
Movements in Binaural Space: Issues in HRTF

Interpolation and Reverberation, with applications to

Computer Music

Volume 2 of 2

BRIAN CARTY

PhD Dissertation

NUI Maynooth

Music Department

August 2010

Head of Department: Professor Fiona Palmer

Supervisor: Dr Victor Lazzarini

 1

Table of Contents

Table of Contents ... 1

New Csound Opcodes for Binaural Processing ... 2

Frequency-domain Interpolation of Empirical HRTF Data 11

BINAURAL HRTF BASED SPATIALISATION: NEW APPROACHES AND

IMPLEMENTATION.. 22

HRTFEARLY & HRTFREVERB: FLEXIBLE BINAURAL REVERBERATION

PROCESSING.. 28

MULTIBIN: A BINAURAL AUDITION TOOL.. 32

Appendix 1: Command-line... 36

1.1 defs.h .. 36

1.2 datapreparation.cpp .. 37

1.3 binauralmover.cpp.. 40

1.4 binauralmoverfunctions.cpp... 49

Appendix 2: HRTF Opcodes.. 51

Appendix 3: Binaural Reverb Opcodes.. 88

3.1 hrtfearly .. 88

3.2 hrtfreverb.. 112

Appendix 4: MultiBin .. 130

4.1 MultiBin.py .. 130

Appendix 5: Opcode Manual Pages... 139

hrtfmove ... 139

hrtfmove2 ... 142

Description ... 142

hrtfstat .. 144

hrtfearly .. 146

hrtfreverb.. 149

 2

New Csound Opcodes for Binaural Processing

Victor Lazzarini and Brian Carty

Sound and Digital Music Technology Group,

National University of Ireland, Maynooth,

Co. Kildare,

Ireland

victor.lazzarini, brian.m.carty@nuim.ie

Abstract

Although solutions to the challenge of

binaural artificial recreation of audio

spatialisation exist in the Computer Music

domain, a review of the area suggests that a

comprehensive, generic, accurate and

efficient toolset is required. A number of

Csound opcodes, using a Head Related

Transfer Function based approach, are

presented to satisfy this necessity. The

process is a complex one, with perhaps the

most significant difficulty being phase

interpolation. Novel approaches (specifically

methods using phase truncation and

functionally derived itd respectively), as well

as a method based on established digital

signal processing methods (minimum phase

plus delay) are implemented.

Keywords

HRTF, binaural, Csound

1. Sound Localisation

Binaural hearing is the term given to

listening with two ears rather than one, and is

the main factor involved in sound

localisation. The fact that the brain receives

an independent signal from each ear allows

conclusions to be drawn based on a

comparison of the characteristics of each

signal.

One such binaural indication of a sound’s

spatial characteristics is interaural time

difference (itd): the name given to the time it

takes a sound to reach one ear after it has first

reached the other. Despite the relatively tiny

nature of these time disparities, they can

provide very accurate localisation cues.

Interaural intensity difference (iid) uses

varying respective intensities of a signal at

each ear to locate source sounds. Interaural

intensity difference is based principally on

the head (and to a lesser extent the torso)

acting as a barrier to sound. It is generally

accepted that interaural time and intensity

differences work together to provide a well-

defined spatial image, with itd working best

for low frequencies and iid for high.

Monaural information (independent

information from one ear) also plays an

important role in sound localisation. The

pinna and concha both have a non-linear

frequency response over the audible

spectrum, altering incoming sounds. These

alterations vary with sound location.

2. Head Related Transfer Functions

Head Related Transfer Functions (HRTFs)

are essentially functions that describe how a

sound from a specific location is altered from

source to tympanic membrane. For any

particular source sound, a pair of transfer

functions exist (for the left and right ear) for

any location relative to the listener. These

functions will encompass all localisation cues

mentioned above. More generally, Head

Related Transfer Functions can be defined as

the impulse responses of the left and right

ears to sound at a particular location.

The process of simulating an auditory

location using HRTFs as a frequency domain

operation can be summarised thus:

• Record the response of the left and

right ear to an impulse (a frequency rich

source) to learn how each ear will treat sound

at all frequencies for the desired point in

space.

• Analyse the frequency content of the

sound you wish to spatialise.

• Impose the HRTF for the left and right

ear on the sound (boost or attenuate and delay

the frequencies contained in the input in

 3

accordance with how the ear treats the

appropriate frequencies), using the process of

convolution.

As the physiology of everyone’s ears is

different, HRTFs vary considerably from

subject to subject. Ideally, listeners should

use binaural systems customised to their own

ears. However, certain consistencies can be

observed and generalised/non-individualised

HRTFs, recorded using a dummy head and

torso model or a specific subject are

frequently used to remove the necessity for

measurements to be taken for each individual

user. Results from [18] suggest that although

non-individualised HRTFs are certainly a

useful tool for binaural simulation, they can

result in a distortion of the spectral

characteristics used in front/back and

elevation resolution when compared to

listening in the free field.

It is also important to note that binaurally

generated 2 channel (left ear and right ear)

signals should be reproduced on headphones

to avoid crosstalk and environmental and

listener interactions with the source.

3. HRTF Interpolation

HRTF data sets are typically measured at

discrete, equidistant points around a listener

or dummy head, for example [3]. Therefore

some form of interpolation is required for

non measured points. The topic of HRTF

interpolation is a multi faceted one, with

many suggested and possible approaches, for

example spatial frequency response surfaces

(see [2]) and virtual loudspeaker

multichannel approaches (see [15]).

The process of HRTF localisation

outlined above describes the localisation of a

source sound to one specific area of space.

When other locations are required, however,

the relevant HRTF data is needed. A fixed

amount of points are typically recorded and

stored. However, if a location is required that

has not been measured, or if a sound is

required to move smoothly from one location

to another, some kind of averaging or

interpolation must be done.

HRTF interpolation can be thought of as

taking the two (or more for increased

accuracy) nearest HRTF representations to a

non-measured point in between, and deriving

a new HRTF by averaging the known values

with greater relative weighting(/s) on the

nearer known point(/s).

Audio, or indeed any type of signals can

be represented in several ways. Traditionally,

audio is viewed, edited, processed and

auditioned in the time domain. However, the

frequency domain can provide more useful

insights into the properties of the signal.

Individual sinusoidal components of a signal,

in this case a head related transfer function,

can be examined, and their magnitude and

phase can be extracted in the frequency

domain. The former quantifies the relative

strength of the signal at each frequency in the

analysis, the latter, the phase/starting point of

the component.

Frequency domain interpolation can

generally give more accurate results than

time domain techniques (see [4] and [14]).

However, interpolating in the frequency

domain poses the problem of phase

interpolation. Phase values are closely related

to itd, so are important in the localisation

process. The linear interpolation of phase

values is flawed. Phase, unlike magnitude, is

a periodic quantity, measured in fractions of a

full cycle. Uncertainty arises when trying to

interpolate phases, as a phase value can be

+/- any amount of full cycles. For example, in

Figure 1, the first and second points have

phase values of 10 and 50 degrees

respectively. However, as phase is periodic,

these may be 10 or 50 degrees plus any

number of full cycles. Therefore interpolated

phase may be 30 or 210 degrees, depending

on whether the 50 degree phase represents 50

degrees or 410 degrees (50 degrees plus one

cycle) respectively, for example.

 4

Figure 1: Phase Interpolation

4. Minimum Phase

Oppenheim and Schafer observe that any

rational system function can be broken into a

minimum phase and an all pass system [16].

An all pass system can de defined as one

which has a magnitude response that is

absolutely constant with respect to frequency

[17]. Therefore, the magnitude of the

minimum phase all pass decomposition is

represented solely by the minimum phase

system and the phase is reconstituted by both

the allpass and minimum phase

representations.

The system in question can thus be

defined as:

H(z) = Hmin(z)Hap(z), (4.1)

where Hmin(z) is a minimum phase system,

and Hap(z) is an all pass system.

Typically, magnitude and phase spectra

are not related. A unique and, in this case,

extremely useful property of minimum phase

systems, however, is that phase values for

each component frequency can be derived

from the corresponding magnitude values,

see [16] for details.

5. Minimum Phase and HRTFs

The significance of phase information and the

auditory system’s limitations in responding to

changes in phase information has been

investigated in depth, for example, see [9]. In

[11], it is observed that the auditory system

approaches minimum phase. The authors

decomposed their measured transfer

functions into minimum phase and allpass

functions in order to obtain a clear

representation of phase without the above

mentioned 2 pi ambiguity. While doing this,

they realised that the minimum phase

function appeared to contain almost all the

detail of the phase spectrum and that the

allpass phase approached linearity for the free

field to ear canal function. The paper goes on

to assert that the allpass component of the full

HRTF (including the ear canal response, as

defined by Begault
1
) exhibits a ‘nearly linear’

phase response up to 10 kHz. Therefore, the

allpass component can be implemented as a

simple time delay. This time delay can be

realised using a time domain, frequency

independent delay line, quite a simple and

efficient process to implement. This

observation of approximate minimum phase

has become a key factor in binaural HRTF

based processing, and has been used in

several studies of HRTFs, many of which

suggest HRTF models based on minimum

phase plus delay decomposition, such as

principal component analysis [6] and infinite

impulse response models [8].

The minimum phase and (assumed

linear) all pass decomposition allows a pair

of HRTFs (for the left and right ears) to be

broken down into 3 parts: a minimum phase

representation of each empirical HRTF pair

(left and right ear), and an interaural delay.

The overall magnitude will be represented by

that of the minimum phase filter; the overall

phase will be the minimum phase phase

spectrum (derivable from the magnitude

spectrum) plus a frequency independent,

linear delay. Thus phase interpolation is no

longer a problem. Figure 2 shows an

empirical impulse and its minimum phase

representation in the time domain.

1
 Begault defines the hrtf as ‘the spectral filtering of a

sound source before it reaches the ear drum that is

caused primarily by the outer ear’ in [1]. However, it is

undesirable to use hrtfs that contain the auditory canal

response of the dummy head in artificial localisation

applications, as the listener, using headphones that

transmit audio from the entrance of the ear canal, is

then essentially listening through 2 auditory canals, that

of the dummy head and their own. This is avoided in

the MIT dataset used here through diffuse field

equalization.

 5

Figure 2: An Empirical HRTF (source at 0

degrees) and its Minimum Phase

Representation

The process of HRTF interpolation

consequently involves analysing each HRTF

pair to find the relevant interaural delay and

reducing them to minimum phase

representations. The minimum phase

magnitude values and extracted delay can

then be linearly interpolated. Interpolated

minimum phase phase spectra can be derived

from interpolated magnitude spectra.

The description of HRTFs as minimum

phase filters plus delays above is validated

theoretically by work on decomposition of

impulses in [11]. However, perhaps a more

pertinent validity test from the point of view

of a developer of artificial spatialisation tools

involves psychophysical testing of a subject

group. Kulkarni’s seminal paper examining

the sensitivity of human subjects to HRTF

phase spectra [9] reports high coherence

values between empirical and minimum

phase plus delay data sets. However,

coherence values were systematically worse

at lower elevations and extremes of the

horizontal plane. It is suggested that this is

due to the shadowing effect of the head and

interactions with the torso making the allpass

delay non linear, a phenomenon discussed in

[7]. This is supported by better performance

at higher elevations, where there is less

obstruction in the path to the contralateral

(further from the source) ear. Phase error

results enforce this assumption.

Psychophysical results point to a low

frequency cue present at extremes of the

horizontal plane, aiding the subject in

distinguishing between min phase plus delay

and empirical impulses. This perhaps

suggests that modelling itd as a linear delay is

not adequate; however, overall the study

concludes that minimum phase plus delay

models are sufficient for most locations, and

that the finer structures of phase are not

overly important, as long as the overall delay

is approximated in accordance with that of

the empirical.

Practicalities in implementation of a

minimum phase based spatialisation system

also need to be considered. The tiny delays

extracted from the HRTF data set will often

fall in between the sample by sample values

used in a delay line. This is a consequence of

digital delay lines and sampling. To remove

abrupt changes in delay for moving sources,

interpolated variable delay lines can be

employed. As observed in [2], interpolated

delay lines attenuate high frequencies, and

are therefore not ideal. However, informal

listening tests performed both in [2] and by

the authors suggest that these artefacts are not

significant.

Alternatives to the minimum phase

approach are suggested that do not assume

the approximations involved in modelling the

HRTF as minimum phase plus delay. This

essentially involves engaging more directly

in the phase ambiguity problem. The

minimum phase method employs complex

digital signal processing of the HRTF data,

and is quite computationally expensive. The

approaches outlined below are intended to

give spatially accurate and efficient

processing without the necessity to perform

complex analysis, compression or

transformation of the data.

6. Current Csound Solution to Binaural

HRTF Based Processing

The HRTFer opcode uses the MIT data set

(see [3]) to spatialise the desired source

sound.

 6

aleft, aright HRTFer ainput, kangle,

kelevation, “HRTFcompact”

HRTFer provides accurate spatialisation

for static locations which correspond exactly

to HRTF measured points. However, if a

static point is required that has not been

measured, the system simply chooses the

nearest measured point. Considering the

density of this data set these inaccuracies

may be tolerable for certain situations. This

approach causes more significant errors when

a specific trajectory is desired for a source. A

dynamic, rather than static source will skip

from one nearest measured point to the next

along a user defined trajectory. This

staggered movement causes irregularities in

the output, manifesting themselves as

discontinuities, an undesirable result. The

original authors of the opcode suggested a

fade out of the old convolution result and a

fade in of the new to reduce this noise.

However, these crossfades have been

disabled, as they cause dropouts in the

output, leading to worse irregularities, which

are assumed to be caused by an error in the

source code. In tests performed by the

authors, these crossfades, when implemented,

reduce the irregularities to a degree

depending on the frequency content of the

source.

Another consequence of abruptly

changing these complex filters (HRTFs) as a

source travels along a defined trajectory is

the sudden perceptual change in the output,

which can be detrimental even in frequency

rich sources (which may mask discontinuities

to a certain extent). For example, in a

trajectory going from 50 degrees above the

listener to directly in front, the source will

appear to jump downwards every 10 degrees,

as this is the measurement increment.

Clearly, this opcode could benefit from the

addition of interpolation between measured

points.

7. Novel Solutions to HRTF Binaural

Processing

Two novel approaches to HRTF binaural

processing are presented below.

7.1 Phase Truncation, Magnitude

Interpolation

The first suggested approach can be

summarised as magnitude interpolation and

phase truncation. It can be simply defined as

using interpolated spectral magnitude values,

and the nearest known phase values to derive

the impulse for each block of audio

processed. This approach, as well as

providing an adequate solution to HRTF

interpolation for sources to be placed at non

measured points, allows artefact free, user

defined source trajectories.

The movement in the program is

achieved by updating user defined angle and

elevation values, according to where the

source is moving from and to, every

processing block.

The interpolation algorithm works by

storing the four nearest HRTF values to the

desired location, left and right below and

above. Linear interpolation of the magnitude

values is performed. This magnitude

interpolation method derives an accurate

intermediate/transitional fir filter, essentially

boosting/attenuating spectral bands to a level

that is proportionate to and sympathetic with

the nearest measured points. For source

trajectories adhering to minimum audible

movement angle constraints (see [13]), noise

introduced by filter magnitude values

changing as the source moves is

inaudible/tolerable.

The nearest measured phase value is used

for intermediate filters. As the difference in

measured points is often quite minimal,

although always significant, it is proposed

that choosing the phase of the nearest

measured point will not have a significant

adverse effect on the final spatialisation

quality. As discussed above, studies have

shown that phase does indeed play an

important role in localisation, but as long as

an accurate overall itd is maintained, users

frequently cannot distinguish errors.

However, as the source trajectory moves

closer to a different measured point, these

phase values need to be updated. An abrupt

switch of phase values will cause an audible

inconsistency in the output. Although the

 7

severity of this inconsistency depends on the

source material to be spatialised, a method to

minimise it is desirable. The crossfade

method suggested by the csound HRTFer

opcode is considered and developed. Fades

are performed when new, nearer phase values

are available. This approach, coupled with

magnitude interpolation, gives much

smoother movement. The frequency content

of the source defines the audibility of the

switch between phase values. If a

narrowband source is to be spatialised (i.e. a

source with energy focused in a small

number of narrow frequency bands), the

switch will be quite obvious. However, more

noisy, frequency rich sources may be able to

mask the inconsistency caused by the new

phase values to an extent related to the

complexity of the source. It is with this in

mind that a user definable, source specific

solution is proposed. The user may choose to

perform crossfades over a number of

processing buffers. One buffer may be

enough to mask unwanted inconsistencies for

certain sources, whereas others may require

up to 16 buffers to mask all artefacts.

The process of crossfading thus involves

processing the old HRTF data with the new

input data and fading out, while processing

the new HRTF data with the input and fading

in.

Another point to consider is that for very

fast trajectories, the nearest measured phase

values may be changing quite swiftly.

However, considering the minimum audible

movement angle (see [13]), and that only

audible trajectory changes are desirable, the

system is adequate. A related criticism,

however, is that occasionally a path may be

required which causes the angle and elevation

index to change over the same crossfade. If

the path involves a three dimensional

trajectory, phase value updates may not be

uniform. Users will be warned in this

scenario, and can simply reduce the crossfade

size. As mentioned previously, the spectral

content of the input sound may mask

discontinuities, so shorter crossfades will

suffice in certain situations. Figure 3

illustrates the magnitude interpolation, phase

truncation process for a moving source.

Figure 3: Magnitude Interpolation, Phase

Truncation

A minimum phase based implementation

is also developed using the model discussed

in [9]. Essentially, magnitudes are

interpolated as above, and phase is derived

from these interpolated magnitudes. A linear

allpass delay is inserted using a variable

delay line. Minimum phase or phase

truncation based processing can be chosen by

the user as an optional parameter of the

opcode developed.

7.2 Functional Phase Model

Another approach, essentially a hybrid of an

empirical and modelled transfer function is

presently suggested. As discussed above,

spectral magnitude measurement,

representation and interpolation is

straightforward and easily realisable.

Therefore empirical magnitude values are

employed here. The difficulty of phase

representation and interpolation is

approached from a functional modelling

point of view.

The main task in functional phase

derivation is to model correctly the interaural

phase difference, therefore deriving the

correct interaural time difference. A basic,

yet practical model for the head is to assume

it approximates a sphere. The degree to

which this phase simplicity will distort the

spatial image is closely related to the

discussion above on sensitivity to phase

differences, which concluded that low

frequency itd across frequency is the

predominant phase cue (see [9]).

 8

Mathematically, the itd for a particular

source location, assuming a spherical head

can be defined thus:

, (7.2.1)

where r is the head (/sphere) radius, c is the

speed of sound, is the angle and the

elevation of the source. This formula is

described as the Extended

Woodworth/Schlosberg Formula in [12].

Successful use of this basic Woodworth

model for HRTF phase modelling and a

magnitude interpolation algorithm is reported

in [19]. Some development and improvement

is suggested here. As concluded in [9], low

frequency consistency of empirical and

employed itd is crucial for accurate

modelling. Also, it is agreed in both [9] and

[7] that higher frequency itd is not as

significant, and specified in [7] that a

Woodworth model can account for steady

state high frequency itds. Also,

physiologically, interaural phase difference

based localisation breaks down above

approximately 1500 Hz (see [13]). Therefore

a low frequency, frequency dependent scaling

factor is introduced as a more complete

solution, requiring minimal extra processing.

Essentially, itd is extracted from the

empirical HRTFs for each low frequency

band of interest. These values are then used

as frequency dependent scaling factors in the

synthesis of the phase spectrum for the

desired HRTFs.

This model provides an accurate average

low frequency itd for this particular dataset,

and a steady Woodworth based itd for higher

frequencies.

The values derived from this Extended

Woodworth/Schlosberg non linearly low

frequency scaled (/functional) model are then

used as phase values. Phase values are

calculated per frequency bin, with values of

minus and plus half the itd for the ear nearer

and further from the source respectively.

Practically, negative phase values simply

wrap around to the end of the impulse. It

therefore appears that the nearer ear impulse

happens after the further ear, which is an

unnatural result. For this reason, the impulse

is shifted in time, by half the size of the

buffer. The result is a time and phase

accurate filter.

