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Abstract

Software metrics have many important uses in software engineering, for exam-
ple, assessing software quality or estimating the cost and effort of developing soft-
ware. Many metrics have been proposed and new metrics continue to appear in the
literature. Many of these metrics are incomplete, ambiguous and open to a variety
of different interpretations making it difficult to create general metric tools. Fur-
thermore, everytime a new software metric is defined the tools need to be updated
to include the new metric. This makes it difficult to perform independent validation
of empirical results and to investigate how different metrics relate to each other.

Model Driven Engineering (MDE) is an emerging approach to software devel-
opment in which models are the primary focus. In this model-oriented approach,
design artifacts such as Unified Modelling Language (UML) diagrams as well as
implementation artifacts such as program code are considered as different models
of a software system. Working at the model level provides a whole new set of con-
structs to be measured and recent research has moved towards new model-based
metrics. Some of these new metrics and many existing metrics are applicable to a
number of different models of a software system. In order to provide assurance that
the same concepts are being measured from different software models, metrics need
to be specified in a generic way that is not dependent on the particular model.

This thesis describes the development, implementation and testing of an MDE-
based approach to the measurement of software models. This approach involves
specifying software metrics using the Object Constraint Language (OCL) and a
measurement metamodel and transforming all other models to this canonical meta-
model. Using this approach only a single definition of a software metric is required
and can be applied to different models of a software system thus helping to provide
assurance that the same concepts are being measured from the different models.
Furthermore, this approach eliminates the need for manual implementation of met-
rics tools as it supports the automatic generation of a measurement tool from the

XVi



metric definition. Finally, to ensure that this approach is reliable this thesis devel-
ops testing techniques for the domain of MDE and applies them to the measurement
approach. These techniques are fundamental to the approach, including validation
of the underlying measurement metamodel, model transformations and automati-
cally generated measurement tool.

The main contributions of the work presented in this thesis are: a Meta Object
Facility (MOF)-compliant measurement metamodel for coupling and cohesion met-
rics; the definition of standardised transformations from the UML and Java to this
metamodel; testing techniques for use within the MDE, specifically approaches for
analysing and testing metamodels, metamodel-based software and model transfor-
mations.
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Chapter 1

Introduction

This research is primarily concerned with the development of a Model Driven
Engineering (MDE)-based approach to software measurement. This chapter briefly
introduces the areas of software metrics and MDE and provides the motivations for
developing the measurement approach. The goals of this thesis are also presented

along with an overview of the thesis structure.

1.1 Background

Software metrics provide a quantitative way to capture certain attributes or char-
acteristics of a software system. They have many important uses in several areas
of software engineering. One such area is determining software quality where sev-
eral studies have demonstrated a correlation between software metrics and quality
attributes such as fault-proneness and maintenance effort [LH93]]. They
have also been proposed as a way to estimate the cost and effort of developing soft-
ware [[FP96]. Metrics are not limited to quality assessment but have also been used
in other domains such as software evolution and software re-engineering.

In the domain of software evolution, metrics have been used to identify parts of
a software system that are in need of refactoring as well as to determine if parts of
a software system have already been re-factored and to assess the improvements in
the quality of the software as it is re-factored and evolves [LDQ2]). In the
domain of software re-engineering and reverse engineering, metrics have also been

used to determine software complexity and quality and also to identify parts of the
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system that require re-engineering [LD02] [Kol02]].

MDE is an emerging approach to software development in which models are
the primary focus. There are many aspects to software development that make it
a difficult and labour intensive task. For example, software systems often need to
communicate with other systems, when new technologies are developed systems
need to be updated and there is also the problem of constantly changing require-
ments [WKBO3]]. MDE attempts to tackle these problems by providing an approach
to software development in which models are used as the primary artifacts when
developing software, often with the code generated automatically from these mod-
els. It aims to provide ready-made models and transformations that convert one
model to another. Instead of developing and re-developing a software system as the
requirements or technologies change, models are chosen, modified or extended and
combined together with other models to create the system [Sch06].
As the software engineering community begins to adopt MDE as an approach to de-
veloping software, it follows that the development of software measurement tools
will also adopt this approach. Therefore, it is logical to investigate if MDE princi-
ples can be successfully applied to automate the measurement of software.

One important and sometimes overlooked aspect of software measurement is
ensuring that the process of measuring software is correct and reliable. For MDE
to provide a suitable and adequate approach to software measurement, the resulting
measurement approach must meet these criteria. One way to assess the correctness
of software is by applying software testing techniques [Bei90]]. However, due to the
novelty of MDE there is a need for the development of testing techniques for this
new domain [BDTMT06]|. In this thesis, we propose methods for carry-
ing out software measurement using MDE techniques and also testing techniques

to ensure that the measurement process is correct and reliable.

1.2 Motivation

Many metrics have been proposed and new metrics continue to appear in the liter-
ature regularly [CK94]|. A fundamental problem however with these metrics
is that many of them are imprecisely and ambiguously defined. This is as a result of
there being no standard formalism or terminology for defining or expressing soft-
ware metrics [BBAQZ]. This allows for different interpretations of metric
definitions by different researchers [KHLOTI]]. This makes it difficult to
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create general metric tools and every time a new metric is defined the tools need to
be updated with the new metric [ML0O2]]. In a recent study by Lincke er al. sev-
eral software metric tools were evaluated and compared. It was shown that all of
the tools considered interpreted and implemented the object-oriented metrics dif-
ferently which resulted in tool-dependent metric results [LLLOS]]. All these issues
make it difficult to replicate experiments and perform independent validation of
empirical results and also to investigate how different metrics relate to each other
[KHLOT]). This hinders empirical validation of the metrics and ultimately
their acceptance and adoption by both the academic and industrial software metrics
community.

In an MDE approach to software development, a software system is created
as a series of models at a number of different levels of abstraction and eventually
an implementation is created. Many software metrics can be applied to a number
of different models of a software system. Measurement inconsistencies can arise
where a software metric is applied differently to different models of the same soft-
ware system. Therefore, in order to provide assurance that the same concepts are
being measured from these different models we need a way to specify the metrics
in a generic way, independent of the particular model [MLQ2].

Many of the existing approaches to measuring software metrics involve the anal-
ysis of source code. As a result, it is not always clear how to apply existing metrics
at the early stages of the software development process. With the development of
software shifting to models rather than source code, particularly within the domain
of MDE, research is required to investigate how software metrics can be measured
from software models and prior to the implementation of the system. Being able to
measure the metrics accurately from both models and source code is important for

several reasons [MPQ7]], including

e The quality of the system can be assessed in the early stages of the software

life-cycle when it is still cost effective to make changes to the system.

e The implementation can be assessed to determine where it deviates from its
design. This can be achieved by applying metrics to both the model and
source code and comparing the results. Variations in the metric values may

help to identify parts of the implementation that do not conform to its design.

e Evaluation of the correctness of round trip engineering tools can be per-

formed. Again, applying the same metrics to both the models and source
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code may help in identifying parts of the system that have been incorrectly

forward or reverse engineered.

1.3 Goals and Approach

The main goal of this thesis is to apply the principles of MDE to develop an ap-

proach to software measurement that

e provides a standard terminology and formalism for specifying software met-

rics.

e supports the automation of the generation of measurement software directly

from the metric specifications.

e is highly extensible and can easily incorporate new metrics as they appear as

well as multiple definitions of the same metric.

e is language independent and provides assurance that the same concepts are

being measured from the different models of the same software system.

A complementary goal of this work is to ensure that the approach is correct and
reliable by developing methods and techniques for testing in the domain of MDE
and using them to test the measurement approach.

In order to achieve the main goal we first develop an approach for specifying
metrics that is based on language metamodels and the Object Constraint Language
(OCL) [WKQ3]| and develop a flexible and re-usable environment that automatically
generates a measurement tool from the metric specifications. We then expand the
approach in order to make it language independent by proposing the use of a lan-
guage independent measurement metamodel for the definition of software metrics
and that to calculate metrics for any model will involve transforming the model to
this canonical measurement metamodel. With this approach only a single definition
of a software metric is required and can be applied to different models of a software
system, thus providing assurance that the same concepts are being measured from
the different models.

Figure[I.T]presents an overview of this measurement approach which takes three

inputs: a set of source models that conform to a source metamodel, a measurement
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Figure 1.1: Overview of the software measurement approach. The approach involves
developing a measurement metamodel and a set of model transformations for converting
software models to instances of the measurement metamodel. Metrics are then defined in
OCL over the measurement metamodel and a measurement tool is automatically created
that can be used to calculate the defined metrics for any software model.

metamodel and a model transformation for transforming source models to mea-
surement metamodel instances. Metrics are then defined as OCL queries over the
measurement metamodel and a measurement tool is automatically created for eval-
uating the defined metrics over instances of the measurement metamodel. We limit
the scope of our work to the domain of object-oriented coupling and cohesion mea-
surement and develop a metamodel specifically for coupling and cohesion metrics.

Finally, to ensure that this approach is reliable we develop testing techniques
for the domain of MDE and apply them to the measurement approach. These
techniques are fundamental to the approach, including validation of the underly-
ing measurement metamodel, model transformations and automatically generated

measurement tool.

1.4 Thesis Overview

The remainder of this thesis is organised as follows. Chapter 2] provides an intro-
duction to the areas of software metrics and MDE while also reviewing the relevant
research in these fields and comparing it with the work presented in the thesis.

In Chapter [3] an approach to the specification of metrics that is based on lan-

guage metamodels and the OCL is presented. The approach is illustrated using the

5
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Chidamber and Kemerer (CK) metrics suite [[CK91], and the Unified Mod-
elling Language (UML) 2.0 and Java metamodels. Details of the IMML (Defining
Metrics at the Meta Level) tool that supports this approach is also presented.

Chapter [] is concerned with the development and testing of a measurement
metamodel over which coupling and cohesion metrics can be expressed. This chap-
ter presents a Meta Object Facility (MOF)-compliant metamodel for coupling and
cohesion measurement and describes a systematic approach that can be used to
both analyse MOF-compliant metamodels and to generate test data for any soft-
ware based on a MOF-compliant metamodel.

The measurement approach is completed in Chapter [5] by introducing support
for model transformations and transformation testing. It outlines how an existing
transformation language, Atlas Transformation Language (ATL) [ATL]] has been
incorporated into the AMML tool to provide complete tool support for the measure-
ment approach and describes an approach to testing model transformations. Two
applications of the measurement approach to both UML class diagrams and Java
programs are also described.

Chapter [6] summarises the work presented in this thesis, identifies its main con-
tributions and presents a discussion of future work. This thesis also contains several
appendices containing a full specification of the measurement metamodel and an
outline of the requirements for choosing a model transformation language for the
measurement approach. All further supplementary information including the met-
ric specifications, metric results and software developed to support this work can be

found on the disk accompanying this thesis.



Chapter 2

Background and Related Work

The overall goal of this thesis is to develop a reliable MDE-based approach to
software measurement. Therefore, this thesis encompasses two main research areas:
MDE and software metrics. The purpose of this chapter is to present the main
concepts of these two areas and to review the work relevant to the research presented
in this thesis.

This chapter is structured in three parts; the first part introduces the area of soft-
ware metrics, presents the three sets of object-oriented software metrics that are
used in this thesis and reviews the state of the art of existing approaches to the spec-
ification and definition of software metrics. In the second part of the chapter we
introduce the area of MDE. As the thesis is concerned with developing a reliable
approach to software measurement using MDE principles, the final part of the chap-
ter reviews software testing research in the context of MDE. Parts of this chapter
have been published in McQuillan and Power MPO7]].

2.1 Software Metrics

Software metrics provide a quantitative way to capture certain attributes or charac-
teristics of a software system or product. They have many important uses in soft-
ware engineering including determining software quality and estimating the cost
and effort of developing software [LH93|]. Metrics are not limited
to quality assessment but have also been used in other domains such as software

evolution and software re-engineering [[LDO2]].
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Software metrics may be classified according to the entities that they measure,
as either product, process or resource metrics [FP96]. Product metrics are measures
of the artifacts or deliverables that are produced while developing the software.
Examples of product metrics include those which measure attributes of complexity,
size or maintainability of the software design or piece of source code.

Over the years, many software product metrics have been presented in the lit-
erature. Some of the earliest measures are those proposed for estimating software
size and complexity, such the Source Lines of Code (SLOC) metric, Halstead’s
measures and McCabe’s Cyclomatic Complexity McC76]. With the
introduction of the object-oriented paradigm for developing software, the structure
and organisation of the software shifted from procedures to classes and functions.
Several of the existing measures were adapted to this new paradigm and many re-
searchers proposed new metrics specific to the object-oriented paradigm. Such met-
rics include the suite of metrics proposed by Chidamber and Kemerer and Lorenz
and Kidd [LK94]|. As well as metrics being proposed for specific paradigms,
researchers have proposed metrics specific to particular programming languages
such as C++ [EBCO3]].

More recently, research has been conducted to develop software metrics for pre-
code artifacts such as the UML. One of the earliest sets of metrics proposed for
UML models are those described by Marchesi who propose a set metrics that can
be applied to class and use case diagrams [Mar98§]|. This metric set is composed of
19 metrics which count the various elements that can be found in a UML class and
use case diagram. The motivation for developing these metrics is so that they can be
used for estimating the effort, time and cost involved in developing a software sys-
tem at the early stages of the development process. However, very little information
is given on how effective these metrics are at fulfilling this purpose.

Genero et al. have proposed a set of metrics for assessing the structural com-
plexity of class diagrams and have performed several experiments to empirically
validate these metrics [[GPCO0] [GIPQ2]]. Again these metrics are primarily con-
cerned with counting the elements in a class diagram and they show that the met-
rics have a positive correlation with the three sub-characteristics of maintainabilty:
analysability, understandability and modifiability. Various other metrics have been
proposed for class diagrams and a comparison of these metrics are presented by
Yi et al. [YWGO3], including those proposed by Marchesi and Genero erf al.. The

metrics are evaluated and discussed according to several criteria including the types
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of relationships they consider, the complexity of the metrics themselves and the
amount of empirical validation that has been performed to demonstrate the useful-
ness of the metrics.

Genero et al. have also developed a set of metrics for measuring the size and
structural complexity of state-chart diagrams [GMPO2]]. A total of 5 metrics are
proposed and are based on counting the number of elements in a statechart diagram
(e.g. states, transitions etc.). The authors theoretically validate these metrics and
also conduct a study to empirically validate them as early maintainablity indicators.

Kim and Boldyreff have defined a set of 27 metrics to measure various charac-
teristics of a UML model [KBO2||. However, the metrics are described informally
and for some of these measures it is unclear which UML diagrams should be used
to calculate the measures. Tang and Chen have also attempted to measure UML
models by specifying how the CK metrics can be measured from UML diagrams
[TCO2]. They have developed an algorithm for computing the metrics from UML
class, activity and communication diagrams.

As we have outlined, the evolution of software metrics has progressed from
basic code metrics for procedural languages to object-oriented languages right up
to design artifacts such as the UML. A number of these however are applicable to
a number of different languages and levels of abstraction. We have selected a set
of metrics taken from [[CK94] which we believe can be usefully
applied at different levels of abstraction and have specified and implemented them
using our measurement approach. For completeness we describe these metrics in

detail in the remainder of this section.

2.1.1 Chidamber and Kemerer Metrics

One of the most well known suite of object-oriented metrics is the one proposed by
Chidamber and Kemerer [[CK91] [CK94]|. The metrics were proposed to assess dif-

ferent aspects of an object-oriented design and consist of the following six metrics:

Weighted methods per class (WMC)

The weighted methods per class (WMC) metric is concerned with the structural
complexity of a class in an object-oriented system. The metric is computed by
summing the complexities of all the methods in a class. The authors of the metric

have deliberately left the definition of a method’s complexity open “in order to allow
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for the most general application of this metric” [[CK94]]. For our purposes we have
taken the complexity to be unity, thus reducing the WMC metric to a count of the

methods in a class.

Depth of inheritance tree (DIT)

The depth of inheritance tree (DIT) for a class is the maximum length from the
root of the inheritance tree to that class. Essentially it is a count of the number of
ancestors of the class and is based on the principle that the greater the number of
ancestors of a class then the greater the number of attributes and methods it is likely
to inherit. This can increase the overall complexity of the class and make it more
difficult to determine its structure and behaviour [CK94]).

Number of children (NOC)

Number of children (NOC) is defined as the number of immediate subclasses sub-
ordinate to a class in the class hierarchy. This metric assesses the number of classes
that are likely to inherit the attributes and methods of a class. As the number of

immediate descendents of a class increases then the potential influence of that class

also increases [[CK91] [CK94]].

Coupling between object classes (CBO)

This is first defined as a count of the number of non-inheritance related couples with
other classes and is referred to as CBO’ by Briand et al. [BDW99]. Two
classes are coupled if the methods of one class reference attributes or invoke meth-
ods defined in the other class. This definition was later revised to include coupling
due to inheritance [[CK94]| and is referred to as CBO by Briand er al. [BDW99].
High CBO values are more likely to have an adverse effect on the maintenance,
reuse and testing of the overall system as changes or faults in one class have a

greater probability to propagate to other parts of the system.

Response for a class (RFC)

Response for a class (RFC) is the size of the response set for a class, where the
response set is defined as the set of distinct methods that can be invoked from that

class. The RFC is calculated for a class ¢ by adding the number of methods of ¢

10
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to the number of external methods called by the methods of c. RFC refers to only
those methods that are directly invoked by ¢ where RFC’ considers methods that are
directly and indirectly invoked by c. The larger the RFC value the more complex
the class is. This is because the more methods that are called in a class implies that
more code must be examined in order to understand the class [[CK91] [CK94]|.

Lack of cohesion in methods (LCOM)

Lack of Cohesion in Methods (LCOM) metric for a class is summarised as the
“degree of similarity of methods” and is adapted from Bunges notion of similarity
which defines the similarity of things to be the set of properties that the things
have in common BDWOg]||. It is first defined as the number of
non-intersecting sets of methods based on the common usage of instance variables
[[CK9T]). It is later defined as the number of method pairs in a class that use common
instance variables minus the number of pairs of method that do not use any common

variables [[CK94]].

2.1.2 Coupling Metrics

The notions of coupling and cohesion were first proposed by Stevens et al. when
addressing the question of what makes a “good design”. They define coupling as
“the measure of the strength of association established by a connection from one
module to another” [SMC74]]. Yourdon and Constantine also describe the concepts
of coupling and cohesion, describing coupling as the degree of interdependence
between modules [YC79, [FP96]|. The notion of coupling has also been adapted to
object-oriented systems [CK91]]. In all cases, the general consensus is that
low coupling is desirable as the more independent a module or class is, the easier it
is to understand, maintain and re-use.

A considerable number of coupling metrics have been proposed in the literature.
As part of their framework for coupling measurement, Briand ef al. identify and
describe a number of different object-oriented coupling measures [BDW99]|. These
measures include the CBO and RFC metrics proposed by Chidamber and Kemerer
along with several other measures which we briefly explain in the remainder of this
subsection.

Li and Henry propose two metrics, message passing coupling (MPC) and data

abstraction coupling (DAC) for predicting the maintainability of an object-oriented

11
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design. MPC is defined as “the number of send statements defined in a class” where
send statements are considered to be the static invocations of a method. MPC only
counts invocations of methods of other classes, not invocations of its own methods.
DAC is defined as “the number of abstract data types (ADT) defined in a class”,
where an ADT is any class in the system. An ADT is defined in a class c if an
attribute of c is of that type. Two interpretations of this metric are possible, one
which counts the number of attributes in a class having an ADT and is referred to
as DAC. The other interpretation, referred to as DAC’ counts the number of distinct
ADT’s defined in a class [LHO93| BDW99].

The Coupling Factor (COF) metric proposed by Abreu et al. is a count of the
total number of client-server relationships between non-inheritance related classes
in a system divided by the maximum number of such client-server relationships that
can occur in the system [AGaE93]|. This metric was proposed as part of a larger set
of metrics for evaluating the quality of an object-oriented system. To facilitate the
comparison of systems of varying sizes this metric is normalised to range between
0 and 1 [AGaE93] BDW99.

Lee et al. propose a number of metrics that are based on the flow of information
through a program [LLWWO3]. One of these metrics, Information-flow-based cou-
pling (ICP), is a metric defined at the method level that counts the number of meth-
ods belonging to all other classes that are polymorphically invoked by the method,
weighted by the number of parameters of the invoked method. It is possible to scale
this metric to the class level by summing the ICP values of each of the methods in a
class and similarly to the system level by summing the ICP values of all the classes
in the system. Two further metrics are also defined, inheritance-based coupling (IH-
ICP) and non-inheritance-based coupling (NIH-ICP). The IH-ICP metric considers
couplings due to ancestor classes whereas the NIH-ICP metric only considers cou-
plings due to unrelated classes. The ICP metric is simply the sum of IH-ICP and
NIH-ICP BDWO99.

Briand et al. define three measures which capture the different types of interac-
tions that can occur between two classes, class-attribute (CA), class-method (CM)
and method-method (MM) interactions. CA-interactions occur from class c to class
d when an attribute of class c is of type class d. CM-interactions occur from class
c to class d when a newly defined method of class ¢ has a parameter of type class
d. MM-interactions occur from class c to class d when a method implemented in

class c statically invokes a newly defined or overridden method of class d, or when

12
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it receives a pointer to such a method. Using these three types of interactions they
define a set of 18 coupling metrics [BDMO97| IBDW99].

2.1.3 Cohesion Metrics

Stevens et al. define cohesion as a measure of the degree to which the elements of a
module belong together [BDWOS]. In parallel with coupling, the principle
of cohesion has also been adapted to object-oriented systems [[CY91] [CK91]]. High
cohesion is desirable as this suggests that all the components are strongly related
and are working together to perform a single function which it is proposed makes
it easier to develop, maintain, and reuse a module or class and makes it less fault-
prone [BDWOS].

The definition of cohesion for object-oriented systems began with the initial
proposal of the LCOM metric, followed by several proposed improvements of this
metric by different authors [[CK9I]]. Henderson-Sellers interpret the LCOM met-
ric as the number of pairs of methods in a class ¢ that have no common attribute
references and this is referred to as LCOM1 by Briand ez al. [[HS96, [BDW98]|. Chi-
damber and Kemerer revise their LCOM metric and give a new definition as the
number of pairs of methods in a class having no common attribute references minus
the number of pairs of methods that have common attribute references [[CK94].

Hitz and Montazeri present two interpretations of the LCOM metric, referred to
as LCOM3 and LCOM4 by Briand er al. BDWO8]]. LCOMS3 is defined as
the number of connected components in a graph where the nodes in the graph are
the methods of a class ¢ and an edge exists between two methods if they both access
at least one common attribute. They note that the presence of access methods in
a class has the undesirable effect of artificially decreasing the cohesion of a class
when measured using LCOM3 as methods may not directly access the attributes
of a class but instead make use of the accessor methods. To address this problem
they propose an alternative LCOM definition, LCOM4 which takes into account
method invocations. In situations where there is only one connected component in
the graph, the LCOM4 metric can be further assessed using the Connectivity (Co)
metric by taking into account the number of edges of the connected component
[HMO3| BDWOISg].

Bieman and Kang identify a problem with the LCOM metric, noting it is effec-

tive at identifying very uncohesive classes, but it is not so effective at distinguishing
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between partially cohesive classes. They propose two cohesion metrics, Tight Class
Cohesion (TCC) and Loose Class Cohesion (LCC) that count the number of con-
nected methods in a class. Like the LCOM metric, two methods are connected
if they both access at least one common instance variable of the class, however a
distinction is made between methods which access attributes directly or indirectly
BK93| WOSIl.

Further criticism of the LCOM metric comes from Henderson-Sellers who iden-
tifies two major problems with the metric. First, there are several examples of dis-
similar classes who all have a value of 0 for LCOM. Second, there are no guidelines
for comparing LCOM values as the metric yields a different range of values for
different classes. As a result, he proposes an improved version of LCOM, called
LCOM?* or LCOMS by Briand et al. [BDWOS]|, which considers the notion of “per-
fect cohesion”. A situation where each method of a class references every attribute
in the class yields a value of zero for the measure, a situation where each method of
a class references only a single attribute yields a value of one and every other partic-
ular case can be represented as a percentage of this perfect value [HS96, BDW9S]).

Lee et al. propose a number of metrics that are based on the flow of informa-
tion through a program [LLWWO93]]. They propose the metric (ICH), defined for
a method m implemented in a class ¢ as the number of invocations to other meth-
ods implemented in class c, weighted by the number of parameters of the invoked
methods. The more parameters that an invoked method has, the more information
is passed between the invoking and invoked method and therefore the stronger the
connection is. It is possible to scale this metric to the class level by summing the
the ICH values of each of the methods in a class and similarly to the system level
by summing the ICH values of all the classes in the system [BDWOS].

A set of cohesion measures for object-based systems are described by Briand et
al. and adapted to object-oriented systems by Briand e al. [[BDWOS]|.
For this a class is considered as a set of data declarations and methods and dif-
ferent types of interactions are defined between the data declarations and meth-
ods. The metrics Ratio of Cohesive Interactions (RCI), Neutral Ratio of Cohesive
Interactions (NRCI), Pessimistic Ratio of Cohesive Interactions (PRCI) and Opti-
mistic Ratio of Cohesive Interactions (ORCI) are defined in terms of these differ-
ent types of interactions. A complete formal definition is not given for these met-
rics as the definitions for the data declaration interactions are specified informally
[BDWOS]|. Therefore we omit these metric definitions in our work.
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2.1.4 The Elusive Goal of Precise Metric Definitions

One way to establish that a software measure is meaningful and useful in practice
is through empirical validation [BBMO96]. For software metrics to be considered
successful their empirical validation is of crucial importance and several attempts
have been made to validate various different software metrics BWDPOOQ].
However, one of the problems with software metrics is that they can be easy to
define, but difficult to justify or correlate with external attributes [[MPQ7]. One of
the main reasons is the way software measures are defined and this has been noted
by several authors in the literature [KHLOT]].

Briand et al. note that measures are often not accepted in the industry because
the concepts they work with are not precisely defined [BMB96]]. The problem of
imprecise and ambiguous metric definitions have also been noted by several other
researchers [LLILOY]. Kitchenham et al. assert that
measures that are incompletely or poorly defined or documented results in invalid
or incomparable data being collected [KHLOT]]. These problems hinder the empiri-
cal validation of software metrics and consequently their adoption by the software
engineering community. Because of these problems research has been conducted to
attempt to address these issues with metric definitions and we discuss some of this
research in the remainder of this subsection.

