculated using

the VARK questioner as developed by Neil Fleming[1], seen in Figure 6.6. VARK

is an acronym made from the initial four means of communication (Visual, Aural,

Read / Write and Kinesthetic). Learners use these modes when they are taking

in or given out information. They also have preferences for one or more modes
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of learning. Within an online learning environment these modes are restricted to

Visual and Read / Write. Robotic voices have been omitted for possible inclusion

to include the Aural mode of learning as discussed earlier in this Chapter. The

VARK test is composed of a questioner with a number of radio buttons as pos-

sible answers. On each question a learner can choose multiple answers, for more

information see [1].

Figure 6.6: VARK questioner designed by Neil Flemmon [1]

6.2.6 Summary

In summary, this section discussed the tests to calculate the traits defined in chap-

ter three to generate a suitable personal profile for a learner interacting with the
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learning component. Once the learner has concluded all the tests the learner is

given extra functionality to view all the available specifications. When a learner

selects a specification the Selection model retrieves the learners personal profile

and constructs a unique ideal specification suited to the personal profile of the

learner (as discussed in chapter five). The Selection model uses a genetic algo-

rithm to construct a course suited to the ideal specification that has a predefined

minimum expected learning experience. The following section details additionally

functionality available to authors of instructional content. In particular the next

section discusses functionality to create a specification and analyze instructional

content.

6.3 Author functionality

When a user is classified as an author they are given extra functionality to create

a specification and analyze a file as seen in Figure 6.7. Chapter five details the

metadata requirements for both a specification and a concept. The metadata ele-

ments used to describe the specification are typical SCORM metadata elements as

defined by the SCORM Run Time Environment (SCORM RTE) as seen in Figure

6.8. Additionally there exists metadata requirements associated with a specifica-

tion to control the evolution process for optimal content generation. The summary

field is used by the learning component to show a summary of available specifica-

tions to potential learners. The Minimum Expected Learning Experience (MELE)

is set by an author when constructing the specification (detailed in chapter five).

The default value for this field is seventy percent to allow for flexibility in both

the learner exceeding expectations and the evolutionary strategy finding optimal

courses. The author also sets the Cognitive Traits field, indicating which cogni-

tive trait is of greater importance. For example, if the author needs to generate
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instructional content that is focused on the working memory of the learner then

the author would select the appropriate CT value.

Figure 6.7: Test to calculate the VARK score of a Learner

Figure 6.9 illustrates all the metadata elements associated with a concept defined

within a specification. All the elements are defined by the SCORM RTE with the

exception of the Typical learning time as discussed in chapter five.

6.3.1 Summary

This section described the author functionality associated with the learning com-

ponent. Each author is allowed to construct specifications, which in turn are dis-
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Figure 6.8: Test to calculate the VARK score of a Learner
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Figure 6.9: Test to calculate the VARK score of a Learner
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played to potential learners. The learning component that was designed allows an

author to set two unique fields: MELE and the Cognitive Traits fields. The MELE

field is used by the evolutionary component to evolve instructional content to a

pre-determined minimum expected learning experience. This feature, unlike tradi-

tional Adaptive Hypermedia Systems (AHS) enables the automatic generation of

instructional content independent of the author of the specification. Additionally,

the evolutionary process will not terminate until the MELE is reached. The Cog-

nitive Traits field is used by authors of instructional content to emphasize greater

importance for a cognitive trait. This feature can be very useful as a research tool

in determining the effects of different types of content on populations of learners.

6.4 Conclusion

This chapter discussed the migration of the learning component into a suitable

CMS / LMS and the front end user experience involved with utilizing the leaning

component. Moodle was chosen as an appropriate CMS for the learning com-

ponent. This chapter discussed the requirements for such an environment but

also detailed that the learning component is a self contained unit that was simply

embedded into the CMS. The tests required for generating the personal profile, de-

tailed in Chapter three were discussed. In addition, the chapter also described the

core functionality uniquely associated with the learning component: MELE and

Cognitive Traits. These additional components allow the learning component to

approximate a suitable course to an expected learning outcome matched against a

unique ideal specification generated by the learning component. Unlike traditional

AHS the author of the specification sets the expectation but is not involved with

generating instructional content for any learner.
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The next chapter is involved with testing the learning component. A number

of studies are carried out to determine the effectiveness of the learning component.