Phase interpolation for dynamic sources

has been discussed and a solution presented

in the form of phase truncation. However,

with the Woodworth functional approach, a

new phase can be derived for any location,

and can be used and updated for each

processing block of a dynamic source. This is

an initially exciting prospect; however

implementation illustrates undesirable noise,

caused by phase updates, and phase not

‘matching’ magnitudes, as it does in

minimum phase implementations.

The short time Fourier transform (stft,

see [14]) is employed to avoid the

irregularities introduced by changing

modelled phase per processing block.

8. Csound Implementations

Three plugin opcodes are designed using the

guidelines in [10], one allowing phase

truncation or minimum phase binaural

processing, and two based on the functional

model. The reason for two opcodes based on

the functional model is due to the efficiency

with which a static source can be processed

in comparison to the necessity of stft

processing for a dynamic source. The phase

truncation/minimum phase model allows the

user to choose between minimum phase and

phase truncation processing, the latter also

allowing user defined crossfade sizes.

Functional models allow choice of spherical

head radius for itd calculation, and stft

overlap for dynamic trajectories. All models

allow sampling rates of 44.1, 48 and 96

kilohertz. Data files containing the HRTF

data at the appropriate sampling rate, as well

as minimum phase delay data are also

required.

Despite the addition of magnitude

interpolation, and algorithms for appropriate

phase representation, the new, optimised

opcodes perform favourably in comparison to

the HRTFer opcode. For example, the phase

truncation process takes an approximate

average of .11 seconds of CPU time to

 9

spatialise 2 seconds of audio on a 0 to 90

degree trajectory. HRTFer takes an

approximate average of .16 CPU seconds to

perform the same operation. This figure is

comparable with minimum phase processing

time for the same trajectory. To place this

source statically with the functional model

takes just .07 CPU seconds, but to perform

the trajectory above with the functional

model takes .17 seconds due to the addition

of the stft processing. Note: default opcode

values were used for the above approximate

average csound CPU time tests (crossfade

over 8 buffers for phase truncation, head

radius of 9cm for the functional models,

overlap of 4 for the stft and sampling rate of

44.1 kHz for all).

9. Conclusion and Discussion of Methods

Employed

As discussed in [9], HRTF phase data does

not require exact accuracy. More specifically,

maintaining low frequency interaural time

delays appears to provide accurate phase

data. The phase truncation method described

maintains nearest measured phase data, thus

meeting this criterion. The goal of the

method: to use the data directly, is also

achieved. A generic, user definable model is

presented to allow for compromise between

complex trajectories, narrow band sources

and changing phase noise removal through

variable length cross fades.

Minimum phase requires data preparation

and knowledge of complex digital signal

processing. Furthermore, casual listening

tests show there is often an audible

discrepancy between minimum phase and

empirical data convolution for musical and

test sources, although localisation is good for

both. Phase truncation output appears to give

a result more consistent with the empirical

dataset as a whole.

Functional models introduced above

assume the head is a sphere and will be

accurate to this degree, but adding non linear

low frequency scaling factors will

reintroduce some of the finer phase detail

involved in the non uniformly spherical shape

of the head, the pinnae and the torso.

The functional model implementation

provides a more mathematical approach, with

the addition of the specifics of the data set

used, implemented in an efficient and

psychoacoustically consistent way. The

importance of low frequency phase

information is preserved and applied to an

efficient, simple model for phase. This

provides a speedy solution for static sources;

however dynamic sources require stft

processing.

The binaural processing capabilities of

csound have thus been updated and

improved, using existing and novel

approaches. Smooth, artefact free dynamic

and static binaural processing is now

realisable using the various techniques

described above.

Acknowledgements

This work is supported by the Irish Research

Council for Science, Engineering and

Technology: funded by the National

Development Plan and NUI Maynooth.

References

[1] Durand Begault. 3-D Sound for

Virtual Reality and Multimedia. AP

Professional, London, 1994.

[2] Cheng and Wakefield. Moving Sound

Source Synthesis for Binaural

Electroacoustic Music Using Interpolated

Head-Related Transfer Functions

(HRTFs). Computer Music Journal, 25:4:

57–80, 2001.

[3] Gardner and Martin. HRTF

Measurements of a KEMAR Dummy

Head Microphone

(http://sound.media.mit.edu/KEMAR.ht

ml, accessed July 2007) MIT, 1994.

[4] Hartung, Braaschand Sterbing.

Comparison of Different Methods for the

Interpolation of Head Related Transfer

Functions. AES 16th International

Conference: Spatial Sound Reproduction,

319-329, 1999.

[5] Jot, Larcher and Warusfel. Digital Signal

Processing Issues in the Context of

Binaural and Transaural Stereophony.

AES 98
th

 Convention, 1995.

 10

[6] Kistler and Wightman. A model of head-

related transfer functions based on

principal components analysis and

minimum-phase reconstruction. Journal

of the Acoustical Society of America

Volume 91(3): 1637-1647, 1992.

[7] Kuhn. Model for the interaural time

difference in the azimuthal plane. Journal

of the Acoustical Society of America

Volume 62(1): 157-167, 1977.

[8] Kulkarni and Colburn. Infinite-impulse-

response models of the head-related

transfer function. Journal of the

Acoustical Society of America Volume

115(4): 1714-1728, 2004.

[9] Kulkarni, Isabelle and Colburn.

Sensitivity of Human Subjects to Head-

Related Transfer-Function Phase Spectra.

Journal of the Acoustical Society of

America. Volume 105(5): 2821-2840,

1999.

[10]Lazzarini. Extensions to the Csound

Language. Linux Audio Conference, 13-

19, 2005.

[11]Mehrgardt and Mellert. Transformation

Characteristics of the external human ear.

Journal of the Acoustical Society of

America. Volume 61(6), 1977.

[12]Minnaar, Plogsties, Olesen, Christensen

and Moller. The Interaural Time

Difference in Binaural Synthesis. AES

108
th

 Convention, 2000.

[13]Moore. An Introduction to the

Psychology of Hearing Elsevier

Academic Press, London, 1977; 5th edn,

2004.

[14]Moore: Elements of Computer

Music. Prentice-Hall, New Jersey, 1990.

[15]Noisternig, Musil, Sontacchi and

Holdrich. 3D Binaural Sound

Reproduction using a Virtual Ambisonic

Approach. IEEE Symposium on Virtual

Environments, 174-178, 2003.

[16]Oppenheim and Schafer: Discrete-Time

Signal Processing. Prentice Hall , New

Jersey, 1989; 2
nd

 edn, 1999.

[17]Steiglitz. A DSP Primer. Addison-

Wesley, Clifornia, 1996.

[18]Wenzel, Arruda, Kistler, and Wightman.

Localization using non-individualized

head related transfer functions. Journal

of the Acoustical Society of America

Volume 94(1): 111-123, 1993.

[19]Zotkin, Duraiswami and Davis.

Rendering Localized Spatial Audio in a

Virtual Auditory Space, IEEE

Transactions on Multimedia, Volume

6(4), 553-564, 2004.

 11

Audio Engineering Society

Convention Paper
Presented at the 126th Convention
2009 May 7–10 Munich, Germany

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer

reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance

manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents.

Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42
nd

 Street, New

York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof,

is not permitted without direct permission from the Journal of the Audio Engineering Society.

Frequency-domain Interpolation of
Empirical HRTF Data

Brian Carty
1
 and Victor Lazzarini

2

1 and 2
 Sound and Digital Music Technology Group, National University of Ireland, Maynooth, Co. Kildare,

Ireland
1
 brian.m.carty@nuim.ie

2
 victor.lazzarini@nuim.ie

ABSTRACT

This paper discusses Head Related Transfer Function (HRTF) based artificial spatialisation of audio. Two

alternatives to the minimum phase method of HRTF interpolation are suggested, offering novel approaches to the

challenge of phase interpolation. A phase truncation, magnitude interpolation technique aims to avoid complex

preparation, manipulation or transformation of empirical HRTF data, and any inaccuracies that may be introduced

by these operations. A second technique adds low frequency non-linear frequency scaling to a functionally based

phase model. This approach aims to provide a low frequency spectrum more closely aligned to the empirical HRTF

data. Test results indicate favorable performance of the new techniques.

1. INTRODUCTION

1.1 Sound Localisation

Human sound localisation capabilities are based on a

number of cues. Of greatest significance is the binaural

nature of the hearing system. As the term suggests,

listening with two ears allows comparisons to be made

between two independent signals. These comparisons

are the primary cues used in locating a sound source in a

particular spatial location. The difference in time of

arrival and intensity of the signals at the ear nearer and

farther from the source respectively are the main

binaural cues used in sound source localisation.

Interaural time difference (ITD) uses the phase

difference between signals to locate the source sound.

ITD works best at lower frequencies, doe to possible

ambiguities in higher frequency phase information.

Interaural intensity difference (IID), conversely, works

better at higher frequencies, as lower frequencies tend to

diffract around the head, reducing IID in the low

frequency region, making it a less reliable cue.

Spectral information also plays an important role. The

various non-linearities in the path from source to inner

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

12

ear filter a sound. This filtering varies with source

location. Of particular significance here is the complex

shape of the pinna. For example, sound from behind a

listener will appear duller, as higher frequencies are

filtered out by the back of the pinna. Spectral cues

facilitate localisation in the median plane, where

interaural differences are minimized.

1.2 Head Related Transfer Functions

Head Related Transfer Functions (HRTFs) essentially

describe how a source sound is altered from source to

inner ear, and encapsulate the localisation cues

mentioned above. For any particular location relative to

a listener, a HRTF pair exists (for the left and right ear).

This HRTF data can be obtained by recording the

impulse response of a listener, or dummy head to source

sounds at various locations. The dataset used in this

study was recorded at MIT [1] using a dummy head.

An immediate application of such a data set is the

artificial spatialisation of audio. A non spatialised,

mono sound source can be convolved with the HRTF

pair for a specific location relative to the listener to

artificially locate it to that location. There are, however,

a number of caveats to this initially promising process.

HRTFs are individual specific, as the physiology of

each listener will be different, so inaccuracies will be

introduced by using a generic dataset. Finer detail of

spectral cues will be thus degraded. However, non-

individualized datasets have been reported as a useful

tool in artificial spatialisation [2], and are frequently

used as the recording of a dataset is a timely and

difficult process. The two channel signal derived from

such a convolution operation should ideally be played

back on headphones, as a loudspeaker reproduction will

reintroduce environmental processing, cross talk, and

the pinna of the listener will filter the sound again in

error, as the pinna is already considered in the HRTF.

The challenge of locating source sounds to non

measured points or implementing dynamic source

trajectories must also be considered. A data

interpolation method is needed, which this paper

addresses.

This artificial spatialisation of mono audio sounds

provides the initial motivation for this study. The paper

will therefore discuss the traditional approach to the

challenge of implementing moving sources, and

suggest, justify and verify the successful

implementation and performance of two novel

alternatives. The paper will summarize the novel

algorithms, and focus on the results of subjective and

objective algorithm testing.

2. HRTF INTERPOLATION

Datasets, like [1], will contain a fixed number of

HRTFs, measured at static points around a listener. In

an artificial spatialisation application, it may be

desirable to spatialise a source sound in between

measured points, at a location where data is not

available. This task becomes more pertinent if a source

sound is required to move along a trajectory. Clearly,

some form of interpolation is required. This is not a

simple task; many approaches have been suggested,

including Spatial Frequency Response Surfaces [3],

virtual loudspeaker multi-channel approaches [4],

numerical methods [5] and infinite impulse response

(IIR) representations of HRTF data [6].

In deriving data for non-measured locations, empirical

data is used. A typical approach involves combining

empirical measurements with relative weightings on

those nearer the desired location. Performing this

process in the frequency domain is desirable, as it is

more accurate [5], [7]. Frequency-domain data involves

the magnitude and phase of each spectral component of

a signal. To interpolate two HRTFs, therefore, the

magnitudes and phases of the HRTFs should be

combined in order to derive an intermediate HRTF.

Linear interpolation of magnitude data provides an

intermediate point that is consistent with empirical data

(although perhaps not independently accurate).

However, the same cannot be said of linear interpolation

of phase data (as mentioned above, ITD is understood as

phase data). Phase, by its nature, is a periodic property.

Therefore ambiguities arise in the task of phase

interpolation. If the phase of a particular spectral

component of a HRTF is 10 degrees, and the phase of

the same spectral component of an adjacent HRTF is 50

degrees, linear interpolation to derive an interpolated

phase for a HRTF half way between these points

implies a phase of 30 degrees. The periodic nature of

phase, however, introduces ambiguities. The phase of

the 50 degree point, for example, may actually represent

a phase of 50 degrees plus any number of full cycles of

360 degrees, or 2 . Figure 1, below, illustrates this

scenario. A sine wave is illustrated, with approximate

phases of 10 degrees and 50 degrees marked. The 30

degree interpolated point, half way between empirical

points, may be in error, as the 50 degree phase may

represent, to take just one example, 410 degrees (50 +

360).

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

13

Figure 1: Phase Interpolation

The minimum phase allpass decomposition of the

HRTF is the traditionally approach taken to overcome

this difficulty.

2.1 Minimum Phase

Digital signal processing can be used to break any

rational system function into a minimum phase and all

pass component [8]. All pass systems have a flat

magnitude response. Consequently, the magnitude of

the original function in this alternative representation is

contained in the minimum phase system. The phase is

represented by both the minimum phase and the all pass

systems. The breakdown of the system function H(z) is

illustrated in equation 1, below.

 (1)

where H min (z) is a minimum phase system and H ap (z)

is an allpass system.

2.2 Minimum Phase Based HRTF
Interpolation

The significance of the minimum phase all pass

decomposition with regard to artificial spatialisation

using HRTFs will now be discussed. Magnitude and

phase spectra of minimum phase systems are related.

This unique property means that the phase value for a

given component frequency of a minimum phase system

can be derived from its corresponding magnitude value.

As phase interpolation is the main challenge involved in

HRTF interpolation, this property is of immediate

interest. If a HRTF dataset is decomposed into

minimum phase and all pass components, the minimum

phase components can be interpolated to derive the

minimum phase portion of non measured points.

Magnitude interpolation can be performed, and phase

values derived form these interpolated magnitude

values. This provides a satisfactory result for the

minimum phase portion of the decomposition. However,

the all pass component has not yet been considered.

Crucially, the all pass component has been shown to be

‘nearly linear’ up to 10 kHz [9]. Therefore, the HRTF

can be understood as a minimum phase system. The all

pass function of the minimum phase all pass

decomposition can thus be approximated using a linear

delay. This is extremely relevant in an artificial HRTF

based artificial spatialisation system. As mentioned, the

magnitude spectrum of the minimum phase

representation of the HRTF can be linearly interpolated.

The all pass section, assuming linearity, can be

represented by a frequency independent, time domain

delay line, which can also be simply interpolated for

non measured points.

The HRTF pair for a particular location can thus be

decomposed into 2 minimum phase functions (left and

right) and an interaural delay. The process of HRTF

interpolation can then be performed by interpolating the

magnitudes of the minimum phase HRTFs and the

interaural delay. The magnitude of the empirical HRTF

is represented solely by the minimum phase HRTF.

Thus an interpolated magnitude response can be

achieved by interpolating the magnitudes of the

minimum phase HRTFs. As mentioned above, the phase

values of the resulting minimum phase interpolated

HRTF can be derived from the magnitude values. The

assumed linear all pass component of the decomposition

can be treated as a pure delay, and thus interpolated

appropriately. This minimum phase approximation has

been used in several approaches to HRTF

representation, such as principal component analysis

[10] and IIR models [11].

In [12], Kulkarni et al. objectively investigate the

linearity of the all pass function in the decomposition,

reporting high coherence values between empirical and

minimum phase plus delay HRTFs. Coherence values

were, however, consistently worse at lower elevations

and extremes of the horizontal plane. The shadowing

effect of the head and interactions of sound with the

torso (also discussed in [13]) are suggested as reasons

for this. At higher elevations, there is less obstruction to

the contralateral (further from source) ear. Perhaps of

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

14

more relevance to an artificial spatialisation application

are the psychophysical tests performed in the same

study. Again, extremes of the horizontal plane are

highlighted as areas where the minimum phase plus

delay decomposition is not reliable. The study does,

however, conclude that minimum phase plus delay is

adequate for most locations. More specifically, the

study illustrates that the delay used in the decomposition

should agree closely with low frequency empirical ITD,

and that the finer structures of phase are not excessively

important in localisation.

Implementation of an artificial spatialisation system

using the minimum phase assumption also involves

using filters with the lowest possible number of

coefficients, as the energy in the impulse is focused at

its start. It is also worth noting that minimum phase

based artificial spatialisation requires the use of

interpolated delay lines, which may colour the output

sound. Figure 2 shows an empirical Head Related

Impulse Response (HRIR: a time domain HRTF), its

minimum phase representation and their common

magnitude response.

Figure 2: An empirical and minimum phase HRTF for a

source directly in front of a listener and the magnitude

response of the empirical data, which is the same as that

of the minimum phase response.

3. ALTERNATIVE APPROACHES TO HRTF
INTERPOLATION IN THE FREQUENCY-
DOMAIN

3.1 Motivation

Initial motivation for this study was the development of

robust, efficient algorithms for the artificial

spatialisation of audio, and an update of HRTF based

spatialisation available in open source computer music

languages such as Csound. Implementation issues are

discussed in [14].

Another main goal of this study is to offer alternatives

to the minimum phase assumption. Minimum phase

based processing involves complex preparation/online

processing of any dataset used. Approaches aiming to

use empirical data more directly, bearing in mind the

findings of [12] regarding relative insensitivity to the

finer detail of phase in localisation, are thus suggested.

Although the minimum phase assumption provides good

localisation, novel alternatives are presented that

approach the problem of phase interpolation more

simply and directly. The algorithms developed provide

efficient, spatially accurate processing, while

minimizing complex data preparation, approximation or

compression.

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

15

3.2 Phase Truncation

The first proposed algorithm suggests a novel treatment

of phase in interpolated HRTFs used for non

measured/interpolated sources. Four point linear

interpolation is applied to magnitude values. This results

in a magnitude spectrum that is consistent with nearest

empirical points. Values from the four nearest measured

HRTFs are combined, with higher relative weighting

given to values nearer the desired location. This method

cannot account for local anomalies in the spectrum.

However, the dataset used [1] is relatively dense, with

measurements every 5 degrees on the horizontal plane,

for example. Also, when minimum audible movement

constraints [15] and other limitations of the audio

spatialisation system are considered, this linear

interpolation approach provides a good approximation.

It is also employed with a minimum phase approach to

phase in [16] and a functional phase model, which will

be discussed below, in [17].

The algorithm was originally developed to provide

smooth, spatially accurate dynamic source trajectories.

This is achieved using frequency domain overlap-add

convolution. The azimuth and elevation of the source is

updated from a user defined trajectory every processing

block. Filters of 128 samples are used.

The novel contribution of this method is the treatment

of phase values. Bearing in mind the relative

insensitivity to phase reported in [12], nearest empirical

phase values are used. Figure 3 illustrates this method.

The interpolation algorithm is illustrated for a source

moving from left to right. At point 1, the source is

nearest the bottom left empirical point. Therefore,

magnitude interpolation will derive an intermediate

magnitude spectrum with highest relative weighting on

this point. The phase values from this HRTF will be

combined with the interpolated magnitude values for the

HRTF used in the spatialisation of the source. This

process will be repeated for each processing block. At

point 2, the source will be between the bottom left and

bottom right points. This scenario is dealt with as

follows: instead of switching abruptly between phase

values, which may cause an audible discontinuity in the

output, a brief cross fade is introduced. The input is

processed with the old phase data and faded out. At the

same time, the input processed with the new phase data

is faded in. The spectral content of the input will

determine the audibility of any discontinuity when

phase is abruptly changed. A narrowband source will

typically exhibit a more severe discontinuity than a

noisy source. Therefore, the crossfade is parametric.

Users can define its length. Crossfades as brief as 1

processing buffer of 128 samples may be sufficient for

noisy sources, whereas longer fades may be desirable

for more narrowband sources. A default value is offered

in the Csound implementation of this algorithm, which

also offers minimum phase processing [18]. As the

source in figure 3 moves closer to the bottom right

empirical impulse at point 3, its phase values are used,

and magnitude interpolation is weighted more strongly

to that point.