Kitchenham et al. note the importance of validating software measures and out-
line a framework for software measurement validation. The framework is based on
two models, a structure model and a definition model. The structure model repre-
sents the various elements involved in software measurement including the entities
to be measured, their properties, measurement units and the relationships between
these elements. The definition model represents how these structural elements are
defined when specifying a software measure. They also define ways to theoretically
and empirically validate software measures in terms of these models [KPF93]|.

According to Briand et al. the ad hoc manner in which object-oriented metrics
are developed results in imprecise and ambiguous metric definitions which limit
their use and adoption by the metrics community [BDW99]|. This allows
for different interpretations of metric definitions by different researchers. It also
makes it difficult to perform independent validation of empirical results relating to
metrics and to investigate how different metrics relate to each other. In reviewing

over 40 coupling and cohesion measures that exist in the literature they identify sev-
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eral gaps in their specifications. For example, several of the measures considered
by Briand et al. are based on methods of a class and for many of these metrics
it is unclear what constitutes a method. For example, should constructors, finalis-
ers/destructors and accessor methods be considered? Should methods that are in-
herited but not defined in a class be included? Should abstract methods count as
empty methods, or not at all? To address this problem they first define a standard
terminology and formalism that aims to ensure that metrics are defined consistently.
Using this notation and formalism they present definitions for over 40 coupling and
cohesion measures. Finally they present two unified frameworks, one for coupling
measures and one for cohesion measures. The frameworks define what constitute
coupling and cohesion and provide a classification for coupling and cohesion mea-
sures. The frameworks are developed in an effort to provide researchers with a way
to compare different coupling and cohesion metrics and to determine the potential
use of the metrics [BDWO9]].

Although a proper terminology and formalism is important to facilitate unam-
biguous metric definitions, we believe that adoption of this formalism would be
greatly aided by the ability to automate software measurement directly from the
metric definitions expressed in this formalism. We use this terminology and for-
malism as a basis for developing our measurement metamodel, the results of which
are discussed in Chapter [4]

More recently, researchers have turned to the domain of MDE using the con-
cepts of models and metamodels for the definition and implementation of software
metrics [MPQ7]]. We first introduce the domain of MDE and its related concepts in
the next section before discussing this work in more detail.

2.2 Model Driven Engineering

Model Driven Engineering (MDE) also referred to as Model Driven Development
(MDD) is an emerging approach to software development in which models are the
primary focus. The term was first introduced by Kent [Ken02] and is described
as “simply the notion that we can construct a model of a system that we can then
transform into the real thing” by Mellor ef al. [MCFQ3]. The main idea of the
approach is that a software system is specified at various levels of abstraction using
different modelling languages and that this specification is iteratively transformed

into a concrete model or implementation. There are currently a number of tools and
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frameworks that support the MDE approach [[Plal.

In general, MDE can be accomplished in several different ways using a num-
ber of different standards. One of the most well known realisations of MDE is
the Model Driven Architecture (MDA ™) proposed by the Object Management
Group (OMG) [OMGO0Tal [ABET06]]. The basic principle of MDA is to de-
fine a platform-independent model (PIM) and transform it to one or more platform-
specific models (PSM) and then transform the PSMs to code. In MDA, the process
of transforming between PIM and PSM and PSM and code is performed automati-
cally. It is claimed that the main benefits of MDA are improvements to productivity,
portability, interoperability and maintenance and documentation within the software
development process [WKB03L[ABET06].

MDE and MDA rely on a set of common concepts such as model, modelling
language, metamodel and model transformation. Moreover, specific to MDA are
the standards and technologies used to implement these common concepts such as
MOF, UML and QVT. As many of these concepts are core to our measurement

approach we also discuss them in the remainder of this section.

2.2.1 Models and Metamodels

Models provide a representation of a real system and are increasingly important in
software engineering, particularly in MDE [Sei03]]. Typically, we think of a model
of a software system as being a design model, such as UML class or sequence dia-
grams, or an implementation model, such as an actual program. For example, a sim-
ple University system may be represented using a UML class diagram as shown in
Figure 2.1)(1). This class diagram contains classes such as Student and Course
which represent the entities in the system and associations such as enrols which
represent the relationships between these entities. The same University system can
also be represented using a programming language such as Java or C#. Thus the
same system can be modelled using different modelling languages.

Each of these different modelling languages (UML, Java, C# etc.) can also be
described using a model which is referred to as a metamodel. Essentially, a meta-
model defines the terms and concepts of the modelling language. One example of
a metamodel specification is the UML Superstructure Specification from the OMG
[OMGQ7b]], which defines the constructs that can be used in each of the diagrams
of the UML. A simplified extract from this metamodel is shown in Figure [2.1] (2).
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Figure 2.1: A sample UML class diagram and simplified extract from the UML meta-
model. This shows a class diagram representing a simplified University system along with
a simplified extract of the UML metamodel [[OMGO7bl] showing the parts relevant for mod-

elling this class diagram.

This figure depicts the various different constructs found in the class diagram in
Figure 2.1] (1) such as Class and Property and the relationships between these
entities. Finally, it is also possible to create a model that describes the constructs in

the metamodel and such a model is called a mefametamodel and one such example
is the Meta Object Facility (MOF) [OMGO064].

2.2.2 Model Transformations

Model transformations are yet another concept that play an important role in MDE.
According to the OMG a model transformation is “the process of converting one
model to another model of the same system” [OMGOTIal]. Model transformations
are used for a variety of different purposes including model refactoring, model re-
finement and code generation from models [[CHO6].

Figure [2.2] presents an overview of the model transformation process. This fig-
ure shows that a model transformation takes a model as input, referred to as the
source model and produces as output another model, referred to as the target model.
Both the source and target models in a transformation must conform to their respec-
tive metamodels. A model transformation is composed of a set rules specified using
a transformation language which conforms to its respective metamodel. By refer-
ring to the metamodels of the source and target models, a transformation definition

specifies what or how elements in the source model are transformed to elements in
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Source Model % Transfor.manon %» Target Model
Engine

Figure 2.2: Overview of the model transformation process. An overview of all the various
different concepts involved in performing a model transformation.

the target model. A transformation engine is then used to interpret the definition
and perform the transformation on supplied models [CHO6].

In recent years a number of transformation languages and approaches have
been proposed such as Kermeta and ATL [MFI03, JKO3||. Czarnecki and Helsen
present a comprehensive list and description of the various different model transfor-
mation approaches available which include: relational/logic, graph-based, direct-
manipulation, structure-driven and hybrid [CHO6|]. To facilitate the comparison
of these different approaches and aid developers on their choice of transformation
language they have proposed a framework for classifying the approaches which is
based on a feature model [[CHO6]|. Other classification efforts have involved the def-
inition of a taxonomy of model transformations which includes classifying transfor-
mations as endogenous or exogenous and horizontal or vertical as well as outlining

some important characteristics to consider when evaluating model transformation
languages and tools [MGO€].

2.2.3 Metamodelling Architectures

The relationship between models, metamodels and meta-metamodels is commonly
depicted as a hierarchy that spans multiple levels; such a hierarchy is referred to
as a metamodelling hierarchy or metamodelling architecture. The hierarchy can
be viewed from two perspectives, one is that each model is an instance of the
model that is directly above it in the hierarchy or alternatively each model is a
model of the model that is directly below it in the hierarchy. This structure can
be applied recursively yielding the possibility of an infinite number of meta-layers
[OMGQ74]. Some examples of metamodelling hierarchies include the Resource
Description Framework (RDF) and the Extensible Markup Language (XML). RDF
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Description Examples
M3 Meta-metamodel MOF [OMGO06al| entities, e.g. Class, Property,
layer Operation

M2 Metamodel Layer UML metamodel [OMGO7b] describing the enti-
ties in a UML model, e.g. Package, Type, Class,

Operation

M1 Model Layer A UML model, e.g. class diagram, sequence dia-
gram

MO Data Layer The run-time instances of the elements in the

UML model, e.g. run-time objects

Table 2.1: The Four Layer Metamodel Architecture. This table shows the standard four-
layer hierarchy, using the UML modelling as an example ( p19 of [OMGO74dl]).

was defined by the World Wide Web Consortium (W3C) to support the represen-
tation and exchange of information on the web [W3Chbl]. XML also defined by the
W3C is a framework for defining customised markup languages [W3Cal].

Traditionally, modelling within the OMG is based on a four-layer hierarchy
which is described in Table The most abstract layer, M3, is the
layer that contains the meta-metamodel or the formalism used to define modelling
languages. A number of different formalisms or languages can be used to describe
metamodels and in MDA this is the MOF. Beneath this is the M2 layer which con-
sists of the metamodel for the modelling language, for example the UML meta-
model. The M1 layer represents a model of a real system such as a class diagram
of a UML model containing entities such as classes and attributes. The MO layer
represents the actual run-time instances of the model elements defined in the model
at layer M2.

Where possible our measurement approach makes use of the OMG standards

for MDE and we outline these standards here.

MOF

The Meta Object Facility (MOF) is the OMG’s standard formalism for construct-
ing metamodels or defining modelling languages in MDA [[OMGOQ64l]. It provides
a set of constructs for describing metamodels including Class, Property and
Operation. MOF is reflective which means it is used to define itself and therefore
in terms of the OMG ’s metamodelling hierarchy it is at the top layer with no need

to have extra meta-layers above it. The MOF is described by an OMG specification
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document which also contains a comprehensive list of requirements that must be
met for a metamodel to conform to the MOF ([OMGO06al, p. 35, 48). For example,
there is no support for n-ary associations in the MOF and therefore all associations
in a metamodel must be binary. Also, the MOF does not support association classes
and consequently they cannot appear in a MOF-compliant metamodel.

As well as facilitating comprehension, using a standard metamodelling formal-
ism aides interoperability, through formats such as the XML Metadata Interchange
(XMI) and also facilitates writing and implementing transformations from one mod-

elling language to another.

UML

In terms of MDE, the UML is not a vital component but in terms of the MDA it is
the proposed language for creating the models (PIMs and PSMs) of the system to
be built [WKBO3]|. The UML was created as a language for specifying, visualising,
constructing and documenting the artifacts of software systems as a result of the
integration of the concepts of Booch, Jacobson and Rumbaugh. In 1997, the UML
was adopted by the OMG as a standard for modelling object-oriented systems and
has since become the de-facto modelling language [BRJ99]. Since then, the UML
has undergone several revisions from versions 1.4, 1.5 up to the current version
2.1. The UML 2 saw the introduction of several new diagrams and now contains 13
diagrams that can be used to present different views of an object-oriented system
OMGO1bl IOMGO3L IOMGO7c]].

The OMG have written specification documents defining the UML in terms of
its concrete syntax, abstract syntax and semantics. The concrete syntax is a graph-
ical notation, the abstract syntax is described using a set of UML class diagrams

and the semantics are described using a set of well-formedness rules written using
natural language and the OCL [OMGO07al [OMGOQ7d].

OCL

The Object Constraint Language (OCL) is a standard language that is used to write
expressions about elements in object-oriented models in a clear and unambiguous
manner. It is used to add information to object-oriented models that cannot be
expressed by using UML diagrams alone. It also offers the ability to navigate over

instances of object-oriented models, allowing for the collection of information about
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the navigated model [WKO3]|.

The OCL was initially described as part of the UML 1.1 specification and was
limited to writing constraints on UML models [WKQ3]|. Realising that it should be
possible to express far more additional information in a model than just constraints
the OMG began working on a new version of OCL, OCL 2.0. This new version
of OCL has been defined in its own specification and adopted as an OMG standard
[OMGO6b].

There are several differences between OCL 1.1 and 2.0. As well as being a
constraint language, OCL 2.0 is now also a general query language. The language
has also been extended with many new features, including the introduction of the
context keyword for specifying the element to which the OCL expression is to
be attached and the introduction of new types such as Tuple, TupleType and
Undefined Value [WKO3]. These new aspects of OCL 2.0 have made it pos-
sible to use OCL to define certain metrics which previously were very difficult or

almost impossible to do.

XMI

MDA uses the XML Metadata Interchange (XMI) standard for representing and ex-
changing MOF models via XML [OMGO07d]. A MOF model is any model whose
metamodel is defined in terms of MOF. Essentially, the MOF standard defines what
meta-data information about the model is to be stored and how it is to be organised,
ensuring that all models are represented consistently in XML format. A common
application of XMI is as a model interchange format for the UML, thus facilitating
the exchange of UML models between different UML modelling tools. At present
many of the UML modelling tools do not support the full XMI standard or alterna-
tively implement their own variant of the standard. As a result there are a number
of inconsistencies and incompatibilities between these tools which makes the ex-

change of models between the tools very difficult and in many cases impossible.

QVT

In MDA, Queries/Views/Transformations (QVT) has been adopted as the standard
for specifying model transformations [OMGOSb]. In 2002, recognising model trans-
formations as an integral part of the MDA paradigm, the OMG issued a Request

For Proposal (RFP) for a standard language for writing model transformations for

22



Background and Related Work

MOF models. The specification outlined several requirements for the language such
that the transformation definition language must be declarative and that the abstract
syntax of the language must be defined as a MOF metamodel [OMGQ?2]. Several
proposals were submitted in response to this RFP and in 2005 the OMG released a
draft proposal for the QVT language which is currently at version 1.0 and has been
adopted as an OMG standard [OMGOQ3al [OMGOS8b].

QVT adopts a hybrid approach to model transformations, composed of a mix
of declarative and imperative languages. QVT also incorporates the OCL 2.0 and
extends it to an imperative form of OCL. Several transformation languages and tools
claim to be QVT-compliant. However, due to the infancy of the standard many of
these tools are still in the early stages of development and are not yet fully robust or

reliable.

2.2.4 Eclipse Modelling Framework

The Eclipse Platform is a free and open source integrated development environ-
ment (IDE). It has been designed to be extendible and provides a plug-in architec-
ture which enables software developers to create tools that integrate with, and build
upon the functionality of other tools, including the Eclipse platform itself [EcIbl].
The Eclipse Modelling Framework (EMF) is a framework that supports the creation
of tools and applications using MDE principles. Initially, the main goal of EMF
was to provide an implementation of MOF for the Eclipse platform but over time
it evolved into a modelling and code generation framework. EMF provides a meta-
model called Ecore, which is very similar to a core subset of MOF and is used to
create simple data models. These data models are created either directly in Ecore,
from annotated Java, XML documents or modelling tools such as Rational Rose
[BSMT04]|. EMF offers the ability to generate Java classes for the elements in
these models as well as Java classes which can be used for viewing and editing the
models and a reflective API for manipulating EMF objects directly. It also provides
persistence support for Ecore models and model instances in XML format thus fa-
cilitating interoperability with other tools and applications. By providing a working
implementation of the MOF, EMF has paved the way for the implementation of
other OMG standards. For example, the UML2 Eclipse project has been created
which provides a usable EMF-based implementation of the UML 2 metamodel for
the Eclipse platform [[Eclel]. This project has proven extremely useful as it has been
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used as a basis for developing modelling tools such as Papyrus [[CEAI|, used for the
interchange of UML models between tools and it has also facilitated the testing and
validation of the OMG’s specification of the UML metamodel [Ecle]].

2.3 Metamodelling and Software Metrics

Several authors have attempted to address the problem of ambiguous metric defini-
tions. Many of these approaches involve modelling the entities to be measured,
and then defining the metrics in terms of this model. In standard terminology,
the metrics are defined on the metamodel of the entities being measured [MPQ7]].
Such an example, mentioned earlier in Section [2.1.4] is the canonical presenta-
tion of coupling and cohesion metrics by Briand et al. which was effectively
based around a metrics specific metamodel of an object-oriented software system
BDWOg| [BDW99].

Based on a review of the state of the art of object-oriented software design met-
rics, Abounader and Lamb propose a data model of design information for software
metrics with the intention of implementing it in the form of a database [AL97].
They believe that such a database combined with adequate tool support for extract-
ing the design information from a software design or implementation would benefit
the software metrics community by making it easier to compare and validate large
numbers of software metrics. They provide a summary of the entities and relation-
ships in their data model but do not provide details about the database implementa-
tion or how to extract the information from a software design or implementation for
storage in the database [[AL97].

Another solution put forward by Reifling involves the proposal of a formal
model on which to base definitions of object-oriented design metrics [ReiQ1l]. This
model is called ODEM (Object-oriented DEsign Model) and consists of an abstrac-
tion layer built upon the UML metamodel. However, this model can only be used
for the definition of metrics for UML and does not solve the ambiguity problem as
the abstraction layer consists of natural language expressions.

Mens and Lanza propose a language independent metamodel for object-oriented
metrics that is based on graphs [MLO2||]. They use this to define a selection of
generic object-oriented metrics and higher order metrics but do not consider cou-
pling or cohesion metrics.

As part of the European Esprit Project FAMOOS, one initiative has been to
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develop approaches and tools for re-engineering large scale object-oriented soft-
ware systems written in different languages such as C++, Java, Smalltalk and Ada
[LDQ2]. This project has resulted in the creation of the Moose Re-engineering En-
vironment which is based on a language independent metamodel called FAMIX
(FAMOOS Information eXchange model) [DTDOII]. Moose works by extracting
the relevant information from source code and mapping it to the language indepen-
dent representation, FAMIX. Included in the Moose Re-engineering Environment
is a metrics tool that uses the language independent metamodel representation of
the software to compute the metrics. The metrics engine computes more than 50
different metrics of which about 30 are language-independent. However, many of
these metrics are primarily counting metrics and there is no support for coupling
and cohesion metrics which the authors say is because of the lack of consensus on
how to define many of these metrics [LD02]]. Furthermore, there is no information
on how the approach can be applied at the design level (e.g. UML models).

Using a clearly defined metamodel is important for facilitating unambiguous
definitions of metrics, but it also has clear advantages in terms of implementation.
Many metamodelling frameworks facilitate the implementation of corresponding
APIs that allow for the representation and traversal of model instances, for example
MOF and EMF [OMGO06a, BSMT04]. Previous research has exploited this imple-
mentation aspect of metamodels by defining metrics as queries over metamodels or
metamodel based repositories.

Wilkie and Harmer develop an extensible metrics analyser tool for object-oriented
programming languages [WHO2, [HWO02]. The tool is based on a general object-
oriented programming language metamodel in the form of a relational database
schema. Metric definitions are expressed as SQL queries over this schema. The
tool is extensible as it has support for incorporating new metrics and new object-
oriented programming languages. However, the complexity of the approach is sim-
ilar to employing a programming language to define and implement the metrics as
it requires the additional effort of developing C code to execute the SQL queries. A
very similar approach to Wilkie and Harmer is that of Scotto et al. who also propose
a software metrics tool, called WebMetrics which calculates metrics by evaluating
SQL queries on a relational database [SSSVO04]]. They claim the main advantage of
their tool is that it separates the parsing of the source code from the computation of
the metrics. This approach suffers similar drawbacks as that of Wilkie and Harmer

as it also involves the complexity of developing source code for the SQL queries.
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Both approaches are specific to source code and do not take into consideration met-
rics applied at higher level of abstractions such as UML-based metrics.

The use of the OCL as a way to define software metrics was first proposed
by Abreu and expanded by Baroni ef al. who propose using the OCL and the UML
metamodel as a mechanism for defining UML-based metrics [AbrOT], BAQ2]|.
They have used the approach to define the CK metrics and have built a
library called FLAME (Formal Library for Aiding Metrics Extraction) which is a
library of metric definitions formulated as OCL expressions over the UML 1.3 meta-
model [Bar02] [OMGQQ]. Gouldo et al. have also employed this approach
for defining component based metrics and used the UML 2.0 metamodel as a basis
for their definitions[[GaA04l [OMGO3b.

El-Wakil et al. propose the use of XQuery as a metric definition language
[EWEBRFO3]. They propose extracting metric data from XMI design documents,
specifically UML designs. XQuery is a language that can be used to query and ex-
tract information from XMI documents. Again this approach has only been used
to define metrics at the design level, specifically for UML designs. There is no
information available on how it extends to other languages.

Marinescu et al. propose a simplified implementation of object-oriented de-
sign metrics using a metric specification language called SAIL [MMGO03]. The
language is built on top of the MEMORIA metamodel. The disadvantages of this
approach are that the langauge and metamodel used is non-standard and the issue of
representing source languages using the MEMORIA metamodel is not addressed.
Furthermore, there is no mention of how the approach can be used to automate the
measurement of software.

Other related work involves the development of tool support for measuring
object-oriented metrics using a metamodel or repository type approach. These in-
clude a UML measurement tool by Lavazza and Agostini and the SDMetrics mea-
surement tool [LAQOSl [SDMO6]. Both these tools are extendible in that they have
support for user-defined software metrics. However they are limited to measuring
metrics from UML designs.

The majority of the work in the literature to date has concentrated on using
metamodels on their own or exploiting the implementation aspect of metamodels
for software measurement. However, very little attention has been given to inves-
tigating how to apply an entire MDE approach to software measurement in order

to address the problems outlined earlier in this Chapter. Very recently Monperrus
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et al. propose a model-driven approach to software measurement referred to as the
MDM (Model-Driven Measurement) approach which involves specifying metrics
as models which are instances of a metric specification metamodel [MICHOS]|. The
MDM approach differs from ours in that our approach involves modelling the enti-
ties to be measured and expressing the metrics as queries over these entities whereas
this approach involves modelling the metric definitions themselves and transform-
ing other domain models to the metrics specification metamodel in order to evaluate
the metrics. The MDM approach has clear advantages including being domain inde-
pendent, being applicable to any modelling language and facilitating the automatic
generation of measurement tools from the metric specifications. However, this re-
quires the user to learn a new language to express the metrics. With the multitude
of languages that already exist, developing and learning a new language adds an
extra, unnecessary level of complexity. Furthermore, the type and number of ex-
isting metrics that can be implemented using the MDM approach is limited by the
expressive power of the language. It is not possible to use the MDM approach to
implement certain cohesion metrics as the concept of method pairs can not be rep-
resented using the language and the language needs further extension to incorporate
this feature. We believe it may be worth investigating combining this approach with
our OCL-based approach as noted by the authors of the MDM approach [MICHOS].
Another disadvantage is that when new metrics are proposed the MDM approach
requires all other languages to be transformed to this metric requiring several new
transformations.

A related initiative is the RFP for a software metrics metamodel issued by the
OMG Architecture Driven Modernisation Task Force [OMGO06d]. The objective of
this is to define a framework for the representation and exchange of information
related to software measurement. The RFP is not very exact about what this meta-
model should represent but it does aim to encompass information broader than just
the specification of metric definitions. Recently, a proposal for a software metrics
metamodel has been proposed in response to this RFP [OMGO8al|. This proposal
attempts to address the representation of three different aspects; the measurement
process, the specification of software measures and the representation of the mea-
surement results [[MICHOS]. These proposals exist only as specifications and there
is no information on how to implement the specifications or how well they work in
practice. Our work is concerned only with the specification of software measures.

An important aspect of any approach is that it is reliable and correctly computes
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the software metrics, to ensure this requires adequate support for validating the
approach. However, none of the approaches outlined above attempt to tackle this
issue. Furthermore, this issue becomes even more important in an MDE context as
the applications for measuring software are created automatically. One approach to
validation is software testing and we develop testing techniques that can be applied
within our MDE-based measurement approach. In the next section we review the

relevant research related to software testing in MDE.

2.4 Software Testing in Model Driven Engineering

Software testing is an important and integral part of the software development pro-
cess. It is used to reveal bugs in a system, to assure that the system complies with
its specification and to verify that the system behaves in the intended way. Various
definitions have been presented for software testing [Bin0Q]. For example,

Myers [Mye04]] defines it as:

“«

. the process of executing a program [or system] with the intent of

finding errors.”

For our purposes, we will consider software testing as the process of determin-
ing if the observed behaviour of a system corresponds with the expected behaviour
of the system. This process involves executing the system on a set of inputs and
determining if the actual behaviour of the system corresponds to the expected be-
haviour. These inputs to the system are known as test cases and a collection of test
cases is referred to as a test set or a test suite. With this notion of testing, a mecha-
nism referred to as the test oracle is used to determine whether or not the results of
the test execution are correct. Commonly, this is achieved by comparing the output
produced by the execution, either manually or automatically with the pre-computed
expected output [Wey84].

Software testing in the context of MDE is very similar, as test cases are created
and selected for testing and a test oracle is defined to check the correctness of the
system after it has been executed with the selected test cases. However, there are a
number of limitations to using existing testing techniques in the domain of MDE,
in particular for testing model transformations. The main entities involved in MDE
are models which are inherently complex and generating test data using traditional

techniques is awkward and inefficient [FSB04] BDTMT06]. As a result, research
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has been conducted to develop and adapt existing techniques for test case generation
to MDE.

2.4.1 Test Case Generation

Gogolla et al. describe an approach to the automatic generation of model instances
(snapshots) from UML class diagrams [GBRO3]. ASSL (A Snapshot Sequence
Language) is used to specify properties of a required model instance. Using their
approach they generate two types of model instances, those that are test cases and
those that are validation cases. The test cases confirm that models with certain
properties can be created from the specification. The validation cases are used to
show that certain properties of a model are a consequence of existing properties of
the model. However, this approach is not fully automated as it requires the creation
of scripts for each model in order to generate model instances.

An approach to metamodel instance generation is presented by Ehrig et al.
[EKTWO6I|. This approach involves the automatic creation of an instance-generating
graph grammar for the given metamodel. They also describe how to translate re-
stricted OCL constraints to graph constraints. The grammar and the graph con-
straints are then used to create metamodel instances. However this approach does
not support attribute values, only supports limited OCL constraints and cannot be
used to verify properties of the metamodel.

Based on their experiences of designing and implementing model transforma-
tions for business process models, Kuster et al. present a discussion on model
transformation testing [KAERO6]. Their model transformations are specified ini-
tially as a set of abstract rules that are not executable and are then iteratively refined
and eventually implemented directly in Java. Based on this they describe three
white-box testing techniques for the construction of test cases for model transfor-
mations. The first approach, referred to as the model coverage technique, uses a
specially developed template language and involves converting each of the abstract
transformation rules into a metamodel template. Several instances of the template
are generated automatically, thus creating a set of test cases for the transformation
rule from which the template is derived. The second approach is based on iden-
tifying the metamodel elements that are transformed by the model transformation
and then selecting those elements that are associated with constraints in the target

metamodel. Then for each of these constraints, a test case is generated that aims to
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validate that the constraint is not violated under the transformation. The third ap-
proach uses the concept of rule pairs to generate test cases. The main idea is that test
cases are generated by pairing the transformation rules. Based on each rule pair, all
the possible overlaps of the model elements referred to by the rules are calculated.
The two models are combined based on their overlapping elements to produce test
models.

Lamari address the challenges of automatic test case generation by adopting
traditional functional techniques [LamQ7]]. A special purpose formal language for
specifying model transformations is proposed. The purpose of the language is to fa-
cilitate the automatic parsing of specifications which in turn supports the automatic
generation of test cases. In addition, a method is described for the structural de-
composition of a metamodel which when combined with the traditional functional
testing techniques of category partitioning and the classification tree method can
automatically generate test cases from a metamodel [Lam07]].