Firstly, an investigation of the correlation between the cognitive ability and ped-

agogic preference of instructional authors and the metadata, produced by the CA

detailing the cognitive metrics found within the instructional content generated by

the authors is carried out. This is used to determine if an author is consistent when

generating instructional content. Consequently, if the traits of an instructional au-

thor are measured will those traits reflect the content being produced. If a strong

correlation exists; suitable authors can be easily matched up with suitable learners

and the learning component will need to be upgraded and a traditional AHS would

be more suitable for adapting content to suit the needs of learners. Additionally

the learning components performance is measured against a traditional class room

environment and also the learning components evolutionary process is analysed in

determining the effectiveness of the evaluation criteria.
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Learning Component Evaluation

This chapter is involved with the evaluation of the learning component. Initially

this chapter investigates the use of student developed content to use as a repository

for the learning component. The chapter also focuses on an analysis investigat-

ing the correlation between the cognitive ability and pedagogic preference of an

author of instructional content and the identified cognitive metrics found within

instructional content generated by an author. Eight instructional authors gen-

erated content based on a simple specification for a short course on UML. The

authors were, firstly required to participate in the previous experiments (discussed

in Chapter six) to obtain their personal profile scores. Secondly, the authors gen-

erated content that conformed to the requirements of the Content Analyser (as

described in Chapter four). An analysis was performed investigating the hypoth-

esis that instructional authors are not consistent when generating instructional

content, additionally there is no connection between the cognitive traits of an

author and the cognitive metrics that are produced when creating content, thus

reducing the possibility of AHS being incorporated into real world systems. This

chapter is also involved with the evaluation of the learning component. The chap-

ter discusses experiments conducted to determine the performance of the learning
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component against a traditional lecturing experience. An in-depth analysis is car-

ried out to investigate the correlation between the minimum expected learning

experience (determined by the evolutionary process in constructing instructional

content) and the actual result obtained by each learner after completing a quiz fol-

lowing a learning experience. Additionally the chapter investigates the correlation

between the individual traits and the results obtained by taken a quiz after a learn-

ing experience has concluded. The following subsections firstly describe Pearsons

correlation process and then discuss the correlation between the cognitive traits

of an author and the cognitive metrics found within metadata generated by the

Content Analyser.

7.1 Student Content

It was decided to develop a short course on introduction concepts relating to UML

to evaluate the success of the learning component. The success of the learning com-

ponent is a measure of the ability of the Selection model to produce instructional

courses suited to the cognitive ability and pedagogical preference of a learner as

described in a suitable personal profile in Chapter 3. The first database of content

that was generated was by students. The students that were identified as suitable

candidates to generate instructional content were second year Higher Certificate

students that had completed a module on UML and covered all the learning out-

comes associated with the short course on UML. Students were also seen as ideal

candidates as they would be closely matched to the to the proposed target audi-

ence of first year students in terms of academic level and technical writing abilities.

Twenty students generated instructional content to form the repository. Students

were given access to the internet and their notes and enough time to produce in-

structional content. The content was generated by individual students and not in
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a collaborative environment. This content was analysed to ensure that the leaning

outcomes would be covered by the student generated material. Unfortunately, the

students used TXT language throughout the generated content and also images to

reflect technical terms that were not related (in terms of the context of the instruc-

tional content) as seen in Figure 7.1. It was decided that TXT language would not

be suitable as some students would not be familiar with the language and also the

academic quality of the content did not appropriately cover the learning material.

Figure 7.1: Student generated data, describing a UML Actor.

The following section details the process involved with generating, author in-
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structional content. An analysis is discussed investigating the hypothesis that

instructional authors are not consistent when generating instructional content.

7.2 Instructional Authors

Eight instructional authors were involved in generating instructional content. Ini-

tially the authors completed the tests defined in chapter six to identify their per-

sonal profile and then all authors generated instructional content suited to a spec-

ification for a short course on UML. The following subsections use Pearsons corre-

lation to determine linear dependance between each of the identified traits and the

metadata produced by the Content Analyser. In addition the correlation between

the metadata produced for each of the concepts by the CA and the metrics associ-

ated with the authors personal profile is calculated to determine the consistency of

the author when generating instructional content in terms of the cognitive metrics

that the author uses when generating instructional content.

The following subsections investigate the correlation between the metadata pro-

duced by the Content Analyser and the cognitive ability and pedagogical preference

of an instructional author.

7.2.1 WMC and metadata

The Pearson correlation between all metadata describing all concepts associated

with working memory was calculated as -0.1359089. This result means that no

correlation exists on a global scale for WMC. Table 7.1 details the correlation be-

tween WMC and the metadata generated for each individual concept to determine

if there exits a trend across all concepts or if the WMC trait is dependent on the

authors interpretation of the concept. The WMC of an individual is seen as a
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constant trait (cognitive trait) that can be improved upon over time as seen by

Kinshuk [8]. If the trait remained constant it would be conceivable to allow an

author of instructional content generate a complete course for a particular learner

as a simple pairing method could be used to match up suitable authors with suit-

able learners, however if there exists a huge variance with the trait across multiple

concepts this simple pairing process would not be suitable.

Trait Concept Correlation

WMC Actor -0.01911375

WMC Functional Requirements -0.5846814

WMC Relationship -0.652822

WMC Use-Case 0.1910910

WMC Generalisation -0.08211009

Table 7.1: This table shows the correlation between the WMC of an author and

the WMC metadata that was generated for each of the concepts using the Content

Analyser.

It can be clearly seen in Table 7.1 that there exists a significant variance between

the WMC of an author and the WMC metadata that was generated for each of

the concepts using the Content Analyser. The following section investigates the

correlation between the Readability and the metadata produced to classify an

author and the metadata to classify the instructional material.
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7.2.2 Readability and metadata

The Pearson correlation between all metadata describing all concepts associated

with readability was calculated as -0.03904613. Table 7.2 details the correlation

between the Readability level of an author and the metadata generated for each

individual concept to determine if there exits a trend across all concepts or if the

Readability level is dependent on the authors interpretation of the concept.