The algorithm, when tested subjectively, performs very

well (see below), providing smooth source movement.

The goal of using empirical data more directly is also

achieved and implemented in an efficient and simple

algorithm.

Figure 3: Magnitude Interpolation, Phase Truncation

3.3 Functional Phase Model

A second approach to phase interpolation is presently

suggested. Magnitude interpolation, as described above,

is employed. Phase can be derived functionally, by

assuming the head is a sphere. This will clearly

introduce inaccuracies in phase values, which are

addressed in a psychoacoustically motivated way here.

To derive an ITD based on a spherical head, the

following formula can be used:

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

16

 (2)

Head (/sphere) radius is represented by r, c is the speed

of sound, source azimuth and source elevation.

Phase values can be derived from this ITD values. This

formula (Woodworth’s formula) is used to derive phase

values in [17]. An augmentation and improvement of

the formula is presently offered, again aiming to use

empirical data more directly, in a psychoacoustically

motivated manner. As discussed above, accuracy of low

frequency ITD is crucial for localisation. Therefore,

more accurate low frequency phase values are desirable.

The following method aims to introduce phase accuracy

into the relevant low frequency end of the spectrum,

while utilizing the functional model.

ITD is understood as phase differences between the

signals to the left and right ear, and breaks down above

1500 Hz, becoming progressively worse towards this

threshold [15]. Interaural phase difference (IPD) is

therefore much more significant at lower frequencies.

Higher frequencies are not as important for phase based

localisation. This is confirmed by the experiments

completed in [12], discussed above. Furthermore, it is

specified in [13] that this functional model can account

for steady state high frequency ITDs.

It is thus proposed that augmenting the functional model

with more accurate low frequency phase values will

provide a more psychoacoustically accurate model. This

is achieved using scaling factors, extracted from the

empirical data. IPD becomes ambiguous for phase

differences of greater than 180 degrees, leading to

unreliable localisation. Therefore, the maximum

unambiguous frequency for a specific source location is

first calculated. IPDs are then derived for frequency

bins below this limit or the 1500 Hz threshold in a 128

sample Fast Fourier Transform of each HRTF pair in

the dataset. ITDs are derived from these IPD values, and

compared to the ITD derived from the functional model.

A scaling factor can thus be calculated for each bin of

interest. The values derived from the full dataset are

then averaged, and applied in the artificial spatialisation

process. This scaling factor increases the accuracy of

the functional model, basing it on the empirical data for

the dataset used. Figure 4 shows the scaling factors for

the frequency bins of interest. It is clear that ITD is

largely underestimated by the functional model, an error

corrected by scaling the phase values derived from the

functional model. When processing dynamic source

trajectories using this technique, interpolated HRTFs are

derived as the user defined trajectory is updated.

Magnitudes are interpolated linearly. Phase values are

derived using the functional model. An appropriate IPD

is calculated in the frequency domain. Values below

1500 Hz are scaled using the scaling factors extracted

from the empirical data. An accurate low frequency ITD

is thus derived, with an adequate high frequency ITD,

fitting the actual behavior of ITD discussed in [13].

Dynamic sources are processed using the Short Time

Fourier Transform (STFT) to avoid noise introduced by

changing phase spectra for dynamic sources.

Figure 4: ITD Scaling Factors

As described above, phase values are calculated per

frequency bin, with values of plus and minus half the

ITD for the ear nearer and further from the source

respectively. The low frequency spectrum is scaled

accordingly. This results in the HRIR wrapping around

its zero time point. It therefore appears that the nearer

ear response happens after the further ear, which is an

unnatural result. For this reason, the HRIR is shifted in

time, by half the size of the buffer. The result is a time

and phase accurate filter. Figure 5 shows 2 stereo

HRIRs. They both represent the HRTF for 0 degree

elevation and 90 degree azimuth. Therefore, the right

ear should receive the signal first. In the first HRIR, this

is not the case, as the functionally derived phase

spectrum wraps around the zero phase point, moving the

right ear response to the end. However, shifting the

HRIR will clearly result in a time accurate result, as can

be seen in the second HRIR. The interaural phase

spectrum between the left and right responses is

correctly imposed on both examples, but the second

HRIR is now correct in peak onset time, i.e. the right ear

receives its signal before the left.

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

17

Figure 5: Non-shifted and Shifted Functional Impulses

Interestingly, adding this time alignment provides much

better static localisation. It is assumed that different

onset times lead to confusions when processing sources

with dramatic envelopes.

4. VERIFICATION AND TESTING OF
ALGORITHMS

4.1 Objective Testing

An objective test was developed to investigate the

accuracy of the functional phase model: the spherical

head augmented by non linear low frequency scaling

against that of a minimum phase plus delay

implementation, prepared as in [12]. The dataset of 368

HRIR data files was initially transformed to a minimum

phase plus delay and a functional model dataset. Each

HRIR was then upsampled by a factor of 4 to increase

the accuracy of the evaluation. As the phase spectrum of

the new data files is what we wish to examine, and as

low frequency ITD is the psychoacoustically relevant

area of the spectrum on which we are focusing [12],

each HRIR is low pass filtered. ITDs are then calculated

for each pair of filtered responses (left and right), and

compared to those of the empirical data. Ideally, these

values should agree. However, results from the

functional model are expected to deviate due to the

averaging of the low frequency scaling factors. To avoid

the necessity for an individual curve representing the

scaling factors for each data file, all curves are

averaged. This means that only one curve of scaling

factors needs to be stored and referenced. Any

deviations from parity with empirical data in the

minimum phase plus delay implementation are due to

non linearities in the all pass component of the

minimum phase plus delay implementation.

Results for the overall dataset are illustrated in figure 6.

The minimum phase plus delay dataset deviates from

the empirical data by a total of 1076 samples. The

functional model, using a head radius of 8.8 cm,

deviates by 827 samples. The elevation 0 degrees subset

of the data is of particular interest for artificial

spatialisation applications. ITD and IID are most

pronounced in this horizontal plane, where artificial

spatialisation will be most effective. Applications may

choose to only operate in this 2 dimensional space.

Deviations from empirical data are given for the

datafiles at elevation 0 in figure 7. Once again, a cursory

look at the graph shows that the minimum phase plus

delay model deviates further from empirical data than

the functional phase model. Specifically, minimum

phase plus delay processing results in an error of 183

samples, whereas the functional model gives a 156

sample error, for reasons discussed above. Further

analysis of the data at individual elevations provides an

interesting insight into the nature of the dataset, and the

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

18

accuracy of the methods under evaluation. At lower

elevations and extremes of the horizontal plane, the

minimum phase plus delay model performs most poorly.

At higher elevations, however, the model performs

better. This agrees with previously discussed

conclusions reported in [12]. The functional model

performs better at lower elevations, suggesting that the

averaged data better fits this spatial area.

Overall, results therefore show the inaccuracies

introduced in the minimum phase plus delay

implementation, as well as the increased accuracy

offered by the functional model, despite the averaging

of data for efficiency. The goal of this method is

therefore validated: to derive a psychoacoustically

motivated fit for ITD using an efficient phase model.

Figure 6: Degree of error in low frequency ITD of

minimum phase plus delay and functional model over

entire dataset.

Figure 7: Degree of error in low frequency ITD of

minimum phase plus delay and functional model for 0

degree elevation subset of data.

4.2 Subjective Testing

As the main purpose of the novel algorithms is

implementation of artificial spatialisation applications,

subjective tests were developed to test both new

algorithms. Typically, dynamic source trajectories are

desirable in spatialisation applications, so moving

sources were used as source material. The basic design

of the test is similar to the A/B/Ref test defined in the

GuineaPig generic testing system as ‘Three samples are

played. Samples A and B are graded against the

reference’ [19]. In each test, two moving sources are

rated against a reference. The moving sources were

prepared using 4 algorithms: the minimum phase plus

delay method [12], the phase truncation method, the

functional phase method and a method using no

magnitude or phase interpolation. The last algorithm is

introduced as an anchor condition (as per the MUSHRA

method discussed in [20]. Anchors are test signals

which are perceptually impaired purposefully to provide

a base level. The anchor condition is used in a slightly

different way here). No interpolation in moving sources

will introduce abrupt changes in the filter used to

process the input audio. The anchor condition is

therefore expected to perform poorly. The nature of the

desired test and the available source material imposes

some restrictions. As moving source HRTFs are not

available, the reference used involves 2 statically

processed files: the source sound spatialised to the start

and end positions of the trajectory in question. Start,

mid and end points were initially considered to aid

listeners in discerning audible changes. However, mid

points were deemed unnecessary by listeners in early

trials. Subjects were asked to rate each moving file

based on smooth, artifact free trajectories. A 5 point

grading scale was used, as in [21]. Subjects were

informed that spatialisation accuracy was not to be

considered in their ratings. The quality scale was also

clearly defined to subjects. Using non-individualized

datasets can lead to spatialisation inaccuracies [2], and

the aim of the experiment was to validate that the new

algorithms provide smooth, artifact free processing. The

algorithms can then be used with other datasets, for

increased accuracy/individualization.

The setup of the test allows subjects to listen to any

spatialised source any number of times. A supervised

training period consisting of 3 trials is also presented, to

familiarize subjects with the sound sources, interface

and task. 18 actual trials were then presented,

constituting 36 dynamic sources to be rated. 3 source

sounds were used: a vocal speech sample, a noise burst

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

19

and a piano phrase. Thus a range of spectral and

temporal data was processed. An equal number of

trajectories for each source were tested. 9 subjects

performed the test. The interface for the test is

illustrated in figure 8.

Figure 8: Preference Test Interface

Results of the subjective tests will now be discussed.

The mean values for each algorithm are presented in

figure 9. The novel algorithms perform better than the

minimum phase plus delay method overall. All methods

perform well, with the exception of the anchor

condition, as expected. The novel algorithms, at

4.639260889 and 4.712208667 for the phase truncation

and functional models respectively, perform close to a

rating of excellent, defined in the test instructions as

‘Excellent: no distortion or noise: smooth movement

that sounds like the sound is convincingly moved from

start to end point, without any alterations/clicks/noise

added to the sound’. The minimum phase plus delay

result of 4.267233333 is a lower rated result, closer to a

rating of ‘good’: ‘Good: some slight distortion or noise:

Some slight filtering/movement not completely smooth;

perhaps the sound is a little altered’. Subjects

highlighted the introduction of some artifacts in source

movements processed with the minimum phase method.

The spectrally rich noise source highlighted these

issues. The minimum phase plus delay model performed

better with the other sources, whose spectra were more

narrow band. The results of the tests performed with the

noise source are illustrated in Figure 10.

Figure 9: Overall Preference Test Results

Figure 10: Preference Test Results: Noise Source

5. CONCLUSION

Novel solutions to the challenge of HRTF interpolation

and dynamic source processing have been presented.

Phase truncation provides an easily realised method

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

20

which uses empirical data directly, without any

necessity for complex data preparation, transformation

or compression. Brief crossfades provide a parametric,

efficient solution to changing phase values. The method

performs very well in subjective tests using dynamic

sources.

The functional phase model augments a spherical head

approximation of ITD with low frequency, frequency

dependent scaling factors based on the empirical data.

Empirical low frequency IPDs are used as scaling

factors in this psychoacoustically motivated method.

Objectively, the method provides a more accurate low

frequency ITD than the minimum phase plus delay

method over the complete dataset.

The minimum phase plus delay method involves data

approximation and complex processing. The novel

methods aim to reduce this complexity, and suggest

alternative approaches to the challenge of phase

interpolation. All 3 methods perform well in objective

testing of dynamic sources. However, the novel

algorithms both perform significantly closer to a rating

of ‘excellent’ than the minimum phase plus delay

model.

The most obvious application of the developed

algorithms lies in artificial spatialisation processing.

The authors are currently developing an artificial

reverberation tool, using binaurally accurate early

reflections and a binaural diffuse field, both based on

the image model [22]. Using the phase truncation

algorithm, real time processing of high resolution,

dynamic early reflections is possible. It is hoped that

this reverb system will be added to a multi channel

binaural spatialisation application. Such applications

typically assume the listener to be in the sweet spot [4].

Dynamic HRTF processing allows users to move

around more freely, auditioning the loudspeaker array.

A flexible loudspeaker setup is also desirable, allowing

various algorithms and setups, such as Ambisonics,

Vector Base Amplitude Panning or Wave Field

Synthesis. The previously mentioned reverb tool may be

useful in such an application if the inherent

multichannel reverberation of the desired method is

deemed unsuitable for reasons of accuracy or

complexity.

6. ACKNOWLEDGEMENTS

This work was supported by the Irish Research Council

for Science, Engineering and Technology: funded by the

National Development Plan and NUI Maynooth.

7. REFERENCES

[1] B. Gardner and K. Martin, “HRTF Measurements

of a KEMAR Dummy Head Microphone,”

Available at

http://sound.media.mit.edu/resources/KEMAR.html

, Accessed January 31, 2009.

[2] E. Wenzel, M. Arruda, D. Kistler and F. Wightman,

“Localization using non-individualized head related

transfer functions,” Journal of the Acoustical

Society of America, vol. 94, no. 1, pp.111-123, July

1993.

[3] C. Cheng and G. Wakefield, “Moving Sound

Source Synthesis for Binaural Electroacoustic

Music Using Interpolated Head-Related Transfer

Functions (HRTFs),” Computer Music Journal, vol.

25, no. 4, pp.57–80, Winter 2001.

[4] M. Noisternig, T. Musil, A. Sontacchi and R.

Höldrich, “3D Binaural Sound Reproduction using

a Virtual Ambisonic Approach,” IEEE Symposium

on Virtual Environments, Lugano, Switzerland,

July 27-29, 2003, pp. 174-178.

[5] K. Hartung, J. Braasch and S. Sterbing,

“Comparison of Different Methods for the

Interpolation of Head Related Transfer Functions,”

AES 16th International Conference: Spatial Sound

Reproduction, Rovaniemi, Finland, March 1999,

pp.319-329.

[6] J. Jot, V Larcher and O. Warusfel, “Digital Signal

Processing Issues in the Context of Binaural and

Transaural Stereophony,” AES 98
th

 Convention,

Paris, France, February 25-28, 1995.

[7] F. R. Moore, Elements of Computer Music, Prentice

Hall, New Jersey, USA, 1990.

[8] A. Oppenheim, and R. Schafer, Discrete-Time

Signal Processing, Prentice Hall, New Jersey,

USA, second edition, 1999.

Carty and Lazzarini Interpolation of Empirical HRTF Data

AES 126th Convention, Munich, Germany, 2009 May 7–10

21

[9] S. Mehrgardt and V. Mellert, “Transformation

characteristics of the external human ear,” Journal

of the Acoustical Society of America, vol. 61, no. 6,

pp. 1567-1576, June 1977.

[10] D. Kistler and F. Wightman, “A model of head-

related transfer functions based on principal

components analysis and minimum-phase

reconstruction,” Journal of the Acoustical Society

of America, vol. 91, no. 3, pp.1637-1647, March

1992.

[11] A. Kulkarni and H. Colburn, “Infinite-impulse-

response models of the head-related transfer

function,” Journal of the Acoustical Society of

America, vol. 115, no. 4, pp.1714-1728, April 2004.

[12] A. Kulkarni, S. Isabelle and H. Colburn,

“Sensitivity of Human Subjects to Head-Related

Transfer-Function Phase Spectra,” Journal of the

Acoustical Society of America, vol. 105, no. 5, pp.

2821-2840, May 1999.

[13] G. Kuhn, “Model for the interaural time difference

in the azimuthal plane,” Journal of the Acoustical

Society of America, vol. 62, no. 1, pp.157-167, July

1977.

[14] V. Lazzarini and B. Carty, “New Csound Opcodes

for Binaural Processing,” Proc. 6th Linux Audio

Conference, Cologne, Germany, February 2008, pp.

28-35.

[15] B. Moore, An Introduction to the Psychology of

Hearing, Elsevier Academic Press, London, UK,

fifth edition, 2004.

[16] L. Savioja, J. Huopaniemi, T. Lokki and R.

Väänänen, “Creating Interactive Acoustic

Environments,” Journal of the Audio Engineering

Society, Vol. 47, No. 9, pp. 675-705, September

1999.

[17] D. Zotkin, R. Duraiswami and L. Davis,

“Rendering Localized Spatial Audio in a Virtual

Auditory Space,” IEEE Transactions on

Multimedia, vol. 6, no. 4, pp.553-564, August 2004.

[18]http://www.csounds.com/manual/html/hrtfmove.ht

ml.

[19] J. Hynninen and N. Zacharov, “GuineaPig – A

generic subjective test system for multichannel

audio,” AES 106
th

 Convention, Munich, Germany,

May 1999.

[20] ITU-R. Recommendation BS.1534, “Method for

the Subjective Assessment of Intermediate Quality

Level of Coding Systems,” International

Telecommunications Union Radiocommunications

Assembly, 2001.

[21] ITU-R. Recommendation BS.1284, “General

methods for the subjective assessment of sound

quality,” International Telecommunications Union

Radiocommunications Assembly, 1997.

[22] J. Allen and D. Berkley, “Image method for

efficiently simulating small-room acoustics,”

Journal of the Acoustical Society of America, vol.

65, no. 4, pp.943-950, April 1979.

Proc. of the 12
th

 Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

22

 BINAURAL HRTF BASED SPATIALISATION: NEW APPROACHES AND

IMPLEMENTATION

Brian Carty and Victor Lazzarini

Sound and Digital Music Technology Group,

National University of Ireland, Maynooth

Co. Kildare, Ireland
brian.m.carty@nuim.ie,

victor.lazzarini@nuim.ie

ABSTRACT

New approaches to Head Related Transfer Function (HRTF)

based artificial spatialisation of audio are presented and
discussed in this paper. A brief summary of the topic of audio
spatialisation and HRTF interpolation is offered, followed by an
appraisal of the existing minimum phase HRTF interpolation
method. Novel alternatives are then suggested which essentially

approach the problem of phase interpolation more directly. The
first technique, based on magnitude interpolation and phase
truncation, aims to use the empirical HRTFs without the need for
complex data preparation or manipulation, while minimizing any

approximations that may be introduced by data transformations.
A second approach augments a functionally based phase model
with low frequency non-linear frequency scaling based on the
empirical HRTFs, allowing a more accurate phase representation
of the more relevant lower frequency end of the spectrum. This

more complex approach is deconstructed from an implementation
point of view. Testing of both algorithms is then presented,
which highlights their success, and favorable performance over
minimum phase plus delay methods.

1. INTRODUCTION

Our ability to locate sound sources in our spatial environment
depends primarily on the binaural nature of our auditory system.
We can use interaural time and intensity differences (ITD and

IID respectively) to help us in this task, often very accurately
under favorable conditions. These interaural cues have frequency
limitations. Generally, ITD performs best at low frequencies and
IID at high. Monaural information can also provide important
localisation cues. The pinna filters audible incoming sound in a

non-linear manner due to its complex shape.

These cues will all be evident in the Head Related Transfer
Function (HRTF) of the left and right ear of a specific listener,
with regard to a specific source location relative to this listener.

HRTFs essentially define how a sound from a particular location
is altered from source to tympanic membrane. An arbitrary
mono, non-localized source can then be artificially spatialised to
the location of this HRTF pair by convolving it with the left and

right ear HRTFs and playing the resulting stereo file in
headphones.

Such a system appears promising for artificial spatialisation;
however, limitations must be recognized. HRTFs are individual

specific, for physiological reasons. Consistencies can however be
observed in external ear characteristics, leading to the frequent

use of generalised/non-individualized HRTF data sets in artificial
binaural spatialisation scenarios. The finer detail of localisation

ability, for example elevation resolution and front/back
confusions in areas where interaural cues will be similar can be
degraded in this scenario, but it is suggested in [1] that non-
individualized data sets are certainly a useful tool in artificial
spatialisation applications.

HRTF datasets typically record and store a fixed number of
responses around a subject, for various azimuths and elevations,
for example [2]. If sources are required to be spatialised to a non-
measured point, or move smoothly from point to point, an

interpolation algorithm is required.