Fleurey et al. also adapt existing functional testing techniques for the automatic
generation of test cases in the domain of model transformation testing. They refer
to such test cases as test models. This technique is based on a systematic algorithm
that iteratively generates test models from an effective metamodel, where the ef-
fective metamodel is the part of the source metamodel that is relevant to the model
transformation under test. The algorithm makes use of a set of test adequacy criteria
for generating the test models [ESB04.

2.4.2 Test Adequacy Criteria

One important aspect of software testing is deciding when enough testing has been
done. How do you decide if a set of tests are adequate? This question was first
addressed by Goodenough and Gerhart [[GG73]] when they considered the idea of a
test adequacy criterion, that is, a criterion that defines what makes an adequate test.
A test adequacy criterion is a rule or a set of rules that impose requirements on a test
set [ZHM97]]. Adequacy criteria play an important role in the testing process. They
can be used as a stopping rule. Testing stops when enough test cases have been
produced to satisfy the criteria. They can also be used as a measurement of test
quality. A measure of adequacy is associated with a test set, therefore different test
sets can be compared in terms of their adequacy measurement. Adequacy criteria

also provide a basis for generating test cases, that is test cases are generated (often
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automatically) to meet the adequacy criteria. Coverage can be used to measure the
extent to which an adequacy criterion is satisfied. The percentage of requirements
(as specified by the adequacy criterion) that are satisfied by a test set can be used
as an adequacy measurement. Therefore coverage criteria are a type of adequacy
criteria that specify the percentage of requirements that must be covered [ZHMO97].

For conventional programming languages the degree of coverage of elements
such as statements, branches, paths, functions etc. can be calculated for a test suite,
with the goal of achieving 100% coverage of the chosen element [Bei90]. Given the
widespread use and acceptance of such measures in the programming domain, it is
natural to consider their use for modelling and model transformation.

A range of coverage criteria have been suggested for the various UML diagrams
[MPQ3]. For example, Andrews et al. define a number of coverage measures for
class diagrams consisting of the association-end multiplicity (AEM) criterion, the
generalisation (GN) criterion and the class attribute (CA) criterion [AFGCO3]]. The
AEM criterion requires that for each association in the class diagram a set of rep-
resentative multiplicity pairs are created. The set of multiplicity pairs that are to
be covered are derived from the class diagram using a modified form of category-
partition testing [[OB88]]. This involves the partitioning of the value domain of the
multiplicity into equivalence classes and the selection of a single value from each
class. For each end of the association a set of possible multiplicity values are se-
lected in this way. Each value from the first set is combined with each of the values
from the second set, thus producing a set of multiplicity pairs. The GN criterion
requires that testing cause each generalisation/specialisation relationship (or spe-
cialisation element) of a class diagram to be created at least once. The CA criterion
requires coverage of a set of attribute value combinations for each class in the class
diagram. The category partition method is used to produce a set of possible values
for each attribute in a class. Elements from each of these sets are combined to create
a set of attribute values for each class [AFGCO03].

Since a MOF metamodel can be described using a UML class diagram, cov-
erage criteria for class diagrams provide a basis for developing similar criteria for
metamodels. This is the approach taken by Fleurey et al. in their approach to model
transformation testing [ESBO4]|. Their approach generates test models from an ef-
fective metamodel using a set of test adequacy criteria. The criteria they use are the
CA and AEM criteria of Andrews et al.. They omit the GN criterion, reasoning that

their approach is tailored to testing model transformations in which the emphasis
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is on the structure of the model rather than behaviour. For the two chosen criteria,
a set of representative values for each of the elements in the effective metamodel
is created. All valid combinations of these values are then determined and used to
create test cases or test models. However, OCL constraints, an important part of a
metamodel, cannot be directly reflected, leading to an under-specification of model
instances.

Furthermore, the work of Fleurey et al. relies on generating a test suite that
adequately covers the input domain of a transformation, as defined by the input
metamodel, or a relevant subset. However, there is little work on directly consider-
ing the coverage of the transformations only. One related area is that of grammar
testing, since the process of transforming an input language using a grammar (or a
generated parser) is analogous to a model transformation. Various coverage crite-
ria have been proposed for grammar testing, the most simple being rule coverage,
which requires that each rule in the grammar be used during testing, although there
are many more complex variations [LSO6].

A model transformation consists of more than just rules to match the input, and
so any consideration of coverage should also deal with model generation and any
internal operations. To date there has been relatively little work on linking coverage
of the “front end”, as defined by a grammar or the input metamodel, with cover-
age of the “back end” as defined by transformation internals and generation code.
Hennessy and Power show that applying test suite reduction using only grammar
coverage as a criteria yielded poor results for the internals of a C++ parser [HPOS]],
and thus would suggest that coverage of transformation internals should also be
considered. We explore this idea further in Chapter 5]

Brottier ef al. build on the work of Fleurey ef al. and create a test generation
tool that uses the approach outlined by Fleurey et al. to generate test cases
[BEST06]. The tool generates test models from a metamodel and a set of model
fragments only. The model fragments must be defined by the tester manually. In
addition, the test generation process does not take the model transformation into
consideration and as a result it is not apparent how to automatically generate the ef-
fective metamodel or model fragments. To address these issues Wang et al. extend
the work of Fleurey et al. and Brottier et al. by developing a prototype tool that
generates test models automatically [WKCOS8]|. The tool automatically generates
an effective metamodel from a model transformation and uses all three criteria of

Andrews et al. to create coverage items for the effective metamodel and then gen-
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erates test models to satisfy these coverage items. The tool is limited to the Tefkat
transformation language. Transformations are checked by manually comparing the
actual outputs of the transformations with the expected ones [WKCOS8]|. This ap-
proach is tedious and error-prone and does not scale well to very large number of
test cases. This limitation has also been noted by the authors and as future work

they intend to investigate approaches for automatically generating test oracles.

2.4.3 Test Oracle Construction

There has been very little research in the literature that addresses the problem of cre-
ating test oracles for model transformations. Some research that has briefly touched
this issue is that of Lin ef al. who propose a testing framework for model transfor-
mations [LZGOJ). They identify three challenges for model transformation testing;
automatic comparison of models, visualisation of model differences and debugging
of the model transformation definitions. In the context of their framework, they ad-
dress the first two of these challenges by exploiting model comparison techniques
to provide tool support for test case construction, test case execution and compar-
ison of test case results with expected results. However, they fail to identify the
challenge of automatic test case generation or appropriate test adequacy criteria and
test cases are created manually in their framework [LZGO3].

Baudry et al. discuss a possible approach to test oracle development in the con-
text of model transformation testing and outline the possible limitations of such an
approach. This approach is based on the notion of contracts which specify con-
straints such as pre- and post-conditions on various elements of the transformation
such as the transformation specification and output models produced by the transfor-
mation. They conclude that developing a general purpose solution for developing
test oracles for model transformations is a very difficult task to achieve and pro-
pose that a more appropriate solution may be to group model transformations into

different categories and develop different oracle development techniques for these

categories [BDTMT04].

2.5 Summary

The goal of software measurement is to provide a quantitative measure of a partic-

ular attribute or characteristic of a software system such as size or complexity and
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to correlate this measure with some external attribute such as software quality or
development cost. Many software metrics have been proposed in the literature for
this purpose. However, many of these metrics have not seen widespread adoption in
industry due to the problems mentioned in Section [2.1.4] such as vague and impre-
cise metric definitions and inability to perform independent validation of empirical
results for these metrics. To date, several authors have attempted to address these
problems using metamodels or repository based approaches to software measure-
ment. However, only a limited amount of work has been carried out to encompass
the full MDE process into an approach to software measurement and none of the
approaches consider the issues of validity or correctness. The work in this thesis
attempts to address this by investigating how metamodels and MDE can be used
to reliably automate the measurement of object-oriented software. Furthermore,
we adopt techniques from the software testing domain to address the problem of

assessing the correctness and reliability of our MDE-based measurement approach.
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Chapter 3

Towards an MDE Approach to

Software Measurement

In this chapter an approach to defining software metrics is presented. A proto-
type tool called dMML (defining Metrics at the Meta Level) has been developed
to support this approach and details of this tool are discussed. An outline of how
to apply the approach to both the UML and Java is also presented. Details of the
approach described in this chapter and its applicability to the UML and Java have
been published in McQuillan and Power [MPO6D]|.

3.1 Introduction

In Chapter [2] we discussed the extensive availability of software metrics and how
many software metrics have been proposed and new metrics continue to appear
in the literature regularly [[FP96]. Many of the metrics proposed are incomplete,
ambiguous and open to a variety of different interpretations [BDWOS]|. This makes
it difficult to create general metric tools since many of the metrics proposed can
be interpreted in several different ways and every time a new metric is proposed
the metric tools need to be updated with this metric [MLO2]]. This in turn makes it
difficult to perform independent validation of empirical studies related to software
metrics and to investigate how different metrics relate to each other.

Like Briand et al. we believe that addressing these problems requires an ap-

proach to software measurement that uses a standard terminology and formalism
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for expressing software metrics [BDWOS]|. Having a standard terminol-
ogy and formalism allows metrics to be expressed in a clear and precise manner
thus supporting the comparison, evaluation and validation of existing software met-
rics as well as the proposal of new software metrics. However, we take the work of
Briand et al. a step further since we believe that adoption of this formalism would
be greatly aided by the ability to automate software measurement directly from the
metric definitions expressed in this formalism. This not only encourages the adop-
tion of such standards but can also significantly reduce the time, effort and cost of
the software measurement process.

To address the problem of ambiguous and imprecise metric definitions Baroni
et al. propose the use of the OCL and the UML 1.3 metamodel as a way to define
design metrics, effectively proposing them as a terminology and formalism for ex-
pressing software metrics [BBAQ2]\. In our opinion this approach provides a
useful mechanism for the clear and precise definition of software metrics as it pro-
vides several advantages. In particular, since the language or formalism proposed
to define the metrics is OCL, which is is an OMG standard, it is familiar to software
engineers and modellers and there are a number of tools that support the use of the
OCL.

However, we have also identified a number of limitations of the approach of Ba-
roni et al., such as non-conformance to current OMG standards and lack of available
tool support, which we discuss further in Section[3.2] The main goal of this chapter
is to build on the work of Baroni ef al. to overcome these limitations. To achieve

this we aim to

e adapt the metric definition approach to make it reusable for other languages
and metamodels, specifically we are concerned with MOF metamodels or

languages that can be described using MOF metamodels.

e ensure the approach makes full use of the OCL 2.0 syntax in order to adhere
fully to current OMG standards.

e develop a flexible environment that can be used to define software metrics
and fully automate the generation of a measurement tool directly from the

definitions.

e demonstrate the feasibility and robustness of the approach by using it to define

and calculate metrics for “real world” programs.
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Classifier::IAN() : Integer
= allInheritedAttributes()->size ()

Figure 3.1: TAN Metric Definition. This OCL code presents the IAN metric as defined by
Baroni [[Bar02)]. It is part of a larger set of measures called FLAME and specifies that the
metric computes the number of inherited attributes for a Classifier element of the UML
1.3 metamodel. Any auxiliary operations used in this definition can be found in [[BarQ2]].

3.2 Defining Metrics at the Meta-Level

In this section we give details of an approach for specifying software metrics that is
based on the use of metamodels and the OCL. The use of OCL as a way to express
design metrics was first proposed by Abreu [[AbrOIl]. This approach is explored
further by Baroni et al. by adapting it to define design metrics as OCL constraints
over the UML 1.3 metamodel [OMGQQ]]. This approach of Baroni et al. involves
modifying the UML 1.3 metamodel by creating the metrics as additional operations
in the metamodel and expressing them as OCL conditions [BBAQ2||. The
approach was used to define a library of measures called FLAME (Formal Library
for Aiding Metric Extraction) [BAO3al). This library is composed of a set of
approximately 90 auxiliary functions that compute some basic metric values.

For example, the al10perations measure is defined by adding this opera-
tion to the Classifier element of the UML metamodel and expressing in OCL
that this operation returns a set containing all operations of the Classifier in-
cluding the inherited operations. Similarly, the JAN metric is defined by adding it
to the Classifier element and specifying in OCL that this returns the number
of inherited attributes of the Classifier. Figure 3.1 reproduces this JAN mea-
sure as an example of the format of the metrics defined by Baroni [[Bar02l]. The
functions in FLAME are used as a basis for the formal definitions of four different
sets of metrics totaling approximately 77 metrics [Bar02]]. Any metrics that require
knowledge of code internals, such as LCOM and MPC are not specified formally.

Although this approach has many advantages, we have identified a number of

limitations of the approach. These are

e Direct modification of the metamodel elements: Modifying the metamodel
elements directly is not an ideal approach to defining the metrics for several

reasons. As more and more metrics are defined for a metamodel element,
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the number of operations defined for that element also grows. This raises the
possibility of making the metamodel cumbersome and difficult to understand
as you cannot separate the operations relevant to the metrics from elements
relevant to the metamodel. Also, a standard metamodel is necessary for mod-
elling tools to allow interoperability between them. If the metamodel is con-
stantly changing with the addition of metrics, it is almost impossible to expect
the modelling tools to constantly update their version of the metamodel to re-
flect the new metrics. Furthermore, if a change is made to the metamodel
that renders the metrics specification incorrect then these metrics must also
be updated immediately in the specification for the metamodel specification
to be correct. Finally, it is unclear where common auxiliary functions such
as summing a list of numbers or finding the maximum number in a set of

numbers should be defined.

No available tool support: Although a metrics extraction framework is out-
lined by Baroni et al. [Bar02]], it is not available for download or

use. This framework uses the USE tool to define and evaluate the software

metrics [GBRO3I].

Non-conformance to OMG standards: The syntax used in the metric def-
initions is specific to the USE tool and is based on an early version of the
OCL syntax, namely version 1.1 which was part of the UML 1.4 standard.
Since then a new improved version of the OCL syntax has been proposed and
adopted by the OMG. The approach should be supported by the correct use of
the OCL syntax and any definitions should be written using this syntax, thus
making the definitions standard and available for use with other modelling
and OCL tools.

Limited application and demonstration of the feasibility of the approach:
The approach has not yet been applied to real world applications and has only
been used to calculate the metrics for a single UML class diagram, the Royal
and Loyal example of [WKO3]]. The resulting metric values are presented
by Baroni [Bar02l], however no details on the correctness of these values are
supplied. There is no discussion on how the metric values produced were
assessed in order to ensure that they are correct for the class diagram. It is
vital that any such results be verified in order to demonstrate the reliability of

the approach used to calculate them.
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e No automated support for creation of metamodel instances: The USE tool
requires that the users manually create instances of the metamodel. For the
Royal and Loyal example Baroni has created a metamodel instance generator
to instantiate the classes corresponding the meta-classes of the UML meta-
model. It appears that this consists of a script that has been manually created
and loaded by the user into the USE tool and used to create these instances.
This script is not generalisable and is specific to the Royal and Loyal example.
Therefore, any other UML models will also require their own script in order
to instantiate the UML metamodel and evaluate the metrics. This is noted by
Baroni who state that “one workload generator tool would be of great help
because, frequently, the UML model instances are done by hand” [BarQ2]].

To address these issues we have extended the approach of Baroni et al. in a man-
ner specifically designed to be re-usable for other MOF metamodels or languages
that can be described using a MOF metamodel. The extension involves decoupling
the metric definitions from the language metamodel by extending the metamodel
with a separate metrics package as depicted in Figure 3.2] This figure shows the
language metamodel that describes the domain for which the metrics are defined
on the right and the Met rics package on the left. The dashed arrow indicates a
dependency between elements in the Metrics package and elements in the language
metamodel. The Met rics package contains a single abstract class Met rics, any

auxiliary operations that are common to all sets of metrics are defined in this class.

Metrics Language Metamodel

Metrics
MetamodelElement

MetricSet

+Metricl(e:MetamodelElement)
+Metric2(e:MetamodelElement)

Figure 3.2: Extension to the language metamodel. This package diagram shows the def-
inition of a set of metrics as a separate package, with a dependency on (meta)classes from
the language metamodel.

Defining a group or set of metrics is a three step process:
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1. A class is created in the Met rics package corresponding to the metric set;
any auxiliary operations that are specific to that metric set are defined in this

class. This is shown as a class called Met ricSet in Figure[3.2}

2. For each metric in the set, a query operation in the metric set class is declared,
parameterised by the appropriate elements from the language metamodel. In
Figure[3.2]this is represented as the operations Met ricl and Met ric2 both

parameterised by MetamodelElement from the language metamodel.

3. The metrics are defined by expressing them as OCL query operations using
the OCL body expression. The OCL expression specifies what attributes and
associations of the metamodel are to be traversed to compute the result for the

metric.

We have developed an easily extendible tool called dMML (defining Metrics at
the Meta Level) that supports this approach and that can, in theory, be applied to any
metamodel or language. It provides an environment within which users can spec-
ify metrics using the OCL 2.0 syntax and any MOF metamodel and automatically
creates a measurement tool from these definitions. We have successfully used this
approach to define and implement a set of metrics for both the UML and Java and

applied them to a set of real world programs.

3.3 dMML: Tool Support for Defining Metrics at the
Meta-Level

Developing tool support for the measurement approach requires the ability to eval-
uate OCL queries and expressions over MOF metamodels. At the time of imple-
mentation, we were unable to find adequate tool support for applying OCL to meta-
models. This has not changed much which has been noted by Berkenkétter and
Gogolla who observe that “Currently, only few tools are able to check OCL con-
straints on the model level let alone on the metamodel level” [BerO8]]. Therefore,
from an implementation point of view we choose to bring the metamodel down to
the model level and treat the metamodel as a UML class diagram and the language

instance/metamodel instance as instances of the class diagram or object diagrams.
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Thus we required an OCL tool with the ability to check and evaluate OCL expres-
sions over UML models.

An example of how this works for the UML metamodel and a class diagram
is shown in Figure [3.3] Figure [3.3] (a) represents the M2 layer of the OMG meta-
modelling hierarchy and shows a simplified extract from the UML metamodel. A
sample class diagram is shown in Figure [3.3](b), it is an instance of the UML meta-
model and represents the M1 layer of the hierarchy. To bring this down one level in
the metamodelling hierarchy, the UML metamodel is depicted as a class diagram as
shown in Figure[3.3](c) and is now at the M1 level. The sample class diagram is now
at the MO level and is shown here in Figure[3.3](d) as a set of instances or objects of
the elements in the class diagram of Figure [3.3](c). The OCL queries correspond-
ing to the metric definitions are then evaluated over these objects to compute the
metrics.

As well as having support for OCL expressions over UML models we also re-
quire an OCL tool that has support for syntax checking and highlighting of OCL
expressions to help ensure that the metrics specified are syntactically correct. As
we are adhering to OMG standards, we also require full support of the newest ver-
sion of the OCL 2.0 syntax. After considering the limited number of tools available
Octopus was chosen. At the time of implementing the dMML tool, Octopus was one
of the few tools available that supported the use of the OCL 2.0 syntax and satisfied
all our requirements [Obj|.

Octopus, an acronym for OCL Tool for Precise UML Specifications is an Eclipse
plug-in developed by Klasse Objecten [[Obj]l. It offers two main functionalities. The
first is the ability to check and identify errors in OCL expressions. It checks the
syntax of expressions, as well as the expression types, and the correct use of ele-
ments of the UML class diagram such as attributes and association roles. Second, it
provides the functionality to convert UML models, including OCL expressions, into
Java code. Octopus also generates an XML reader and writer for a given UML/OCL
model. The reader will read the contents of an XML file and produce Java objects
which correspond to instances of the UML model.

The dMML tool builds upon and uses Octopus to both check the syntax of the
metric definitions presented as OCL expressions and to translate the OCL expres-
sions to Java code in order to automate the generation of a measurement tool from
the metric definitions. At the time of implementing dMML, the most up to date

version of Octopus was version 2.2.0 which runs in Eclipse 3.1 using Java 1.5.
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Since then, later versions of Eclipse have been released, the most recent being the
Ganymede, version 3.5 [EclIb]]. Unfortunately, Octopus has not been updated for
these later versions of Eclipse and as such the dMML tool is only available for

version 3.1 of Eclipse.

3.3.1 Overview of dMML

An overview of how the dMML tool is used to define and calculate software metrics
is shown in Figure 3.4} In this figure, shapes in blue represent in-house applica-
tions created as part of the system, shapes in pink are used to represent large scale
independent applications or tools and the remaining items indicate the data that is
used as input or output to the system described in the figure. This colour coding
system is also applicable to the other figures in this thesis. The figure is divided into
two layers, the upper layer represents the metric definition process, which is done
once for each metric set. The lower layer represents the metric calculation process,
where the metrics are applied to a set of metamodel instances.

The language metamodel describes the domain over which the metrics are to be

Language Metric

Metamodel Definitions

OCL
Metric Definition UML/OCI l/
: Eclipse/ :
Octopus ahtlal

Runtime

L : Metamodel Instances Measurement . .
anguage : Instance of Tool : Metric
Metamodel : Generator Metamodel 00 Results

Instances Elements :

: Java :

PP,

Metric Calculation

Figure 3.4: dMML - An environment for the definition of software metrics. This system
overview diagram shows the main inputs to and outputs from the dMML tool, which is
implemented as an Eclipse plug-in.
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applied. The definition of this language metamodel is represented as a UML class
diagram, and the corresponding Java representation of the metamodel is forward-
engineered using Octopus.

The main tools that are developed are dMML for metric definitions, the Mea-
surement Tool which is a Java program automatically generated by dMML for each
metric set and the Metamodel Instance Generator which must be created by the user
and is used for creating runtime instances of the language metamodel.

The red dashed line in Figure [3.4] delimits the system, and shows that its inputs
are a language metamodel, a set of metric definitions in OCL and a set of metamodel
instances. The output of the system is the set of metric values calculated by applying
the metrics to the metamodel instances.

Using dMML to apply the metric definition and calculation approach to any

metamodel or language is a four step process:

Step 1: Express the metamodel in UML and OCL. To perform this task the
user loads the metamodel of the language or domain over which the metrics are to
be applied. It must be possible to depict this metamodel as a class diagram for the
approach to be applicable. This can be done either directly in the Octopus format
or using a standard UML modelling tool that produces XMI which can then be
imported into Octopus. The OCL constraints for the metamodel are then loaded
into Octopus. The resulting model is then checked for correct use of OCL syntax
and metamodel elements. Depicting MOF metamodels as class diagrams can be
easily achieved using the UML profile for MOF [[OMGO04]]. The OMG specification
for MOF does not define a textual or graphical representation for MOF [[OMGOQ6al].
However, there is a UML Profile that defines a bi-directional mapping between the
UML and MOF [OMGO04]]. The profile facilitates the creation of metamodels using
the UML and the viewing of MOF metamodels. This can be used to express the
metamodel in UML and OCL. For example, MOF classes map to UML classes,
MOF attributes to UML attributes and vice versa. In addition, any constraints on

the MOF metamodel map directly to UML constraints.

Step 2: Define the metrics as OCL queries over the metamodel. During this
step the user creates and defines a set of metrics specific to the language or domain
described by the metamodel loaded in step 1. dMML uses the Octopus plug-in to

check these OCL expressions for syntax errors and incorrect use of model elements.
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Step 3: Automatically generate a measurement tool from the metric definitions.
Octopus is used to forward engineer a Java implementation of the UML/OCL spec-
ification including the metric definitions and the measurement tool is created as an
independent Java application that can be invoked from the command line. This
measurement tool makes use of the Java implementation generated by Octopus and
a Builder class which is used to generate runtime instances of the language meta-
model. A Java application must be created that generates instances of the language
metamodel. This is achieved by creating a Metamodel Instance Generator class that
extends the Builder class. To create an instance of the language metamodel, this
class must make use of the Java classes (corresponding to the metamodel elements)
produced in step 3. The name of this class is then specified in a dMML properties

file for use by the measurement tool in step 4.

Step 4: Use the measurement tool to apply metrics to instances of the meta-
model. The measurement tool can now be invoked from the command line (al-
lowing metrics to be calculated in batch). Using reflection, the measurement tool
reads the name of the Metamodel Instance Generator class from the dMML proper-
ties file and instantiates this class and uses it to create and load a runtime instance of
the metamodel. If the instance of the metamodel is created successfully, the meth-
ods corresponding to the metric definitions are called, passing the relevant elements
of the metamodel to the method and the metric results for that element are returned.
These results are recorded and exported in text format.

To extend dMML to work with any language metamodel the user only needs
to add the functionality to convert instances of the metamodel to Java runtime in-
stances of the metamodel elements. dMML tool is parameterised by both the lan-
guage metamodel and the definition of the metrics thus making it extensible to any

language and any set of software metrics.

3.4 Using the Approach to Define and Calculate Soft-

ware Metrics

In this section we demonstrate the feasibility of the approach by applying it to two

different languages, the UML and Java.
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3.4.1 An Illustration using the UML

In this subsection we describe how dMML was used to calculate the CK metrics for
UML class diagrams using the UML 2.0 metamodel as a basis for the definitions.
An outline of how dMML works for the UML can be seen in Figure The
language metamodel here describes the domain over which the metrics are to be
applied, in this case UML 2.0 class diagrams. For reference, we have shown part
of this metamodel in Figure [3.6] as taken from [OMGO3b]]. We developed a tool to
create an instance of the part of the UML 2.0 metamodel relevant to class diagrams.
We elaborate on each of the steps involved in applying the approach to UML class
diagrams.

Step 1: Expressing the UML2.0 metamodel in UML and OCL

With reference to Figure [3.5] the Language Metamodel used is the standard meta-
model for UML class diagrams [OMGOQ3b]|. For simplicity we chose to depict only
the part of the UML metamodel relevant for defining the CK metrics. This part of
the metamodel was manually written using the Octopus syntax for UML models.
One of the obvious problems with using Octopus is taht it creates a Java imple-
mentation which does not directly support multiple inheritance. To overcome thos

problem we use Java interfaces.

Step 2: Defining the CK metrics over the UML 2.0 metamodel

The CK metrics were expressed as OCL queries over the part of the UML 2.0 meta-
model [OMGQ3b]| that defines class diagrams. This is the first presentation of these
definitions using the UML 2.0 metamodel. However, it was not possible to precisely
measure all these metrics from a UML class diagram. Implementation details, such
as the code in the bodies of method definitions are required to measure the CBO,
RFC and LCOM metrics. However, it was possible to provide definitions to esti-
mate the values for these metrics based on the information in the UML diagrams.
Such measures are useful as they can provide upper and lower bounds for metrics
calculated at later stages in the design or implementation process. In total, the defi-
nitions were composed of approximately 38 OCL queries and 93 lines of OCL.