Trait Concept Correlation

WMC Actor 0.6699855

WMC Functional Requirements -0.2587091

WMC Relationship -0.4500881

WMC Use-Case 0.04846115

WMC Generalisation 0.1025095

Table 7.2: This table shows the correlation between the Readability of an author

and the Readability metadata that was generated for each of the concepts using

the Content Analyser.

It can be clearly seen in Table 7.2 that there exists a significant variance between

the Readability of an author and the Readability metadata that was generated for

each of the concepts using the Content Analyser. The following section investi-

gates the correlation between the VARK and the metadata produced to classify

an author and the metadata to classify the instructional material.
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7.2.3 VARK and metadata

The Pearson correlation between all metadata describing all concepts associated

with VARK was calculated as 0.04493267. Table 7.3 details the correlation be-

tween the VARK representation (described in Chapter four) of an author and the

metadata generated for each individual concept to determine if there exits a trend

across all concepts or if the VARK level is dependent on the authors interpretation

of the concept.

Trait Concept Correlation

WMC Actor 0.5007831

WMC Functional Requirements 0.591608

WMC Relationship 0.2639435

WMC Use-Case -0.1490301

WMC Generalisation -0.1506956

Table 7.3: This table shows the correlation between the VARK representation of

an author and the VARK metadata that was generated for each of the concepts

using the Content Analyser.

It can be clearly seen in Table 7.3 that there exists a significant variance between

the VARK representation of an author and the VARK metadata that was generated

for each of the concepts using the Content Analyser.
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7.2.4 Summary

The previous subsections were involved with an investigation of the consistency of

authors to generate instructional content. In particular eight authors were given

the task of creating instructional content suited to a module descriptor for a short

course on UML. These authors were required to complete personal profile tests,

as described in Chapter six to calculate their own personal profile. This profile

was subsequently used as the evaluation criteria for determining the correlation

between the authors and the metadata produced for the courses that were con-

structed. The investigation determined if a suitable author was found for a suit-

able learner, using the metrics described within the personal profile as discussed

in Chapter four, would mean that an author would be able to create mathema-

genic content for the learner across multiple domains. It was found that an author

could not create consistent (in terms of cognitive metrics found within the in-

structional content) instructional content within the context of a short course on

UML. Furthermore it was found that an author does not create content suited

to their own personal profile, so matching an author to a suitable learner using

the metrics described within the personal profile would not be recommended. In

summary, there exists inconsistencies when generating content, between learning

objects and matching the cognitive metrics to the author of instructional material.

These results demonstrate that an automated component should be used to create

instructional content avoiding traditional approaches of content adaptation, such

as, AHS. The following section is involved with an evaluation of the learning com-

ponent that was created to overcome the inconsistencies within learning object

repositories, referencing standards and traditional adaptive learning systems.
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7.3 Evaluation of learning component

This section is involved with an evaluation of the learning component. Thirty

nine students took part in the evaluation process of the learning component. Ini-

tially all the students completed a survey to determine any previous experiential

learning in relation to UML. The surveys showed that no student had any previ-

ous learning experience with UML content. The students then completed all the

tests as discussed in Chapter six to determine their cognitive ability and pedagogic

preference. The tests were carried out in a studio classroom environment, where

each student had ample room and access to their own computer for the duration

of the experiments. Once students completed the initial tests the student were

randomly divided into two cohorts: one group to be subjected to a traditional

introductory lecture on UML (see Appendix A for Module descriptor and details

of learning outcomes for short course on UML, Appendix B for lecture slides from

typical classroom environment and Appendix C for an example of content gener-

ated for a learner participating using the learning component) and the other group

remained in the studio classroom to participate in an introductory lecture on UML

developed by the learning component for each individual learner. Students using

the learning component were monitored by two laboratory attendants to ensure

that once the student had completed the learning content that the monitor was

switched off. Both groups were not allowed to take notes throughout the learning

experience and completed a short quiz on UML (see Appendix D for quiz and

marking scheme) after their learning experience had concluded. The following sub

sections investigate the validity of the experimentation detailing the validity of

assessment (using multiple examiners to mark examinations) and group selection.

Additionally a comparison of the results obtained is discussed.
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7.3.1 Evaluation process

The validity of the evaluation process can be divided into the following categories:

personal profile creation and environmental contexts of the learning environment,

group selection, and the examination of scripts. Each of these categories is dis-

cussed further in the following subsections.

7.3.1.1 Environmental contexts

Thirty nine students took part in the evaluation process of the learning component.

The environmental contexts of the learning environment include any previous ex-

perience within the desired domain, the physical environment within the learning

environment and any other restrictions that may influence the learning experience.

The following bullet points explore these characteristics of the learning environ-

ment:

• Initially all the students completed a survey to determine any previous ex-

periential learning in relation to UML. The surveys showed that no student

had any previous learning experience with UML content.