Several approaches to this complex task have been
suggested. Essentially, the interpolation process can be thought
of as the derivation of a new HRTF by combining values from

known empirical HRTF measurements. Known points in the
vicinity of the desired non-measured point can thus be read and
combined with relative weightings with regard to the desired
point.

This interpolation process is more accurately performed in
the frequency domain, which immediately raises the issue of
phase interpolation. As ITD uses phase differences in locating
sounds, phase values in HRTFs are clearly significant. Phase is,

however, a periodic quantity, therefore phase interpolation is
problematic.

Traditionally, this difficulty has been overcome using a
minimum phase allpass decomposition of the HRTF. By
assuming the allpass component is linear, this becomes a

minimum phase plus delay decomposition. This paper will first
present a review of the standard minimum phase method.
Following this, we will introduce two novel approaches to the
problem, considering their motivation and implementation.

Finally, we will present test results illustrating their favorable
performance.

2. MINIMUM PHASE HRTF ASSUMPTION AND

INTERPOLATION

Any rational system function can be broken into a minimum

phase and an allpass system [3]. The magnitude of the minimum
phase all pass decomposition is represented solely by the
minimum phase system and the phase is reconstituted by both the
allpass and minimum phase representations. The system in

question can thus be defined as:

 (1)

Proc. of the 12
th

 Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

23

where H min (z) is a minimum phase system and H ap (z) is an

allpass system.

Typically, magnitude and phase spectra are not related. A
unique and, in this case, extremely useful property of minimum

phase systems, however, is that phase values for each component
frequency can be derived from their corresponding magnitude
values.

It has been asserted that the allpass component of the
decomposition of the HRTF into minimum phase and allpass

components approximates linearity in [4]. In this study, the
authors performed the decomposition of measured transfer
functions in order to avoid the above mentioned phase
uncertainty. They wished to obtain an unambiguous

representation of the phase of their functions. In so doing, they
realised that almost all of the fine detail in the phase of their free
field to ear canal transfer functions was contained in the
minimum phase components. They concluded that the allpass
component thus approaches linearity.

Furthermore, the allpass component of the full HRTF
(including the ear canal response) exhibits a ‘nearly linear’ phase
response up to 10 KHz. Consequently, the external ear can be
thought of as a minimum phase system within this range. This

implies that the allpass component can be approximated using a
time domain, frequency independent delay line. Thus phase
interpolation is no longer a problem, as phase can be derived
from magnitude for the minimum phase part of the

decomposition, and delay lines can be interpolated. This
observation has become the basis for many HRTF based binaural
processing algorithms.

Each empirical HRTF pair is thus analysed to extract an

appropriate interaural delay and reduced to a minimum phase
representation. Interpolation can be performed on the delay and
magnitude values. Interpolated minimum phase phase values can
then be derived from these interpolated magnitude values.

The decomposition of impulses in [4] theoretically validates
the description of HRTFs as minimum phase filters (the transfer
function can be thought of as a filter operation) plus delays. A
typical motivation regarding the study of HRTFs is the
implementation of an artificial spatialisation system. Such an

application is perhaps more concerned with more subjective
testing. Therefore, the seminal paper by Kulkarni et al.
examining the sensitivity of human subjects to HRTF phase
spectra [5], which details psychophysical tests performed on a

subject group is of great significance. Initially, while objectively
investigating the validity of the minimum phase assumption, the
study reports high coherence values between empirical and
minimum phase plus delay data sets. However, coherence values
were found to be systematically worse at lower elevations and

extremes of the horizontal plane. It is suggested that this is due to
the shadowing effect of the head and interactions with the torso
making the allpass delay non-linear, a phenomenon also
discussed in [6]. This is supported by better performance at

higher elevations, where there is less obstruction in the path to
the contralateral (further from the source) ear. Phase error results
enforce this assumption. These specific cases when minimum
phase plus delay may not be valid are also mentioned in [7],
where some possible solutions are discussed.

The psychophysical results from [5] further clarify this issue,
highlighting a low frequency cue present at extremes of the
horizontal plane, helping the subject to distinguish between

minimum phase plus delay and empirical impulses. Therefore,
the suitability of modeling the interaural delay as a linear delay is

brought into question. The study, however, concludes that

minimum phase plus delay models are sufficient for most
locations (and therefore adequate), and that the finer structures of
phase are not excessively important, as long as the overall delay
is approximated in accordance with that of the low frequency

empirical ITD. The benefits of minimum phase plus delay,
specifically its ability to deal with phase interpolation and
efficiently express the filter with the lowest possible number of
coefficients (as the energy in a minimum phase impulse will be
focused at its start) typically justify its use.

To conclude this analysis of the minimum phase plus delay
HRTF representation, practicalities of implementation of the
desired real time artificial spatialisation system need to be

considered. In such an application, (the design of which is based
on the minimum phase assumption) delay lines need to be
interpolated, which adds complexity and possible spectral
distortions to the output signal. The method of delay extraction is
also pertinent. Several methods have been suggested, again

adding to the processing and preparation required.

3. NOVEL APPROACHES TO EMPIRICAL DATA

INTERPOLATION

3.1 Motivation

The initial and primary aim of this study is to provide a toolset
for the artificial recreation of audio spatialisation using HRTF

based binaural techniques for open source computer music
languages. Tools recently developed by the authors are discussed
in [8] from a point of view of implementation for a particular
computer music programming language, Csound. The developed

algorithms are also introduced in [9] (more detail is given here).
Further insight into algorithm testing is also given in [9].

Secondary to this goal, alternatives to the minimum phase
approach are suggested that do not assume the approximations

involved in modeling the HRTF as minimum phase plus delay.
This essentially involves engaging more directly with the phase
ambiguity problem. Thus approaches are developed that remove
the approximation involved in the minimum phase assumption,

as well as the complex data preparation/online processing
necessary in minimum phase implementation, while exploiting
the apparent insensitivity to phase spectra reported in [5]. The
approaches outlined below are also intended to give spatially
accurate and efficient processing while dealing more directly

with the empirical data. Complex data analysis, compression or
transformation necessary in other approaches is thus purposefully
minimized to enable convenient, immediate use of HRTFs. The
two novel approaches suggested are discussed below.

3.2 Phase Truncation, Magnitude Interpolation

The first of the two new methods proposed introduces phase
truncation as a novel addition to linear interpolation methods.

The spectrum of the employed HRTF is derived from
interpolated magnitude values and the nearest available empirical
phase values. An impulse is thus derived for each block of audio
processed in the case of a dynamic source. The method provides

a simple, intuitive solution to HRTF interpolation for non
measured points and performs particularly well in subjective
tests.

A user defined, dynamic source trajectory is implemented by

updating angle (azimuth) and elevation values for each

Proc. of the 12
th

 Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

24

processing block. The HRTF data in the employed data set [2] is

stored as a group of values for particular angles at various
elevation increments. Linear interpolation is performed on the
magnitude values. This method derives an
intermediate/transitional FIR filter that is consistent with the

local empirical data, boosting or attenuating spectral bands
appropriately.

Possible anomalies in the impulse response of non-measured
points are not addressed by this method, although in a dense

dataset (the MIT dataset has a resolution of 5 degrees in the
horizontal plane for the 0 degree elevation subset of
measurements), bearing in mind minimum audible movement
constraints [10] and other limitations of the auditory

spatialisation system, the technique provides a good
approximation. The preference tests discussed below also attest
to the perceived smooth movement of sources dynamically
spatialised using the method. Filters used are 128 samples long,
and are processed using overlap add (rectangular window)

convolution in the frequency domain. Noise introduced by filter
magnitude values changing as the source moves through a
trajectory adhering to minimum audible movement angle limits is
inaudible/tolerable. This linear interpolation method is utilized in

Savioja et al. [11], who use a minimum phase approach to phase
interpolation (as discussed above), Xiang et al. [12], who use
time domain processing (which is not efficient and can introduce
errors) and Zotkin et. al [13], whose approach will be discussed
below.

A novel addition to this interpolation algorithm is the
truncation of phase values, and subsequent processing.
Intermediate filters use nearest measured phase values. It is
proposed that choosing the phase of the nearest measured point

in a dense dataset will not have a significant effect on the
perceived spatial quality of the result. As discussed above, it has
been shown that phase does indeed play an important role in
localisation, but exact phase accuracy is not essential [5].

Of immediate concern is the update of these phase values as
a source moves closer to the next empirical HRTF on a desired
trajectory. Abruptly switching between phase values is
undesirable, as it could potentially cause inconsistencies in the

output. Brief crossfades are suggested to avoid this. The
frequency content of the source defines the audibility of the
switch. Frequency rich sources may be able to mask any artifacts
caused by a switch in phase values. However, sources with

energy focused on one spectral region/narrowband sources will
typically not perform as well in this scenario, leading to
inconsistencies in the output.

Therefore, in the Csound implementation of this algorithm,

the user can simply define the length of crossfades required
depending on the source they are working with, if they wish to
deviate from a suggested default. Buffers of 128 samples are
processed in each iteration. A crossfade over one such buffer

may be enough to mask inconsistencies for frequency rich
sources. Users may find that other sources may require
crossfades lasting up to 16 buffers to mask all artifacts. The old
HRTF data is processed with the input data and faded out.
Simultaneously, the new HRTF data is processed with the input

and faded in. Thus inconsistencies are removed in a simple,
source specific (if required) manner. These brief crossfades will
typically be infrequent. For static/slow moving sources, no/very
occasional crossfades will be needed. For more quickly moving

sources, more crossfades will be required, however in all cases,
only very brief periods of crossfade are needed.

Figure 1 gives an overview of the algorithm. Three snapshots

in time are illustrated. In the first, the source is nearest to the
bottom left empirical value, so uses its phase spectrum. In the
second, a crossfade occurs as the source moves from being closer
to one empirical point to another. Finally, the source is closer to

the bottom right point, so uses its phase spectrum. Relatively
weighted magnitude values will be used in accordance with
source location.

Figure 1: Magnitude interpolation, phase truncation.

3.3 Functional Phase Model

3.3.1 Woodworth/Schlosberg Formula

Spectral magnitude interpolation, as discussed above and in the
literature, is straightforward, easily realizable and performs
adequately, and is employed again in the second suggested novel
approach. Again, the derivation of the phase spectrum constitutes

the novel aspect of this approach. Essentially, empirical
magnitude interpolation is coupled with a functionally modeled
phase spectrum. Interaural Phase Difference (IPD) is essential in
the derivation of a correct ITD. When endeavoring to

functionally model the phase spectrum, the head can be roughly
approximated to a sphere. This simplification can be practically
implemented mathematically: the ITD for a particular source
location, assuming a spherical head can be defined thus:

 (2)

where r is the head (/sphere) radius, c is the speed of sound, is

the angle (azimuth) and the elevation of the source. This
formula is described as the Extended Woodworth/Schlosberg
Formula in [14]. Successful use of this basic Woodworth model
for HRTF phase modeling and a magnitude interpolation
algorithm is reported in [13], and is augmented and advanced

here. The formula is also successfully utilized in [11].
Simplifying the complex shape of the head to that of a sphere
will distort the HRTF. This distortion is closely related to the
discussion above on sensitivity to phase spectra, which

concluded that low frequency ITD is the predominant phase cue
[5]. Therefore the novel addition to the method aims to reproduce
more accurately this low frequency ITD.

Proc. of the 12
th

 Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

25

3.3.2 Low Frequency Scaling

Accurate ITD modeling involves maintaining a modeled low
frequency ITD that is consistent with empirical values [5]. This is
done by improving the Woodworth/Schlosberg formula. Higher
frequency ITD is not as significant, as agreed in [5] and [6],
which specifies that a Woodworth model can account for steady

state high frequency ITDs. From a physiological point of view,
IPD based localisation breaks down above approximately 1500
Hz [10], becoming progressively less accurate towards this
threshold. A low frequency, frequency dependent scaling factor

is therefore suggested as an addition to the
Woodworth/Schlosberg formula. It is proposed that this provides
a more complete, psychoacoustically based solution, with
minimal extra processing required.

Primarily, psychoacoustically based parameters are imposed
on the range of the spectrum to be scaled. As mentioned above,
IPD breaks down above approximately 1500 Hz; therefore this
value is used as the upper boundary for scaling. Physical IPD

restrictions for sinusoidal sources can be further quantified by
finding the maximum unambiguous frequency for a specific
source location. At IPDs of 180 degrees and greater, the source
location is uncertain. The right signal may be leading the left, or
vice versa. As with phase interpolation, this uncertainty is a

result of the periodic nature of phase. As IPDs get larger, a
greater number of perceived source locations are possible, as a
number of full phase cycles may be incorporated into the
reported IPD. The maximum frequency for a specific source

location can be calculated thus:

 (3)

where r is the head radius (again assuming a spherical head), c is
the speed of sound, is the angle (azimuth) and the elevation
of the source. This essentially represents the frequency that
corresponds to half the distance around the head to the opposite

ear.

This formula is used, where appropriate, to reduce this 1500
Hz threshold. The radius used here is that of the largest radius

derivable from the KEMAR [15] mannequin measurements to
minimize the value used. This reduction is maximized at the
horizontal extreme of the half of the spatial hemisphere used (the
left hemisphere is simply an inverted copy of the right in the
dataset used [2]). A maximum IPD of is implied by this

methodology, which is the highest realizable resolution without
phase ambiguities in a typical situation. However, although
unnecessary here, resolution to 2 is possible, as the source
location direction is known. ITD is, in these circumstances, a

vectorial quantity. In relation to the ear nearest to the source
position, the ITD will have positive orientation, whereas the
other ear will have a negative ITD.

In practical terms, impulses will always come from the right

if the angle is less than 180 degrees (with the exception of 0 and
180 degrees, where there is no IPD). As the right phase is
positively oriented and the left negatively in this scenario, IPD
can be defined as right phase minus left. If there is an anomaly in
this calculation (if the phase difference has passed onto a new

cycle), the right phase is augmented by 2 .

ITDs are derived from empirical IPDs and compared to
Woodworth/Schlosberg ITDs. Scaling factors are then calculated.

The average of all derived scaling factors for each bin of the low
frequency spectra of the HRTFs are shown in Figure 2, for a Fast

Fourier Transform (FFT) size of 128 samples (we are using the

compact, diffuse field filtered HRTF data from [2]). The bins of
interests are shown in the figure, up to the 1500 Hz threshold.

Figure 2: ITD scaling factors.

A larger sample block FFT, giving more spectral resolution,

reveals some interesting characteristics of this particular dataset.
The curve is predominantly > 1, as expected [6], and illustrated
in Figure 2. Some anomalies do appear on closer inspection,
however. For example the curve falls below 1 at angle 150
degrees, elevation -30 degrees. However, the curve generally fits

Figure 2 well, so the averaged model is used across location for
efficiency.

The values derived from this Extended Woodworth

/Schlosberg Non-linearly Low Frequency Scaled Spherical Head
(functional) Model are then used in the re-synthesis of the phase
spectrum. Essentially, an appropriate ITD is derived from the
Woodworth/Schlosberg formula. In the frequency domain, the
appropriate phase is then calculated. For frequencies below 1500

Hz, the ITD value is scaled in accordance with the averaged
scaling factor, which is derived from the empirical data. This
model provides an accurate average low frequency ITD for this
particular dataset, and a steady Woodworth based ITD for higher

frequencies, providing a psychoacoustically derived fit of the
actual behavior of ITD [6]. Overlap-add convolution leads to
undesirable noise when processing dynamic source trajectories,
due to derived phase values not ‘matching’ amplitude values, so
Short-time Fourier Transform (STFT) processing is used.

4. ALGORITHM TESTING

4.1 Objective Tests

The non linear low frequency scaling of the functional model
was tested numerically to compare it to the minimum phase plus
delay model. Primarily, all 368 data files in the empirical dataset

were transformed into minimum phase plus delay and functional
model datasets. The minimum phase plus delay dataset was
prepared as in [5]. We wish to highlight not only that the novel
algorithm performs well, but also the approximations involved in
assuming that the allpass component is linear in the minimum

phase plus delay algorithm. Datasets were then upsampled to 4
times their sampling rate (44,100 * 4 Hz) to provide a more
accurate evaluation. Each HRTF pair was run through a low pass
filter, to focus on the lower end of the spectrum, where ITD is

more significant as a spatial localisation cue [10]. ITDs for each
filtered HRTF pair were then calculated, by finding the
maximum of their interaural cross correlation. The filtered

Proc. of the 12
th

 Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

26

minimum phase and functional model ITDs were then compared

to the filtered empirical ITDs.

Ideally, both algorithms should agree with the empirical data.
However, this is not always the case. When all data is

considered, the minimum phase plus delay ITDs deviate from the
empirical data by a total of 1076 samples over the entire dataset.
This is due to the non-linearities involved in the allpass
component of the minimum phase allpass deconstruction. The
functional model deviates by 827 samples for a head radius of

8.8 cm. This deviation is due primarily to inaccuracies introduced
by averaging of the scaling factors over the whole dataset, which
was performed for efficiency. Therefore the novel suggested
method is validated, as its main goal is to provide a more

accurate low frequency ITD, due to its importance in localisation
[5]. This result is illustrated in Figure 3, which shows that the
minimum phase plus delay model involves a greater deviation
from empirical data.

Figure 3: Objective test illustrating that ITD of

introduced functional model is closer to empirical data

than minimum phase plus delay for low frequencies.

4.2 Subjective Tests

Subjective tests were also performed to rate both of the novel
algorithms. Due to the nature of the novel algorithms and the
desire for source movement being the motivation for the study, a

moving source A/B/Ref based test was developed.

The GUI for the test was developed using Csound’s FLTK
opcodes. Due to the restriction of not having a true reference

signal (a moving source recorded under the exact conditions of
the dataset), the source in question processed with static start and
end point empirical HRTFs constitutes the reference. The
minimum phase (as prepared in [5], using overlap add
convolution, as the phase truncation algorithm does), phase

truncation, functional model and an anchor condition were tested.
The anchor condition uses the same dataset to spatialise sounds,
but no interpolation. Therefore it was expected to perform
poorly.

Subjects were asked to rate the dynamic samples according
to a 5 point quality grading scale [16]. These ratings were based
on smooth, artifact free movement from start to end point. Note
that non-individualized HRTFs were used here, which can lead to

front-back confusion and localisation inaccuracies [1]. Therefore,
spatial location is not being assessed in this test. This is also
explicitly confirmed as a note to participants in the test’s
instructions. Subjects were permitted to repeat playback of
reference and sample files, as desired. Also, subjects could stop

samples if required, and could not play more than one sample at a

time.

Three sample tests were presented, constituting a training
period, followed by 36 dynamic sources to be judged. The

purpose of the training period was to familiarize subjects with the
sound samples, task and interface. A screenshot of the interface
is given in Figure 4. It shows the reference signals (start point
and endpoint) and two movements to be rated.

The three different sound sources used were: a vocal sample,
a noise burst and a brief musical figure played on piano,
representing a range of spectral and temporal changes in sources.
Nine subjects were tested, all of whom had experience with
critical headphone listening. Overall results are illustrated in

Figure 5. The mean values for each algorithm are presented. As
expected, the anchor algorithm performs significantly worse than
the others. Interestingly, the means indicate that the novel
algorithms introduced here perform better than the minimum

phase plus delay method. All 3 algorithms are within the range
from good to excellent, however, the novel algorithms are closer
to excellent, at 4.6 and 4.7 for the phase truncation and functional
models respectively. The minimum phase plus delay method, at
4.3, clearly has a lower mean. Results of a Friedman test show a

statistically significant difference between algorithm ratings.

Figure 4: Preference test interface.

Figure 5: Preference test results.

Proc. of the 12
th

 Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

27

5. CONCLUSION

A critique of the minimum phase plus delay method of dynamic
binaural spatialisation is offered. It requires complex data

preparation and digital signal processing, as well as data
approximations. Novel methods for the interpolation of HRTFs
have been presented and discussed. The phase truncation method
described maintains nearest measured phase data, thus meeting

the criterion of using empirical data directly. Smooth, artifact
free, user definable complex trajectories are possible with this
method. Change of phase information is dealt with using brief
crossfades, which users may tailor to the spectral content of their
source sound if desired.