As an example of the format of the CK metric definitions, Figure illustrates
how the NOC metric was expressed as an OCL query over the UML 2.0 metamodel.

Here, the definition is parameterised by a single Classifier element, and the
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UML 2.0 Metric
Metamodel | |Definitions
. _ UML/OCL OCL
Metric Definition

Eclipse/
Octopus

Runtime

UML : |UML Metamodel Instances Measurement Metric
: Instance of Tool i

Model : Generator Metamodel Results

' Elements

XMI : Java
XSLT
: File

Metric Calculation

Figure 3.5: The use of dMML to define and calculate metrics for UML class diagrams.
This figure shows the two phases of our system: metric definition, centered on the dMML
tool, and metric calculation, achieved by our UML metamodel instantiator program and an
automatically generated measurement tool.

NamedElement RedefinabieElement Namespace Type DirectedRelationship
{suhﬁets‘ target} -
o + genera
Classifier ——
{readOnly, union} Isfbstract | Boolean 1 Generalization
+ IredefinitionContext ’ {subsets isSubstitutable : Boolean

RedefinableEfement {subsets source,
_ . N subsets gwner ownedElement}
isleaf : Boolean {readOnly, union} + SHECIC + generalization

+ iredefinedElement 1 *

s

{readOnly, subsets member}

N + finheritecMember, NantedEfement

B

+
{subsets redefinedElement}
{readOnly, union, {subsets + redefinedClassifier

subsets feature}  redefinitionContext *
Property + Jattribute ' + classifier b
B 01 -

+ fgeneral |*

Figure 3.6: Excerpt from the UML2.0 metamodel. This figure shows some of the main
classes and relationships from the UML2.0 metamodel that are used in the OCL definitions

IOMGOSbI].
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—-— Returns the NOC value for the Classifier c
context CKMetrics::NOC( c : UML::Classifier ) : Real
body: self.children(c)->size()

—— Returns the set of all immediate descendents
—-— of the Classifier c

def: children( c¢c : UML::Classifier ) : Set( UML::Classifier )
=self.scope—->excluding( c )->select( 1:UML::Classifier | i.parents()
—>includes( ¢ ) )—>asSet ()

Figure 3.7: NOC Metric Definition using the UML metamodel. This OCL code defines
the NOC metric from the CK metrics set, and is part of a larger definition of the whole CK
metric set which we have implemented using dMML.

body of the definition returns the size of the set of all children of this class. The
auxiliary operation chi 1dren traverses the elements and relationships in the UML

metamodel to assemble this set.

Step 3: Automatically generate a measurement tool from the CK metric defi-

nitions.

In total, the part of the UML 2.0 metamodel relevant for the CK definitions was
represented using just under 2942 (non-blank, non-comment) lines of Java code.
The CK metric definitions were implemented in 574 (non-blank, non-comment)
lines of Java code. A metamodel instance in this case is an actual class diagram,
represented in XMI, the standard output format for most UML modelling tools.
Octopus was used to generate an XML reader for the UML model that represents
the UML 2.0 metamodel. An XSLT transformation was written to convert class
diagrams represented in XMI to XML files that can be understood by this XML

reader.

Step 4: Applying the CK metrics to UML 2.0 metamodel instances

As a proof of concept, AMML was used to calculate the CK metrics for an open
source project, Velocity which is part of the Apache Jakarta project. The Velocity
project provides a Java-based template engine that can be used to reference objects
defined in Java code [Jakl]. Version 1.2 of Velocity was chosen as this is the ver-
sion used in the study by Briand et al. [ABFO4l]. The project is distributed as a
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singe JAR file which was reverse engineered using Rational Rose to obtain a UML
model. The resulting model was exported in XMI format and used as input to the
automatically generated measurement tool. The measurement tool using the UML
metamodel instantiator developed in step 3, created runtime metamodel instances
corresponding to the elements of the UML model and calculated and reported the

CK metrics for each of these elements.

3.4.2 An Illustration using Java

In this subsection we describe how the dMML was used to calculate metrics for
Java programs based on a Java metamodel. For consistency, the CK metrics were
again chosen to illustrate this. An outline of how dMML works for Java can be
seen in Figure [3.8] The domain over which the metrics are to be applied is Java,
represented here by the Dagstuhl Middle Metamodel (DMM) [[CTP0O4]l. The DMM
was designed as a language independent metamodel, as part of a project that aims
to produce a de facto standard model for program entities.

Other parts of the system include dMML for metric definitions, and Java to
DMM for converting Java class files to instances of the DMM, BCEL which is
used by the Java to DMM tool and the Measurement Tool, which is a Java program

automatically generated by dMML from the metric definitions.

Step 1: Expressing the DMM in UML and OCL

This was achieved by depicting the DMM as a UML class diagram using the Octo-
pus syntax for UML models. There are no constraints in the DMM. Again, only the
part of the DMM relevant for calculating the CK metrics were implemented in the
Octopus syntax. Consequently, the classes in the SourceOb ject hierarchy that
represent details about the code were not implemented as it appears in the original
program. This does not preclude these classes being added later. The final repre-

sentation of the DMM consisted of 19 classes from the Mode10b ject hierarchy.

Step 2: Defining the CK metrics over the DMM

We successfully produced definitions for the set of the CK metrics using the OCL
and the DMM. This required approximately 25 OCL queries and 63 OCL lines in
total. One advantage of our approach was that we could re-use much of the OCL

from existing queries when defining new metrics. One example of this is when
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Dagstuhl
Middle Metric
Metamodel Definitions
. __ UML/OCL OCL
Metric Definition \L \£
: Eclipse/ :
dMML
Octopus
Runtime
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Java | ol javaToDMM of |—=""1 i | Metric
class : Metamodel 00 : Results
files H Elements E
Java

BCEL

Metric Calculation

Figure 3.8: The use of dMML to define and calculate metrics for Java programs. This fig-
ure shows the two phases of our system: metric definition, centered on the dMML tool, and
metric calculation, achieved by our Java-to-DMM program and an automatically generated
measurement tool.

defining the RFC metric, it was possible to re-use the OCL from the WMC metric
as both metrics need to calculate the number of implemented methods in a class.

To illustrate how the metrics were defined using the DMM, Figure gives
details of the RFC metric. The response set is the set of all implemented meth-
ods of this class and all methods invoked by this class. The relevant classes and
associations from the DMM are shown in Figure [3.9|for reference. The RFC defini-
tion is parameterised by a single Class, and the body of the definition returns
the size of the response set for this class. The auxiliary operation methods—
DirectlyInvoked (DMM: :Class c) gathers all methods invoked by each
of the implemented methods in the class. The auxiliary operation methods—
DirectlyInvoked (DMM::Method m) traverses the invokes association to
gather all BehaviouralElements invoked by the method m and then selects all
elements from this set that are methods.

To provide a comparison with the metrics presented for UML class diagrams,
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Figure 3.9: Excerpt from the Dagstuhl Middle Metamodel. This figure shows some of
the main classes and relationships from the DMM that are used in our OCL definitions
LTPO4).

we also give details of the NOC metric that was defined using the DMM in Figure

B.I0

Step 3: Automatically generate a measurement tool from the CK metric defi-

nitions.

In total, the DMM Mode10b ject hierarchy was represented using approximately
2266 (non-blank, non-comment) lines of Java code. The CK metric definitions
were implemented in 452 (non-blank, non-comment) lines of Java code. A tool was
implemented to convert Java programs to instances of the DMM metamodel. To
achieve this, it was necessary to read in Java programs and to instantiate the DMM
classes produced in Step 1. There are a number of different possible ways of doing
this, including parsing the Java source code or processing a compiled . class file
directly. We chose the second option as the contents of the .class file most
closely resembled the information needed to instantiate the DMM implementation.
In particular, access relationships between classes arising from the use of fields

and variables in a method are easy to identify at the bytecode level, since they are
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—— Returns the RFC value for the Class c
context CKMetrics::RFC( c : DMM::Class ) : Real
body: self.implementedMethods( c )

—>union( self.methodsDirectlyInvoked( c ) )->asSet()->size()

—— Returns the set of methods implemented in the Class c
def: implementedMethods( ¢ : DMM::Class ) : Set( DMM::Method )
= c.hasMethods—self.abstractMethods( c )

—— Returns the set of abstract methods in the Class c
def: abstractMethods( ¢ : DMM::Class ) : Set( DMM::Method )
= c.hasMethods->select ( m : DMM::Method | m.isAbstract )

—-— Returns a set containing all methods directly invoked by all

—— the methods implemented in the Class c¢

def: methodsDirectlyInvoked( ¢ : DMM::Class ) : Set( DMM::Method

= self.implementedMethods( c )
—->collect ( m : DMM::Method |
—->flatten () —>asSet ()

self.methodsDirectlyInvoked( m )

—-— Returns a set containing all methods directly invoked
—— by the method m

def: methodsDirectlyInvoked( m : DMM::Method ) : Set ( DMM::Method

= m.invokes—->select ( be : DMM: :BehaviouralElement
| be.oclIsTypeOf( DMM: :Method ) )
—>collect ( belem : DMM: :BehaviouralElement |
belem. oclAsType( DMM::Method ) )
—>asSet ()

Figure 3.10: RFC Metric defined using the DMM. This OCL specification defines an
operation to calculate the RFC metric for a class, as well some auxiliary operations. The
entities used in the definition are from the DMM [[LTP04)].

translated into a single bytecode instruction.

Our implementation uses the Apache Bytecode Engineering Library (BCEL)
to read in and traverse the contents of the . class file. The BCEL API provides
classes representing the contents of the . class file, and methods to access classes,
fields, methods and bytecode instructions [BCE]. Using the BCEL it was rela-
tively easy to traverse these structures and instantiate the DMM, and required less
than 600 (non-blank, non-comment) lines of Java code. It should be noted that us-
ing BCEL would not be suitable for a more detailed representation than the DMM
ModelObject hierarchy. Source level details such as Java statements (e.g. while

and for loops) are not represented in the bytecode, and tables giving local variable
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—— Returns the NOC value for the Class c
context CKMetrics::NOC( c¢c : DMM::Class ) : Real
body: self.children(c)->size()

—— Returns the set of all immediate descendents of the Class c
def: children( ¢ : DMM::Class ) : Set( DMM::Class )
= c.subclass

Figure 3.11: NOC Metric Definition using the DMM. This OCL specification defines an
operation to calculate the NOC metric for a class. This definition is provided here for
comparison with the NOC metric for UML class diagrams shown in Figure[3.7}

names and mappings to lines of Java code are optional at the . class file level.

Step 4: Applying the CK metrics to DMM instances

We applied the measurement tool generated in step 2 to programs from the open
source project Velocity, version 1.2. We included constructors, mutators and ac-
cessor methods as ordinary methods, but excluded attributes and methods that are
inherited but not defined in a class. The CK metrics were calculated on all the class

files contained in the velocity JAR file.

3.5 Discussion

While the approach outlined in this chapter provides a way to define software met-
rics using a standard language and facilitates the automatic generation of measure-
ment tools directly from the software metric definitions, it does not completely ful-
fill the main aims set out in Chapter [I}

Numerous software metrics exist in the literature and many of these metrics are
applicable to a number of different models of a software system. The disadvantage
of using metamodel-specific metrics as outlined in this chapter is that it is difficult to
re-use metric definitions. For example, in this chapter two definitions were required
for each of the metrics from the CK metric set, one for the UML and one for Java.
Similarly, if we want to define these metrics for other object-oriented languages,
for example C++ or C# then we need to define the metrics again and again. Ideally
it should be possible to define a set of metrics once, and then adapt them to each

relevant metamodel in turn. This provides not only for economy of expression but
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also helps to ensure that the same concepts are being measured from the different

models. It is our view that this is best addressed by specify the metrics in a generic
way, independent of the particular model [MPQ7]]. Like Mens and Lanza, we believe
that this can be achieved using a language-independent, metrics-specific metamodel
MLO2].

Furthermore, using the approach outlined in this chapter required the imple-
mentation of two separate programs for instantiating the metamodels over which
the metrics were being applied, thus adding an extra level of complexity to the mea-
surement approach. One way to address the complexity of software development
is using the principles of abstraction and problem decomposition which can be re-
alised using modelling and model transformations [SKOQ3]]. Our proposal is to use
a model transformation to describe the mapping from the language under measure-
ment to a language-independent, metrics-specific metamodel. In this case, the use
of a model transformation would raise the level of abstraction by simply specify-
ing what in the language metamodel maps to what in the measurement metamodel

without having to be concerned with the implementation details.

3.6 Summary

In this chapter, the need for a clear and precise approach to defining software metrics
has been addressed by exploiting the OCL as a specification language, and harness-
ing language metamodels to provide an approach to defining metrics. While the
approach to date is similar to other research in this area, particularly that of Baroni
et al., it differs in a number of key areas. First, the approach has been generalised at
the metamodel level and applied to various modelling languages. Second, the met-
ric definition and calculation procedure is highly extensible, allowing for different
versions of the same metric to be easily implemented and compared.

A tool, dMML, has been implemented that uses the Octopus tool to translate
OCL metric definitions into Java code that calculates the metrics for metamodel
instances. To demonstrate this approach, definitions of the CK metrics have been
defined over both the UML metamodel and a Java metamodel, the DMM, and the
resulting measurement tool has been run over a set of real-world programs thus
demonstrating the robustness of this automatically generated measurement tool. A
further contribution of this work is that it provides a first ever definition of the

Chidamber and Kemerer metrics suite using both the UML 2.0 metamodel and a
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Java metamodel as a basis for the definitions.

In summary, applying the approach to both UML class diagrams and Java pro-
grams, has demonstrated both the feasibility and generalisability of this approach
to defining software metrics. However, there are a number of issues such as lan-
guage dependent metric definitions, complexity of creating an implementation to
instantiate the language metamodel and the issue of the validity of the measurement
results produced by the approach. The remainder of this thesis is concerned with

addressing these issues.
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Chapter 4

A Metamodel for the Measurement
of Object-Oriented Software

In this chapter the limitations of the approach outlined in the previous chapter are
addressed by developing a MOF-compliant, language-independent metamodel for
defining object-oriented software metrics and demonstrating how the dMML tool
uses it to automatically generate a measurement tool that calculates a set of coupling
and cohesion metrics and the CK metrics set. Details of the work described in this
chapter have been presented in McQuillan and Power MPI.

4.1 Introduction

To support the definition and implementation of language-independent object-oriented
software metrics we develop a metamodel for defining and calculating coupling and
cohesion metrics, which we call the measurement metamodel. This metamodel is
based on a standard terminology and formalism outlined by Briand ef al. when
defining their coupling and cohesion measurement frameworks [BDW99].
However, developing and working with metamodels can be difficult since they deal
with abstract concepts and therefore it is important to ensure that this measure-
ment metamodel is correct. By correct, we mean that the metamodel specification
is consistent, is neither under or over-constrained and adequately describes what
the user intends. It is also important that the metric definitions themselves and the

automatically-generated measurement tool are also correct. Any errors or ommis-
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sions would have a fundamental impact on the correctness and reliability of the
metrics calculated using this approach.

In a wider context, it is important to be able to ensure the correctness and qual-
ity of any software application that is based around a metamodel, for example UML
modelling, model transformation and code generation tools. One way to achieve
this is through software testing. When metrics are defined directly over UML or
Java metamodels they can be tested using the wide range of readily-available UML
models and Java programs. However, using the measurement metamodel makes
testing difficult, since there is not a ready pool of example metamodel instances.
Furthermore, there is no direct way of automatically generating metamodel in-
stances for use as test inputs when testing metamodel-based software applications
[EKTWOG].

In this chapter an approach to the analysis of MOF-compliant metamodels is
described and applied to the measurement metamodel. In this approach, we express
the metamodel using the UML and the OCL. We generate a specification in the
Alloy language corresponding to the metamodel [[JacO@l], and use this to examine
the metamodel constraints and to generate sample instances of the metamodel. We
have created a reflective instantiator that takes these Alloy generated models and
transforms them into instances of a Java implementation of the measurement meta-
model, thus harnessing Alloy’s lightweight approach to generate a test suite for the
generated measurement tool. We use this test suite to determine if the tool correctly
computes metric values for the coupling, cohesion and the CK metrics sets. Finally,

we evaluate the adequacy of the generated test suite with respect to code coverage.

4.2 The Measurement Metamodel

In this section we present a metamodel for coupling and cohesion measurement and

illustrate how it is used for the definition and calculation of object-oriented metrics.

4.2.1 Structure of the Metamodel

One requirement of our metamodel is that it is interoperable with the UML and Java
metamodels and thus it has been developed to conform to the MOF. This ensures
that all three metamodels are specified using the same formalism, thus facilitating

the translation of instances of the UML and Java metamodel to instances of the
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MOF Element | Number
Class 9
Constraint 15
Enumeration 2
Generalisation 7
Association 16
Property 5
Operation 27
Parameter 4

Table 4.1: Summary of the size of the measurement metamodel. This table gives a sum-
mary of the size of the metamodel in terms of the different types of MOF element that con-
stitute the metamodel.

measurement metamodel presented in this chapter. Moreover, our MOF-compliant
metamodel is based on the standard terminology and formalism for coupling and
cohesion measurement proposed by Briand er al. [BDW99]. To create
the MOF metamodel we examined the formalism and metric definitions provided
in and extracted a set of elements and relationships required for
describing coupling and cohesion metrics and formulated these concepts as a MOF
metamodel (see Section [£.3)). The resulting metamodel captures the basic structure
of an object-oriented system and specifically the concepts and relationships required
for coupling and cohesion measurement. Table .1 summarises the basic details
of the measurement metamodel in terms of the number of MOF elements used to
construct the measurement metamodel.

The metamodel is composed of a single package called MM (Measurement Meta-
model) and the contents of this package are shown in Figure f.1] as a class dia-
gram. This figure shows the main classes involved in the metamodel, along with the
important associations necessary for distinguishing the different types of coupling
and cohesion metrics. The central classes for coupling and cohesion metrics are
Class,Methodand Attribute. A Class is generalised by Type, which also
generalises built-in types (e.g. integer, string) and user-defined types (e.g.
struct, enumeration).

In order to implement the metric definitions, we distinguish between declared
and implemented attributes and methods based on whether they physically appear
in the class definition, or whether they are just present due to inheritance. Similarly,

we partition methods into three types: those that are inherited without change, those
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that are inherited and overridden, and those that are declared for the first time in a
class. Other classifications of methods are given by the attributes of the Method
class, for example a method is either public or not public and is either abstract or not
abstract. A method is also tagged with an indicator of the purpose of the method. A
method can be either a constructor, destructor, accessor or mutator. If the method
does not fall into one of these four categories then it is tagged as general.

Another important concept necessary for coupling metrics is the notion of a
method call or invocation which is represented by the ITnvocation class in the
measurement metamodel. An invocation can be either static or polymorphic and the
Invocation class has an attribute t ype to indicate this.

Finally, the elements Type, Method, Attribute and FormalParameter
have a name associated with them to facilitate their identification when metrics are
computed for them. This is represented using an abstract class NamedElement
with a property name and a generalisation relationship between this abstract class
and the elements Type, Method, Attribute and FormalParameter. For
the sake of readability, we have omitted the NamedElement class from figure .1}

The metamodel specification also contains constraints, which specify semantic
and syntactic properties of the data described by the metamodel. These constraints
are specified in OCL and referred to as well-formedness rules. In total, the meta-
model has 15 well-formedness rules. Further details of these are given in Section
B.4 and a complete specification of the metamodel can be found in Appendix [A]

As our metamodel has been designed to be language-independent we believe
that it can be easily applied to different object-oriented languages. Applying the
metamodel to an object-oriented language involves mapping the different concepts
of that language to the equivalent concepts in the measurement metamodel. In cer-
tain instances concepts of the language may not map directly to elements in our
metamodel and in this situation a decision will have to be made as to which ele-
ments in the metamodel these concepts should map to. This mapping between the
language and the measurement metamodel can be clearly defined using a transfor-
mation language and provides an automated way to transform models written in the
language to instances of the measurement metamodel thus facilitating the automatic
calculation of the metrics for that language. We discuss this further in Chapter [5}
The metamodel may still need some work to apply to different styles of object-
oriented language. But we do believe that it is generic in terms of representing the

concepts for coupling and cohesion in an object-oriented system.
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4.2.2 Defining Metrics using the Metamodel

In this subsection we describe how we used the metamodel to define three sets
of existing object-oriented software metrics. The three sets of metrics CKMetrics,
Cohesion and Coupling were taken from [BDW99]|, respectively.
In total, we defined 44 metrics and these are summarised in Table[4.2] These metrics
have been discussed in more detail in Chapter 2]

In keeping with the approach outlined in Chapter [3] the metrics were defined as
OCL queries over the measurement metamodel. The metamodel was extended with
a separate metrics package containing a single class called Met rics, and each set
of metrics was defined as follows:

1. A class was created in the metrics package for the metric set; this class ex-
tends the Met rics class. Any common auxiliary operations were defined in
this class.

2. For each metric, an operation was declared in the class, parameterised by the
appropriate metamodel elements.

3. The metrics were defined by expressing them as OCL queries using the OCL
body expression.

As an example of a definition, Figure d.2] presents the definition of the coupling
between objects (CBO) metric. Here, the definition is parameterised by a single
Class, and the body of the definition returns the size of the set of all classes in
the system that have a uses relationship with that class. The auxiliary operation
uses is defined as a query operation of the Class element of the measurement
metamodel and is parameterised by a single Class d. This operation returns true

if any of the implemented methods of the Class element polymorphically invokes

Metric Set | Metrics from references [CK94,

CKMetrics | WMC, NOC, DIT

Cohesion LCOMI1, LCOM2, LCOM3, LCOM4, LCOMS5, NewLCOM?2,
NewCoh, Co, NewCo, TCC, LCC, ICH

Coupling RFC, RFC’, CBO, CBO’, MPC, COF, DAC, DAC’,

ICP, IH_ICP, NIH_ICP, IFCAIC, ACAIC, OCAIC, ACMIC,

OCMIC, IFCMIC, AMMIC, OMMIC, IFMMIC, FMMEC, DMMEC,
OMMEC, FCMEC, DCMEC, OCMEC, OCAEC, FCAEC, DCAEC

Table 4.2: Summary of implemented metrics. This table lists all 44 metrics that were
defined and implemented using the measurement metamodel.
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—-— Returns the set of classes that have a uses relationship
-— with the class c
context Coupling::CBO(c:MM::Class) : Real
body:MM: :Class.allInstances () —>excluding(c)
—>select (d:MM: :Class |
c.uses (d) or d.uses(c))
->size ()

—-— Returns true if the class uses class d
context Class::uses(d:Class) : Boolean
body: not self.implementedmethod->collect (m:Method|m.PIM())
—>intersection(d.implemented method)
—->isEmpty ()
or
not self.implemented.method->collect (m:Method|m.referenced._att)
—->intersection (d.implemented_att)
—>isEmpty ()

—— Returns the set of methods polymorphically invoked
—-— by the method

context Method::PIM() : Set (Method)
body:self.poly_invoked () —>asSet ()

—— Returns a bag of methods polymorphically invoked

—-— by the method

def:poly_invoked () :Bag (Method)

=self.invokes—>select (i:Invocation |
i.type = InvocationType::polymorphic)
—>collect (j:Invocation | j.callee)

Figure 4.2: Definition of the CBO metric in OCL using the measurement metamodel.
This OCL code defines the CBO metrics from the Coupling metric set, and is part of a larger
definition of a set of Coupling metrics which has been defined and implemented using the
measurement metamodel.

an implemented method or references an implemented attribute of the Class d.
The operation gathers the relevant attributes and methods of these two Classes by
traversing the appropriate associations of the metamodel and calling the predefined
P IM operation.

The operation P IM is defined as a query operation of the Met hod element of the
measurement metamodel and returns all unique methods polymorphically invoked
by that Method. It calls the poly_invoked operation on the Method to get a
list of all polymorphically invoked methods of the Method. A method can make

multiple calls to the same method so poly_invoked returns a bag of Methods
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thus allowing the same method to appear more than once in the returned list. PIM
returns this list of methods as a set thus removing any duplicate methods. The oper-
ation poly_invoked returns all polymorphically invoked methods of a Method
by traversing the invokes relationship to gather all the Invocations in which that
method is the calling method. It then selects and traverses those Invocations
that are polymorphic and collects the methods that are being called or invoked by
the Method.

Briand er al. suggest that other interpretations of this metric are also possible,
for example the uses relationship may consider only statically invoked methods in-
stead of polymorphically invoked [BDW99]. Defining and implementing this alter-
native definition of the CBO metric is rather straightforward using our measurement
approach. The only change necessary is to replace the call to PIM with a call to STM
in the definition of uses. The query SIM returns the set of statically invoked meth-
ods of a given method in a similar way to how PIM collects the polymorphically
invoked methods. No change is necessary to the implementation of the metric as
this gets generated automatically from the definition.

After defining all 44 metrics shown in Table dMML was used to automati-
cally create a measurement tool to calculate these metrics. In Sectionf.5] we report

on how we evaluate the correctness of this measurement tool.

4.3 A General Approach to Analysing MOF Meta-

models

Although the first step is concerned with defining a measurement metamodel for
sofware measurement, it is also imperative to analyse the meatmodel to ensure it
is correct. In this section an approach that can be used for the analysis of MOF-
compliant metamodels is presented. As Alloy is core to this approach, we begin by
briefly reviewing some of the important concepts of the Alloy language and analyser
and then present an overview of the approach. The application of the approach to

the measurement metamodel is described later in Section [4.4]

4.3.1 The Alloy Language and Analyser

The Alloy language and analyser has been used primarily to explore abstract soft-

ware models and to assist in finding and correcting flaws in these models [Jac04].
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Moreover, it has been successfully used for modelling and analysis in several differ-
ent real-world domains including safety-critical systems [[Den03]] and the semantic
web [DSWO3]. We extend this domain of application by showing that Alloy can
also be successfully applied to the the domain of MDE by using it to develop and
analyse MOF-compliant metamodels.

Alloy is a formal specification language that has been developed by Daniel Jack-
son and his colleagues at MIT [[JacQ6]|. It is based on typed first-order relational
logic. An Alloy specification is based around signatures and formulas such as facts,

predicates and assertions which are described next.

e Signatures: Signatures are used for defining the entities of a model and con-
sist of a set of declarations that define the relations and operations of the

entity.

e Facts: Facts impose constraints on a model. They are always enforced and

must always hold true for all instances of a model.

e Predicates: Predicates are used to impose constraints on particular instances

of a model. They may or may not be forced to hold true for a model.

e Assertions: Assertions follow from the facts of a model and specify the con-
straints of the model that are assumed or claimed to be true. They are never

enforced for a model.