• The students then completed all the tests as discussed in chapter six to deter-

mine their cognitive ability and pedagogic preference. The tests were carried

out in a studio classroom environment, where each student had ample room

and access to their own computer for the duration of the experiments. Af-

ter the students were divided into two cohorts, the students that remained

within the studio classroom using the automated component had access to

their own computer for the remainder of the evaluation process. The other

cohort of students that were taking part in a traditional environment were

in a classroom with no access to computers to reduce the possibility of in-

terference.
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• The cohort of students that were taken part with the automated learning

component had an additional two classroom attendants present that were

advised to ensure that the monitor remained off during the examination of

the learning content after the learning experience had concluded.

The following section investigates the group selection protocol that was used to

divide the groups into two categories.

7.3.1.2 Group Selection

Group selection is a critical component of the evaluation process in order to ensure

that both groups consist of an even distribution of the cognitive traits that were

identified in chapter three as an ideal profile for an adaptive learning environment.

The groups were randomly selected to participate in a learning experience once

the cognitive ability and pedagogic preference of the learner had been calculated.

Table 7.4 illustrates the categories of learners within each group. The classification

of learners identifies the range of results obtained by all learners participating in

the evaluation process. The key influencial traits that the learners are described

are: working memory capacity, the readability level and the VARK score.

The following bullet points investigate the groups of learners identifies by their

personal profile characteristics:

• The classification of learners participating in a working memory test is seen

in Table 7.5. It can be clearly seen in Table 7.4 that both groups had a good

spread of learners, however there exists a grouping within the automated

component group with a low WMC category. It is envisaged that this group-

ing could have a negative impact on the learning potential of the cohort if

suitable adapted content was not found by the automated component.
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Traits Category Traditional Lecture Automated Environment

WMC Very High 4 1

High 5 5

Medium 3 4

Low 5 10

Very Low 3 1

Readability Very High 0 0

High 0 0

Medium 7 4

Low 11 12

Very Low 2 3

VARK K Very Strong 7 3

V Very Strong 0 1

A Very Strong 2 2

R Very Strong 0 1

KA 3 2

RK 0 1

VRK 0 1

VAK 0 1

VARK 8 7

Table 7.4: This table illustrates the categories of learners within the groups selected

to evaluate the learning component.
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Category WMC Readability

Very High 4.1+ 0 –>29

High 3.6 –>4 30 –>49

Medium 3.1 – >3.5 50 –>69

Low 2.6 –>3 70 –>89

Very Low 2 –>2.5 90+

Table 7.5: This table illustrates the categories of learners for working memory

capacity and readability.

• Table 7.4 illustrates the categories of learners identified after participating

in a readability test. Throughout the readability test learners were informed

of the freedom of language used throughout the test; no record was kept of

the actual text that was created only the score of the readability test was

stored. It can be clearly seen in Table 7.4 that both groups are comparable

with little differences between the groups.

• It can be seen in Table 7.4 that there exists a wide spread of categories of

learners within the VARK section from strong single preferences through

to multi-modal preferences including all four VARK traits (Visual, Aural,

Read-Write, and Kinestic). The single most substantial grouping within

both groups is VARK.

The following section investigates the examination process for evaluating the scripts

of the learners taken part in both the automated course and the traditional course.
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7.3.1.3 Examination process

The two cohorts of learners were subjected to personal profile tests, completed

some instructional course and then completed a short examination on the learning

material.

Figure 7.2: Comparing the results obtained from two independent examiners

The examinations were corrected by two independent examiners with no knowledge

of which type of learner completed the answer sheet to ensure that the examination

process was not reflective of a single examiners interpretation of the examination

scripts. In addition a blind marking process was implemented also to ensure that
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an examiner could not determine the results of the other examiner. A correlation

between the two sets of results was carried out to ensure the consistency and

validity of the results obtained, which yielded a correlation of 0.806, as seen in

Figure 7.2. Since there existed a strong correlation between both sets of results

no further investigation was conducted to determine the validity of the results

obtained. Further investigation of the results obtained by the learners uses the

average of both results determined by the examiners.

7.3.2 Summary

In Summary the environmental contexts for the evaluation of the learning compo-

nent were designed to ensure that no interference occurred disrupting the learning

experience of the individual learners. In particular learners were given enough time

and access to their own machine within a studio classroom environment to com-

plete the personal profile tests. Learners were randomly divided into two groups of

learners. These groups were analysed to ensure that the groups were comparable

in terms of the personal profile traits of each learner. This section also discussed

the examination process involved within the learning component evaluation to en-

sure that an examiner was consistent. This process consisted of a double marking

blind process were each author was not aware of the category of the learner or the

mark obtained by the learner. The following section investigates the potential of

the learning component as a suitable learning instrument to replace / supplement

a traditional learning approach. In particular the following section is involved with

a comparison of the results obtained by the learners using the learning component

against traditional learners within a classroom environment.
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7.4 Learning Component Performance

This section is involved with determining the effectiveness of the learning com-

ponent against a traditional lecturing experience. Firstly, this section compares

the performance of learners using the learning component against learners within

a traditional environment. The section also investigates the effectiveness of the

fitness function in identifying a suitable Minimum Expected Learning Experience

(MELE) threshold discussed in chapter five and analyses the linear correlation

between the MELE and the actual results of a learner.