As discussed in [5], HRTF phase data does not require exact
accuracy. More specifically, maintaining low frequency
interaural time delays appears to provide accurate phase data.

The more complex functional model introduced works on this
assertion. Augmenting the simplification of the head to a sphere
with non linear frequency scaling factors for the
psychoacoustically relevant low frequency end of the spectrum
will reintroduce some of the more significant finer phase detail of

the head, pinnae and torso. The algorithms involved are
discussed in detail, and some insight is given into the phase
response of the particular dataset used, as well as the vectorial
nature of ITD. The importance of low frequency phase

information is preserved and applied to an efficient, simple
model for phase.

Both objective and subjective tests are presented. The
functional model is numerically validated by examining the

lower end of the spectrum for all impulses in the dataset. This
shows a low frequency ITD that agrees more closely with the
empirical data than a minimum phase plus delay model.
Subjectively, both the phase truncation and functional model

perform better than the minimum phase plus delay algorithm.

The novel methods mentioned above, as well as the
minimum phase based method have been implemented as
Csound opcodes [8, 17]. A HRTF based reverb system is

currently being completed, adding HRTF accurate early
reflections and a binaural statistical diffuse field to sources
spatialised using the opcodes developed.

6. ACKNOWLEDGEMENTS

This research is supported by the Irish Research Council for
Science, Engineering and Technology: funded by the National
Development Plan and NUI Maynooth. V. Lazzarini’s work was
supported by An Foras Feasa.

7. REFERENCES

[1] E. Wenzel, M. Arruda, D. Kistler and F. Wightman,

“Localization using non-individualized head related transfer

functions,” Journal of the Acoustical Society of America,

vol. 94, no. 1, pp.111-123, July 1993.

[2] B. Gardner and K. Martin, “HRTF Measurements of a
KEMAR Dummy Head Microphone,” Available at

http://sound.media.mit.edu/resources/KEMAR.html,

Accessed June 23, 2009.

[3] A. Oppenheim, and R. Schafer, Discrete-Time Signal
Processing, Prentice Hall, New Jersey, USA, second

edition, 1999.

[4] S. Mehrgardt and V. Mellert, “Transformation

characteristics of the external human ear,” Journal of the

Acoustical Society of America, vol. 61, no. 6, pp. 1567-

1576, June 1977.
[5] A. Kulkarni, S. Isabelle and H. Colburn, “Sensitivity of

Human Subjects to Head-Related Transfer-Function Phase

Spectra,” Journal of the Acoustical Society of America, vol.

105, no. 5, pp. 2821-2840, May 1999.
[6] G. Kuhn, “Model for the interaural time difference in the

azimuthal plane,” Journal of the Acoustical Society of

America, vol. 62, no. 1, pp.157-167, July 1977.

[7] S. Busson, R. Nicol and B. Katz, “Subjective investigations
of the interaural time difference in the horizontal plane,”

AES 118th Convention, Barcelona, Spain, May 2005.

[8] V. Lazzarini and B. Carty, “New Csound Opcodes for

Binaural Processing,” Proc. 6th Linux Audio Conference,
Cologne, Germany, February 2008, pp. 28-35.

[9] B. Carty and V. Lazzarini, “Frequency-domain Interpolation

of Empirical HRTF Data,” AES 126th Convention, Munich,

Germany, May 7-10, 2009.
[10] B. Moore, An Introduction to the Psychology of Hearing,

Elsevier Academic Press, London, UK, fifth edition, 2004.

[11] L. Savioja, J. Huopaniemi, T. Lokki and R. Väänänen,

“Creating Interactive Acoustic Environments,” Journal of

the Audio Engineering Society, Vol. 47, No. 9, pp. 675-705,
September 1999.

[12] P. Xiang, D. Camargo and M. Puckette, “Experiments on

Spatial Gestures in Binaural Sound Display,” in Proc. 11th

International Conference on Auditory Display (ICAD 05),
Limerick, Ireland, July 2005, pp. 1-4.

[13] D. Zotkin, R. Duraiswami and L. Davis, “Rendering

Localized Spatial Audio in a Virtual Auditory Space,” IEEE

Transactions on Multimedia, vol. 6, no. 4, pp.553-564,
August 2004.

[14] P. Minnaar, J. Plogsties, S. Olesen, F. Christensen and H.

Møller, “The Interaural Time Difference in Binaural

Synthesis”, AES 108th Convention, Paris, France, February
2000.

[15] M. Burkhard and R. Sachs, “Anthropometric manikin for

acoustic research,” Journal of the Acoustical Society of

America, vol. 58, no. 1, pp.214-222, July 1975.

[16] ITU-R. Recommendation BS.1284, “General methods for
the subjective assessment of sound quality,” International

Telecommunications Union Radiocommunications

Assembly, 1997.

[17] http://www.csounds.com/manual/html/hrtfmove.html,
http://www.csounds.com/manual/html/hrtfmove2.html,

http://www.csounds.com/manual/html/hrtfstat.html,

Accessed June 23 2009.

28

HRTFEARLY & HRTFREVERB: FLEXIBLE BINAURAL REVERBERATION

PROCESSING

Brian Carty Victor Lazzarini

Sound and Digital Music Technology Group,

National University of Ireland, Maynooth,

Co. Kildare,

Ireland

ABSTRACT

A binaural reverberation processor is presented, based on

location accurate processing of early reflections and a

Feedback Delay Network (FDN) approach to the later

diffuse field. Recently developed Head Related Transfer

Function (HRTF) dynamic processing algorithms, which

have been shown to perform favorably when compared to

typically employed methods, are used to allow dynamic

direct sources and early reflections. A flexible binaural

FDN, which considers interaural coherence, provides an

efficient and robust later reverberation model. The overall

system is designed to work parametrically, and requires no

measured room impulses. This paper introduces the area

and gives implementation details of each section of the

overall reverberation algorithm from the point of view of

recently developed Csound opcodes.

1. INTRODUCTION

In most natural listening circumstances, sound arrives at a

listener not only directly from the source, but also after

reflecting off obstacles/boundaries (reverberation). Several

approaches to reverberation processing have been

presented in the literature, varying greatly in computational

cost and accuracy (for example, computationally efficient

recursive filters [12] to more accurate yet significantly

more costly digital waveguide meshes [10]). The impulse

response of a room can be split into early reflections and a

later, more diffuse reverberant tail. Several artificial

reverberation models are based on this decomposition [2,

8, 11], which is also employed here.

The binaural nature of the human hearing system

provides our main sound localization cues. Two signals,

with possible timing and intensity differences, arrive at the

ears and are processed by the brain. HRTFs describe how a

sound is altered as it travels from a source at a particular

location to the eardrum. HRTF pairs thus inherently

include the above interaural differences, as well as other

localization cues. The HRTF should thus be considered

when endeavoring to recreate artificial reverberation

binaurally.

2. HRTF PROCESSING: DYNAMIC

TRAJECTORIES

HRTFs can be used to artificially spatialize any source

sound to a desired location for headphone listening using

convolution. HRTFs are typically measured at discrete

points around a listener (the dataset used here is the MIT

HRTF dataset [5]). Therefore, to move a source sound

from point to point, interpolation is required. Interpolation

in the frequency domain is desirable, but poses the

difficulty of phase interpolation (phase is a periodic

quantity). Decomposing the HRTF into a minimum phase

plus linear delay system offers a potential solution to this

problem. However, this transformation also potentially

introduces inaccuracies [3] at certain locations and

involves complex data processing. Novel approaches to the

challenge of HRTF interpolation were recently suggested

by the authors, which aim to minimize any complex data

transformation, preparation or compression, thus allowing

empirical data to be used more directly [3, 4].

Briefly, the two approaches suggested both involve

interpolating HRTF magnitudes directly and novel

approaches to phase interpolation. The first truncates

phase, using brief, user definable cross fades to allow for

phase changes. The second augments a spherical head

model for phase with low frequency scaling, allowing for

accurate low frequency interaural phase difference: a

psychoacoustically motivated approach. Significantly, the

algorithms perform very well in subjective and objective

tests. When tested subjectively, the phase truncation and

augmented spherical head model both provide a more

convincing and artifact free dynamic source trajectory than

a minimum phase model (although all perform well) [4].

An anchor condition, with HRTF switching as opposed to

smooth interpolation performs less successfully. These

results are illustrated in Figure 1. Phase truncation is used

in this reverberation application as it is both efficient and

performs excellently for dynamic source trajectories.

HRTF processing can offer very convincing results, but

has limitations, which should be considered. HRTFs are

individual specific, due to the individual nature of outer ear

physiology. The binaural nature of HRTFs implies optimal

29

reproduction on headphones. Also, artificial spatialisation

can be difficult in a vision centric perceptual system.

Figure 1. Preference test results for HRTF dynamic source

algorithms.

3. EARLY REFLECTIONS

The image model [1] is a geometric model which can be

used for early reflection processing. It uses virtual sources

in virtual rooms adjacent to the actual room to be modeled.

The geometrical paradigm is illustrated in Figure 2. Each

virtual source can be spatialized, filtered, delayed and

attenuated accordingly, aiding with the perception of the

listening environment.

Figure 2. The image model for early reflections (2

dimensional, 2
nd

 order), S represents the actual source, L

the listener and V virtual sources.

The implementation of the early reflections processor as

the opcode hrtfearly for the computer music language

Csound uses phase truncation HRTF processing to

spatialize and move the direct sound source and early

reflections in accordance with the image model. HRTF

processing can be costly, particularly when compared to

the more efficient later diffuse field algorithm. Therefore,

the user can choose the order of the early reflections. Order

0 processes just the direct source, order 1 the first

reflections, etc. It may be desirable to simplify early

reflection spatial accuracy if higher order/more efficient

processing is required [8]. Three dimensional processing is

also optional, whereby reflections from the floor and the

ceiling are considered. In a natural environment, a user

may move his/her head, thus reorienting sound sources.

This is also possible in the presented opcode. Source and

listener location are also dynamic parameters.

The room parameters define the nature of the

reverberant sound. A value for the low and high frequency

absorption coefficients of each surface of the (presumed

rectangular) room are used to calculate the cutoff

frequency of a simple low pass filter which models the

surface’s response. A three band equalizer is also offered

for each surface to allow for implementation of multiband

reflective surfaces. Source and reflection location are dealt

with using HRTFs. Distance processing is implemented

using an interpolated delay line (as well as attenuation),

which also provides any appropriate Doppler Effect. As

well as the processed input, the opcode outputs the rooms

mean free path and low and high frequency reverberation

times, based on the Norris-Eyring reverberation equation.

These outputs can then be used in the diffuse field binaural

reverberation opcode.

4. DIFUSE FIELD

After the period of discrete early reflections in the

evolution of the reverberation, sound begins to arrive from

all around a listener, in a diffuse manner. Therefore,

spatially accurate single reflections are no longer required.

Without the necessity of considering each reflection

individually, a much more efficient late reverberation can

be implemented. The opcode hrtfreverb offers

efficient binaural reverberation processing. It can be used

with hrtfearly to provide spatially accurate source

location as well as reverberation, or independently as an

efficient, more general binaural reverberator.

A reverberant tail can be captured/modeled and

convolved with the input sound to impose the reverberant

characteristics of the space onto the input. However,

convolution, although optimizable, can introduce

processing delays and be computationally expensive for

long impulses. A feedback system is perhaps a more

appropriate solution. FDNs offer a subtle yet effective

approach. Jot’s comprehensive treatment of the topic

covers the scenario of modeling a measured impulse

response [6] and using parametric inputs [7]. Jot also

discusses binaural output of the results.

Recently, the binaural element of Jot’s measured

impulse model was improved by considering interaural

coherence [9]. The current model furthers this work by

considering the parametric scenario, as well as independent

early reflection processing.

30

Figure 3: Schematic of Overall Process: Input is processed by the hrtfearly opcode, which outputs details on frequency

dependent reverberation time, which are used by the hrtfreverb opcode (FDN adapted from [9]).

Briefly, the Jot FDN works using a number of mutually

prime delay lines, with frequency dependent feedback, in

accordance with the desired frequency dependent

reverberation time. The feedback loop includes a matrix

which increases the density of the diffuse tail. In

hrtfreverb, the frequency dependent reverberation

time can be chosen by the user, or values calculated by an

instance of the hrtfearly opcode, based on the inputted

room geometry and surface characteristics, can be used.

The suggested reverberation frequency density of 0.15

modes per Hz [12] is achieved using a sufficiently long

overall delay (the sum of the delay lines used). The mean

free path of the environment provides a suitable average

delay line length (it is also important that the shortest delay

line is shorter than the overall diffuse onset delay for real

time processing). A flexible number of delay lines is thus

required for various reverberation times. 6, 12 or 24 are

used in hrtfreverb, based on the input reverberation

properties. Frequency dependent reverberation times are

achieved using simple first order Infinite Impulse

Response (IIR) filters [7]. These filters (fn(z) in Figure 3,

which represents the overall process) also reduce the

spectral energy for low reverberation times, which is

compensated for using a tone correction filter (t(z)). Two

outputs of the FDN are taken, which should be

uncorrelated (vectors b and c ensure this). Coherence of

the HRTF dataset is calculated using equation 1 [9]. The

coherence matching filters u() and v(), which provide

accurate interaural coherence, are defined by equations 2

and 3 [9].

 (1)

where Li() and Ri() represent the i
th

 left and right HRTF

in a dataset of N.

 (2)

 (3)

 Left and right HRTF dataset average power filters (l(z)

and r(z)) are then used to make the output binaural. The

opcode outputs the appropriate delay time (according to

the mean free path, processing order and inherent delay)

for the late reverberation, as well as the processed audio.

This delay, followed by a scaling factor, completes the

process, which is illustrated in Figure 3.

5. IMPLEMENTATION

The opcodes are designed to balance efficiency, accuracy

and usability. They must also be robust to a large number

of scenarios. As discussed, hrtfreverb is designed to

be used with hrtfearly, or equally, as an independent,

efficient binaural reverberator. If a number of sources exist

in the same environmental infrastructure, they can be

summed and processed with the same instance of

hrtfreverb. Individual trajectories/locations can be

dealt with using multiple instances of hrtfearly. For

ease of use, a number of default rooms are available, with

standard surfaces. Processing at various sampling rates is

also offered. Csound provides suitable opcodes to

implement the appropriate hrtfreverb delay

(calculated in a straightforward manner, appropriate to the

parametric nature of the processing), as well as other

opcodes which add a further dimension of user control

(e.g. further low pass filtering).

As mentioned above, HRTF processing can be

computationally costly, particularly when processing

31

multiple sources with multiple reflections each. Therefore,

several code optimizations have been implemented, for

example, optimal real FFT processing is used, and

interpolation is only performed when relative source

location changes. Real time performance in most typical

scenarios is therefore achievable.

Overall, it is hoped that the opcodes offer an intuitive,

flexible approach to binaural reverberation. The desirable

balance between ease of use (default values, the standalone

nature of the intuitive hrtfreverb opcode, etc.) and

advanced processing (expert optional parameters, giving a

fine degree of control) allow for both immediate and

detailed use.

6. APPLICATIONS

The most obvious application of the HRTF reverberation

opcodes is the binaural spatialisation of audio with

accurate localization and environmental processing. More

specifically, they allow for binaural multi-channel audition

(the opcodes were developed with this application in

mind). As any source can be spatialized to any location in

any desired room, it is possible to place virtual

loudspeakers in virtual listening rooms. The phase

truncation interpolation algorithm allows a listener to

move around this virtual environment without jeopardizing

audio quality. Therefore, multi-channel algorithms can be

auditioned on headphones. A composer/sound designer can

thus work with a multi-channel setup using only

headphones.

Using the infrastructure available in Csound, the

application under development will allow a user to setup a

room with a desired number of virtual loudspeakers. Each

of these virtual loudspeakers is then fed with an

appropriate audio stream (for example, the outputs of an

Ambisonic/VBAP/Wave Field Synthesis mix). The overall

output can then be auditioned. The user can also move

through the listening space, for example to investigate any

sweet spot issues. This approach is meant as an audition

tool, as opposed to offering a general, optimized binaural

solution.

Compositionally, the reverberation tools can also be

useful. Indeed, their development was part motivated by

the need for an accurate reverberation when composing

using HRTFs. Interestingly, the parametric approach to the

algorithms involved allows non natural scenarios, within

the boundaries of stability, which may provide appealing

compositional material. For example, massive rooms with

very reflective walls, non natural levels of late

reverberation and distant sources.

7. CONCLUSIONS

New tools for binaural reverberation are presented. The

algorithms developed constitute a consolidation of classic

and more recent approaches to reverberation. Several

updates are suggested to allow for a flexible

implementation, including recently developed HRTF

interpolation algorithms and more accurate early

reflections. The resulting algorithms are presented as

efficient Csound opcodes, allowing both immediate

application and a fine degree of control.

8. ACKNOWLEDGEMENTS

This Research is supported by the Irish Research Council

for Science, Engineering and Technology: funded by the

National Development Plan and NUI Maynooth.

9. REFERENCES

[1] Allen, J. and Berkley, D. “Image method for

efficiently simulating small-room acoustics,” JASA,

65(4), 1979, pp. 943-950.

[2] Begault, D. 3-D Sound for Virtual Reality and

Multimedia, Maryland: NASA, 2000.

[3] Carty, B. and Lazzarini, V. “Binaural HRTF Based

Spatialisation: New Approaches and

Implementation,” Proc. DAFx, Como, Italy,

September 2009, pp. 49-54.

[4] Carty, B. and Lazzarini, V. “Frequency-domain

Interpolation of Empirical HRTF Data,” 126
th

 AES

Convention, Munich, Germany, May 2009.

[5] Gardner, B. and Martin, K. “HRTF Measurements of

a KEMAR Dummy Head Microphone,” available at

http://sound.media.mit.edu/resources/KEMAR.html,
accessed December 22, 2009.

[6] Jot, J. “An Analysis/Synthesis Approach to Real-time

Artificial Reverberation,” Proc. ICASSP, 2, March

1992, pp. 221-224.

[7] Jot, J. “Digital delay networks for designing artificial

reverberators,” 90th AES Convention, Paris, France,

February 1991.

[8] Jot, J., Larcher, V. and Warusfel, O. “Digital Signal

Processing Issues in the Context of Binaural and

Transaural Stereophony,” 98th AES Convention,

Paris, France, February 1995.

[9] Menzer, F. and Faller, C. “Binaural reverberation

using a modified Jot reverberator with frequency-

dependent interaural coherence matching,” 126
th

 AES

Convention, Munich, Germany, May 2009.

[10] Murphy, D., Beeson, M., Shelley, S. and Moore, A.

“Hybrid Room Implulse Response Synthesis in

Digital Waveguide Mesh Based Room Acoustics

Simulation,” Proc. DAFx, Espoo, Finland, 2008, pp.

129-136.

[11] Savioja, L., Huopaniemi, J., Lokki, T. and Väänänen,

R. “Creating Interactive Acoustic Environments,”

JAES, 47(9), 1999, pp. 675-705.

[12] Schroeder, M. “Natural Sounding Artificial

Reverberation,” JAES, 10(3), 1962, pp. 219-223.

Proc. of the 13
th

 Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

32

MULTIBIN: A BINAURAL AUDITION TOOL

Brian Carty Victor Lazzarini

Sound and Digital Music Technology Group,

National University of Ireland, Maynooth

Co. Kildare, Ireland
brian.m.carty@nuim.ie victor.lazzarini@nuim.ie

ABSTRACT

MultiBin is a new tool for binaural audition of multiple sound
sources in a user definable environment. Although designed to be
flexible in its application, its primary function is to provide

dynamic multi-channel binaural simulation. It is built upon 2 new
Csound binaural reverberation opcodes. An early reflection
opcode, based on an image source method and a HRTF
interpolation algorithm previously introduced by the authors

provides dynamic source and listener location. This is
complemented by a later reverberation opcode which provides a
diffuse reverb based on a parametric FDN model which considers
interaural coherence.

1. INTRODUCTION

Head Related Transfer Functions (HRTFs) are essentially
frequency domain functions which describe how a sound is
altered from a particular source location to the ear [1]. Pairs of
HRTFs inherently consider sound localisation cues such as

interaural differences and spectral transformations. HRTFs are
typically used in binaural processing tools, and can be used to
artificially spatialise sound in a virtual listening environment [1,
2].