A fully automatic tool, called the Alloy Analyser has been developed simultane-
ously with the Alloy language. This is a “model-finder” tool that uses a constraint
solver to analyse models written in Alloy. There are two types of analysis offered by
the tool, namely simulation and checking. Simulation involves confirming the con-
sistency of a predicate by generating a model instance that satisfies the predicate.
Checking involves assessing the validity of assertions by finding counterexamples
to the assertion. To make instance finding feasible, a user must specify a scope for
the model under analysis. The scope puts a bound on how many instances of an
entity may be observed in a model instance and thus limits the number of model

instances to be examined.

The main concepts of Alloy are briefly illustrated with an example adapted from
an Alloy tutorial [WTHI. The example is depicted in Figure .3and shows a partial
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sig Queue { root: lone Node }
sig Node { next: lone Node }

fact nextNotReflexive { no n:Node | n = n.next }
assert allNodesBelongToSomeQueue {

all n:Node | some g:Queue | n in g.root.x*next
pred show() {}
run show for 2

check allNodesBelongToSomeQueue for 2

Figure 4.3: Alloy specification for the Queue model. This is an example of an Alloy
specification and defines the Queue data structure.

Alloy model specification for the Queue data structure. The Alloy code declares
two signatures representing the entities Queue and Node in the model, along with
their relations. In the declaration of Queue, the 1one keyword specifies that the
root relation maps each object of Queue to either zero or one object of Node.
The model specification also contains a single fact that states that there is no Node
that is equal to its successor.

It is possible to use Alloy to search for specific model instances that satisfy
certain properties or constraints. This is done by formulating the constraint as a
predicate and using Alloy to search for a model instance that satisfies this predicate.
Alloy indicates and displays if an instance is found. However, if no instance is found
no conclusion can be drawn as an instance may exist outside of the specified scope.
In this example we want to demonstrate the consistency of the model, so therefore
we want any instance of the model. To specify this we have written a predicate,
show () that is empty and contains no additional constraints. To obtain a sample
instance of the predicate the run command is used with a specific scope. Here, the
scope is 2 which means Alloy will search for instances with at most two instances
of each top level signature (i.e. at most two Queues and at most two Nodes). If an
instance is found, Alloy indicates this and can be used to display the instance. An
example of a model instance produced by Alloy that satisfies the predicate show is
shown in (a) of Figure #.4]

Additionally, to check an assertion with Alloy, the command check is used and
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Figure 4.4: Output from the Alloy Analyser produced during the analysis of the Queue
specification On the left is a model instance that satisfies the predicate show and an the
right is a counterexample to the assertion allNodesBelongToSomeQueue.

as for the run command a scope must be specified. An example of an assertion,
allNodesBelongToSomeQueue is also shown in Figure f.3] This assumes
that all Nodes belong to a least one Queue. To check this assertion Alloy searches
all valid model instances with at most two instances of each signature for a coun-
terexample i.e. a model instance that violates the assertion. If it finds one then the
assertion is not valid and the counterexample is displayed. Otherwise the assertion
may or may not be valid as a counterexample may exist outside of the specified
scope. In the example shown here, Alloy has found a counterexample to the asser-
tion and this is shown in (b) of Figure .4}

Recently, the parallel between specification in Alloy and modelling in UML
has been noted by Massoni et al. and exploited by Anastasakis er al.
[ABGRQ7]|. Anastasakis et al. present a tool called UML2Alloy, that takes a UML
class diagram, along with the associated OCL constraints, and translates this UML
model into a corresponding Alloy model specification. The sample instances gen-
erated by the Alloy Analyser then correspond to object diagrams from the UML
model. However, their tool does not provide any automated handling of the gener-
ated Alloy instances.

Several other researchers have used Alloy to analyse and reason about metamod-
els. For instance, an alternative definition of the UML metamodel is presented in

[NWO2]] and analysed using Alloy. Zito et al. use Alloy to formalise and analyse the
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package merge concept of the UML 2.0 metamodel [ZD06]]. Both these approaches
are similar to the one presented in this chapter in that they use Alloy to describe a
metamodel, as opposed to a model as with Anastasakis et al.. However, the main
focus of their research has been on the analysis of the UML metamodel. The work
described in this chapter is concerned with using Alloy to analyse a metamodel for

object-oriented software measurement.

4.3.2 Overview of the Analysis Approach

An overview of our approach is depicted in Figure d.3] In this figure, the system is
delineated by a dashed red line. The inputs to the system are the metamodel and its
constraints expressed as UML and OCL, and are shown on the left of the figure.

Both Octopus and Alloy are third-party tools used in our system. The
metamodels used in our measurement approach are represented as UML class di-
agrams in a format specific to the Octopus tool. Therefore, the UML2Alloy tool
used here is a re-implementation of the same tool of Anastasakis et al. [ABGRO7,
but specialised for Octopus. The process is almost fully automated, with user inter-
vention limited to providing the original UML/OCL description of the metamodel,
and examining the generated Alloy specification along with the instances of the
metamodel produced by Alloy. This is depicted by the green stick-figure in Figure
4.5l

There are three main steps in this process:

Instances |
Measure—
ment of
Metamodel Meta H
in Alloy Model |
Alloy Alloy/XML |2

Measr#éerﬁ Eclipse / |Converter
Metamodel | QOctopus  |ymL2Alloy
UML/OCL |t

Figure 4.5: Overview of the approach to analysing the MOF-compliant metamodel. The
elements in the system are enclosed by a dashed red line. The input, shown on the left, is
the metamodel and its constraints expressed using UML and OCL.
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Step 1: Expressing the metamodel in UML and OCL. This process is not au-
tomated, the metamodel is depicted as a class diagram using the UML profile for
MOF [[OMGO04], either directly in the Octopus format or using a standard UML
modelling tool that produces XMI which can then be imported into Octopus. The
OCL expressions for the metamodel are then loaded into Octopus. The resulting
model is then checked for correct use of the OCL syntax and metamodel elements

using the Octopus tool.

Step 2: Transforming the metamodel to Alloy. We have implemented a tool to
convert an Octopus UML/OCL metamodel to an Alloy model specification. Since
this tool mimics the operation of the UML2Alloy tool of Anastasakis er al. [ABGRO7]],
we have not given it a distinctive name. In what follows we briefly outline the trans-
formation approach. Each class in the metamodel is mapped to an Alloy signature.
All attributes of a class are mapped to fields of the corresponding Alloy signature.
Enumerators are mapped to abstract signatures in Alloy, with enumerator literals
mapped to sub-signatures that extend the abstract signature of the enumeration. The
associations in the metamodel are also mapped to attributes in the appropriate Alloy
signatures. Association multiplicities, 1, 0..1, 0..%, and 1..» map to the keywords
one, lone, set and some. An additional fact is generated in the Alloy specifica-
tion for bi-directional UML associations to show that the relations are symmetric.
The basic data types are mapped to equivalent signatures from the Alloy library. Fi-
nally, any constraints on the metamodel in the form of OCL invariants are mapped
directly to Alloy facts. At present, the OCL map does not cover the full language,

and requires some user intervention for more difficult constructs.

Step 3: Analysis of the metamodel. The Alloy Analyser is used to analyse the
Alloy specification to detect flaws in the metamodel specification. For example, it
can be used to generate Alloy model instances (or metamodel instances) that con-
form to the well-formedness rules of the metamodel. If an Alloy model instance
cannot be found then there is an inconsistency in the metamodel specification. It
is also possible to check if the metamodel is over-constrained by specifying certain
required properties and generating Alloy model instances that satisfy these proper-
ties. Similarly, the metamodel can be analysed to assess if it is under-constrained by
enumerating and exploring all possible Alloy model instances that can be generated

from the Alloy specification of the metamodel. This is useful to identify invalid
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metamodel instances i.e. instances that do not represent what the user intends their

metamodel specification to represent.

4.4 Development and Analysis of the Measurement
Metamodel

While the approach outlined in Section[d.3| will work for any MOF-compliant meta-
model, our original intention was the specification and analysis of a metamodel for
coupling and cohesion measurement. In this section we elucidate our approach us-

ing that measurement metamodel.

4.4.1 Applying the Approach to the Metamodel

As described in Section [4.3] the first step of our approach is to express the meta-
model in UML and OCL. As we were basing our metamodel on that of Briand et al.,
we began by expressing the concepts described by Briand et al.
as a class diagram and formalised any well-formedness rules that were expressed in
natural language by Briand et al.. An example of such a rule is that the set of all new,
overriding and inherited methods of a class are disjoint. We suspected that all these
constraints were not sufficient to describe our metamodel and thus added 15 more
constraints to the original set of 12 constraints to give a total of 27 well-formedness
rules. Once we had formalised all of the rules in OCL, we used Octopus to statically
check the OCL constraints and then translated the MOF-compliant metamodel and
its well-formedness rules to Alloy.

An example of the translation of UML classes to Alloy is shown in Figure {.6]
This figure gives the Alloy specification for the C1ass element of the measurement
metamodel which is defined in Alloy as a signature extending the Type signature.
The associations for a class are represented by fields, which are shown here in four
groups. These groups represent inheritance relationships, friendship relationships
(for C++), and the relationships with the class’ attributes and methods. Each at-
tribute of a class is either declared or implemented in that class. Each method is
either declared or implemented in the class, and is either a new, overridden or in-
herited method.

Furthermore, any constraints on the metamodel in the form of OCL invariants

were mapped directly to Alloy facts. An example of such a constraint is depicted
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sig Class extends Type
{
/% Inheritance x*/
parent: set Class,
child: set Class,

/* Friendship */
grants_friendship: set Class,
friend.of: set Class,

/+ Class — Attribute Relationships #*/
declared._att: set Attribute,
implemented._att: set Attribute,

/* Class — Method Relationships #/
declared.method: set Method,
implemented.method: set Method,
new_.method: set Method,

overridden method: set Method,
inherited.method: set Method

}

Figure 4.6: Alloy signature for the element Class of the measurement metamodel. This
is a representation of the element C1lass in the Alloy specification language.

in Figure 4.7} This invariant states that if a class does not have any parents then it
cannot have any overridden methods and maps to a fact in the Alloy specification.
To reduce the number of Alloy generated instances to be examined during the
analysis and test case generation stages we omitted the NamedElement concept
from the Alloy specification of the metamodel. We believe this does not effect the
generalisablity of our results as this element is only used for identification purposes
during software measurement and is not involved in any of the constraints of the
metamodel or metric definitions. The Alloy specification of the measurement meta-
model was then analysed to check if it was consistent and was neither under- or

over-constrained. The results of this analysis are discussed in the next subsection.

4.4.2 Analysing the Metamodel using Alloy

To perform the analysis, the Alloy Analyser was used to generate an instance of
the Alloy metamodel specification. The Analyser requires that a scope is specified

and then performs the analysis by exhaustively searching the state space for this
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—-— OCL Specification:
inv noParentsThenNoOverriddenMethods
self.parent->isEmpty () implies
self.overriddenmethod->isEmpty ()

—— Alloy Specification:
fact noParentsThenNoOverriddenMethods
all c:Class | c.parent = none implies
c.overridden_method = none

Figure 4.7: An example of a constraint on the measurement metamodel written in both
OCL and Alloy. This constraint states that if a class does not have any parents then it
cannot have any overridden methods.

scope. We specified a scope of 10 for all elements. The analyser searches for an
Alloy instance that contains at most 10 instances of each base class of the meta-
model and conforms to the well-formedness rules of the metamodel. An instance
was produced, thus demonstrating that the well-formedness rules specified for the
metamodel were consistent.

We then used the Analyser to search for invalid instances of the metamodel.
We specified a scope of 1 for the Alloy specification and manually inspected all
instances produced by the Analyser. Each time an invalid instance was found, we
added a fact to the Alloy specification to prevent that instance from being gener-
ated. For example, we found a metamodel instance where a class could inherit from
itself. On completion we had added 11 extra facts to the Alloy specification of the
metamodel resulting in a total of 38 facts.

Upon visual inspection of the 38 facts in the Alloy specification of the meta-
model, we suspected that a number of these were superfluous. For each of these
facts, we converted it into an assertion about the metamodel and then used Alloy to
check whether the assertion was valid. If the assertion produced a counterexample
then we knew that the constraint was required. If a counterexample could not be
found within a reasonable scope then it cannot be guaranteed that the fact is redun-
dant but it can increase our confidence that it is. Therefore, we assumed that the

fact was superfluous and omitted it from the specification. During this final anal-
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ysis, 25 facts were identified as potentially redundant and removed from the Alloy
specification. We also found that a further 2 facts were required to prevent invalid
metamodel instances, thus giving us a total of 15 facts in the Alloy version of the

metamodel.

4.4.3 Discussion

This approach relies on Jackson’s small scope hypothesis, which suggests that if
a bug exists it will appear in fairly small models of a system [Jac06]]. So, it is
possible our approach may not be applicable to larger metamodels as it may not be
feasible to manually inspect all instances of a large metamodel even for a relatively
small scope. However, in such a situation it may be possible to apply the approach
by partitioning and abstracting the metamodel into the parts that are related to the
properties being analysed.

Moreover, we are fully aware that this process is not a completely formalised
method for developing and analysing metamodels. However, we believe that this
approach gives the developer a formal way of analysing and checking for any sus-
pected deficiencies in their metamodel specification. By iteratively analysing and
improving the metamodel, the developer becomes more confident in their specifica-
tion.

Finally, it is important to note that this approach is not specific to a particular
metamodel. It is generally applicable to any MOF-compliant metamodel. In fact,
the approach is not restricted to metamodels but is applicable to any kind of model,

for example a UML class diagram of a UML model.

4.5 Automatic Test Case Generation for MOF Meta-

models

Section [4.3] outlined an approach to the analysis of MOF-compliant metamodels.
In this section we describe how this approach was extended to yield an approach
to the automatic generation of test data for any software application based or gen-
erated from a MOF-metamodel. We then describe an application of the test case
generation approach: the construction of a test suite for the automatically generated
measurement tool. We use this test suite as input to the measurement tool and use

a test oracle to determine whether or not the metric results produced by the tool are
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Figure 4.8: Overview of the approach to test case generation for a MOF-compliant meta-
model. The elements in the system are enclosed by a dashed red line. The input, shown on
the left, is the metamodel and its constraints expressed using UML and OCL. The outputs,
shown at the bottom, are the metamodel implementation and test instances in Java.

correct. As the test oracle had to be manually constructed it was neccessary that the
test suite satisfy the following properties:
1. Each test case should contain a relatively small number of elements.
2. The number of test cases in the test suite should also be relatively small.
3. The test suite should provide as much coverage of the implementation as pos-
sible.

4.5.1 Test Case Generation Approach

An overview of the approach is depicted in Figure f.8] As before, the inputs to the
system are the metamodel and its constraints expressed as UML and OCL, and are
shown on the left of the figure. The outputs of the system are shown on the bottom,
and consist of a Java implementation of the classes and elements of the metamodel
and its associated OCL constraints and queries, along with a test suite based on the
metamodel. These are linked through a coverage analysis, as described later in this
section.

The analysis approach of Section [f.3] was extended with three further steps:

Step 1: Generating a Java implementation of the metamodel. The metamodel

and its constraints are depicted using UML/OCL and Octopus is used to generate
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Java classes corresponding to the elements of the metamodel. The Octopus tool
generates Java classes for each UML class. All attributes and associations are cre-
ated as fields in the appropriate classes and Octopus creates several accessor and
mutator methods for each of these fields. Finally, Octopus creates methods that

check the constraints and multiplicities of the model.

Step 2: Generation of test cases using Alloy. The role of Alloy in our system is
twofold. First, it allows us to treat the Alloy specification of the metamodel as an
Alloy model and check for redundancies or errors in the metamodel specification
(see Sectionf.4). Second, it allows us to automatically generate valid instances of
the metamodel. For this step we created a Java harness to exploit Alloy’s model
instance finding capabilities. This harness reads an Alloy specification file and uses
Alloy to continually generate instances of the Alloy model until all possible model
instances have been generated. In our case these model instances correspond to
instances of the measurement metamodel. Every Alloy model instance produced

during this step is output and stored in XML format for future use.

Step 3: Transformation of metamodel instances to Java objects. One of the
central technical contributions of our system is the Reflective Instantiator, which
transforms the XML versions of Alloy-generated metamodel instances into instances
of the Java implementation of the measurement metamodel. The Reflective Instan-
tiator parses the XML produced by Alloy and creates instances of the Java classes
corresponding to the measurement metamodel elements using the class files gener-
ated in step 1. It does this using Java reflection, reading the class names from the
XML files and creating instances of these classes. The fields of these classes are set
by reading the fields from the XML and calling the appropriate set methods. It is
important to note that this process is not tied to any specific metamodel. Since the
Alloy specification and Java implementation of the metamodel are generated from
the same MOF metamodel, Java reflection can make the link between them with-
out having this information statically hard-coded. Therefore, this program is not

specific to the metamodel under consideration and can be used for any metamodel.
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Test No. of
Group | Alloy Command Test Cases

1 run show for exactly 1 Type, exactly 1 Attribute, ex- 40
actly 1 Method, exactly 1 FormalParameter, exactly 1
Invocation

2 run show for 1 217

3 run show for exactly 1 ... all classes listed 360

4 run show for exactly 2 Type, exactly 2 Attribute, ex- | > 528,152
actly 2 Method, exactly 2 FormalParameter, exactly 2
Invocation

Table 4.3: Groups of generated test cases. There were four main groups of test cases,
generated by varying the settings for Alloys model generator. The number of test cases in
each group is shown in the final column.

4.5.2 Test Case Generation for the Measurement Metamodel

Using our reflective instantiator we were able to automate the generation of a set of

test cases for the measurement tool. As we required models with a relatively small

number of elements we began by generating Alloy instances using a small scope.

Table[d.3]summarises the results of generating these test cases which are partitioned

into four different groups:

Group 1 consisted of all possible instances with exactly one instance of each base
class in our metamodel.

Group 2 is all possible instances where each base class is observed 0 or 1 times in
a metamodel instance.

Group 3 is similar to group 1 except that we defined a scope of exactly 1 for all
classes (not just base classes).

Group 4 again is similar to group 1 except that we allowed a scope of exactly 2 for
all base classes.

4.5.3 Testing the Implementation of the Metrics

We took the original UML/OCL specification of the metamodel which contained
27 OCL constraints and added the 13 additional constraints discovered during the
analysis detailed in Section #.4] From this updated UML/OCL specification we
generated a Java implementation containing 40 constraints in total. All of the test
cases summarised in Table .3 were used as input to our Reflective Instantiator. For

each model, the Instantiator built the instantiation, ran the code to check each of
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the 40 OCL constraints, and then systematically deconstructed each model to test
the element removal code. As each test model was built it was used as input to the
measurement tool and the values for all 44 metrics were recorded.

Since each generated constraint was checked for each test case, this provided
further assurance that the reduced set of constraints used to generate the Alloy
models instances was sufficient. Further, using such a large number of test cases
demonstrates the robustness of the measurement tool and was used as a smoke test
to ensure that the recorded values were within reasonable boundaries [McC96].
Based on the scope used to generate each of the groups in Table fi.3] we computed
the maximum and minimum values possible for each of the metrics. We then iden-
tified the models that produced metric values outside of these bounds. The results
of this smoke test are discussed later in this section.

Our original intention was to generate a test suite with a relatively small number
of test cases whose metric values could be calculated manually, serving as a test
oracle for the generated measurement tool. However, since the number of test cases
produced is in excess of 500,000, it is necessary to reduce this suite to a more
manageable size. We decided to measure the coverage of the implementation in
terms of traditional code coverage criteria and to reduce the number of test cases

based on these criteria.

Coverage Criteria

Code coverage is a measure of the extent to which the elements of an implementa-
tion have been exercised during testing, usually expressed as a percentage. There
are several coverage metrics that exist in the literature. We chose to use two well

used coverage metrics: line coverage and branch coverage.

e Line Coverage: Also known as statement coverage, this is a measure of how

many individual lines of code in an implementation have been executed dur-

ing testing [ZHM97]).

e Branch Coverage: This is a measure of how many conditional points in an

implementation have been executed during testing [ZHMO97]].

Mark Doliner’s Cobertura tool was used to measure these two coverage metrics
for the metamodel implementation and the implementation corresponding to the

metrics. Cobertura is a free Java tool that computes the percentage of code executed
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by a set of inputs or test cases [[Doll]. It works by instrumenting the bytecode with
extra statements that record the lines and branches of the Java implementation that
are covered as the code executes.

Cobertura creates a coverage report in HTML or XML format showing the per-
centage line and branch coverage for each package, class, method and lines of code
of the implementation. Using the HTML report it is possible to see exactly which
lines of code have not been executed during testing. These lines are highlighted in
red. This makes it possible to identify the parts of the implementation that have not
been exercised during testing. This information can then be used to create further

tests to target the uncovered parts of the implementation.

Coverage Results

It was not possible to achieve full line and branch coverage of the implementation
for several reasons, summarised in Table #.4] Since our test suite only included
positive test cases, code that involves catching exceptions when the invariants of
the metamodel are violated was not fully covered. Some auxiliary routines, such
as alternative set and get methods and constructors were not called in constructing
the model. For simplicity, the part of the metamodel dealing with method pointers
was not instantiated in Alloy, significantly reducing the number of models created.
Thus, excluding these totals from our target coverage gave a maximum possible
coverage of 79% for line and 92% for branch coverage.

The results of the coverage analysis is summarised in Table .5 on a per-group
basis. This table has one row for each of the test case groups described previously in
Table [d.3] The data in each case represents the percentage coverage for each of the
two coverage criteria. Each row describes the percentage coverage of the measure-

ment metamodel implementation (MM), the metrics implementation (Metrics) and

Reason for exclusion Line | Branch
Negative test cases 11% 1%
Extra auxillary methods 7% 3%
Passed-as-Pointer Association | 3% 4%

’ Total excluded ‘ 21% \ 8%

Table 4.4: Line/Branch coverage excluded from the coverage targets. This table lists
three kinds of code excluded from the coverage targets, along with the percentage of
lines/branches for each kind.
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Test | Cum. Line Coverage | Cum. Branch Coverage
Group| MM Metrics All | MM Maetrics All
1 45% 75% 54% | 56% 66% 59%
2 50% 75% 57% | 63% 66% 64%
3 50% 75% 57% | 63% 66% 64%
4 70% 99% 79% | 89% 99% 92%

Table 4.5: A breakdown of the metamodel coverage for each of the test groups in Table
B3| The numbers presented for each group represent the cumulative coverage achieved,
including the previous test groups.

the combined percentage coverage (All). Furthermore, each row represents cumu-
lative coverage; for example, the line coverage value of 57% for group 2 includes
the 54% line coverage achieved by group 1. As can be seen from Table {.5] the

smaller test suites exhibit relatively poor coverage.

Test Oracle Construction

In this subsection we consider the construction of a reduced test suite that achieves
the maximum coverage criteria possible for use in constructing a test oracle for the
measurement tool.

A number of techniques exist that can reduce test suites based on various con-
straints. For example, Harrold et al. outline techniques for test suite reduction and
prioritisation based on coverage criteria [HGS93]. However, since our test cases
were being generated by Alloy roughly in order of size, a simpler approach was
taken to test suite reduction:

1. As each test case is executed, the cumulative coverage of both criteria is

recorded.

2. Any test case that causes an increase in any one of the two coverage figures

is added to the reduced suite.

3. This process is continued until either the maximum coverage has been achieved

for both criteria or until all test cases have been examined.

In general this process will not perform as well as that of Harrold et al., but
it is much simpler to implement. Applying this technique to the test cases, we
generated a reduced test suite of 14 unique test cases. Table 4.6 lists the cumulative
coverage data for each of these cases, labeled T1-T14. Three of these cases (T1-
T3) originated from group 1, three (T4-T6) from group 2, and eight (T7-T14) from

group 4. It may appear that some of these test cases do not cause an increase in
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Test | Cum. Line Coverage | Cum. Branch Coverage
Case | MM Metrics All | MM Metrics All
Tl 40% 69% 49% | 50% 58% 52%
T2 | 45% 75% 54% | 56% 66% 59%
T3 | 45% 75% 54% | 56% 66% 59%
T4 || 49% 75% 57% | 62% 66% 64%
TS || 49% 75% 57% | 63% 66% 64%
T6 | 50% 75% 57% | 63% 66% 64%
T7 | 66% 94% 75% | 85% 93% 87%
T8 66% 94% 75% | 85% 93% 87%
T9 | 67% 95% 75% | 89% 94% 88%
T10 || 69% 95% 77% | 89% 94% 90%
T11 || 69% 95% 77% | 89% 94% 90%
T12 || 70% 98% 78% | 89% 98% 92%
T13 || 70% 99% 79% | 89% 99% 92%
T14 || 70% 99% 79% | 89% 99% 92%

Table 4.6: Test cases in the reduced test suite. This table lists the 14 test cases in the
reduced suite, along with the cumulative coverage figures for the two coverage criteria.

coverage figures, for example T3, T10 and T12. This is because the coverage figures
in Table 1.6 have been rounded to the nearest whole number and any increases in
coverage by a fraction of a percentage are not be reflected.

The 14 test cases almost achieved the maximum coverage possible. By inspect-
ing the HTML report from the Cobertura tool we were able to identify 9 lines of
code that had not been covered by the reduced test suite. On further analysis of
these lines of code we identified them as belonging to the ICP and NIH_ICP metrics
in the Coupling metrics set. To cover these remaining 9 lines of code required a

model with the following properties:

e aclass with a method that polymorphically invokes one of its ancestor’s meth-

ods

e a class with a method that polymorphically invokes at least one method that

is not in the set of new or overridden methods of that class

We then used Alloy to generate a valid metamodel instance to cover these situa-
tions. This was achieved by adding a fact to the measurement metamodel that stated
that the above properties must hold true for the metamodel. This model was added
to our test suite and increased the coverage to the maximum value possible of 79%

for code coverage and 92% for branch coverage.
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The 15 test cases were then used to manually create a test oracle for the mea-
surement tool. All 44 metrics were calculated by hand and recorded for each of the
15 test cases. The results of these metric calculations for each of the 15 models
can be found in the supplementary material accompanying this thesis. We com-
pared these values with the actual values computed by the measurement tool. In the
next subsection, we briefly discuss the results of this along with the results from the

smoke test.