7.4.1 Learning Component against a Traditional Lecture

Figure 7.3: Comparison of the results obtained by students interacting with the

learning component against students within a typical lecturing environment
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Thirty nine students participated in the evaluation of the learning component

as discussed earlier. Figure 7.3 illustrates the average results obtained after two

independent examiners corrected the UML quiz after all learning experiences con-

cluded. It can be clearly seen in Figure 7.3 that the learners interacting with the

learning component outperformed the learners that were subjected to a traditional

lecture. The students participating using the adaptive component out performed

the students participating in a traditional lecture on average by 15.71 %. Appendix

C and E give examples of automated course output from learners interacting with

the learning component. Appendix C shows a course that was developed for a

learner that has a medium Working Memory Capacity, and weak visual prefer-

ence. It can be clearly seen that there exists very few external links to the core

learning experience reducing the possibility of interference during the learning ex-

perience. Additionally the visual constructs are present but not dominating the

instructional content. In contrast, Appendix E shows a course that was developed

for a learner with High Working Memory Capacity and strong visual preference. It

can be clearly seen that there are additional external links with additional content

including strong visual constructs.

The following subsections investigate the effectiveness of the fitness function and

also the significance of each of the traits within the personal profile to determine

the most significant trait associated with the improved performance of the learners

interacting with the learning component.

7.4.2 Correlation between the MELE and the actual result

The effectiveness of the fitness function is a measure of the correlation between

the MELE for each learner and the actual result obtained after completing the

learning experience. Throughout the evolutionary process the minimum expected
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learning experience (MELE) was initial set to seventy percent. However, due to the

small database that exists for the testing phase (due to financial constraints), as

described in chapter six a degrading element was incorporated into the evolutionary

component to ensure that each evolutionary process would produce an optimal

course for each individual learner interacting with the learning component. Figure

7.4 shows the results obtained from an examination by the learners using the

learning component against the MELE for each learner.

The correlation between the MELE and the actual results obtained was 0.274 which

implies a weak positive correlation. Further investigation identified two possible

outliers, when removed yielded a correlation of 0.57. The potential outliers were

not removed as both possible outliers where within two standard deviations of the

mean of the results. The following subsection discusses a covariance analysis that

was conducted to determine the significance of the difference between both groups

and in particular to identify the most significant trait from the personal profile.

7.4.3 Covariance analysis

A covariance analysis was conducted to determine the significance of the differences

between both groups and in particular identify the most influential traits used in

the creation of the instructional content.

Table 7.6 details the results obtained by the covariance analysis. It can be clearly

seen that there exists a strong significance of 0.00208 (probability of error) between

the groups, however it can also be seen that the traits that were selected are not

that significant in the difference between the results, i.e. the percentage error that

exists with the independent variables ranges from 40% up to 90 %. This analysis

further supports the weak positive correlation between the minimum expected
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Figure 7.4: Comparing the results obtained from two independent examiners

against the minimum expected learning experience, calculated by the evolutionary

process
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Traits Values

Readability 0.915

VARK 0.403

WMC 0.44481

Groups 0.00208

Table 7.6: This table illustrates the percentage probability error associated with

each trait selected.

learning experience and the actual results obtained. In conclusion, the significant

difference cannot be determined by the selected traits, however there exists an extra

factor that has not been identified. The content was modified to suit the traits

of the individuals, however the extra factor could be involved with motivational

issues in using a new learning component or some other factor.

7.4.4 Summary

This section investigated the effectiveness of the learning component against a tra-

ditional lecturing experience. This section showed that there existed a significant

difference between learners using the learning component and learners interacting

with a traditional lecturing experience. It was found that students participating

using the adaptive component out performed the students participating in a tradi-

tional lecture on average by 15.71 %. In addition, this section discussed a compre-

hensive analysis to determine the effectiveness of the fitness function (used within

the evolutionary algorithm when evolving instructional content) in determining

the minimum expected learning experience and the introduction of a degrading

factor to ensure course creation on each evolutionary iteration. Furthermore, an

analysis was conducted to determine the most significant trait in identifying suit-

140



Conclusion Learning Component Evaluation

able content. In conclusion a significant difference was found between the groups

as seen in Figure 7.3, however this difference could not be explained by the traits

identified within the personal profile.

7.5 Conclusion

This chapter discussed the evaluation of the learning component. This evaluation,

firstly, investigating the consistency of authors to generate instructional content.