Typically, environmental processing is desirable in this
scenario. Reverberation thus needs to be considered [2, 3].

This paper discusses issues involved with the development of
a flexible binaural audition tool, MultiBin. Each key aspect of the

application is dealt with in turn. The first challenge is providing
smooth, artefact free source trajectories: dynamic HRTF
processing. Binaural early reflections will then be discussed in
the context of HRTF spatialisation. A later reverberant tail which

considers interaural coherence completes the environmental
processing. Finally, an intuitive Python GUI is outlined.

2. CSOUND OPCODES

MultiBin uses the Csound API to allow Python to send dynamic,

user generated information to an instance of Csound from the
host application [4]. Csound thus deals with the low level DSP
required to dynamically represent sound sources and a listener in
a user defined sonic environment. The relevant Csound opcodes
and their background will now be discussed.

2.1 HRTF Processing

Two novel approaches to HRTF interpolation and dynamic

source trajectory processing were recently introduced by the
authors. The approaches, as well as background and validation of

the algorithms are discussed in previous publications [5, 6].
Briefly, the algorithms aim to provide accurate, efficient HRTF
processing while minimising data analysis, compression or
transformation. The algorithms developed are realised in the

Csound opcodes hrtfmove, hrtfmove2 and hrtfstat [4].

hrtfmove employs magnitude interpolation and phase

truncation to allow dynamic spatialisation of input audio using
overlap add convolution processing. Alternatively, a more
traditional minimum phase plus delay process is implemented by
this opcode. An optional flag allows the user to switch processing
modes.

hrtfmove2 takes a more functional approach, augmenting

a spherical head model for interaural phase with low frequency
scaling factors based on empirical HRTF data. This

psychoacoustically motivated approach models phase in
accordance with the limitations and frequency dependant nature
of the auditory localisation system [7, 8]. hrtfstat

implements the same algorithm, but exploits potential

optimisations for static source processing.

The algorithms (Minimum Phase based processing, Phase
Truncation, the Augmented Spherical Head and an anchor

condition with no interpolation) were tested subjectively with
regard to ability to provide smooth, artefact free source
trajectories. The novel algorithms performed extremely well.
Interestingly, the results also highlight both the need for
interpolation (the anchor condition performed in the poor-fair

range) and the good performance but potential problems with
minimum phase processing [7].

Figure 1: Preference Test Results.

Proc. of the 13
th

 Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

33

Figure 2: Schematic of the Reverb Model.

2.2 Early Reflections

MultiBin does not use the HRTF opcodes directly, but re-
implements the Phase Truncation algorithm for early reflection
processing. The success of the algorithm in subjective tests and

its efficiency make it a suitable candidate. A brief code example
is perhaps an appropriate introduction to the opcode.

aearlyl, aearlyr, ilow, ihigh, imfp
hrtfearly ain, srcx, srcy, srcz, lx, ly, lz,
"datal.raw", "datar.raw", 1

The opcode, hrtfearly, outputs the left and right

processed audio, a low and high frequency reverb time,
calculated using the Norris-Eyring reverb formula, and the mean

free path for the room in question. The latter 3 values are
intended to be used as inputs to the later reverberant field opcode,
discussed below. Dynamic, control rate source and listener x, y
and z geometric location values are the main inputs, following the

mono audio input. Left and right HRTF data files are the next
arguments. Finally, a default room can be chosen: small, medium
or large. An image source model [9, 10] is used to process the
early reflections dynamically.

Optional parameters for more advanced use are also
available. These include the Phase Truncation fade length [5, 6],
the sampling rate, the order of reflection processing, whether
floor and ceiling reflections are considered, a dynamic head

rotation value, and room parameters. The size of the room, as
well as the high and low frequency absorption coefficients and
parameters of 3 band pass filters for each surface can be set.

Processing a number of sources, each with a (user definable)

number of reflections can quickly become computationally
costly, so optimisation is crucial. Interpolation is only performed
if source orientation with respect to the listener changes. .
Memory allocation, Fourier Transform Processing and dynamic
source trajectory processing are also optimised.

2.3 Later Reverb

hrtfreverb is a later, reverberant field opcode, which

employs a dynamic Feedback Delay Network (FDN) and various

filters to process the output binaurally [10]. The opcode builds on
the interaural coherence [11] addition to the Jot FDN [12] by
considering the parametric scenario, as opposed to measured
impulses. It also considers flexible early reflection processing.

The FDN is illustrated in Figure 2, as well as frequency
dependent reverb filters (fn(z)), compensating tone correction
filters (t(z)), vectors to ensure 2 uncorrelated output (b and c),
coherence matching filters (u(z), v(z)), average HRTF filters

(l(z), r(z)) appropriate delay and gain factors for the later
reverberant tail and finally early reflection processing (discussed
in more detail in [10]).

Once again, the opcode can be initialized and used in a

flexible manner:

alatel, alater, idel hrtfreverb ain, ilow,
ihigh, "datal.raw", "datar.raw"

Outputs are the left and right channels of the binaural

reverberant tail and its appropriate delay time. The low and high
frequency reverb time [12], HRTF data files and audio input are
the only required inputs. Sampling rate, mean free path and order
of early reflection processing are optional inputs. The latter 2

arguments are used to derive the appropriate delay time for the
late reverberant field.

3. MULTIBIN

The MultiBin application is built on the above binaural

reverberation opcodes. Essentially, the goal of the application is
to allow flexible virtual spatial environments, with a particular
focus on virtual multi-channel (sources constituting
loudspeakers). Figure 3 illustrates a typical instance of MultiBin.
Upon running the application, the canvas [13] shows a centred

listener with no sources in their sonic environment. A default

Proc. of the 13
th

 Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

34

medium room is setup. Users can add sources to the canvas in a
simple and flexible way. Each source is numbered, which links it

to a specific Csound channel. Sources can be added and removed
using simple menu options. Therefore, the user may setup a
flexible virtual environment.

Sources can be moved around the environment by selecting
and dragging. The HRTF interpolation algorithms discussed
above allow for real time realisation of these movements. The
listener may also move using similar intuitive user control. Head
rotation is also implemented. Playback of the Csound controlled

source material is also a simple and intuitive process (play and
stop buttons). The File menu allows a user to setup an 8 channel
ambisonic room, as well as a similar VBAP setup. The
parameters of these loudspeaker setups are based on the existing

Csound opcodes for ambisonic and VBAP processing. All
sources can also be easily cleared.

A user may therefore audition a multi-channel file in
headphones. The approach taken here differs from previous

approaches that use sweet spot virtual multi-channel binaural
processing [14]. The user may move out of the sweet spot to
audition off centre listening. Perhaps a loudspeaker in a specific
room cannot be physically placed at the optimum location. The
loudspeaker can be dynamically moved in real time to audition

any potential problems. Any multi-channel algorithm can thus be
auditioned in a dynamic fashion. The ambisonic and VBAP
opcodes in Csound allow for convenient preparation of
appropriate source material, motivating their inclusion as

defaults. Equally, however, other setups, such as simple Wave
Field Synthesis arrays could be auditioned.

From a design point of view, the system allows optimal
dynamic multi-channel audition, but also caters for other virtual

spatial applications. The ease with which sources can be added,
removed and dragged around the canvas creates a flexible and
creative workspace for spatial audio. Implementation of the
application will now be discussed in more detail.

Figure 3: A Typical Instance of MultiBin.

3.1 Implementation Detail

The Tkinter Python module [13], which uses the Tk GUI toolkit
is the cross platform tool used to create an appropriate GUI for
the MultiBin application. A simple Csound file is controlled by
sending user triggered messages from the GUI. This Csound file
consists of a playback instrument, which essentially plays back

the source audio. Csound offers several possible options to do
this, including playing back sound samples stored in tables, or
directly reading multi-channel files. Each stream of audio is
played back on a numerically labelled channel. A global

parameter reading instrument reads head position in the GUI.

Reverberation processing is then dealt with. An early
reflection instrument is assigned to each source, reading the
dynamic source trajectory, and taking parameters from user

inputs. When the user adds a new source, it appears on the canvas
of the GUI as a number which relates to the channel it is reading
from. Therefore, the user has direct control over the audio linked
to each source. Finally, a late reverb instrument processes all

sources using the hrtfreverb opcode. Reverb time and room

outputs of hrtfearly can be used as inputs to hrtfreverb.

The Python code defines the GUI, which will now be

discussed. The main interactive element of the application is the
canvas widget, which allows user input and control. The
application is designed as a class, with methods for movement of
objects on the canvas and other control functions. Control of

items on the canvas is maintained using the Tkinter item
methods. The application class constructor initiates an instance of
Csound, whose parameters are updated by the user. For example,
if a source is moved, updated x and y values are sent to Csound,
which updates the location of the source relative to the listener at

the control rate. The constructor also sets up the menus and GUI,
initialises variables and binds class methods/callbacks to user
operations/events, such as mouse button clicks.

A number of methods are used to allow for adding sources in
a well defined manner. A generic function adds an item to the
canvas, increments the control variable which keeps track of the
number of active sources and turns on an instance of the

hrtfearly instrument. A second method calls this generic

method, and deals with the user defined location of the source,
using data from the dialog window illustrated in figure 4. This
method also ensures the source location is legal (inside the
defined room). Location data is stored in an instance of another

class, which defines the location dialog window and data. As can
be seen in figure 4, direct pixel location can be entered, or a polar
approach can be taken, motivated by typical multi-channel setups.
An angle and distance from room centre can be entered to define

source location. The tkSimpleDialog module is used to create the
source location class/dialog window.

Figure 5 shows the ‘new scene’ dialog window, similarly
realised as a class developed using the tkSimpleDialog module.

Users can either simply define the room size, or choose to enable
complex parameters, and enter surface parameters for high and
low frequency reverb time and wall response band pass filter gain
factors. The canvas will always be 400 pixels across, with room

geometry ratios dictating the height. The size of the room dictates
the size of the grey circle centred at the listener position. Inside
this circle, HRTF processing is not performed, as near field
HRTF modelling is not considered [15].

Proc. of the 13
th

 Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

35

Figure 4: New Source Dialog.

Figure 5: New Scene Dialog.

4. DISCUSSION & APPLICATIONS

Multibin is designed to be a flexible binaural tool, allowing
dynamic source and listener behaviour in user definable virtual
environments. Its primary intention as a binaural multi-channel
audition application allows flexible listener scenarios. Unlike

sweet spot multi-channel binaural approaches [14], off centre
listening is purposefully allowed and indeed intended, as the
listener may move around the sonic environment. Flexible
loudspeaker setups are also possible, allowing real world
audition. It is also important to highlight that MultiBin does not

aim to optimise multi-channel binaural processing [16]; it
purposefully allows complete user control.

Standard binaural limitations apply, including HRTF
individualisation. Real time performance is prioritised over

additional processing such as source directivity.

5. CONCLUSIONS

MultiBin is a flexible tool developed using Python and the
Csound API. Csound binaural reverberation opcodes are utilized,
which are based on previous HRTF interpolation research by the

authors. MultiBin allows dynamic control over user definable
virtual environments, with specific application to virtual multi-
channel.

6. ACKNOWLEDGMENTS

This research is supported by the Irish Research Council for
Science, Engineering and Technology: funded by the National
Development Plan and NUI Maynooth.

7. REFERENCES

[1] Begault, D., 3-D Sound for Virtual Reality and Multimedia,

Maryland: NASA, 2000.

[2] Jot, J., Larcher, V. and Warusfel, O. “Digital Signal

Processing Issues in the Context of Binaural and Transaural
Stereophony,” 98th AES Convention, Paris, France, 1995.

[3] Savioja, L., Huopaniemi, J., Lokki, T. and Väänänen, R.

“Creating Interactive Acoustic Environments,” JAES, 47(9),

pp. 675-705, 1999.
[4] http://www.csounds.com.

[5] Carty, B. and Lazzarini, V. “Binaural HRTF Based

Spatialisation: New Approaches and Implementation,” Proc.

DAFx, Como, Italy, pp. 49-54, September 2009.

[6] Carty, B. and Lazzarini, V. “Frequency-domain
Interpolation of Empirical HRTF Data,” 126th AES

Convention, Munich, Germany, May 2009.

[7] Kulkarni, A., Isabelle, S. and Colburn, H., “Sensitivity of

Human Subjects to Head-Related Transfer-Function Phase
Spectra,” JASA, 105(5), pp. 2821-2840, May 1999.

[8] G. Kuhn, “Model for the interaural time difference in the

azimuthal plane,” JASA, 62(1), pp.157-167, July 1977.

[9] Allen, J. and Berkley, D. “Image method for efficiently
simulating small-room acoustics,” JASA, 65(4), pp. 943-950,

1979.

[10] Carty, B. and Lazzarini, V. “hrtfearly & hrtfreverb: Flexible

Binaural Reverberation Processing,” ICMC, New York,
USA, June 2010.

[11] Menzer, F. and Faller, C. “Binaural reverberation using a

modified Jot reverberator with frequency-dependent

interaural coherence matching,” 126th AES Convention,
Munich, Germany, May 2009.

[12] Jot, J. “Digital delay networks for designing artificial

reverberators,” 90th AES Convention, Paris, France, 1991.

[13]http://www.pythonware.com/library/tkinter/introduction/inde

x.htm
[14] Noisternig, Musil, Sontacchi and Holdrich. 3D Binaural

Sound Reproduction using a Virtual Ambisonic Approach.

IEEE Symposium on Virtual Environments, pp. 174-178,

2003.
[15] Duda, R. and Martens, W., “Range dependence of the

response of a spherical head model,” JASA, 104(5), pp.

3048-3058, 1998.

[16] Goodwin, M. and Jot, J., “Binaural 3-D audio rendering
based on spatial audio scene coding,” 123

rd
 AES Convention,

New York, USA, October 2007.

36

Appendix 1: Command-line

1.1 defs.h

/*
Brian Carty PhD Code 2010
Chapter 4,
defs.h
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <sndfile.h>
#include <fftw3.h>

/* correct length for mono impulse */
#define irlength 128
/* padded impulse */
#define irpadlength 256
/* convolution overlap */
#define overlapsize 127
/* maxumum points in a trajectory */
#define maxbrkpts 101

void bkpt(int *pers, double *els, double *angs, int *noofpoints, int maxpts);

37

1.2 datapreparation.cpp

/*
Brian Carty PhD Code 2010
Chapter 4,
datapreparation.cpp
*/

#include "defs.h"
#define SQUARE(X) (X)*(X)

int main()
{
 /* setup variables */
 /* min elev, angle, increment, iterators */
 int el = -40, az = 0, inc, i, j, k;
 /* input from HRTF file */
 double input[2 * irlength];
 /* separate input into left and right */
 double inl[irlength], inr[irlength], fftl[irlength],

 fftr[irlength];
 /* file pointers */
 FILE *foutl, *foutr;
 /* fft plans */
 fftw_plan forwardl, forwardr;
 /* strings for filename */
 char filename[14];
 char hrtffile[22];
 /* file in pointer */
 SNDFILE *finhrtf;
 /* file info */
 SF_INFO *psfinfohrtf;
 /* memory for file info */
 psfinfohrtf = new SF_INFO;

 /* setup fft plans (see fftw documentation) */
 forwardl = fftw_plan_r2r_1d(irlength, inl, fftl, FFTW_R2HC,
 FFTW_ESTIMATE);
 forwardr = fftw_plan_r2r_1d(irlength, inr, fftr, FFTW_R2HC,
 FFTW_ESTIMATE);

 /* open outfiles for writing */
 foutl = fopen("datal.raw", "wb");
 foutr = fopen("datar.raw", "wb");

 /* loop for 368 files */
 for(j = 0; j < 368; j++)
 {
 /* prep for file open string */
 strcpy(hrtffile,"diffuse/");

 /* prep file names */
 if(az < 10)
 sprintf(filename, "H%de00%da.wav", el, az);
 else if(az >= 10 && az < 100)
 sprintf(filename, "H%de0%da.wav", el, az);
 else if(az >= 100)
 sprintf(filename, "H%de%da.wav", el, az);

 /* sort out incrementation based on elev */
 if(el == -40)
 {
 if(inc != 6 || j % 7 == 0)
 inc = 6;
 else inc = 7;
 }
 else if(el == -30 || el == 30)
 inc = 6;

38

 else if(el == -20 || el == -10 || el == 0 || el == 10 || el == 20)
 inc = 5;
 else if(el == 40)
 {
 if(inc != 6 || (j - 276) % 7 == 0)
 inc = 6;
 else inc = 7;
 }
 else if(el == 50)
 inc = 8;
 else if(el == 60)
 inc = 10;
 else if(el == 70)
 inc = 15;
 else if(el == 80)
 inc = 30;
 else if(el == 90)
 inc = 0;

 /* put together for full name */
 strcat(hrtffile, filename);

 /* open appropriate file */
 if(!(finhrtf = sf_open(hrtffile, SFM_READ, psfinfohrtf)))
 {
 printf("error opening file\n");
 exit(1);
 }

 /* read in file */
 sf_readf_double(finhrtf, input, irlength);
 /* close file */
 sf_close(finhrtf);

/* put (double: -1.0 to +1.0) input into seperate left and right buffers, scale a
 little */

 for(i = 0; i < irlength; i++)
 {
 inl[i] = input[2 * i] * .65;
 inr[i] = input[(2 * i) + 1] * .65;
 }

 /* fft */
 fftw_execute(forwardl);
 fftw_execute(forwardr);

 /* 0Hz and nyq */
 inl[0] = fftl[0];
 inl[1] = fftl[irlength / 2];
 inr[0] = fftr[0];
 inr[1] = fftr[irlength / 2];

 /* mag/phase: polar */
 for(i = 2, k = 1; i < irlength; k++, i += 2)
 {
 inl[i] = sqrt(SQUARE(fftl[k]) + SQUARE(fftl[irlength – k]));
 inl[i+1] = atan2(fftl[irlength-k],fftl[k]);
 inr[i] = sqrt(SQUARE(fftr[k]) + SQUARE(fftr[irlength – k]));
 inr[i+1] = atan2(fftr[irlength-k],fftr[k]);
 }

 /* write outputs, one by one, to large spectral file */
 fwrite(inl,sizeof(double), irlength, foutl);
 fwrite(inr,sizeof(double), irlength, foutr);

 /* incrementation */
 az = az + inc;

if(j == 28 || j == 59 || j == 96 || j == 133 || j == 170 || j == 207 || j == 244 ||
 j == 275 || j == 304 || j == 327 || j == 346 || j == 359 || j == 366)

 {

39

 /* change elevation,reset variables */
 el = el + 10;
 az = 0;
 inc = 0;
 }
 }
 /* clear memory, close files */
 delete psfinfohrtf;
 fclose(foutl);
 fclose(foutr);
 fftw_destroy_plan(forwardl);
 fftw_destroy_plan(forwardr);

 return 0;
}

40

1.3 binauralmover.cpp

/*
binauralmover.cpp:
Copyright (C) Brian Carty 2009
Binaural sound source movement using magnitude interpolation and phase truncation: main
program
See license.txt for a disclaimer of all warranties and licensing information
*/

#include "defs.h"

int main()
{
 /* MIT Kemar info. */
 int elevationarray[14] = {56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24, 12, 1};
 int minelev = -40, elevincrement = 10;
 /* iterators */
 int i, j;

 /* data file pointers */
 FILE *hrtfleft, *hrtfright;

 /* arrays to store addresses of where all left and right hrtfs are stored: arrays of
 pointers to double. */
 double *hrtfarrayl[14][37], *hrtfarrayr[14][37];
 /* pointers to read arrays */
 double *hrtfpl, *hrtfpr;

 /* declarations for movement */
 int countbkp = 0;
 int percentages[maxbrkpts];
 double elevs[maxbrkpts], angles[maxbrkpts], elev, angle;
 int k = 0;
 int x,start = 0,sum = 0;

 /* crossfade preparation and checks */
 double elevindexstore, angleindexlowstore, angleindexhighstore;
 int elevindex, angleindex, oldelevindex = -1, oldangleindex = -1;
 int fade, fadebuffer;
 int crossfade, crossout = 0, cross = 0, l = 0;