4.5.4 Discussion

Using the above procedure we uncovered 6 bugs in the measurement tool. Four of
these were detected by the smoke test and 2 with the test oracle. During the smoke
test, it was discovered that several of the metric definitions (Co, NewCo, LCOMS,
COF, TCC and LCC) do not take into account situations that result in a division by
0. This resulted in the implementation of these definitions either throwing an excep-
tion or reporting the value as NaN indicating the result is not a number or as either
+/-Inf indicating the result as plus or minus infinity. Rather than modify the
original definitions we chose to record the invalid value that was computed for the
metric and leave the decision to the user on how to interpret it. This demonstrates
an important feature of the measurement approach, it allows metric definitions to be
easily implemented and tested which helps to identify shortcomings with the defini-
tions before they are presented in the literature. A bug was also found that resulted
in incorrect values being computed for two of the cohesion metrics. The metrics
LCOMI1 and LCOM2 both use the same OCL auxiliary operation to compute the
set of method pairs in a Class. It was discovered that the OCL operation was
counting each method pair twice and thus resulted in values outside of the expected
bounds for the metrics. This error was corrected at the OCL level. A coupling met-
ric, COF and a cohesion metric Co also produced values outside of the expected
bounds for these metrics. The cause of these two bugs were identified as misplaced
brackets in the generated code corresponding to the metrics. This bug was corrected
at the OCL level.

The two bugs uncovered using the test oracle were found in the cohesion met-
rics, NewCo, LCOM3 and LCOM4. These bugs were traced back to errors in the
OCL definition of the metrics i.e. the metric definitions had been incorrectly spec-

ified in OCL. Once all the bugs in the OCL were corrected, the measurement tool
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was regenerated. The measurement tool was tested again using the smoke test and
test oracle.

In summary, we were able to partition the types of errors we found into three
categories. The first category are bugs that are a result of the metric definitions
themselves. For, example when a metric has no provision for a division by 0. The
second category, are those introduced in the OCL where the definition has been
incorrectly specified, for example an omission in the OCL definition. The last cat-
egory consists of errors introduced by Octopus in transforming the UML/OCL to
Java, for example a misplaced bracket. Overall, our experience found this to be a
relatively simple and effective way of increasing our confidence in the correctness

of the automatically generated measurement tool.

4.6 Summary

In this chapter we presented an approach to analysing MOF-compliant metamod-
els. We also presented a measurement metamodel for coupling and cohesion metrics
based on the work of Briand et al. and described how we used our approach to con-
struct and analyse the metamodel. The metamodel and well-formedness rules were
expressed in UML and OCL and a Java implementation and Alloy specification of
the metamodel were generated by third-party tools. We used the Alloy specification
to examine and validate the metamodel constraints, and to generate instantiations of
the metamodel.

We defined a set of existing coupling and cohesion metrics using the measure-
ment metamodel and used dMML to automatically generate a measurement tool for
these metrics. We used Alloy to automatically generate all possible instances of the
measurement metamodel for a relatively small scope. We implemented a reflective
instantiator to transform these Alloy generated models into an instantiation of the
Java implementation of the metamodel, thus creating a test suite for the automat-
ically generated measurement tool. Finally, we evaluated the adequacy of the test
suite using traditional code coverage criteria.

We identify the principal contributions of this chapter as:

e An approach to the analysis of MOF-compliant metamodels that is sup-

ported by an integrated tool framework.

e The development and analysis of a MOF-compliant metamodel for coupling
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and cohesion metrics, based on the work of Briand et al., and the elimination

of redundant constraints in that metamodel.

e The automation of the generation of metamodel instances from a UML/OCL

specification that can be used as test data for metamodel-based software.

e A coverage-based analysis of the Alloy-generated test suite in terms of tra-
ditional code coverage, thus “completing the circle” between lightweight for-

mal methods and standard software testing techniques.
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Chapter 5

Testing Model Transformations for

the Measurement Metamodel

This chapter completes the measurement approach by introducing support for

model transformations and transformation testing.

5.1 Introduction

The measurement approach presented in this thesis is centered on developing a set
of model transformations from one modelling language, such as UML or Java, into
the measurement metamodel. Hence, in order to ensure the correctness of the re-
sulting metrics it is important that the model transformations are correct, that is the
target models produced by the transformation implementation are correct with re-
spect to the model transformation specification [[Lam07]]. The work in the previous
chapter has dealt with ensuring the correctness of metamodels and in particular the
measurement metamodel; in this chapter we are concerned with testing and validat-
ing model transformations.

One important aspect of software testing is determining the degree to which the
test cases used in testing exercise the system under test [Bin0Q]. Since metamodels
can be implemented (often automatically) in program code, applying coverage mea-
sures to this generated code provides one means of measuring metamodel coverage.
This approach was taken in the previous chapter where line and branch coverage

were used to evaluate coverage for an implementation generated by the Octopus
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tool [MPO8b]. While this approach has the advantage of simplicity, it is rather indi-
rect, and depends to some degree on decisions made by the code generator.

A number of coverage measures for class diagrams are defined by Andrews et
al. and used by Fleurey er al. to develop a test suite for a model trans-
formation [ESB0O4]]. The advantage of this approach is that coverage is calculated
directly on the metamodel; a disadvantage is that the role of coverage criteria at the
UML level is not as mature a field as coverage at the programming level. Both of the
above approaches, using program and UML based measures, rely on generating a
test suite that adequately covers the input domain of a transformation, as defined by
the input metamodel, or a relevant subset. However, there is little work on directly
considering the coverage of the transformations themselves.

In this chapter, we describe a generally applicable approach to testing model
transformations where the target model is a measurement metamodel instance. We
also present details of two model transformations, one that converts UML class di-
agrams into instances of the measurement metamodel described in Chapter ] and
one that converts Java programs into instances of the measurement metamodel. We
address the problem of transformation testing by focusing on developing a set of
coverage measures for model transformations and report on our experience of ap-

plying this approach to our model transformations.

5.2 Model Transformation Languages

In this section we describe the development of the final part of the measurement ap-
proach which incorporates a model transformation language into the approach and
provides tool support to perform the transformations. Many languages and tools
have been proposed to specify and execute model transformations, each of which
take a different approach to transforming the source model to the target model.
In order to choose a transformation language to incorporate into the measurement
approach we set out a list of requirements for the transformation language and
tool based on the important characteristics of transformation languages outlined by
Mens et al. [MGO6]). These requirements include being compliant with the relevant
standards including MOF, EMF and QVT and having support for fully automating
the model transformation process. In total, 17 languages and tools were evaluated

according to the our criteria and the results of this evaluation are summarised in
Table B.T] of Appendix
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After the examination of these transformation languages we made the pragmatic
decision to choose the Atlas Transformation Language (ATL) [JKO03L [ATT]] as it was
one of only a few languages that satisfied all the requirements that were set out.
Also, from the set of languages satisfying all the criteria, ATL is one of the longest
established transformation languages, has a large user community and has a rich
selection of sample ATL transformations to avail of which are stored as a collection

of transformations referred to as a transformation zoo [[Eclal].

5.2.1 The Atlas Transformation Language

The ATL has been developed by the ATLAS INRIA and LINA research group in
response to the OMG MOF/QVT RFP [OMGQ2]]. ATL is not fully QVT compliant
but does support a large number of the QVT requirements such as compatibility with
MOF, XMI, and the use of the OCL for navigation and as such it is is referred to as a
QVT-like language. It is a hybrid transformation language which means that it pro-
vides both declarative and imperative constructs for writing transformations. Users
write the transformations by defining rules that specify how elements in the source
model are transformed into elements in the target model by referencing elements in
both the source and target metamodels. ATL is not just a model transformation lan-
guage but is supported by a set of development tools including an editor, a compiler
and a virtual machine, all of which are supplied as an Eclipse plug-in. To perform
a transformation written in ATL a user supplies the transformation definition, the
source and target metamodels in MOF or Ecore format. The ATL engine performs
the transformation to produce the target models [JKO03] [ATL).

An example of an ATL model transformation is given in Figure [5.1] This is a
simplified version of the FamiliesToPersons transformation from the ATL website
[ATL]]. The aim of this transformation is to convert a list of families into a list of
people. The source and target models of this transformation are shown in Figure[5.2]
The source metamodel, shown on the left of the figure models a family, consisting
of members that have a first name. The target metamodel shown on the right of the
figure models a Person as having a name and being either male or female.

The ATL transformation definition is composed of three parts, a header, the
helpers and the rules. The header declares the name of the transformation and de-
clares variables for the source and target models ("IN and OUT”) and the meta-

models of the source and target models ("Persons” and “Families”). Helpers are
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module
create

helper

from

to

Figure 5.1:

Families2Persons;

OUT : Persons from IN : Families;
context Families!Member def: isFemale() : Boolean =
if not self.familyMother.oclIsUndefined() then
true
else
if not self.familyDaughter.oclIsUndefined() then
true
else
false
endif

endif;

rule Member2Female {
Families!Member (s.isFemale())

Persons!Female (
fullName <- s.firstName

The sample FamiliesToPersons ATL transformation. This piece of ATL code

shows a sample transformation that convert a list of families into a list of people and consists
of a transformation rule and a helper operation.

+familyFather +father Person
f 0..1 1 .
Family +fanilyMother +mother Member name: String
lastName: String 0..1 . U firstname: st ring
+familySons +50NS
familyDaughters 0..1 *
0..1 I I
+daughters
* Male Female
(a) (b)

Figure 5.2:
This figure sh

The source and target metamodels of the FamiliesToPersons Transformation.
ows the metamodel Families used as the source metamodel in the transforma-

tion and the metamodel Persons used as the target metamodel of the transformation.

auxiliary functions that return information about the source model and their main

purpose is to facilitate code re-use. The FamiliesToPersons transformation contains
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a single helper, isFemale () which queries a Member instance in the source
model and returns true if it plays the role of mother or daughter in a relation-
ship with a Family instance.

Rules are core to ATL transformations as they describe how elements of the
target model are created from elements of the source model. In this example,
Member2Female, specifies that a Fema 1l e instance in the OUT model is to be cre-
ated for every Member instance in the TN model where the i sFemale () helper
returns true for that Member instance. The rule also specifies that the fullname

of the created instance is set to the £irstName of the Member instance.

5.2.2 Integrating ATL with dMML

Figure [5.3| presents an overview of our final measurement approach which incorpo-
rates the ATL model transformation language. The inputs to this system, shown on
the left of Figure[5.3]are a set of source models written using a modelling language,
and the output, shown on the right, is a set of metrics for those models.

Each source model, for example a UML class diagram or Java program is used
as input to the ATL tool in Ecore format as an instance of its language metamodel.
This ATL tool has been adapted to run in stand-alone configuration (i.e. from the
command-line) to facilitate the iteration and automation of the process and to allow
metric calculations to be executed in batch. The source models, presented as in-

stances of the language metamodel, are transformed using a model transformation,

Measumrgr:t Metric
Metamodel | |Definitions

UML/OCL ocL

Modelling Model Measure— l/ l/

Language | : ment : Metric
: Trans— Measurement .
——= dMML/ BN
Metamodel | formation Metamodel et Tool : Results

Ecore ATL Ecore
Reflective
—= ATL — | Instances ——=||nstantiator Instances
Software | Standalone of of
: Measure— Ecore2Java
Model : ment ment
Metamodel Metamodel
Ecore . Ecore Java

Figure 5.3: Overview of the aproach used to calculate metrics for class diagrams. The
input to the system is a UML class diagram, and the outputs are the metrics for the UML
model. The system itself is delineated by a dashed box.
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written in ATL, to instances of the measurement metamodel in Ecore format. Recall
that for AIMML to work for other languages, in this case Ecore, a tool must be con-
structed to convert instances of the metamodel in Ecore format to Java instances for
import into the automatically generated measurement tool. This tool has been con-
structed as a reflective instantiator by reading the class names and attributes from
the Ecore/XMI file and using Java reflection to create instances of these models.
These Java instances of the measurement metamodel are used as input to the tool
that calculates the metrics. The metrics themselves have been specified as OCL
queries over the measurement metamodel, and the tool to calculate them has been
automatically generated as a Java program.

The important point to note here is that the approach shown in Figure [5.3] is
designed to be reusable for different source metamodels, so that metric calculations
can be performed using the same definitions. To calculate metrics for any model,
such as a UML class or sequence diagram or program code, the only requirement is
to be able to construct an ATL model transformation to plug in to the approach.

We have used this approach to calculate metrics for UML class diagrams and
Java programs by writing transformations to convert class diagrams and Java pro-
grams to instances of the measurement metamodel. The UMLClassDiag2Measurement
transformation and the Java2Measurement transformation are presented in the fol-

lowing sections.

5.3 Measurement of UML Class Diagrams: The UML-

ClassDiag2Measurement Transformation

In Chapter 2] we introduced the basic concepts of model transformations. In this
section we describe the formulation of the UMLClassDiag2Measurement transfor-

mation from the UML metamodel to the measurement metamodel.

5.3.1 Source and Target Metamodels
Source Metamodel

The source metamodel in the transformation is the UML 2 metamodel [OMGO7bl].
This metamodel specifies the constructs that may be used in a UML model and the

relationships between these constructs. For example, the part of the UML meta-
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model that is specific to class diagrams defines the concepts of class, property and
operation and states that a class includes properties and operations. The implemen-

tation of the UML 2 metamodel provided by the Eclipse UML?2 project was chosen
[Ecle]).

Target Metamodel

The target metamodel in the transformation is the measurement metamodel that has

been presented in Chapter 4]

5.3.2 The Transformation Rules

The UMLClassDiag2Measurement transformation was written in 230 lines of ATL
code composed of 10 transformation rules and 22 helpers. A number of the transfor-
mation rules are reasonably straightforward to specify, since the source and target
metamodels have a number of elements in common. For example, classes and gen-
eralisations in a UML class diagram are mapped to class elements and parent/child
relationships in the measurement metamodel. The UML metamodel contains a
number of “similar” elements. However, these elements do not exist as distinct
elements in the measurement metamodel so the decision was taken to map them
to the same element of the measurement metamodel. For example, association
classes and interfaces are both mapped to classes in the measurement metamodel.
In some cases, elements are slightly re-interpreted; for example UML enumerations
and data-types are mapped to user-defined types in the measurement metamodel,
and UML primitive types correspond to “built-in” types in the measurement meta-
model.

However, the measurement metamodel also makes distinctions that are not ex-
plicitly present in UML class diagrams. For example, the measurement metamodel
requires that the methods in a class be categorised as constructor, destructor, ac-
cessor, mutator or general methods, since the kind of method can have an im-
pact on coupling and cohesion metrics. The approach taken in the UMLClass-
Diag2Measurement transformation was to identify and categorise such methods
syntactically, based on standard naming conventions. For example, if a method
has a name that begins with “get” followed by the name of an attribute of a class
and it has a return parameter that is the same type as that attribute it is categorised

as an acCcessor.
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The measurement metamodel also requires that we introduce a distinction be-
tween methods based on whether they were new, inherited or overridden. Thus
overridden operations are identified in the UML context as operations that belong
to a class which has an ancestor with an accessible operation with the same name
and signature. Similarly, inherited operations are selected from the inherited mem-
bers of the class and any operations that are identified as overridden are removed
from this set. All other operations are identified as new operations. The declared
and implemented methods of a class can be determined from the new, overridden
and inherited methods.

While writing the transformation it was decided to make use of derived attributes
as they are already implemented in the UML2 metamodel. While it would be possi-
ble to re-implement this functionality in the ATL transformation, it seemed logical
to reuse definitions that were already part of the target metamodel. From a test-
ing point of view this could be problematic, since if we find an error in the model
transformation it could be either in our ATL code or in the computation of de-
rived attributes in the UML metamodel. For our purposes we will assume that the
UML metamodel implementation is correct and make use of derived attributes in
the transformation rather than write more complicated transformations using only
non-derived attributes.

The final decision that was required was regarding mapping UML associations
and other UML relationship types such as dependency, usage, abstraction and sub-
stitution, since there are no corresponding concepts in the measurement metamodel.
We made the decision to map association ends of associations to attributes in the
measurement metamodel if and only if these ends are navigable. The owner of the
attribute is the class on the opposite end of the association. All other relationships
are ignored as we cannot guarantee that the different relationships mean that there
will be an attribute created in the owning classes.

Any properties that belong to a class are also mapped to attributes in the mea-
surement metamodel. An example of this transformationrule FieldProperty2-—
Attribute is given in Figure [5.4] This rule specifies that a property is trans-
formed into an attribute if that property belongs to a class rather than an association.
This rule means that for each property in the source model an attribute is created
in the target model provided the guard of the rule evaluates to true. The guard is
defined using the helper function i sField. This helper returns true if the owner

of the property is a class, interface or association class. In the case of the property
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rule FieldProperty2Attribute {
from
p : UML!Property(p.isField())
to
a : MeasurementMetamodel!Attribute (
name <- p.name,
type <- p.type

}
—— Returns true if the property is a field in a Class, Interface
—-— or AssociationClass, and returns false otherwise
helper context UML!Property def: isField() : Boolean =
if self.owner.oclIsTypeOf (UML!Class) then
true
else
if self.owner.oclIsTypeOf (UML!Interface) then
true
else

if self.owner.oclIsTypeOf (UML!AssociationClass) then
if self.owningAssociation.oclIsUndefined() then
true
else
false
endif
else
false
endif
endif
endif;

Figure 5.4: Example of a transformation rule in ATL. This piece of ATL code shows a
transformation rule, FieldProperty2Attribute, and an associated helper opera-
tion called i sField.

being owned by an association class an additional check is performed to ensure that
the property is not an association end. In all other situations the helper returns false.
The name and type of the newly created attribute is set using the name and type of

the attributes matching property in the source model.
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5.4 Measurement of Java programs: The Java2Measurement

Transformation

In this section we describe the formulation of the Java2Measurement transformation

from the Java programs to the measurement metamodel.

5.4.1 Source and Target Metamodels
Source Metamodel

The source metamodel in the transformation is a metamodel for the Java language.
Since our transformations are based on EMF metamodels we needed an EMF meta-
model for Java. We choose to use the Java metamodel provided by the SpoonEMF
project [NDOS§]|. Spoon is a project that provides a core API and tool support for
static analysis and generative programming in Java 5 and 6. Spoon-EMF provides
an EMF compliant metamodel equivalent to the Spoon API and can be used to con-

vert a complete Java implementation into a single XMI file containing an instance

of the metamodel MJICHOS]].

Target Metamodel

Again, the target metamodel in the transformation is the measurement metamodel

presented in Appendix [A]

5.4.2 The Transformation Rules

The Java2Measurement transformation was written in 249 lines of ATL code com-
posed of 11 transformation rules and 29 helpers. Again several of the transfor-
mation rules are reasonably straightforward to specify, since the source and target
metamodels have a number of elements in common. Classes and interfaces in the
Java metamodel are mapped to classes in the measurement metamodel. Elements of
type “built-in” are created in the measurement metamodel from TypeReference
elements of the Java metamodel where the name of the TypeReference is one
of Java’s built in types e.g. £1oat, int or the String class.

The child/parent relationship for a class in the measurement metamodel is re-
solved through the superclass and superinterface relationships of that

classes corresponding element in the Java metamodel. The superclass and
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superinterface relationships resolve to TypeReference elements of the
Java metamodel. The TypeRe ference element does not have a link to the Type
element (e.g. class or interface) in the Java model that it references but only stores
the name of the Type. These superclasses and superinterfaces of the class need to
be resolved by looking at all classes and interfaces in the Java model and choos-
ing the class or interface that has the same name as the name specified in the
TypeReference element.

Two rules are required for transforming a Field in the Java metamodel to an
Attribute of the measurement metamodel. The first one is for attributes or fields
that have a type that resolves to “built-in” type and the other is for those attributes
that have a type that resolves to something other than a “built-in” type. The type
is resolved through the TypeReference associated with the Field element.
Again the TypeReference element does not have a link to the Type element in
the Java model that it references but only stores the name of the Type. Therefore,
the type of the attribute is resolved by examining all the classes and interfaces or
all the primitive types in the Java model and choosing the class, interface or prim-
itive type that has the same name as the name specified in the TypeReference
element. Finally, the rules for determining the methods that reference the field or
attribute are the same in both cases. This is done by examining all FieldAccess
elements in the Java model and choosing those that access the field under consid-
eration. Then for each of these FieldAccess elements, the method in which it
occurs is resolved by traversing up the parent hierarchy until the owning method is
reached.

Although the Java metamodel makes distinctions between constructors and meth-
ods, both these elements are mapped to methods in the measurement metamodel.
Figure [5.3] shows the transformation rule used to convert constructors of the Java
metamodel to methods of the measurement metamodel along with two helpers re-
quired by the transformation rule. The constructor element in the Java metamodel
does not have a name attribute but this can be derived from the name of the class that
owns the constructor. The i sAbstract and isPublic attributes of the method
are set using the i sAbstract () and isPublic () helper functions. These two
functions check the Modifiers association of the constructor to determine if it
includes the abstract or public enumeration literals. The type of the method cre-
ated in the measurement metamodel is set to be a constructor. The type of all other

methods created in the measurement metamodel are identified syntactically, simi-
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rule Constructor2Method {
from
javac : Java!CtConstructor
to
mm : Measurement !Method (
name <- javac.Parent.SimpleName,
param <- javac.Parameters,
isAbstract <- javac.isAbstract (),
isPublic <- javac.isPublic (),
type <- # constructor

)
}

—-— Determines 1f the method in the Java model is public
helper context Java!CtExecutable def: isPublic() : Boolean =
self.Modifiers—->includes (# public);

—-— Determines 1f the method in the Java model is abstract
helper context Java!CtExecutable def: isAbstract () : Boolean =
self.Modifiers—>includes (# abst);

Figure 5.5: Example of a transformation rule in ATL. This piece of ATL code shows
a transformation rule, Constructor2Method, and two associated helper operations
called i sAbstract and isPublic.

lar to how we categorised methods in the UML2ClassDiagMeasurement transfor-
mation in Section [5.3] Methods are also categorised according to new, inherited,
overridden, declared and implemented using the same rules as those outlined in the
UMLClassDiag2Measurement transformation. Parameters are mapped to formal
parameters in the measurement metamodel and their type resolved using a similar
approach to how the type of an attribute is resolved.

Elements that were not present in the UMLClassDiag2Measurement transfor-
mation are method invocations and calls to constructors. Invocations in the mea-
surement metamodel map to invocations in the measurement metamodel only if
the method being called is present in the Java model, thus ensuring the callee of
the invocation can be resolved. The callee of the invocation is identified from the
ExecutableReference element of the invocation. However, as the Executable—
Reference has no link to the Executable element (i.e. method or constructor)
that is being referenced or called, these Executalble elements (methods and con-

structors) need to be resolved by looking at all methods and constructors in the Java
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model and choosing the correct one based on criteria such as name and parameter
list which is specified in the ExecutableReference element. The caller of
the invocation is identified by traversing up the parent hierarchy of the invocation
to identify the method that the invoction belongs to. The type of the invocation is
determined from the St at ic attribute of the ExecutableReference element.
Calls to constructors are represented by their own entity NewClass and are only

transformed to an invocation if they appear inside a method.

5.5 Transformation Testing

As described in the previous two sections, writing the ATL transformations involved
making a number of distinctions between elements in the source model and the tar-
get model, leaving considerable scope for error. Therefore, we tested our transfor-
mations on a number of UML class diagrams and Java programs and, in this section,
we describe the approach used to test the transformations and discuss the coverage

measures used to ensure that the test suites were adequate.

5.5.1 ATL Coverage Criteria

An ATL transformation includes rules to match elements in the source model as
well as instructions to build the elements in the target model. By analogy with
a standard grammar-based model such as that used in a yacc/bison file, the ATL
transformations include both the rules to match the input and actions to build the
output. Based on this analogy, we posit that concepts of coverage in an ATL trans-
formation should include rule coverage for the matching part, and traditional code

coverage for the generation part. Thus we define:

Rule Coverage. This is analogous to rule coverage in a grammar [Pur72]: it is
simply the percentage of rules that were executed at least once during a trans-

formation.

Instruction Coverage. This is analogous to line coverage in a high-level language
, with the additional benefit that formatting and layout do not effect the
totals. The instruction coverage for a set of transformations is the percentage

of instructions that were executed at least once during the transformation.
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Branch Coverage. This measures, for each branch in a program, whether the true
and false paths were taken. Thus each branch contributes a figure of 0, 1 or
2 to the total coverage, depending on whether neither branch, just one branch

or both branches were taken at any stage during the transformation.

In order to calculate the rule, instruction and branch coverage of an ATL trans-
formation it is necessary to profile the operation of each ATL rule as the transfor-
mation takes place. Fortunately the design of the ATL system provides two useful
features that facilitate this. First, the ATL rules are actually executed on top of a
special-purpose virtual machine [JAOG]. Second, it is possible to run the ATL sys-
tem in debug mode which prints out a step-by-step execution log of instructions on
this virtual machine.

The ATL virtual machine is similar in concept to the Java Virtual Machine
(JVM) which greatly eases comprehension. It has instructions to access and cre-
ate model elements, to manipulate data on the stack, and control instructions for
selection, iteration and method calls. Thus, to measure coverage of ATL transfor-
mations we have implemented a program or Coverage Analyser that works in two

phases:

1. First, we process the file of compiled ATL instructions (represented in XML
format) to extract information about the rules or operations, instructions and

branch locations and targets

2. Second, we run the transformation and process the resulting log file to record

the actual coverage data for that transformation.

We now describe how the three coverage criteria are measured from the log
file. Each transformation rule is represented as an operation in the compiled ATL
file and is executed on the ATL virtual machine. Therefore, implementing rule
coverage involved tracking and recording the calls to the operation corresponding to
each rule. The log file produced by running the transformation lists each instruction
as it is executed, so it is relatively straightforward to measure this coverage as each
instruction corresponds to a line in the ATL transformation file. Branches in an ATL
transformation are represented by IF and ITERATE instructions in the compiled ATL
file, and whether they evaluated to true or false can be determined from the log file.
For the ITERATE instruction, evaluation to true or false corresponds to iterating over

an empty or non-empty collection respectively.
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Figure 5.6: Overview of the approach used to test our model transformation. The input to
the approach is the set of source models and the model transformation and the output is a
tested model transformation.

These coverage criteria can then be used to evaluate the adequacy of any test
suite used when testing model transformations. Since our measurement approach
is concerned with transforming software models to instances of the measurement
metamodel, in the next section we outline a strategy for testing model transfor-
mations where the target model is a measurement metamodel instance and use the

coverage criteria outlined here to ensure that the test suite used is adequate.

5.5.2 Testing Strategy

An overview of the strategy to testing model transformations is depicted in Figure
[5.6] Each source model, in our case a UML class diagram or Java program, is used
as input to the standalone ATL tool. A successful transformation produces two out-
puts, an output model which is an instance of the measurement metamodel in Ecore
format and an execution log which is processed to extract coverage information.