The investigation determined if a suitable author was found for a suitable learner,

using the metrics described within the personal profile as discussed in chapter four,

would that author be able to create mathemagenic content for the learner across

multiple domains. It was found that an author could not create consistent (in

terms of cognitive metrics found within the instructional content) instructional

content within the context of a short course on UML. Furthermore it was found

that an author does not create content suited to their own personal profile, so

matching an author to a suitable learner using the metrics described within the

personal profile would not be recommended. Secondly, the chapter evaluated the

environmental contexts of the learning environment to ensure that no external in-

fluences interfered with the learning experiences. In particular learners were given

enough time and access to their own machine within a studio classroom environ-

ment to complete the personal profile tests. Learners were randomly divided into

two groups of learners. These groups were analysed to ensure that the groups were

comparable in terms of the personal profile traits of each learner. This chapter

also discussed the examination process involved within the learning component

evaluation to ensure that an examiner was consistent. This process consisted of a

double marking blind process were each author was not aware of the category of

the learner or the mark obtained by the learner. Finally, the chapter discussed an
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evaluation of the learning component. In particular, the chapter determined the

effectiveness of the learning component against a traditional lecturing experience.

This chapter showed that there existed a significant difference between learners

using the learning component and learners interacting with a traditional lecturing

experience. It was found that students participating using the adaptive compo-

nent outperformed the students participating in a traditional lecture on average

by 15.71 %. In addition, a comprehensive analysis was discussed to determine the

effectiveness of the fitness function in determining the minimum expected learning

experience. Furthermore, an analysis was conducted to determine the most sig-

nificant trait in identifying suitable content. In conclusion a significant difference

was found between the groups as seen in Figure 7.3, however this difference could

not be explained by the traits identified within the personal profile.
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Chapter 8

Conclusion and Future Work

It is well documented that the traditional protocol for higher education does not

suit each learner. The rhetorical method of lecturing, while presupposing cer-

tain domain knowledge and experience, is a very inefficient method of imparting

knowledge. Additionally, delivering instructional content in a typical classroom

environment creates an infeasible task for a lecturer to adapt content to suit the

needs of each learner within the classroom environment. An ideal solution would

be to have a one-to-one system, where an instructor generates mathemagenic con-

tent for each learner, taking into consideration the cognitive ability and pedagogic

preference of the learner. Obviously this is not an ideal situation considering the

high increase of learners into higher education. One solution is for higher educa-

tion to partially traverse into an online learning environment with an element of

suitable adaptive content. This chapter is involved with discussing the conclusions

from the research conducted to design, build and evaluate a learning component

to automatically generate instructional content suited to the cognitive ability and

pedagogical preference of a learner, thus increasing the potential learning experi-

ences gained from online instruction. In addition, the chapter discusses the learning

component as a framework for higher education and identifies possible extensions
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to enable the migration of higher education into an online learning environment.

8.1 Conclusions

This research investigated the following research question;

Is it possible to construct an automated learning component that generates in-

structional content suited to the cognitive ability and pedagogical preference of a

learner, independent of domain and ensuring that no meaning is lost from adaptive

strategies?

This thesis discussed two contributions to the field of technology enhanced learning,

describing a learning component (content analyser and selection model). Firstly

the thesis investigated the environmental contexts of a learning environment and

identified a suitable personal profile that included the cognitive traits and peda-

gogic preference of a learner that could be mapped to measurable cognitive metrics

within instructional content. The personal profile that was identified, in Chapter

Three, was used in the creation of a model-driven approach to metadata creation

using the traits within the profile. The thesis introduced a content analyser that

bridges the perceived gap between the inconsistencies found within instructional

content repositories and metadata standards. The content analyser successfully

migrates instructional content from various formats into SCORM compliant con-

tent with additional metadata files associated with the cognitive metrics found

within the instructional content. Secondly, the thesis introduced a Selection model

(centered on the use of a Genetic Algorithm) for content generation, enabling an

author to set a minimum expected learning experience, and modifying the weight-

ing factors for the identified traits. The thesis discusses a protocol for creating
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suitable instructional content to enhance the evolutionary process. The GA uses

the metadata that the Content Analyser generated when construction new course

material and does not rely on the author of instructional content to generate

metadata consequently avoiding the traditional problems associated with meta-

data creation (as discussed in Chapter 3). A detailed analysis was discussed to

create an optimal evolutionary strategy evolving instructional content to suit an

individual’s cognitive ability and pedagogical preference.

The learning component created instructional content for third level students.

This category of student was seen as an ideal category based on the expected

growth in third level student numbers as discussed in Chapter two. Additionally,

third level students were seen as an ideal category as third level students are es-

tablished learners and should be able to manage their own learning experience.

However, the learning component is not limited to the category of third level stu-

dent and could easily be used in a commercial environment or at earlier stages of

learning. The learning component creates instructional content in a consistent way

evolving with the instructional content metadata designed by the CA, adapting to

the personal profile of a learner. This framework for content generation bridges

the perceived inconsistencies found within a traditional lecturing environment /

traditional adaptive hypermedia system and the cognitive ability and pedagogi-

cal preference of an author of instructional content. Chapter Seven detailed the

inconsistencies found within instructional content between concepts generated by

the same author. This further suggests that a learner participating within a tra-

ditional lecturing experience is at a disadvantage in terms of content adaption to

enhance the learning experience. Additionally this suggests that content within

a traditional AHS may not be consistent in terms of cognitive metrics within the

instructional content. Due to financial constraints a number of content authors
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generated a limited amount of instructional content. This content was analysed in

terms of the structure and suitability for the content analyser and not the academic

quality of the content. Each author generated content according to the module

descriptor for a short course on UML. The GA evolves better when there is a large

repository (i.e. more possibilities for creating content). If a suitable repository is

not available the GA will evolve to the maximum fitness for any given learner as

suitable strategies have been included to avoid the GA arriving at a local mini-

mum, however this does not imply that the GA will evolve to the MELE set by

the author of the specification. The degrading factor (MELE -2 for every 2,000

epochs) was introduced to ensure that a suitable course was constructed for each

learner.