 /* interpolation variable declaration */
 int elevindexlow, elevindexhigh, angleindex1, angleindex2, angleindex3, angleindex4;
 double elevindexhighper, angleindex2per, angleindex4per;
 double magllow, magrlow, maglhigh, magrhigh, magl, magr, phasel, phaser;
 double lowl1[irlength], lowr1[irlength], lowl2[irlength], lowr2[irlength];
 double highl1[irlength], highr1[irlength], highl2[irlength], highr2[irlength];
 double hrtflinterp[irlength], hrtfrinterp[irlength], hrtfltd[irlength],

 hrtfrtd[irlength];
 double hrtflpadtd[irpadlength], hrtfrpadtd[irpadlength], hrtflpadspec[irpadlength],

 hrtfrpadspec[irpadlength];

 /* convolution/in/output buffers */
 double inbuf[irpadlength], inspec[irpadlength];
 double outlspec[irpadlength], outrspec[irpadlength], outl[irpadlength] = {0.0},

 outr[irpadlength] = {0.0};
 double overlapl[overlapsize], overlapr[overlapsize];
 sf_count_t count=0;
 double lrout[2 * irlength];

 /* various buffers for fades */
 double currentphasel[irlength], currentphaser[irlength];
 double hrtflpadspecold[irpadlength], hrtfrpadspecold[irpadlength];
 double outlspecold[irpadlength], outrspecold[irpadlength];
 double overlaplold[overlapsize], overlaprold[overlapsize];
 double outlold[irpadlength] = {0.0}, outrold[irpadlength] = {0.0};

41

 /* file pointers, file info */
 char filename[100];
 SNDFILE *fin, *fout;
 SF_INFO *psfinfoout, *psfinfoin;

 /* fftw plans */
 fftw_plan invhrtfl, invhrtfr, forhrtflpad, forhrtfrpad, forin;
 fftw_plan invoutl, invoutr, invoutlold, invoutrold;

 invhrtfl = fftw_plan_r2r_1d(irlength, hrtflinterp, hrtfltd, FFTW_HC2R, FFTW_ESTIMATE);
 invhrtfr = fftw_plan_r2r_1d(irlength, hrtfrinterp, hrtfrtd, FFTW_HC2R, FFTW_ESTIMATE);
 forhrtflpad = fftw_plan_r2r_1d(irpadlength, hrtflpadtd, hrtflpadspec, FFTW_R2HC,

 FFTW_ESTIMATE);
 forhrtfrpad = fftw_plan_r2r_1d(irpadlength, hrtfrpadtd, hrtfrpadspec, FFTW_R2HC,
 FFTW_ESTIMATE);
 forin = fftw_plan_r2r_1d(irpadlength, inbuf, inspec, FFTW_R2HC, FFTW_ESTIMATE);
 invoutl = fftw_plan_r2r_1d(irpadlength, outlspec, outl, FFTW_HC2R, FFTW_ESTIMATE);
 invoutr = fftw_plan_r2r_1d(irpadlength, outrspec, outr, FFTW_HC2R, FFTW_ESTIMATE);
 invoutlold = fftw_plan_r2r_1d(irpadlength, outlspecold, outlold, FFTW_HC2R,

 FFTW_ESTIMATE);
 invoutrold = fftw_plan_r2r_1d(irpadlength, outrspecold, outrold, FFTW_HC2R,

 FFTW_ESTIMATE);

 /* memory for SF_INFO structures */
 psfinfoin = new SF_INFO;
 psfinfoout = new SF_INFO;

 printf("\nBinaural Processing Application\n\n");

 /* setup crossfades: over user defined number of convolution cycles */
 printf("enter number of processing buffers for fades (>1),8 is good for musical

 source,less for noisy sources:\n");
 scanf("%d",&fade);
 if(fade <= 0)
 {
 printf("fade number must be positive, exiting\n");
 exit(1);
 }
 if(fade > 24)
 fade = 24;
 fadebuffer = fade * irlength;

 printf("enter mono (wav) sound file,include.wav extension(<100

 characters):\n");
 scanf("%s", filename);

 /* open files */
 if(!(fin = sf_open(filename, SFM_READ, psfinfoin)))
 {
 printf("error opening in file, exiting\n");
 exit(1);
 }

 if(psfinfoin->channels != 1)
 {
 printf("input should be mono, exiting\n");
 exit(1);
 }

 if(!(hrtfleft = fopen("datal.raw", "rb")))
 {
 printf("error opening hrtf file,exiting\n");
 exit(1);
 }

 if(!(hrtfright = fopen("datar.raw", "rb")))
 {
 printf("error opening hrtf file,exiting\n");
 exit(1);
 }

42

 /* store files */
 for(i = 0; i < 14; i++)
 for(j = 0; j < elevationarray[i] / 2 + 1; j++)
 {
 /* hrtfarray[i][j] = &hrtfarray[i][j][0] */
 hrtfarrayl[i][j] = new double [irlength];
 hrtfarrayr[i][j] = new double [irlength];
 fread(hrtfarrayl[i][j],sizeof(double), irlength, hrtfleft);
 fread(hrtfarrayr[i][j],sizeof(double), irlength, hrtfright);
 }

 /* initialise the SF_INFO structure (need to do this before opening file!), same as
 input but stereo */
 psfinfoout->samplerate = psfinfoin->samplerate;
 psfinfoout->channels = 2;
 psfinfoout->format = psfinfoin->format;

 if(!(fout = sf_open("mover.wav", SFM_WRITE, psfinfoout)))
 {
 printf("error opening out file\n");
 exit(1);
 }

 /* function to read, check and store trajectory */
 bkpt(percentages, elevs, angles, &countbkp, maxbrkpts);

 printf("...\nprocessing\n...\n");

 /* main loop */
 for(x = 0; x < countbkp; x++)
 {
 start = sum;
 /* run to full length of convolved output */
 sum = (int)((psfinfoin->frames + irlength - 1) * percentages[x + 1] / 100.0);

 do
 {
 crossout = 0;
 crossfade = 0;

 /* change elev and angle according to bkpt file */
 elev = elevs[x] + (elevs[x + 1] - elevs[x]) * (double)(k - start) / (sum - start);
 angle = angles[x] + (angles[x + 1] - angles[x]) * (double)(k - start) / (sum –

 start);

 /* two nearest elev indices */
 /* to avoid recalculating */
 elevindexstore = (elev - minelev) / elevincrement;
 elevindexlow = (int)elevindexstore;

 if(elevindexlow < 13)
 elevindexhigh = elevindexlow + 1;
 else
 elevindexhigh = elevindexlow; /* highest index reached */

 /* get percentage value for interpolation */
 elevindexhighper = elevindexstore - elevindexlow;

 while(angle < 0.0)
 angle += 360.0;
 while(angle >= 360.0)
 angle -= 360.0;

 /* as above,lookup index, used to check for crossfade */
 elevindex = (int)(elevindexstore + 0.5);

 angleindex = (int)(angle / (360.0 / elevationarray[elevindex]) + 0.5);
 angleindex = angleindex % elevationarray[elevindex];

 /* crossfade happens if index changes:nearest measurement changes */
 if(oldelevindex != elevindex || oldangleindex != angleindex)

43

 {
 if(k > 0)
 {
 /* warning on overlapping fades */
 if(cross)
 {
 printf("\nwarning: fades are overlapping: this could lead to noise: reduce

 fade size or change trajectory");
 cross = 0;
 }
 /* reset l */
 l = 0;
 crossfade = 1;
 for(i = 0; i < irpadlength; i++)
 {
 hrtflpadspecold[i] = hrtflpadspec[i];
 hrtfrpadspecold[i] = hrtfrpadspec[i];
 }
 }

 if(angleindex > elevationarray[elevindex] / 2)
 {
 hrtfpl = hrtfarrayl[elevindex][elevationarray[elevindex] - angleindex];
 hrtfpr = hrtfarrayr[elevindex][elevationarray[elevindex] - angleindex];
 for(i = 0; i < irlength; i++)
 {
 currentphasel[i]=hrtfpr[i];
 currentphaser[i]=hrtfpl[i];
 }
 }
 else
 {
 hrtfpl = hrtfarrayl[elevindex][angleindex];
 hrtfpr = hrtfarrayr[elevindex][angleindex];
 for(i = 0; i < irlength; i++)
 {
 currentphasel[i]=hrtfpl[i];
 currentphaser[i]=hrtfpr[i];
 }
 }
 }

 /* avoid recalculation */
 angleindexlowstore = angle / (360.0 / elevationarray[elevindexlow]);
 angleindexhighstore = angle / (360.0 / elevationarray[elevindexhigh]);

 /* 4 closest indices, 2 low and 2 high */
 angleindex1 = (int)angleindexlowstore;

 angleindex2 = angleindex1 + 1;
 angleindex2 = angleindex2 % elevationarray[elevindexlow];

 angleindex3 = (int)angleindexhighstore;

 angleindex4 = angleindex3 + 1;
 angleindex4 = angleindex4 % elevationarray[elevindexhigh];

 /* angle percentages for interp */
 angleindex2per = angleindexlowstore - angleindex1;
 angleindex4per = angleindexhighstore - angleindex3;

 /* read 4 nearest HRTFs */
 /* switch l and r */
 if(angleindex1 > elevationarray[elevindexlow] / 2)
 {
 hrtfpl = hrtfarrayl[elevindexlow][elevationarray[elevindexlow] - angleindex1];
 hrtfpr = hrtfarrayr[elevindexlow][elevationarray[elevindexlow] - angleindex1];
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = hrtfpr[i];
 lowr1[i] = hrtfpl[i];

44

 }
 }
 else
 {
 hrtfpl = hrtfarrayl[elevindexlow][angleindex1];
 hrtfpr = hrtfarrayr[elevindexlow][angleindex1];
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = hrtfpl[i];
 lowr1[i] = hrtfpr[i];
 }
 }

 if(angleindex2 > elevationarray[elevindexlow] / 2)
 {
 hrtfpl = hrtfarrayl[elevindexlow][elevationarray[elevindexlow] - angleindex2];
 hrtfpr = hrtfarrayr[elevindexlow][elevationarray[elevindexlow] - angleindex2];
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = hrtfpr[i];
 lowr2[i] = hrtfpl[i];
 }
 }
 else
 {
 hrtfpl = hrtfarrayl[elevindexlow][angleindex2];
 hrtfpr = hrtfarrayr[elevindexlow][angleindex2];
 for(i = 0; i < irlength; i++)

{
 lowl2[i] = hrtfpl[i];
 lowr2[i] = hrtfpr[i];
}

 }

 if(angleindex3 > elevationarray[elevindexhigh] / 2)
 {

hrtfpl = hrtfarrayl[elevindexhigh][elevationarray[elevindexhigh] - angleindex3];
hrtfpr = hrtfarrayr[elevindexhigh][elevationarray[elevindexhigh] - angleindex3];
for(i = 0; i < irlength; i++)
{
 highl1[i] = hrtfpr[i];
 highr1[i] = hrtfpl[i];
}

 }
 else
 {

hrtfpl = hrtfarrayl[elevindexhigh][angleindex3];
hrtfpr = hrtfarrayr[elevindexhigh][angleindex3];
for(i = 0; i < irlength; i++)
{
 highl1[i] = hrtfpl[i];
 highr1[i] = hrtfpr[i];
}

 }

 if(angleindex4 > elevationarray[elevindexhigh] / 2)
 {

hrtfpl = hrtfarrayl[elevindexhigh][elevationarray[elevindexhigh] - angleindex4];
hrtfpr = hrtfarrayr[elevindexhigh][elevationarray[elevindexhigh] - angleindex4];
for(i = 0; i < irlength; i++)
{
 highl2[i] = hrtfpr[i];
 highr2[i] = hrtfpl[i];
}

 }
 else
 {
 hrtfpl = hrtfarrayl[elevindexhigh][angleindex4];
 hrtfpr = hrtfarrayr[elevindexhigh][angleindex4];

for(i = 0; i < irlength; i++)
{

45

 highl2[i] = hrtfpl[i];
 highr2[i] = hrtfpr[i];
}

 }

 /* magnitude interpolation */
 /* 0hz and Nyq real values */
 /* organised in format of fftw */
 magllow = fabs(lowl1[0]) + (fabs(lowl2[0]) – fabs(lowl1[0])) * angleindex2per;
 maglhigh = fabs(highl1[0]) + (fabs(highl2[0]) – fabs(highl1[0])) * angleindex4per;
 magrlow = fabs(lowr1[0]) + (fabs(lowr2[0]) – fabs(lowr1[0])) * angleindex2per;
 magrhigh = fabs(highr1[0]) + (fabs(highr2[0]) – fabs(highr1[0])) * angleindex4per;
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
 if(currentphasel[0] < 0.0)
 hrtflinterp[0] = -magl;
 else

hrtflinterp[0] = magl;
 if(currentphaser[0] < 0.0)

hrtfrinterp[0] = -magr;
 else

hrtfrinterp[0] = magr;

 magllow = fabs(lowl1[1]) + (fabs(lowl2[1]) – fabs(lowl1[1])) * angleindex2per;
 maglhigh = fabs(highl1[1]) + (fabs(highl2[1]) – fabs(highl1[1])) * angleindex4per;
 magrlow = fabs(lowr1[1]) + (fabs(lowr2[1]) – fabs(lowr1[1])) * angleindex2per;
 magrhigh = fabs(highr1[1]) + (fabs(highr2[1]) – fabs(highr1[1])) * angleindex4per;
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
 if(currentphasel[1] < 0.0)

hrtflinterp[irlength/2] = -magl;
 else

hrtflinterp[irlength/2] = magl;
 if(currentphaser[1] < 0.0)

hrtfrinterp[irlength/2] = -magr;
 else

hrtfrinterp[irlength/2] = magr;

 /* other values are complex, in fftw format */
 for(i = 2, j=1; i < irlength; j++, i+=2)
 {
 /* interpolate high and low magnitudes */
 magllow = lowl1[i] + (lowl2[i] - lowl1[i]) * angleindex2per;

maglhigh = highl1[i] + (highl2[i] - highl1[i]) * angleindex4per;

magrlow = lowr1[i] + (lowr2[i] - lowr1[i]) * angleindex2per;
magrhigh = highr1[i] + (highr2[i] - highr1[i]) * angleindex4per;

/* interpolate high and low results, use current phase */
magl = magllow + (maglhigh - magllow) * elevindexhighper;
phasel = currentphasel[i + 1];

/* polar to rectangular, organised in fftw order */
hrtflinterp[j] = magl * cos(phasel);
hrtflinterp[irlength - j] = magl * sin(phasel);

magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
phaser = currentphaser[i + 1];

hrtfrinterp[j] = magr * cos(phaser);
hrtfrinterp[irlength - j] = magr * sin(phaser);

 }

 fftw_execute(invhrtfl);
 fftw_execute(invhrtfr);

 /* scale and pad */
 for(i = 0; i < irlength; i++)
 {

hrtflpadtd[i] = (hrtfltd[i] / irlength);
hrtfrpadtd[i] = (hrtfrtd[i] / irlength);

46

 }

 for(i = irlength; i < irpadlength; i++)
 {

hrtflpadtd[i] = 0.0;
hrtfrpadtd[i] = 0.0;

 }

 /* execute fft on padded hrtfs */
 fftw_execute(forhrtflpad);
 fftw_execute(forhrtfrpad);

 /* look after overlap add */
 for(i = 0; i < overlapsize ; i++)
 {

overlapl[i] = outl[i+irlength];
overlapr[i] = outr[i+irlength];

 if(crossfade)
{
 overlaplold[i] = outl[i+irlength];
 overlaprold[i] = outr[i+irlength];
}
/* overlap will be previous fading out signal */
if(cross)
{
 overlaplold[i] = outlold[i+irlength];
 overlaprold[i] = outrold[i+irlength];
}

 }

 /* read input */
 count = sf_readf_double(fin, inbuf, irlength);

 /* zero pad */
 /* fills last one with zeros from count */
 for(i = (int)count; i < irpadlength; i++)
 inbuf[i] = 0.0;

 /* fft input */
 fftw_execute(forin);

 /* convolution: spectral multiplication */
 /* 0hz and Nyq */
 outlspec[0] = inspec[0] * hrtflpadspec[0];
 outrspec[0] = inspec[0] * hrtfrpadspec[0];
 outlspec[irpadlength/2] = inspec[irpadlength/2] * hrtflpadspec[irpadlength/2];
 outrspec[irpadlength/2] = inspec[irpadlength/2] * hrtfrpadspec[irpadlength/2];

 /* complex multiplication according to fftw layout */
 /* (a + i b)(c + i d) */
 /* = (a c - b d) + i(a d + b c) */
 for(i = 2, j = 1; i < irpadlength; j++, i+=2)
 {
 /* real */

outlspec[j] = inspec[j] * hrtflpadspec[j] – inspec[irpadlength - j] *
 hrtflpadspec[irpadlength - j];

outrspec[j] = inspec[j] * hrtfrpadspec[j] – inspec[irpadlength - j] *
 hrtfrpadspec[irpadlength - j];

/* imaginary */
outlspec[irpadlength - j] = inspec[j] * hrtflpadspec[irpadlength - j] +

 inspec[irpadlength - j] * hrtflpadspec[j];
outrspec[irpadlength - j] = inspec[j] * hrtfrpadspec[irpadlength - j] +

 inspec[irpadlength - j] * hrtfrpadspec[j];
 }

 fftw_execute(invoutl);
 fftw_execute(invoutr);

 /* scaled, as fftw is a sum */
 for(i = 0; i < irpadlength; i++)
 {

47

outl[i] = outl[i] / irpadlength;
outr[i] = outr[i] / irpadlength;

 }

 /* setup for fades */
 if(crossfade || cross)
 {
 crossout = 1;

 /* convolution */

/* 0hz and Nyq */
outlspecold[0] = inspec[0] * hrtflpadspecold[0];
outrspecold[0] = inspec[0] * hrtfrpadspecold[0];
outlspecold[irpadlength/2] = inspec[irpadlength/2] *

 hrtflpadspecold[irpadlength/2];
outrspecold[irpadlength/2] = inspec[irpadlength/2] *

 hrtfrpadspecold[irpadlength/2];

/* complex multiplication */
for(i = 2, j = 1; i < irpadlength; j++, i+=2)
{
 /* real */
 outlspecold[j] = inspec[j] * hrtflpadspecold[j] - inspec[irpadlength – j] *

 hrtflpadspecold[irpadlength - j];
 outrspecold[j] = inspec[j] * hrtfrpadspecold[j] – inspec[irpadlength - j] *

 hrtfrpadspecold[irpadlength - j];
 /* imaginary */
 outlspecold[irpadlength - j] = inspec[j] * hrtflpadspecold[irpadlength - j] +

 inspec[irpadlength - j] * hrtflpadspecold[j];
 outrspecold[irpadlength - j] = inspec[j] * hrtfrpadspecold[irpadlength - j] +

 inspec[irpadlength - j] * hrtfrpadspecold[j];
}

/* ifft, back to time domain */
fftw_execute(invoutlold);
fftw_execute(invoutrold);

/* scaling */
for(i = 0; i < irpadlength; i++)
{
 outlold[i] = outlold[i] / irpadlength;
 outrold[i] = outrold[i] / irpadlength;
}

cross++;
cross = cross % fade;

 }

 /* for next check */
 oldelevindex = elevindex;
 oldangleindex = angleindex;

 if(crossout)
 for(i = 0; i < irlength; i++)

{
 lrout[2 * i] = (outlold[i] + (i < overlapsize ? overlaplold[i] : 0.0)) * (1.0 –

 (double)l / fadebuffer) + (outl[i] + (i < overlapsize ?
 overlapl[i] : 0.0)) * (double)l / fadebuffer;

 lrout[(2 * i) + 1] = (outrold[i] + (i < overlapsize ? overlaprold[i] : 0.0)) *
 (1.0 - (double)l / fadebuffer) + (outr[i] + (i <
 overlapsize ? overlapr[i] : 0.0)) * (double)l /
 fadebuffer;

 l++;
}

 else
 for(i = 0; i < irlength; i++)

{
 lrout[2 * i] = outl[i] + (i < overlapsize ? overlapl[i] : 0.0);
 lrout[(2 * i) + 1] = outr[i] + (i < overlapsize ? overlapr[i] : 0.0);
}