For the transformation to be correct the following two criteria must be satisfied:

1. The output model should conform to the measurement metamodel.

2. The calculated metrics for the output model should be the same as the metrics

for the source model.
Testing the model transformation is a three step process:
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Step 1: Checking Metamodel Conformance:. After a set of input models or
test suite are put through the transformation the output models that are produced
are checked to ensure they are well-formed according to the OCL constraints for
the measurement metamodel. If any constraints are violated then these constraints
are inspected and the information is used to identify errors in the transformation.
These errors are then corrected and the input models are put through the corrected
transformation. This process is repeated until all output models conform to the

measurement metamodel.

Step 2: Coverage Analysis:. When all output models conform to the measure-
ment metamodel constraints the next step is to examine the transformation cover-
age. The execution log produced during the transformation execution is used as
input to our Coverage Analyser tool which determines and records the Rule, In-
struction and Branch coverage for the test-suite as described earlier in this section.
If full coverage has not been achieved then the output from the coverage analyser is
used to determine the parts of the transformation that have not been exercised and
this information is used to create further source models to cover these items. These
models are added to the test suite and the testing process returns to Step 1. How-
ever, if full coverage has been achieved then the second correctness criteria can now
be checked; the metric values produced for the output models must be the same as

those for the input models.

Step 3: Test Oracle Construction:. This step involves the construction of a test
oracle for the measurement tool. The test oracle consists of a set of known metric
values for each of the input models in the test suite. This test oracle is constructed
by calculating and recording the correct metric values for each input model. The
results produced by the measurement tool for the output models are then compared
with the correct results for the equivalent input model. At present this is all done
manually; this is feasible as long as the input models, in this case the class diagrams

and Java programs are kept to a reasonable size.

5.6 Testing the Model Transformations

In this section we present the results of applying the testing strategy presented in

the previous section and depicted in Figure[5.6|to the UMLClassDiag2Measurement
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the Java2Measurement transformations.

5.6.1 Testing the UMLClassDiag2Measurement Transformation
Test Suite

In order to test the transformation we first had to construct a test suite. To achieve
this we gathered a set of UML class diagrams to use as a set of test cases. The test
cases used in our study were taken from the Eclipse UML2 Tools project, an Eclipse
project that aims to provide a set graphical editors that can be used to view and edit
UML?2 models [Eclfl]. To demonstrate the capabilities of the UML2 Tools project
20 sample class diagrams from the UML 2.0 metamodel specification [OMGO7b]]
have been implemented using UML2 Tools. These 20 diagrams exercise the various
features of the class diagram part of the UML metamodel. Each of these class
diagrams is described briefly in Table[5.1] mainly to provide reference to the original
source. Each test case has a description which corresponds to the name of the class
diagram in the UML2 Tools project and also to the figure number and caption of
the diagram as it appears in the UML specification [OMGO7b]. While there was no
coverage data or analysis provided with these models, they were selected as they
presumably covered a sufficient range of features in class diagrams. Using this test
suite we applied the testing strategy outlined in the previous section and the results

of this are presented in the remainder of this section.

Checking Metamodel Conformance

After the original set of test cases were put through the transformation, 14 out of
the 20 target models that were produced violated the constraints or well-formedness
rules of the measurement metamodel. In total 53 constraints were violated, but
on further inspection it was found that only 5 of these constraints were unique.
We traced these violations back to four errors, two omissions in the measurement
metamodel and two in the model transformation.

The two omissions in the measurement metamodel were due to an over-constraint:
we had required that attributes and parameters in the measurement metamodel should
have a corresponding type, but this is optional in the UML metamodel. To correct
this problem we modified the measurement metamodel to allow Attributes and

FormalParameters to have an optional type by changing the multiplicity from
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Test Case | Description used in UML2 Tools project

1 7.19 Graphic notation indicating exactly one association end
owned by the association

2 7.20 Combining line path graphics

3 7.21 Binary and ternary associations

4 7.22 Association ends with various adornments

5 7.23 Examples of navigable ends

6 7.24 Example of attribute notation for navigable end owned by an
end class

7 7.25 Derived supersets (union)

8 7.26 Composite aggregation is depicted as a black diamond

9 7.27 An Association Class is depicted by an association symbol (a
line) and a class symbol (a box)

10 7.28 Class notation - details suppressed, analysis-level details,
implementation-level details

11 7.30 Examples of attributes

12 7.32 Comment notation

13 7.33 Constraint attached to an attribute

14 7.40 Example of element import with aliasing

15 7.48 Multiple ways of dividing subtypes (generalization sets) and
constraint examples

16 Example of stereotyped class notation

17 7.27 Association Class is depicted by a line and a box

18 7.54 Instance specifications representing two objects connected by
a link

19 Figure 7.39 Example of element import

20 Figure 17.19 Template Class and Bound Class

Table 5.1: A summary of the test cases. This table lists the class diagrams from the
UML2 Tools project [[Eclfj] (release 0.8.0 of 11 June 2008). In future tables we refer to these
models by number only; this table can be used to refer back to models in the UML2 Tools
distribution and UML 2 superstructure specification [[OMGO7D].

1to 0..1. The final specification of the measurement metamodel in Appendix [A]
has been updated to incorporate this change. The remaining two errors were found
in the model transformation, one as a result of an omission in the transformation.
Navigable association ends in the UML class diagrams were being mapped to at-
tributes in the measurement metamodel, but no owning class was being identified
for them which is mandatory in the measurement metamodel. We corrected this by
setting these attributes’ owning class to be the class on the opposite end of the as-

sociation. The other error was as a result of the incorrect identification of attributes
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for the ancestors of a class and thus the set of declared attributes of that class was

also incorrect.

Coverage Analysis

The results of the coverage analysis are summarised in Table [5.2] on a per-model
basis. This table has one row for each of the UML models described previously
in Table [5.1] The data in each row represents the percentage coverage when the
corresponding UML model was transformed into an instance of the measurement
metamodel using the UMLClassDiag2Measurement transformation. The final row
of Table [5.2] shows the cumulative total coverage when all 20 UML models were
transformed using the UMLClassDiag2Measurement transformation, and thus rep-
resents the total coverage for all models considered as a test suite.

In total the UMLClassDiag2Measurement transformation contained 10 ATL
rules which, along with the helper operations, were implemented in 1686 virtual
machine instructions, of which 103 were IF or ITERATE instructions, giving a total
of 206 possible true/false branches. Thus, for example, we can tell from Table @
that UML model No. 5 covered 3 rules, which caused the execution of roughly 614
instructions and 48 of the possible true/false branches.

Overall we can see from Table that each individual UML model covers be-
tween 10% and 50% of the rules, between 29% and 62% of the instructions and
between 20% and 39% of the branches. While the spread of values is quite small,
we can see a tendency for rule, instruction and branch coverage to increase in tan-
dem.

The total coverage data, shown in the last row of Table [5.2] provides a measure
of the effectiveness of the set of 20 UML models considered as a test suite. As can
be seen the cumulative coverage is quite high at 80% rule coverage and 76% instruc-
tion coverage, though somewhat lower for branch coverage at 51%. Given that the
input UML models were not designed with coverage in mind, this is a reasonably
satisfactory starting point for developing a more comprehensive test suite.

Further analysis of the low branch coverage data from Table[5.2)is given in Table
[5.3] From this table we can see that 24% of the missing coverage is due to branch
instructions not being executed at all, which is in line with the overall instruction
coverage figure. A further 18% of branch instructions were only ever false, and
32% were only ever true. This larger figure of 32% is in line with expectation,

since it represents conditions which are true and iterations over non-empty collec-

101



Testing Model Transformations for the Measurement Metamodel

UML Percentage Coverage

Model ATL Rule Instruction Branch
1 20.0% 35.0% 26.2%
2 20.0% 35.0% 26.2%
3 30.0% 41.4% 29.1%
4 20.0% 35.3% 26.7%
5 30.0% 38.6% 27.2%
6 20.0% 35.0% 26.2%
7 10.0% 32.4% 25.2%
8 20.0% 35.5% 25.7%
9 20.0% 37.6% 25.7%
10 40.0% 57.1% 35.9%
11 50.0% 61.9% 38.8%
12 10.0% 28.5% 20.4%
13 20.0% 33.5% 23.3%
14 30.0% 36.6% 24.3%
15 10.0% 29.3% 21.8%
16 10.0% 28.5% 20.4%
17 30.0% 40.8% 27.7%
18 20.0% 35.0% 26.0%
19 30.0% 34.4% 22.8%
20 20.0% 33.5% 23.3%

| Cum. Total | 80.0% | 76.0% | 51.0% |

Table 5.2: A summary of the percentage coverage for each of the test cases in Table
This table summarises the coverage for each of the 20 UML models in the UMLClass-
Diag2Measurement transformation test suite.

tions, which is almost certainly the “intended” function of the code in each case.
Nonetheless, the data of Table [5.2] provided the basis for developing a test suite that
ensures better coverage.

On inspecting the ATL code corresponding to gaps in rule, instruction and
branch coverage we were able to create UML class diagrams to force these items
of the transformation to be exercised. To create the UML class diagram we used a
UML modelling tool that supports the export of UML models as instances of the
UML2 Eclipse metamodel called Papyrus [[CEAI.

In this case it was necessary to create two further models, an empty UML class
diagram (model 22) and a UML class diagram with the following elements (model
21):

e An enumeration
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No. of branch instructions
Branch Evaluation IF ITERATE Total
Never executed 16 9 25 (=24%)
Only ever false 6 12 18 (=18%)
Only ever true 15 18 33 (=32%)
Both true and false 14 13 27  (=26%)
| Total branch instrs. 51 \ 52 | 103 (=100%) |

Table 5.3: A breakdown of the overall cumulative branch coverage data for all 20 UML
models. This table splits the branch instructions into four categories based on the degree to
which they were covered during the transformations.

e An interface with attributes

e A class and an association class that inherit from another class

e A class and an association class that implement an interface

e An abstract operation with a return parameter

e A class that overrides an abstract operation

e Several operations, each of which satisfies each of the conditions outlined for

identifying the operation type.

With the addition of these final test cases to the test suite of Table [5.1] all 22
models were put through the testing process again and all three coverage figures
were brought to the maximum coverage possible. In creating these two final UML
class diagrams to ensure maximum coverage we exposed a further five errors in
our transformation. Four of these errors were found in the rule for computing the
type of a method. As this process involved extracting a substring from the name
of the operation we discovered that the indexing being used to extract the names
of the operations were incorrect in some cases and thus incorrectly identifying the
type of a method. The final error was as a result of operations of an interface being
omitted from the inherited-member set of any classes that implement the interface
which in turn resulted in these operations being excluded from the set of overridden
operations of that class. The second criteria for checking the correctness of the

criteria is to check that the metric values calculated for the models are correct.

Test Oracle Construction

After all the errors described above had been corrected, all 22 models were put

through our transformation again. On this final attempt all target models conformed
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Test Number of Max.
Case | Classes | Attribs | Methods | Params | User-Def | Builtln | DIT
1 2 1 0 0 0 0 0
2 4 2 0 0 0 0 0
3 3 1 0 0 0 0 0
4 4 1 0 0 0 0 1
5 10 4 0 0 0 0 0
6 2 1 0 0 0 0 0
7 4 0 0 0 0 0 1
8 4 3 0 0 0 0 0
9 3 0 0 0 0 0 0
10 4 4 3 4 0 0 0
11 4 10 1 1 0 1 1
12 1 0 0 0 0 0 0
13 1 1 0 0 0 0 0
14 1 1 0 0 1 0 0
15 4 0 0 0 0 0 1
16 1 0 0 0 0 0 0
17 3 1 0 0 0 0 0
18 1 1 0 0 0 0 0
19 3 0 0 0 1 2 0
20 4 1 0 0 0 0 0
21 6 2 12 4 1 0 2
22 0 0 0 0 0 0 0

Table 5.4: Metric results for the test suite. This table lists some basic (and easily verifi-
able) object-oriented metrics for each of the 20 UML models from Table 0.1| and test cases
21 and 22, the additional models created to increase the coverage to the maximum possible.

to the well-formed rules of the measurement metamodel. The final validation step
was to use the resulting 22 instances of the measurement metamodel as input to the
automatically generated measurement tool.

While this tool calculates a comprehensive set of metrics, we display the values
of seven of them in Table [5.4] to give an estimate of the size of the class diagrams
in the test suite. These metrics are a count of the various different elements in the
UML class diagram, as calculated using the measurement tool. The metrics include
number of classes, number of attributes, number of methods, number of parameters,
number of user-defined types and number of built-in types in the class diagram. We
also report the maximum depth of inheritance (DIT) found in the class diagram.

Each of these metrics, along with the remaining metrics in the CK, Coupling
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and Cohesions metric sets were calculated both manually and automatically for all
22 UML class diagrams. The metrics were calculated manually by visually inspect-
ing each of the class diagrams and computed automatically using the automatically
generated measurement tool. Both sets of metrics were then compared thus provid-
ing the final check for correctness of the transformation process. The metric results

for all 22 UML class diagrams can be found on the disk accompanying this thesis.

5.6.2 Testing the Java2Measurement Transformation

This section details the results of using the testing strategy described in this chapter

to the Java2Measurement transformation.

Test Suite

In order to test the transformation we first had to construct a test suite. To achieve
this we took the set of 22 UML models used as a test suite for the UMLClass-
Diag2Measurement transformation and forward engineered these into Java using
EclipseUML [[Omol]. Again, there was no coverage data or analysis available for
these models, however they were chosen as they they provided maximum posible
coverage of the UMLClassDiag2Measurement transformation. Only 3 of the 22
models could be successfully imported into the EclipseUML tool. The remaining
18 models although conforming to the UML metamodel did not match the expected
format of EclipseUML; for example it expects UML models to begin with a single
named Model element. Fourteen models had to be modified to give their Model
element a name and 4 of the models were modified to add an overall Model ele-
ment. On modification of these models, 8 models still failed on import, this was
discovered to be due to certain model elements not being suppoted. For example
attributes with no types and multiplicities greater than 1. To overcome this, we gave
the attributes a type and changed all multiplicities greater than 1 to 1. Now all 22
models could be successfully imported into EclipseUML which then automatically
created the equivalent Java code. SpoonEMF has problems creating instances of the
Java programs if they do not compile so we first compiled all 22 Java models and
found that 4 models did not compile so these needed to be modified in order to com-
pile. These 22 syntactically correct Java models were used as input to SpoonEMF
and used to produce 22 instances of the Java metamodel which could then be used

as a test suite for the JavaZMeasurement transformation. Using this test suite we
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applied the testing strategy described earlier in this chapter and the results of this

are outlined in the rest of this section.

Checking Metamodel Conformance

After the original set of test cases were put through the transformation, one model
failed to produce a target model and the other 20 models produced violated the
well-formedness rules of the measurement metamodel. In total 450 constraints were
violated, but on further inspection it was found that only 8 of these constraints were
unique. We traced this back to 3 errors, 1 in the model transformation and 2 in the
Java metamodel.

One of the errors in the Java metamodel was found to be as a result of setting a
method as abstract. As abstract is a keyword in Java it was not possible to use it
as an enumeration literal and thus replaced it with the word abst. The other error
was due to the DeclaringPackage reference of the Package element in the
Java metamodel having its attribute settable set to false and therefore its value
could not be set by ATL when performing the transformation. This was changed
to be equal to true in the Java metamodel. The remaining error was found in the
model transformation as a result of there being a distinct element for constructors
in the Java metmodel and as a result they were not being included in the inherited

methods of a class. This error was corrected in the Java transformation.

Coverage Analysis

The results of the coverage analysis are summarised in Table[5.5]on a per-model ba-
sis. This table has one row for each of the Java packages created from the UML
models in Table 5.1} The data in each row represents the percentage coverage
when the corresponding Java package was transformed into an instance of the mea-
surement metamodel using the Java2Measurement transformation presented in this
chapter. The final row of Table[5.5]shows the cumulative total coverage when all 22
Java packages were transformed using the Java2Measurement transformation, and
thus represents the total coverage for all packages considered as a test suite.

In total the Java2Measurement transformation contained 11 ATL rules which,
along with the helper operations, were implemented in 1876 virtual machine in-
structions, of which 86 were IF or ITERATE instructions, giving a total of 172 pos-

sible true/false branches.
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Java Percentage Coverage

Package ATL Rule Instruction Branch
1 45.5% 63.3% 44.8%
2 45.5% 63.3% 44.8%
3 45.5% 63.3% 44.8%
4 45.5% 71.6% 53.5%
5 45.5% 63.3% 44.8%
6 45.5% 63.3% 44.8%
7 18.2% 44.2% 37.2%
8 18.2% 35.3% 28.5%
9 18.2% 35.3% 28.5%
10 54.5% 68.6% 47.7%
11 63.6% 78.9% 57.6%
12 18.2% 35.8% 28.5%
13 18.2% 35.3% 28.5%
14 54.5% 65.8% 45.9%
15 18.2% 44.2% 37.2%
16 18.2% 35.3% 28.5%
17 45.5% 63.6% 45.3%
18 45.5% 63.6% 44.2%
19 18.2% 35.3% 28.5%
20 45.5% 63.3% 44.8%
21 54.5% 80.2% 60.5%
22 0.0% 13.6% 12.2%

| Cum. Total | 81.8% | 882% | 698% |

Table 5.5: A summary of the percentage coverage for each of the Java packages generated
from the UML models in Table [5.4] This table summarises the coverage for each of the 22
Java packages in the Java2Measurement transformation test suite.

Overall we can see from Table [5.5] that each individual Java package covers
between 18% and 64% of the rules, between 14% and 79% of the instructions and
between 12% and 38% of the branches. The range of values is again quite small and
we also again observe a tendency for instruction and branch coverage to increase
together.

The total coverage data, shown in the last row of Table [5.5] provides a measure
of the effectiveness of the set of 22 Java packages considered as a test suite. As can
be seen the cumulative coverage is quite high at 81.8% rule coverage and 88.2%
instruction coverage, though somewhat lower for branch coverage at nearly 70%.

Further analysis of the low branch coverage data from Table[5.5]is given in Table
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No. of branch instructions
Branch Evaluation IF ITERATE Total
Never executed 5 1 6 (=7%)
Only ever false 5 4 9 (=11%)
Only ever true 10 21 31 (=36%)
Both true and false 23 17 40 (=47%)
| Total branch instrs. | 43 \ 43 | 86 (=100%) |

Table 5.6: A breakdown of the overall cumulative branch coverage data for all 22 Java
packages. This table splits the branch instructions into four categories based on the degree
to which they were covered during the transformations.

[5.6] From this table we can see that 7% of the missing coverage is due to branch
instructions not being executed at all. A further 11% of branch instructions were
only ever false, and 36% were only ever true. The data in Table[5.3]again provided
us with information that was used as a basis to develop further test cases to bring
the coverage values to the maximum coverage possible.

On inspecting the ATL code corresponding to gaps in rule, instruction and
branch coverage we were able to create an extra Java package to force these items
of the transformation to be exercised. We created a Java package with the following
elements:

e An interface inheriting from another interface

A method invocation

A constructor invocation
A field access
A field that is an array of built in types

A field that is an array with a class type

e An overridden method that is not abstract

In creating this final package we exposed a further error. This was found in
the Java metamodel specification, the Declaration reference of the element
Reference had its settable option set to false and thus the transformation failed
when trying to instantiate the metamodel. The second criteria for checking the cor-
rectness of the criteria is to check that the metric values calculated for the models

are correct.
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Test Oracle Construction

After all the errors described above had been corrected, all 23 Java packages were
put through our transformation again. On this final attempt all target models con-
formed to the well-formed rules of the measurement metamodel. The final valida-
tion step was to first manually calculate values for the metrics in the CK, Coupling
and Cohesions metric sets for all 23 instances of the measurement metamodel and
second to use these 23 measurement metamodel instances as input to the automati-
cally generated measurement tool. Both sets of manually and automatically calcu-
lated metrics were compared thus providing the final check for correctness of the
transformation. The metric results for all 23 Java packages can be found on the disk

accompanying this thesis.

5.7 Discussion

In this chapter, we completed the measurement approach by introducing support for
model transformations and defined the UMLClassDiag2Measurement transforma-
tion and the Java2Measurement transformation to illustrate how the approach can
be applied to UML and Java. When defining these transformations, it was apparent
that certain concepts of the source languages did not map directly to elements of the
measurement metamodel. In these situations, decisions were made as to which ele-
ments of the measurement metamodel these concepts should map to. For example,
in both transformations the decision was taken to map interfaces to classes in the
measurement metamodel. This has important implications for some of the coupling
metrics such as CBO and RFC’ as alternative decisions would effect the metric val-
ues produced. Fundamentally, these type of decisions are necessary and will effect
the metric values produced regardless of the measurement approach used. The ad-
vantage of the approach outlined in this thesis is that these decisions are transparent
and made explicitly clear in the model transformations. Alternative decisions can be
easily implemented using alternative model transformations and no modifications or
re-implementation of the measurement tool is required.

A set of coverage criteria to measure the adequacy of a test suite used in test-
ing model transformations have also been proposed in this chapter. We applied these
coverage criteria to the UMLClassDiag2Measurement and Java2Measurement trans-

formations in order to correct and refine the transformations while they were being

109



Testing Model Transformations for the Measurement Metamodel

developed. We believe that these criteria are applicable to the development and
testing of any model transformation.

We have developed a Coverage Analyser to measure these coverage criteria that
analyses the log files produced duing the execution of a transformation on the ATL
virtual machine. There are several other possible methods of measuring the cov-
erage criteria such as instrumenting the ATL transformation source or compiled
transformation (.asm) file. However this would be quite technically challenging to
implement because this would require comprehensive knowledge of the ATL virtual
machine and structure and format of the compiled ATL files.

We also proposed an iterative process for testing the correctness of the model
transformation. This approach has been designed specifically to define and test any
transformation where the target metamodel is the measurement metamodel. One
of the criteria used to check the correctness of the transformation is that the metric
values for the resulting target models are correct. At the moment, this checking is
done by hand which is tedious and error-prone and does not scale well to very large
number of test cases. An improvement to this would be to automate this process.

Furthermore, on inspection of the metric values for the models that satisy the
transformation coverage criteria it can be noted that a large number of these metrics
yield a value of O for many of the metrics. This is as a result of our preference for
using a small number of test cases containing a small number of elements to make
the process of manually checking the metrics easier. This raises the question of
whether the transformation criteria alone are sufficient. We may also want models
that give a range of metric values for particular metrics. Therefore, its possible that
we also need to take into consideration the coverage of the range of possible val-
ues for the different metrics. For example, for coupling metrics, we might demand
that there exist models that yield the minimum and maximum coupling values and
maybe values in-between. Further, we might also like to show that, given differ-
ent versions of the same metric, test cases exist that show these versions returning
different values.

Finally, this chapter has focussed mainly on unit testing with the emphasis on
the individual transformation rules and elements of the source metamodels. As
already mentioned this required a small number of test cases containing a small
number of elements. While this had the advantage of making it easy to manually
inspect the models, verify the metrics and uncover errors, it is possible that the

approach may have missed errors related to testing multiple units at once such as
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excercising many transformation rules across a single model containing many or
all types of elements from the source metamodel. Also, this approach does not test
non-functional aspects of the system such as performance and scalability. Therefore
this work would benefit from applying other types of testing techniques such as
integration or system testing in order to further evaluate the reliability, scalability

and performance of the model transformations and overall measurement approach.

5.8 Summary

Model transformations play a very important role in MDE. Since testing is essential
at all stages of software development, it is important to ensure that model trans-
formations can be validated. While there are several aspects to software testing,
including the generation of test cases, test adequacy criteria and the definition of a
test oracle, this chapter concentrates on coverage measures for model transforma-
tions.

In this chapter we have presented three transformation-based coverage measures
that capture the dual nature of a model transformation: part input-recognition, like a
grammar, and part generation, like program code. Thus we extend the notion of rule
coverage from grammars to model transformations, and use instruction and branch
coverage to evaluate the remaining elements. We have developed tool support to
measure these criteria for the transformation language ATL. Finally, we describe
how these criteria were used in the process of testing two model transformations, the
UMLClassDiag2Measurement for transforming UML class diagrams to instances
of the measurement metamodel and the Java2Measurement for transforming Java
programs to instances of the measurement metamodel.

We identify the four principal contributions of this chapter as:

e The definition of two model transformations, UMLClassDiag2Measurement
for converting UML class diagrams to instances of the measurement meta-
model and Java2Measurement for converting Java prgrams to instances of the
measurement metamodel, thus providing the ability to automatically measure
a set of existing coupling and cohesion metrics from UML class diagrams and
Java programs.

e A set of model transformation based coverage criteria for the ATL lan-
guage that can be used to assess the adequacy of test cases used in testing

model transformations.
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o A testing strategy for testing the correctness of model transformations where
the target metamodel is our measurement metamodel.

e An illustration of the use of the coverage criteria and testing strategy for
model transformation testing using the UMLClassDiag2Measurement and

Java2Measurement transformations.
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Chapter 6

Concluding Remarks

In this thesis we have described an approach to software measurement based on
MDE principles. We have described a number of techniques for testing within the
domain of MDE and applied these techniques to our measurement approach. This
final chapter identifies the contributions of this work and presents a discussion of

future work.

6.1 Contributions

The work presented in this thesis makes several contributions to the fields of object-
oriented software metrics and MDE. In this section we identify and summarise each
of these contributions.

We began our work by addressing the problem of having multiple different def-
initions for software metrics by using the OCL as a way to define and implement
object-oriented software metrics. We were the first authors to generalise this ap-
proach at the metamodel level and apply it to various different metamodels (e.g.
Java and UML 2.0 metamodels). We developed a highly extensible approach for
the definition and calculation of software metrics which allows multiple defini-
tions of software metrics to be implemented and compared. We provided the first
ever definitions of the CK metrics using both the UML 2.0 and Java metamodels
IMPO6d! IMPO6bI].

We presented the first MOF-compliant metamodel for software measurement.

This metamodel was based on a formalisation of the work of Briand er al. and is
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specific to the measurement of coupling and cohesion metrics MP]]. We
also defined two model transformations for converting UML class diagrams and
Java programs to instances of the measurement metamodel. These transformations
provide an automated way to transform UML class diagrams and Java programs to
instances of the measurement metamodel thus facilitating the automatic calculation
of object-oriented metrics for those artifacts, provided the metrics have been defined
using the measurement metamodel.

A further contribution of our work is a general approach for assessing and check-
ing the correctness of a metamodel using an iterative approach of developing and
validating the metamodel using the Alloy language and analyser. We also extended
this approach to provide a mechanism for automatically generating test data for
MOF metamodels. We illustrated the use of this approach in the development and
testing of our MOF-compliant measurement metamodel and measurement tool gen-
erated from the metamodel [MP]. To our knowledge, we are the first to
propose and use the Alloy language and analyser for this purpose.