Chapter seven also discussed in detail an evaluation of the learning component.

Thirty nine students participated in the evaluation process of the learning com-

ponent. All students were first year computing students that had no previous

experiential learning involved with UML. The learning component out-performed

a traditional lecturing approach by 16% on average when delivering an introduc-

tory learning unit on UML with the first year students. In addition, a correlation

was calculated between the minimum expected learning experience and the actual

outcome of an examination after a learning experience had concluded. There exists

a weak positive correlation (0.27) between the Minimum Expected Learning Ex-

perience (MELE) and the actual outcome obtained by a learner interacting with

the learning environment. However, further investigation showed that eliminat-

ing two potential outliers resulted in a stronger correlation between the MELE

and actual outcome of 0.54. The potential outliers were not eliminated as they

were within two standard deviations of the mean. A covariance analysis yielded

a strong significance of 0.00208 between the groups, however this difference could
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not be explained by the traits within the personal profile. Consequently there

must exist some external factors that influence this significant difference, for ex-

ample, motivation whereby students interacting with a novel environment could

have been more motivated that students sitting in a typical lecturing environment.

One of the limitations associated with the experiment is the initial time required

for creating the learners profile. This could be avoided if traits were chosen that

had suitable manifestations that would be identified automatically when a learner

is interacting with a learning environment. Working Memory is one such trait as

described in Chapter three that has a number of manifestations associated with

the interactions of learner within a learning environment. If the GA was going

to produce a course to a learner without a profile, the GA could use statistics

associated with the age and sex of the learner and then after multiple learning

experiences fine tune the traits by modifying the weighting factors and produc-

ing specific courses to target individual traits. In conclusion, it is possible to

automatically create suitable content conforming to a single referencing standard

identifying metadata associated with cognitive metrics found within the instruc-

tional content. Additionally, it is feasible to automatically generate instructional

content adapted to the cognitive ability and pedagogical preference of a learner

in real-time and repackage that content to suit the SCORM standard. Using the

learning component yielded an average increase of 16 % per learner throughout

a learning experience against a typical learner within a traditional learning envi-

ronment in the case study described in Chapter 7. However, further investigation

is required to determine additional traits that could be included to increase the

correlation between the MELE and the actual outcome. In addition, these results

cannot be generalised to any group of students participating in any domain area.

The framework is designed as a modular architecture that can be adapted to gen-
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erate instructional content using any pedagogic strategy and is not bound by the

parameters of the proposed personal profile. The following section identifies some

future work that is now possible due to the modular framework of the learning

component.

8.2 Future Work

This chapter concludes with a number of possible extensions to the research con-

ducted to strengthen the fitness function and utilize the created framework for

content adaptation.

8.2.1 Enhancing the learning component

The results outlined in Chapter seven demonstrate that it is possible to generate

a course adapting content to the individual cognitive traits and pedagogic pref-

erence of a learner. However, the correlation between the MELE and the actual

outcome is 0.27. If more cognitive traits were incorporated into the evolutionary

process it could increase the correlation between the MELE and the actual out-

come. In particular, the associate learning skill of a learner should be included

to allow adaptation to the domain content and previous learning experience. To

enable this level of adaptation each learning experience should be documented and

saved. Over time the system would be able to incorporate the associate learning

skill of a learner as a metric within the evolutionary component and using context

sensitive metadata describing the domain content, identify suitable content adapt-

ing to previously discussed cognitive metrics within the instructional content. The

modular design of the learning component would enable easy integration of mul-

tiple cognitive traits as metrics for the evolutionary component. Additionally, an

investigation of suitable motivation strategies should be carried out to ensure that
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the learner using the learning component are engaged with the instructional con-

tent for the duration of the learning experience without impacting on the potential

learning experience.

8.2.2 Utilizing SCORM to create a rich client experience

The content produced by the learning component is SCORM compliant. Creating

a rich interactive client side experience tracked using the SCORM data model ele-

ments would enable the automatic monitoring and adaptation protocol to change

the current environment and instructional content depending on the learners in-

teractions. This type of protocol would enhance the engagement of a learner

producing suitable interference when appropriate.

8.2.3 Avoiding black box problems

The content produced is based on reconstructing content from suitable reposito-

ries. It is clearly evident that when the instructional space is small the learning

component evolves at a slower evolution rate than when the learning space is

large. This is due to the inconsistencies of the instructional space and the limited

mutations available to the learning component to break out of a local minimum.