We defined two model transformations, specifically from the UML and Java
metamodels to our measurement metamodel. One of the important tasks during
the development of a model transformation is the validation and verification of the
transformation. One approach to this is software testing which is used to deter-
mine if the transformation is correct i.e. whether the target models produced by
the model transformation implementation satisfy the transformation specification
[Lam07]]. Determining appropriate methods for performing this type of transfor-
mation testing is currently an open question in the MDE community [BDTMT06].
To address the problem in our case, we leveraged the fact that we were able to
determine the results of the software metrics for the source models and used this
information to assess if the target models produced by the transformations were
correct. This novel approach to transformation validation allowed us to refine our
transformations by identifying and correcting bugs and errors within our transfor-
mations. To measure the adequacy of the test cases used during this testing pro-
cess, we proposed a set of novel criteria for measuring the coverage of the model
transformation. Although this testing approach applies specifically to model trans-
formations involving the measurement metamodel, we believe that these adequacy

criteria are generally applicable to testing any model transformation.
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6.2 Future Work

We can identify a number of additional issues related to the research presented in

this thesis that we believe merit further investigation.

6.2.1 Improvements to the Measurement Approach

The tool support for the measurement approach relies on the Octopus tool to trans-
form the OCL into a working Java implementation which then requires the user to
instantiate the metamodel over which the metrics are defined. While this provides a
flexible environment which can be used for any metamodel (provided it can be de-
picted as a class diagram) it is not consistent with a fully integrated MDE approach
because this method seperates the definition and evaluation of the metrics from
the process of transforming models to the measurement metamodel. For example,
in Chapter 5 we used the EMF to express the measurement metamodel in Ecore
format and transformed the other languages to the measurement metamodel using
a transformation language that works for Ecore metamodels. The measurement
metamodel over which the OCL metrics were expressed was supplied to Octopus
in a format specific to the Octopus tool, thus we had to maintain the measurement
metamodel in two different formats. Ideally, we would define and evaluate the OCL
metric defintions directly over the Ecore measurement metamodel and Ecore mod-
els. To achieve this we would need to make use of the OCL tool support available
for Ecore models.

Since the development of AMML there has been an initiative within the Eclipse
community to develop OCL support for EMF/Ecore models as part of the Model
Development Tools (MDT) project [[EcId]. This project provides a parser and inter-
preter as well as an OCL to Java compiler for OCL constraints and queries expressed
over any EMF-based metamodel. It would be a useful endeavour to update the OCL
component of dMML from Octopus to either the OCL to Java compiler or the OCL
evaluator provided by this Eclipse project. This would provide the ability to express
the OCL queries directly over the measurement metamodel represented as an Ecore
metamodel thus creating a more integrated MDE approach.

It would still be neccessary however to test the measurement metamodel and
the metric definitions to assess their correctness and the testing approach outlined
in Chapter [ could still be used for this purpose. However if an OCL evaluator

was used, a new set of test adequacy criteria would have to be defined as the code
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coverage criteria would no longer be appropriate. Since any MOF metamodel can
be depicted as a UML class diagram, one option could be to use a set of existing
coverage criteria for UML class diagrams as done by Fleurey er al. [ESB04]. They
use the set of criteria proposed by Andrews et al. [AFGCO3]], including the Class
Attribute (CA) and Association-end multiplicity (AEM) criteria. These metrics use
the structure of the metamodel to define a set of coverage criteria.

However, one problem with the criteria of Andrews et al. is that they do not
take into account the set of OCL constraints expressed over the MOF metamodel. A
more appropriate approach would be to define coverage criteria directly at the OCL
level. Given this notion of coverage criteria for the OCL metamodel constraints,
such criteria could then be used to assess the adequacy of the test cases in place of
the code coverage criteria. Then following the approach described in Chapter[d] the
Alloy analyser could be used to generate many models as test cases, and filter these
models on the coverage criteria.

Our studies have shown that several hundreds of thousands of small-scope Alloy
models must be generated even to satisfy basic code coverage criteria. Ideally the
criteria themselves would be used as a basis for the generation of the models. Thus
the Alloy analyser, aware of the coverage criteria, would systematically generate
test cases that cumulatively satisfied these criteria. It is not obvious, to say the
least, how the Alloy analyser might be adapted to achieve this goal. Therefore, a
further path that needs to be investigated is how to incorporate notions of coverage
into the model generation process. Once defined, the OCL-based coverage criteria
could be used as coverage measures for the metric definitions as well as for the
metamodel constraints since the metric definitions are also expressed in OCL. Thus
we might demand the formulation of a set of models that also cover the OCL metric

definitions.

6.2.2 Further Applications of the Measurement Approach

We have observed previously that the majority of the existing metrics for UML
models are primarily simple counting metrics (e.g. number of use-cases in a model)
such as those described by Marchesi, Genero ef al. and Kim and Boldyreff
[MPO7]|. In addition, the proposal of new metrics for UML models
has concentrated on only one or else a small number of the different diagrams and
views available in an overall UML model.
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There has been relatively little work on defining how to measure existing design
metrics from all of these different diagrams and views [[MPQ7]]. Our measurement
approach would be useful here as it could be used to specify how to measure the
three sets of software metrics described in this thesis (CK, Coupling and Cohesion)
from a collection of different UML diagrams. This would strongly promote the
use of these metrics at the design level and would allow for earlier quality assess-
ment of software [TCO2]|]. To accomplish this we would extend our UMLClass-
Diag2Measurement transformation, described in Chapter [5] to take into account all
of the elements of the UML metamodel relevant to the diagrams under considera-
tion.

As an example, we consider the CK metrics proposed to capture different as-
pects of an object-oriented design. Baroni ef al. have formalised the CK metrics
using the OCL and the UML 1.3 metamodel [BAO3D]. We have also formalised
the CK metrics using the OCL but have based our definitions first on the UML 2.0
metamodel and then in a language independent way using our measurement meta-
model [MPO8al|. These definitions specify how to obtain the CK
metrics from class diagrams but do not take any of the other UML diagrams into
consideration. As mentioned, our measurement approach could be used to define
how to measure the CK metrics from all the diagrams of a UML model. Figure [6.1]
reviews each of these metrics and briefly discusses which UML diagrams need to
be examined in order to gain accurate measures of the metrics. In addition, it may
be possible to obtain further information for the calculation of these metrics, e.g.
method invocations and variable usages of methods and classes, by inspecting OCL
constraints of the system. Interpreting such information requires further research.

Finally, it is important to note that this approach is applicable to many different
types of models, languages and metrics. For example, it could be extended to other
object-oriented languages such as C++ and Smalltalk. This would require further
model transformations to be developed to transfer models in these languages to
instances of the measurement metamodel. The approach could also be extended
beyond the domain of object-oriented languages and metrics to other areas such as
functional and domain-specific languages. This could be achieved by developing
further measurement metamodels to capture the relevant terms and concepts under
measurement in these areas and defining the model transformations from the source
languages to the measurement metamodels.

However, there is a significant amount of practical work required within the
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Weighted methods per class (WMC):
This metric is concerned with the com-
plexity of the methods within a given
class. It is equal to the sum of the com-
plexities of each method defined in a
class. If we consider the complexity of
each method to be unity then the WMC
metric for a class is equal to the number
of methods defined within that class. The
WMC metric for a class can be obtained
from the class diagrams of a UML model
by identifying the class and counting the
number of methods in that class.
Number of children (NOC): This is the
number of immediate descendants of a
given class, that is the number of classes
which directly inherit from the class.
Again, this metric can be measured for
a class by taking the union of all the class
diagrams in a UML model and examin-
ing the inheritance relationships of the
class.

Coupling between object classes
(CBO): Two classes are coupled to each
other if a method of one class uses an
instance variable or method of the other
class. An estimate for this metric can
be obtained from the class diagrams by
counting all the classes to which the
class has a relationship with. To obtain
a more precise value, information from
the behavioural diagrams can be taken
into account in order to get information
about the usage of instance variable and
invocation of methods. For example,
a sequence diagram gives direct infor-
mation about the interactions between
methods in different classes.

Depth of inheritance tree (DIT): This
is a measure of the depth of a class in the
inheritance tree. It is equal to the maxi-
mum length from the class to the root of
the inheritance tree. This metric can be
computed for a class by taking the union
of all the class diagrams in a UML model
and traversing the inheritance hierarchy
of the class.

Response for a class (RFC): This is a
measure of the number of methods that
can potentially be invoked by an object
of a given class. The number of methods
for a class can be obtained from a class
diagram, but the number of methods of
other classes that are invoked by each of
the methods in the class requires infor-
mation about the behaviour of the class.
This information can be derived by in-
specting behavioural diagrams, such as
sequence and communication to identify
method invocations.

Lack of cohesion in methods (LCOM):
Calculating the LCOM for a given class
involves working out, for each possible
pair of methods, whether the sets of in-
stance variables accessed by each method
have an non-empty intersection. In order,
to compute a value for this metric, in-
formation on the usage of instance vari-
ables by the methods of a class is re-
quired. This information cannot be ob-
tained from a class diagram. However, an
upper bound for this metric can be com-
puted using the number of methods in the
class. Diagrams that contain information
about variable usages, e.g. sequence di-
agrams can be used for computing this
metric.

Figure 6.1: An overview of applying the CK metrics to UML models. This figure reviews
the diagrams in a UML model that can contribute to calculating the CK metrics [[MPO7].
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area of MDE if this expansion of the measurement approach is to be explored fur-
ther. Using metamodels to describe programming languages is a relatively new con-
cept and not all programming languages have well-defined, accepted metamodels.
Also it is our experience that when a metamodel has been defined for a language,
the availability of tools for converting models written in the language to instances
of the language metamodel is limited. If the transition from traditional program-
ming paradigms to the MDE paradigm is to be successful then it is vital that such
metamodels, tools and model transformations between languages are developed and
adopted by the communuty. For such artefacts to become the de facto standard they
must be shown to be correct, fit for purpose and reliable. As mentioned already,
one way to achieve this is through the use of software testing. Therefore, the ap-
proaches presented in this thesis for testing metamodels, metamodel-based software
and model transformations can play an important role in developing these necessary

artefacts and having them adopted by the community.

6.3 Summary

The work in this thesis has demonstrated the overall practicality and feasibility of
applying an MDE-based approach to software measurement. Furthermore, we have
provided a means to ensure that the approach is reliable and correctly calculates
metrics by proposing techniques for testing the various parts of the approach. We
believe that these techniques are also applicable in the wider context of MDE and
not just the measurement approach which is important as the future of software

development moves in the direction of MDE.
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Appendix A

Measurement Metamodel

Specification

The description of our metamodel follows a similar format to that used by the

OMBG for the specification of metamodels, in particular the UML metamodel spec-
ification [OMGQ7b]. Each concept in the metamodel is described in its own sub-
section which is broken down into several different parts corresponding to different

aspects of the concept. In situations where an aspect does not apply to the con-

cept it is ommitted entirely from the description of the concept. Each concept is

represented as a metaclass in the metamodel and described using the following

The subsection heading gives the formal name of the concept.

The Description aspect gives a brief, informal description of the meaning of

the concept. Any direct generalisations of the concept are also detailed here.

The Attributes aspect specifies each of the attributes that are defined for that
metaclass. Each attribute is specified by its formal name and type. This is

followed by an informal description of the meaning of the attribute.

The Associations aspect lists all of the association ends owned by that meta-
class. Again, each one is specified by its formal name, its type, and multiplic-

ity and followed by an informal description of it’s meaning.

The Constraints aspect lists all of the constraints that define the well-formedness
rules of the concept. Each constraint consists of an informal description and

a formal constraint expressed in OCL.
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e The Operations aspect contains a list of all the operations that belong to the
metaclass. These include utility and query operations. In all cases each op-
eration is specified using OCL. The utility operations are specified using the

de f keyword and the query operations are specified using the body keyword.

A.1 Attribute

Description
An attribute is an entity that describes a property of the class that it belongs to. It is
a subclass of NamedElement.
Associations
o type:Type[0..1] : specifies the type of the attribute

e referenced _by:Method[0..*] : specifies the set of methods that reference the

attribute

e att_implementing class:Class[1..1] : specifies the class in which the attribute

is implemented

e att_declaring_class:Class[0..*] : specifies the set of classes in which the at-

tribute is declared

A.2 Builtln

Description

Builtln represents a basic type provided by the modelling language (e.g., integer,

real, character, string). It is a subclass of Type.

A.3 Class

Description

A class describes a set of entities that share the same properties and behaviour. It is

a subclass of Type.
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Associations
e child:Class[0..*] : specifies the set of immediate descendents of this class
e parent:Class[0..*] : specifies the set of immediate ancestors of this class

e friend of:Class[0..*] : specifies the set of classes that are granted access to

the non-public elements of this class

e grants friendship:Class[0..%] : specifies the set of classes to which this class

has access to the non-public elements of

e overridden_method:Method[0..*] : specifies the set of methods that are

overridden by this class

e inherited_method:Method[0..*] : specifies the set of methods that are inher-
ited by this class

e new_method:Method[0..%] : specifies the set of methods that are created as

new in this class

e declared method:Method[0..*] : specifies the set of methods that are de-
clared in this class

e implemented _method:Method[0..*] : specifies the set of methods that are

implemented in this class

o declared att:Attribute[0..*] : specifies the set of attributes that are declared

in this class

e implemented att:Attribute[0..*] : specifies the set of attributes that are im-

plemented in this class

Constraints

e A class may not directly or indirectly inherit from itself

not self.Ancestors()->includes (self)

e A class may not directly be a friend of itself or grant friendship to itself

not self.friend.of->includes (self)
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The set of declared attributes of a class must equal all the implemented at-
tributes of that classes ancestors

self.declared_att = self.Ancestors|()
->collect (i:Class|i.implemented_att)
—>asSet ()

The set of new methods, overridden methods and inherited methods of a class
must be disjoint

self.new.method->intersection (self.overridden_method)
—>intersection (inherited-method)->isEmpty ()

The set of implemented methods of a class must equal the set of non-abstract,
overriding methods union the set of non-abstract new methods of the class

self.implementedmethod =
self.new.method->union(self.overridden_method)
->select (m:Method | not m.isAbstract)

The set of declared methods of a class must be equal to the set of new abstract
methods union the set of inherited methods of the class

self.declaredmethod =
self.inherited.method->union(self.new_method
->gselect (m:Method|m.isAbstract))

The sum of the inherited and overridden methods of a class must equal the
number of methods of the parents

self.parent->notEmpty () implies
self.inherited.method->union (self.overridden_method)->size ()
= self.parent->collect (i:Class|i.Methods())->asSet ()->size()

The set of inherited methods of a class must be a subset of the new and over-
riding methods of that classes ancestors

not self.inheritedmethod->isEmpty () implies
(self.Ancestors () —>collect (i:Class|i.new.method)->asSet ()
—>union (self.Ancestors ()
—->collect (j:Class]| j.overridden_method)
—>asSet ()))
—>includesAll (self.inherited method)

e If a class has no parentss then it cannot have any overridden methods

self.parent->isEmpty () implies self.overriddenmethod->isEmpty ()
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Operations

e The query A_d() returns the set of declared attributes of the Class.

Class::A_d() :Set (Attribute)
body: self.declared.att

e The query A_i() returns the set of implemented attributes of the Class.

Class::A_i() :Set (Attribute)
body: self.implemented.att

e The utility operation all_parents() returns the set of all direct and indirect
ancestors of the Class.

def: all parents(S:Set(Class)) :Set (Class)

=self.parent->union((self.parent - S)
—->collect (i:Class|i.all parents(S->including(self))))
—>asSet ()

e The query Ancestors() returns the set of all direct and indirect ancestors of
the Class.

Class::Ancestors () :Set (Class)
body: self.all parents (Set{})

e The query Attributes() returns the set of all attributes belonging to the Class.

Class::Attributes () :Set (Attribute)
body: self.declared.att->union(self.implemented._att)

e The query Children() returns the set of all immediate descendents of the
Class.

Class::Children() :Set (Class)
body: self.child

e The utility operation all_children() returns the set of all direct and indirect
descendents of the Class.

def: all_children(S:Set (Class)) :Set (Class)

=self.child->union((self.child - S)
—->collect(i:Class|i.all children (S->including(self))))
—>asSet ()

e The query Descendents() returns the set ofall direct and indirect descendents
of the Class.
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Class::Descendents () :Set (Class)
body: self.all children (Set{})

The query Friends() returns the set of direct friends of the Class.

Class::Friends () :Set (Class)
body: self.friend.of

The query FriendsInv() returns the set of inverse friends of the Class.

Class::FriendsInv () :Set (Class)
body: self.grants_friendship

The query M _d() returns the set of declared methods of the Class.

Class::M.d() :Set (Method)
body: self.declared.method

The query M_i() returns the set of implemented methods of the Class.

Class::M.1i() :Set (Method)
body: self.implemented.-method

The query M_inh() returns the set of inherited methods of the Class.

Class::M_.inh () : Set (Method)
body: self.inheritedmethod

The query M _ovr() returns the set of overridden methods of the Class.

Class::M_ovr () :Set (Method)
body: self.overridden._method

The query M _new() returns the set of new methods of the Class.

Class::Mnew () :Set (Method)
body: self.new.method

The query M _pub() returns the set of public methods of the Class.

Class::M_pub () :Set (Method)
body: self.Methods()->select (m:Method|m.isPublic)

The query M_npub() returns the set of nonpublic methods of the Class.
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Class::M.npub () : Set (Method)
body: self.Methods()->select (m:Method|not m.isPublic)

e The query Methods() returns the set of all methods that belong to the Class.

context Class::Methods () :Set (Method)
body: self.declared.method->union (self.implemented-method)

e The query Parents() returns the set of direct ancestors of the Class.

Class::Parents () :Set (Class)
body: self.parent

e The query uses(d) returns true if the Class uses attributes or methods belong-
ing to the Class d.

Class::uses (d:Class) :Boolean
body: self.implemented.method->collect (m:Method|m.PIM())
—>intersection(d.implemented. method)
->notEmpty ()
or
self.implemented method->collect (m:Method|m.referenced_att)

->intersection(d.implemented_att)
—>notEmpty ()

A.4 FormalParameter

Description

FormalParameter represents an argument that is used to pass information in and out
of a Method. It is a subclass of NamedElement.

Associations
o type:Type[0..1] : specifies the type of the parameter

e param of:Method[1..1] : specifies the method that the parameter belongs to
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A.5 Invocation

Description

An invocation represents a method call.

Attributes

o type:InvocationType - specifies the type of the invocation i.e. wether it is

static or polymorphic.

Associations

e caller:Method[1..1] : specifies the method in which the method call appears
e calee:Method[1..1] : specifies the method that is being called

e passes_pointer_to:Method[0..%] : specifies the set of methods that are being
passed as a pointer during the invocation

A.6 InvocationType

InvocationType is an enumeration type that specifies the literals for defining the

type of a method invocation.

Description

InvocationType is an enumeration of the following literal values:
e static : Indicates that the method is invoked statically.

e dynamic : Indicates that the method is invoked polymorphically.

A.7 Method

Description

A callable function belonging to a class. It is a subclass of NamedElement.
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Attributes

o type:MethodType - specifies the type of the method
e isAbstract:Boolean - indicates if the method is abstract or non-abstract

e isPublic:Boolean - indicates if the method is public or non-public

Associations

e overriding_class:Class[0..1] : specifies the class that overrides this method

e inheriting class:Class[0..*] : specifies the set of classes that inherit this
method

e new_class:Class[0..1] : specifies the class in which this method is first de-
fined

e method declaring class:Class[0..*] : specifies the set of classes in which

this method is declared

e method_implementing_class:Class[0..1] : specifies the class in which this

method is implemented
e param:Parameter[0..*] : specifies the set of parameters of this method

o referenced_att:Attribute[0..*] : specifies the set of attributes referenced by
this method

¢ invokes:Invocation[0..*] : specifies the set of invocations in which this method

is the caller

¢ invoked_by:Invocation[0..*] : specifies the set of invocations in which this

metod is the callee

e passed_to:Invocation[0..*] : specifies the set of invocations where this method

is passed as a parameter
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Constraints
e If a method references at least one attribute, then this method must be non-
abstract
self.referenced att->notEmpty () implies self.isAbstract = false

If a method is abstract then it must not call any methods

self.isAbstract = true implies self.invokes->isEmpty ()

If a method has no implementing class then it must be abstract

self.method_implementing._class—->isEmpty () implies
self.isAbstract = true

If a method is abstract then it must have a new class

self.isAbstract = true implies not self.new.class->isEmpty ()

e A method must have either an overriding class or a new class
not self.overriding.class—->asSet ()->isEmpty () implies
self.new_class—>asSet () —>isEmpty ()
and self.overriding.class->asSet () ->isEmpty () implies
not self.new.class—->asSet ()->isEmpty ()

If a method is a constructor then it must not be abstract

self.type = MethodType: :constructor
implies self.isAbstract = false

Operations

e The utility operation stat_invoked() returns the methods statically invoked by
the Method.

def: stat_invoked() :Bag (Method)

= self.invokes
—->select (i:Invocation|i.type=InvocationType::static)
—->collect (j:Invocation | j.callee)

e The utility operation poly_invoked() returns the methods polymorphically in-
voked by the Method.

129



Measurement Metamodel Specification

def: poly_invoked() :Bag (Method)

= self.invokes
->select (i:Invocation|i.type=InvocationType: :polymorphic)
—>collect (j:Invocation | j.callee)

The utility operation closureSIM() returns the methods directly and indirevtly
statically invoked by the Method.

def: closureSIM(S:Set (Method)) :Set (Method)

= self.SIM()—->union((self.SIM()-S)
—>collect (m:Method|m.closureSIM(S->including (self)))
—>asSet ())

The utility operation closurePIM returns the methods directly and indeirect-
lypolymorphically invoked by the Method.

def: closurePIM(S:Set (Method)) :Set (Method)
= self.PIM()->union((self.PIM()-S)

—>collect (m:Method|m.closurePIM(S—>including (self)))
—>asSet ())

The query operation AR() returns the set of attributes refernced by the Method.

Method: :AR() : Set (Attribute)
body: self.referenced.att

The query operation NPI(m) returns the number of polymorphic invocations
of m by the Method.

Method: :NPI (m:Method) : Integer
body: self.poly_invoked()->count (m)

The query operation NSI(m) returns the number of static invocations of m by
the Method.

Method: :NSI (m:Method) : Integer
body: self.stat_invoked()->count (m)

The query operation Par() returns the set of parameters of the Method.

Method: :Par () : Set (FormalParameter)
body: self.param

The query operation PIM() returns the set of methods polymorphically in-
voked by the Method.
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Method::PIM() : Set (Method)
body: self.poly_invoked()->asSet ()

The query operation SIM() returns the set of methods statically invoked by
the Method.

Method: :SIM() : Set (Method)
body: self.stat_invoked()->asSet ()

The query operation PIM_() returns the set of indirectly polymorphically in-
voked methods of the Method.

Method: :PIM_() : Set (Method)
body: self.closurePIM(Set{})

The query operation SIM_() returns the set of indirectly statically invoked
methods of the Method.

Method: :SIM_() :Set (Method)
body: self.closureSIM(Set{})

The query operation PP(m) returns the number of invocations of the Method
where a pointer to the Method m is passed to this Method.

Method: :PP (m:Method) : Integer

body: self.invoked._by
—->select (i:Invocation|i.passes_pointer_to->includes (m))
->size ()

A.8 MethodType

MethodType is an enumeration type that specifies the literals for defining the type
of a Method.

Description

MethodType is an enumeration with the following literal values:

e constructor: Indicates that the method is a constructor i.e. a method that is

called when an object is created
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e destructor: Indicates that the method is a destructor i.e. a method that is

called when an object is destroyed

e accessor: Indicates that the method provides access to the attributes of the

class to which it belongs

e mutator: Indicates that the method is used to modify the attributes of the

class to which it belongs

e general: Indicates that the method is a general method that does’t fall into

any of the above categories

A.9 NamedElement

Description

A NamedElement is an element that may have a name. NamedElement is an abstract

metaclass.

Attributes

e String:name - specifies the name of the element

A.10 Type

Description

A type defines a set of values. Type is an abstract metaclass. It is a subclass of

NamedElement.

A.11 UserDefined

Description

A user-defined type of global scope (e.g., records, enumerations). It is a subclass of

Type.
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Appendix B

Requirements for the Model

Transformation Language

Based on the work of Mens ef al. and our own reqiuirements we set out a list
of criteria to help us choose a model transformation language to integrate into our
measurement approach [MGO6]|. Table [B.T] lists our set of requirements, each of
the 17 transformation languages that were examined and how they evaluated ac-
cording to the requirements. We began by evaluating each language according to
the first criteria, then the next etc. and if we encountered that the language did not
meet one of the requirements we stopped our evaluation and moved onto the next

transformation language. Each requirement can be summarised as follows:

e Open source: The transformation tool should be freely available for down-
load and use and provide access to the source code. We aim to integrate
the transformation tool into our existing measurement approach. The existing
tool support for the approach is open source and therefore any additional tools

must also be open source and freely available to download.

e Standardised: The tool support for the language should be compliant with
the relevant standards. In our case we require tool support that facilitates
transformations defined over MOF and Ecore metamodels and supports XMI

for the import and export of source and target models.

e QVT based: As we are choosing to work with the OMG’s standard for meta-

modelling, MOF, it would be desirable to also use a model transformation
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language that adheres to the OMG’s standard for model transformation, the
Queries, Views, Transformations (QVT) [OMGOSb].

Creating/Reading/Updating/Deleting transformations (CRUD): The trans-
formation tool should provide a mechanism for defining new and updating
existing transformations for a modelling languages. As Mens et al. note, this
may be a trivial requirement for a transformation language, it is not so trivial
for a transformation tool [MGOQ6]|. For example, consider a code generation
tool that only supports transformations of UML to Java or refactoring tools
which only come with a predefined set of refactoring transformations and no

support for defining new refactorings [MGO6].

Fully automated: Our measurement approach aims to provide fully auto-
mated tool support for the calculation of object-oriented software metrics.
Therefore, the chosen tool should fully automate the transformation once it
has been defined and require no manual intervention to complete the transfor-

mation.

After narrowing down our choice to 7 transformation tools we evaluated the

tools using two further criteria identified by Mens et al., Usability and usefulness

which means that a language or tool should serve a practical purpose and be intuitive

and efficient to use and Acceptability by user community, that is how well it’s been
adopted by the community and how widespread it’s use is [MGO6]. As part of
this evaluation we attempted to carry out some basic transformations with each of

the 7 tools. Based on this we made the pragmatic decision to integrate the ATL

language into our measurement approach as it was one of the few tools that could

successfullly execute our basic transformations. Our decision was also based on the

fact that ATL has evidence of a large user community and a rich selection of sample

ATL transformations to avail of which are stored as a collection of transformations
referred to as a transformation zoo [ATL [Eclal].
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