Increasing the instructional space would avoid this problem. The instructional

space could be increased by collaborating with multiple institutions or creating a

web crawler to identify suitable content. However, as discussed by Norm Freis-

sen [2] there exists huge inconsistencies in metadata production for instructional

content. An additional component should be included to allow learners to com-

municate with the learning component and identify inconsistencies found within

instructional content.
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8.2.4 A Flexible Framework for fine tuning

The framework that was produced requires a suitable repository to allow the evo-

lutionary strategy generate instructional content. It was recommended that the

MELE be set at seventy percent at an Internal conference on Learning to allow

the learner exceed beyond the MELE. This recommendation suited the evolution

strategy associated with GA (i.e. GAs perform really fast for the initial evolution

but require a significant amount of time in identifying the ideal solution, depend-

ing on the problem). The framework is a modular framework and is designed to

evolve content to suit the metadata produced by the content analyser. The anal-

yser could easily be extended to generate suitable metadata associated any trait

that was identified by an author. The fitness function within the GA would need

to be updated to reflect this modification. The specification allows an author to

define the MELE and also the weights associated with each trait. The weights give

the different traits higher / lower importance throughout the evolutionary process.

An author of a specification could make modifications to these weights and reduce

the importance of a trait that the author wanted the learner to get some experi-

ence with. For example, if a learner was identified as having low working memory

capacity, the model could generate a course to suit a learner with higher working

memory and train the learner to cope with a large instructional space.

8.2.5 Turing test validation

The framework that was created allows for multiple pedagogic metrics to be identi-

fied within instructional content to create suitable granular learning object repos-

itories. These repositories are then harvested to create instructional content. The

repositories from the evaluation process for the framework were created from in-

structional authors participating in the process, however if a suitable search strat-
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egy included crawling the web and other learning object repositories prior to pro-

cessing the data through the Content Analyser there would exist large amounts

of elements with suitable metadata. Increasing the number of objects within the

repository enhances the potential for the evolutionary strategy. A Turing test could

be used to identify whether a course constructed from the framework covered the

learning outcomes, which would be validated by content experts. This process

could move to producing a flexible framework for on-demand content generation

suited to the cognitive ability and pedagogic preference of any learner.
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UML Use-Case Module Descriptor

Aims and Objectives

• To introduce the fundamental theory and elements involved in UML Use

Case design.

• To develop functional requirements for a given task and to identify the actors

associated with the functional requirements.

Learning Outcomes

On completion of this module, Students will:

• LO1: Have gained a specialised knowledge of the elements involved with a

UML 2.0 Use Case diagram.

• LO2: Understand the principals involved in creating UML Use Case models

and the actors associate with the models.

Content

1. UML Use-Case

• Why use UML Use-Case diagrams

• Use Case

• Use Case diagram

2. Actors

• Primary actors

• Secondary actors

• Time actor

• <<systems>>actor

3. Functional Requirements
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UML Use-Case Module Descriptor

• Requirements definitions

4. Relationships

• Between Use Cases

• Extends

• Includes

• Binary association between an actor and a Use Case

5. Generalisation

• Between actors

• Between Use Cases

Teaching and Learning Methods

Twenty minute lecture or using learning component

Assessments and Marking Schemes

Terminal Examination 100 %
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Appendix B

Traditional Slides for UML

Course
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Traditional Slides for UML Course
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Traditional Slides for UML Course
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Traditional Slides for UML Course
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Traditional Slides for UML Course

159



Traditional Slides for UML Course
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Traditional Slides for UML Course
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Traditional Slides for UML Course
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Traditional Slides for UML Course
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Traditional Slides for UML Course
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Appendix C

Course for learner with low WMC
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Course for learner with low WMC
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Course for learner with low WMC
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Course for learner with low WMC
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Course for learner with low WMC
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Course for learner with low WMC
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Course for learner with low WMC
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Course for learner with low WMC
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Course for learner with low WMC
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Appendix D

Quiz and Marking Scheme
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Quiz and Marking Scheme

Answer all questions. Award 5 marks for each question.

1. What are UML Use Cases used for?

Award marks for the learners understanding of a UML USE-Case. In partic-

ular, award marks for the learners ability to give suitable examples of where

to use UML Use Case diagrams.

2. Differentiate between a Primary actor and a systems actor.

Award marks for the learners understanding of the differences between a pri-

mary and a systems actor.

3. List two functional requirements of a library computer system?

Award marks for each appropriate functional requirement that is listed.

4. What are the different relationships that exist between Use Cases?

Award marks for the learners understanding of the different relationships that

can exist between Use Cases.

5. Give an example, using UML notation of a generalisation between two actors.

This question is involved with understanding of using a generalisation be-

tween two actors. Award marks for a suitable example using UML notation

illustrating a generalisation between two actors.
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Course for learner with high

WMC
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Course for learner with high WMC
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Course for learner with high WMC
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Course for learner with high WMC
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Course for learner with high WMC
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Course for learner with high WMC

181



Course for learner with high WMC
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Course for learner with high WMC
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