48

 /* do every irlength samples! */
 k += irlength;

 /* if on last run, only write output length mod irlength frames */
 if(k > psfinfoin->frames + irlength - 1)
 sf_writef_double(fout, lrout, (psfinfoin->frames + irlength - 1) % irlength);
 else
 sf_writef_double(fout, lrout, irlength);
 }
 while (k < sum);
 }

 /* clear dynamic memory, close files */
 delete psfinfoin;
 delete psfinfoout;
 sf_close(fin);
 sf_close(fout);
 fclose(hrtfleft);
 fclose(hrtfright);

 for(i = 0; i < 14; i++)
 for(j = 0; j < elevationarray[i] / 2 + 1; j++)
 {
 delete[] hrtfarrayl[i][j];
 delete[] hrtfarrayr[i][j];
 }

 fftw_destroy_plan(invhrtfl);
 fftw_destroy_plan(invhrtfr);
 fftw_destroy_plan(forhrtflpad);
 fftw_destroy_plan(forhrtfrpad);
 fftw_destroy_plan(forin);
 fftw_destroy_plan(invoutl);
 fftw_destroy_plan(invoutr);
 fftw_destroy_plan(invoutlold);
 fftw_destroy_plan(invoutrold);

 return 0;
}

49

1.4 binauralmoverfunctions.cpp

/*
Brian Carty PhD Code 2010
Chapter 4,
binauralmoverfunctions.cpp
*/

#include "defs.h"

void bkpt(int *pers, double *els, double *angs, int *noofpoints, int maxpts)
{
 /* file details */
 FILE *finbkp;
 char bkpfilename[100];
 int i;

 printf("enter breakpoint file (integer value percentages),include.txt extension (<100

 characters):\n");
 scanf("%s",bkpfilename);

 if(!(finbkp = fopen(bkpfilename,"r")))
 {
 printf("error opening breakpoint file, exiting\n");
 exit(1);
 }

 for(i = 0; i < maxpts; i++)
 {
 /* read input from file */
 if(!feof(finbkp))
 {
 fscanf(finbkp,"%d",&pers[i]);
 fscanf(finbkp,"%lf",&els[i]);
 if(els[i] > 90.0)
 els[i] = 90.0;
 if(els[i] < -40.0)
 els[i] = -40.0;
 fscanf(finbkp,"%lf",&angs[i]);

 /* do checks */
 /* legal % values ? */
 if(pers[i] > 100 || pers[i] < 0)
 {
 printf("error, breakpoint file must run from 0 to 100, exiting\n");
 exit(1);
 }
 /* percentage accumulation */
 if(i > 0 && pers[i] <= pers[i - 1])
 {
 printf("error, percentage values must accumulate...%d is not > %d,

exiting\n",pers[i],pers[i-1]);
 exit(1);
 }

 /* end at 100% */
 if(pers[i] == 100)
 break;

 *noofpoints = *noofpoints + 1;
 }
 else
 break;
 }

 /* check last value is 100 */
 if(pers[*noofpoints] != 100)
 {

50

 printf("error, percentage values must conclude with 100, not %d, exiting",pers[i]);
 exit(1);
 }

 /* close file */
 fclose(finbkp);
}

51

Appendix 2: HRTF Opcodes

/*
hrtfopcodes.c: new HRTF opcodes

(c) Brian Carty, 2010

This file is part of Csound.

The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA
*/

#include "csdl.h"
#include <math.h>
/* definitions */
/* from mit */
#define minelev -40
#define elevincrement 10

/* max delay for min phase: a time value: multiply by sr to get no of samples for memory
 allocation */
#define maxdeltime 0.0011

/* additional definitions for woodworth models */
#define c 34400.0

/* hrtf data sets were analysed for low frequency phase values, as it is the important
 part of the spectrum for phase based localisation cues. The values below were
 extracted and are used to scale the functional phase spectrum. radius: 8.8 cm see
 nonlinitd.cpp */
static const float nonlinitd[5] = {1.570024f, 1.378733f, 1.155164f, 1.101230f, 1.0f};
static const float nonlinitd48k[5] = {1.549748f, 1.305457f, 1.124501f, 1.112852f, 1.0f};
static const float nonlinitd96k[5] = {1.550297f, 1.305671f, 1.124456f, 1.112818f, 1.0f};

/* number of measurements per elev: mit data const:read only, static:exists for whole
 process... */
static const int elevationarray[14] = {56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24,

 12, 1 };

/* assumed mit hrtf data will be used here. Otherwise delay data would need to be
 extracted and replaced here... */
static const float minphasedels[368] =
{
0.000000f, 0.000045f, 0.000091f, 0.000136f, 0.000159f, 0.000204f,
0.000249f, 0.000272f, 0.000295f, 0.000317f, 0.000363f, 0.000385f,
0.000272f, 0.000408f, 0.000454f, 0.000454f, 0.000408f, 0.000385f,
0.000363f, 0.000317f, 0.000295f, 0.000295f, 0.000249f, 0.000204f,
0.000159f, 0.000136f, 0.000091f, 0.000045f, 0.000000f, 0.000000f,
0.000045f, 0.000091f, 0.000136f, 0.000181f, 0.000227f, 0.000249f,
0.000272f, 0.000317f, 0.000363f, 0.000385f, 0.000454f, 0.000476f,
0.000454f, 0.000522f, 0.000499f, 0.000499f, 0.000476f, 0.000454f,
0.000408f, 0.000408f, 0.000385f, 0.000340f, 0.000295f, 0.000272f,
0.000227f, 0.000181f, 0.000136f, 0.000091f, 0.000045f, 0.000000f,
0.000000f, 0.000045f, 0.000091f, 0.000113f, 0.000159f, 0.000204f,
0.000227f, 0.000272f, 0.000317f, 0.000317f, 0.000363f, 0.000408f,

52

0.000363f, 0.000522f, 0.000476f, 0.000499f, 0.000590f, 0.000567f,
0.000567f, 0.000544f, 0.000522f, 0.000499f, 0.000476f, 0.000454f,
0.000431f, 0.000408f, 0.000385f, 0.000363f, 0.000317f, 0.000295f,
0.000249f, 0.000204f, 0.000181f, 0.000136f, 0.000091f, 0.000045f,
0.000000f, 0.000000f, 0.000045f, 0.000091f, 0.000113f, 0.000159f,
0.000204f, 0.000249f, 0.000295f, 0.000317f, 0.000363f, 0.000340f,
0.000385f, 0.000431f, 0.000476f, 0.000522f, 0.000544f, 0.000612f,
0.000658f, 0.000658f, 0.000635f, 0.000658f, 0.000522f, 0.000499f,
0.000476f, 0.000454f, 0.000408f, 0.000385f, 0.000363f, 0.000340f,
0.000295f, 0.000272f, 0.000227f, 0.000181f, 0.000136f, 0.000091f,
0.000045f, 0.000000f, 0.000000f, 0.000045f, 0.000091f, 0.000136f,
0.000159f, 0.000204f, 0.000249f, 0.000295f, 0.000340f, 0.000385f,
0.000431f, 0.000476f, 0.000522f, 0.000567f, 0.000522f, 0.000567f,
0.000567f, 0.000635f, 0.000703f, 0.000748f, 0.000748f, 0.000726f,
0.000703f, 0.000658f, 0.000454f, 0.000431f, 0.000385f, 0.000363f,
0.000317f, 0.000295f, 0.000272f, 0.000227f, 0.000181f, 0.000136f,
0.000091f, 0.000045f, 0.000000f, 0.000000f, 0.000045f, 0.000091f,
0.000113f, 0.000159f, 0.000204f, 0.000249f, 0.000295f, 0.000340f,
0.000385f, 0.000408f, 0.000454f, 0.000499f, 0.000544f, 0.000522f,
0.000590f, 0.000590f, 0.000635f, 0.000658f, 0.000680f, 0.000658f,
0.000544f, 0.000590f, 0.000567f, 0.000454f, 0.000431f, 0.000385f,
0.000363f, 0.000317f, 0.000272f, 0.000272f, 0.000227f, 0.000181f,
0.000136f, 0.000091f, 0.000045f, 0.000000f, 0.000000f, 0.000045f,
0.000068f, 0.000113f, 0.000159f, 0.000204f, 0.000227f, 0.000272f,
0.000317f, 0.000340f, 0.000385f, 0.000431f, 0.000454f, 0.000499f,
0.000499f, 0.000544f, 0.000567f, 0.000590f, 0.000590f, 0.000590f,
0.000590f, 0.000567f, 0.000567f, 0.000476f, 0.000454f, 0.000408f,
0.000385f, 0.000340f, 0.000340f, 0.000295f, 0.000249f, 0.000204f,
0.000159f, 0.000136f, 0.000091f, 0.000045f, 0.000000f, 0.000000f,
0.000045f, 0.000091f, 0.000113f, 0.000159f, 0.000204f, 0.000249f,
0.000295f, 0.000340f, 0.000363f, 0.000385f, 0.000431f, 0.000454f,
0.000499f, 0.000522f, 0.000522f, 0.000522f, 0.000499f, 0.000476f,
0.000454f, 0.000431f, 0.000385f, 0.000340f, 0.000317f, 0.000272f,
0.000227f, 0.000181f, 0.000136f, 0.000091f, 0.000045f, 0.000000f,
0.000000f, 0.000045f, 0.000091f, 0.000136f, 0.000159f, 0.000204f,
0.000227f, 0.000249f, 0.000295f, 0.000340f, 0.000363f, 0.000385f,
0.000408f, 0.000431f, 0.000431f, 0.000431f, 0.000431f, 0.000408f,
0.000385f, 0.000363f, 0.000317f, 0.000317f, 0.000272f, 0.000227f,
0.000181f, 0.000136f, 0.000091f, 0.000045f, 0.000000f, 0.000000f,
0.000045f, 0.000091f, 0.000136f, 0.000181f, 0.000204f, 0.000227f,
0.000272f, 0.000295f, 0.000317f, 0.000340f, 0.000340f, 0.000363f,
0.000363f, 0.000340f, 0.000317f, 0.000295f, 0.000249f, 0.000204f,
0.000159f, 0.000113f, 0.000068f, 0.000023f, 0.000000f, 0.000045f,
0.000068f, 0.000113f, 0.000159f, 0.000181f, 0.000204f, 0.000227f,
0.000249f, 0.000249f, 0.000249f, 0.000227f, 0.000227f, 0.000181f,
0.000159f, 0.000113f, 0.000091f, 0.000045f, 0.000000f, 0.000000f,
0.000045f, 0.000091f, 0.000136f, 0.000159f, 0.000181f, 0.000181f,
0.000181f, 0.000159f, 0.000136f, 0.000091f, 0.000045f, 0.000000f,
0.000000f, 0.000045f, 0.000068f, 0.000091f, 0.000068f, 0.000045f,
0.000000f, 0.000000f
};

#ifdef WORDS_BIGENDIAN
static int swap4bytes(CSOUND* csound, MEMFIL* mfp)
{
 char c1, c2, c3, c4;
 char *p = mfp->beginp;
 int size = mfp->length;

 while (size >= 4)
 {
 c1 = p[0]; c2 = p[1]; c3 = p[2]; c4 = p[3];
 p[0] = c4; p[1] = c3; p[2] = c2; p[3] = c1;
 size -= 4; p +=4;
 }

 return OK;
}
#else
static int (*swap4bytes)(CSOUND*, MEMFIL*) = NULL;

53

#endif

/* Csound hrtf magnitude interpolation, phase truncation object */

/* aleft,aright hrtfmove asrc, kaz, kel, ifilel, ifiler [, imode = 0, ifade = 8, sr =
 44100]... */
/* imode: minphase/phase truncation, ifade: no of buffers per fade for phase trunc., sr
 can be 44.1/48/96k */

typedef struct
{
 OPDS h;
 /* outputs and inputs */
 MYFLT *outsigl, *outsigr;
 MYFLT *in, *kangle, *kelev, *ifilel, *ifiler, *omode, *ofade, *osr;

 /* check if relative source has changed! */
 MYFLT anglev, elevv;

 float *fpbeginl,*fpbeginr;

 /* see definitions in INIT */
 int irlength, irlengthpad, overlapsize;

 MYFLT sr;

 /* old indices for checking if changes occur in trajectory. */
 int oldelevindex, oldangleindex;

 int counter;

 /* initialfade used to avoid fade in of data...if not,'old' data faded out with zero
 hrtf,'new' data faded in. */
 int cross,l,initialfade;

 /* user defined buffer size for fades. */
 int fadebuffer, fade;

 /* flags for process type */
 int minphase,phasetrunc;

 /* hrtf data padded */
 AUXCH hrtflpad,hrtfrpad;
 /* old data for fades */
 AUXCH oldhrtflpad,oldhrtfrpad;
 /* in and output buffers */
 AUXCH insig, outl, outr, outlold, outrold;

 /* memory local to perform method */
 /* insig fft */
 AUXCH complexinsig;
 /* hrtf buffers (rectangular complex form) */
 AUXCH hrtflfloat, hrtfrfloat;
 /* spectral data */
 AUXCH outspecl, outspecr, outspecoldl, outspecoldr;

 /* overlap data */
 AUXCH overlapl, overlapr;
 /* old overlap data for longer crossfades */
 AUXCH overlapoldl, overlapoldr;

 /* interpolation buffers */
 AUXCH lowl1, lowr1, lowl2, lowr2, highl1, highr1, highl2, highr2;
 /* current phase buffers */
 AUXCH currentphasel, currentphaser;

 /* min phase buffers */
 AUXCH logmagl,logmagr,xhatwinl,xhatwinr,expxhatwinl,expxhatwinr;
 /* min phase window: a static buffer */
 AUXCH win;
 MYFLT delayfloat;

54

 /* delay */
 AUXCH delmeml, delmemr;
 int ptl, ptr, mdtl, mdtr;
}
hrtfmove;

static int hrtfmove_init(CSOUND *csound, hrtfmove *p)
{
 /* left and right data files: spectral mag, phase format. */
 MEMFIL *fpl = NULL,*fpr = NULL;
 int i;
 char filel[MAXNAME],filer[MAXNAME];

 int mode = (int)*p->omode;
 int fade = (int)*p->ofade;
 MYFLT sr = *p->osr;

 MYFLT *win;

 /* time domain impulse length, padded, overlap add */
 int irlength, irlengthpad, overlapsize;

 /* flag for process type: default phase trunc */
 if(mode == 1)
 {
 p->minphase = 1;
 p->phasetrunc = 0;
 }
 else
 {
 p->phasetrunc = 1;
 p->minphase = 0;
 }

 /* fade length: default 8, max 24, min 1 */
 if(fade < 1 || fade > 24)
 fade = 8;
 p->fade = fade;

 /* sr, defualt 44100 */
 if(sr != 44100 && sr != 48000 && sr != 96000)
 sr = 44100;
 p->sr = sr;

 if(UNLIKELY(csound->esr != sr))
 csound->Message(csound, Str("\n\nWARNING!!:\nOrchestra SR not compatible with HRTF
 processing SR of: %.0f\n\n"), sr);

 /* setup as per sr */
 if(sr == 44100 || sr == 48000)
 {
 irlength = 128;
 irlengthpad = 256;
 overlapsize = (irlength - 1);
 }
 else if(sr == 96000)
 {
 irlength = 256;
 irlengthpad = 512;
 overlapsize = (irlength - 1);
 }

 /* copy in string name */
 strcpy(filel, (char*) p->ifilel);
 strcpy(filer, (char*) p->ifiler);

 /* reading files, with byte swap */
 if(UNLIKELY((fpl = csound->ldmemfile2withCB(csound, filel, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return

55

 csound->InitError(csound, Str("\n\n\nCannot load left data file, exiting\n\n"));

 if (UNLIKELY((fpr = csound->ldmemfile2withCB(csound, filer, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load right data file, exiting\n\n"));

 p->irlength = irlength;
 p->irlengthpad = irlengthpad;
 p->overlapsize = overlapsize;

 /* the amount of buffers to fade over. */
 p->fadebuffer = (int)fade*irlength;

 /* file handles */
 p->fpbeginl = (float *) fpl->beginp;
 p->fpbeginr = (float *) fpr->beginp;

 /* common buffers (used by both min phase and phasetrunc) */
 if (!p->insig.auxp || p->insig.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->insig);
 if (!p->outl.auxp || p->outl.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outl);
 if (!p->outr.auxp || p->outr.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outr);
 if (!p->hrtflpad.auxp || p->hrtflpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->hrtflpad);
 if (!p->hrtfrpad.auxp || p->hrtfrpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->hrtfrpad);
 if (!p->complexinsig.auxp || p->complexinsig.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->complexinsig);
 if (!p->hrtflfloat.auxp || p->hrtflfloat.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->hrtflfloat);
 if (!p->hrtfrfloat.auxp || p->hrtfrfloat.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->hrtfrfloat);
 if (!p->outspecl.auxp || p->outspecl.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outspecl);
 if (!p->outspecr.auxp || p->outspecr.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outspecr);
 if (!p->overlapl.auxp || p->overlapl.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize*sizeof(MYFLT), &p->overlapl);
 if (!p->overlapr.auxp || p->overlapr.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize*sizeof(MYFLT), &p->overlapr);

 memset(p->insig.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->outl.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outr.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtflpad.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtfrpad.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->complexinsig.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtflfloat.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->hrtfrfloat.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->outspecl.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outspecr.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->overlapl.auxp, 0, overlapsize * sizeof(MYFLT));
 memset(p->overlapr.auxp, 0, overlapsize * sizeof(MYFLT));

 /* interpolation values */
 if (!p->lowl1.auxp || p->lowl1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowl1);
 if (!p->lowr1.auxp || p->lowr1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowr1);
 if (!p->lowl2.auxp || p->lowl2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowl2);
 if (!p->lowr2.auxp || p->lowr2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowr2);
 if (!p->highl1.auxp || p->highl1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highl1);
 if (!p->highr1.auxp || p->highr1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highr1);
 if (!p->highl2.auxp || p->highl2.size < irlength * sizeof(MYFLT))

56

 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highl2);
 if (!p->highr2.auxp || p->highr2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highr2);
 if (!p->currentphasel.auxp || p->currentphasel.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->currentphasel);
 if (!p->currentphaser.auxp || p->currentphaser.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->currentphaser);

 memset(p->lowl1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowr1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowl2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowr2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highl1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highl2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highr1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highr2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->currentphasel.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->currentphaser.auxp, 0, irlength * sizeof(MYFLT));

 /* phase truncation buffers and variables */
 if (!p->oldhrtflpad.auxp || p->oldhrtflpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->oldhrtflpad);
 if (!p->oldhrtfrpad.auxp || p->oldhrtfrpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->oldhrtfrpad);
 if (!p->outlold.auxp || p->outlold.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outlold);
 if (!p->outrold.auxp || p->outrold.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outrold);
 if (!p->outspecoldl.auxp || p->outspecoldl.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outspecoldl);
 if (!p->outspecoldr.auxp || p->outspecoldr.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outspecoldr);
 if (!p->overlapoldl.auxp || p->overlapoldl.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize*sizeof(MYFLT), &p->overlapoldl);
 if (!p->overlapoldr.auxp || p->overlapoldr.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize*sizeof(MYFLT), &p->overlapoldr);

 memset(p->oldhrtflpad.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->oldhrtfrpad.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outlold.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outrold.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outspecoldl.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outspecoldr.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->overlapoldl.auxp, 0, overlapsize * sizeof(MYFLT));
 memset(p->overlapoldr.auxp, 0, overlapsize * sizeof(MYFLT));

 /* initialize counters and indices */
 p->counter = 0;
 p->cross = 0;
 p->l = 0;
 p->initialfade = 0;

 /* need to be a value that is not possible for first check to avoid phase not being
 read. */
 p->oldelevindex = -1;
 p->oldangleindex = -1;

 /* buffer declaration for min phase calculations */
 if (!p->logmagl.auxp || p->logmagl.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->logmagl);
 if (!p->logmagr.auxp || p->logmagr.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->logmagr);
 if (!p->xhatwinl.auxp || p->xhatwinl.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->xhatwinl);
 if (!p->xhatwinr.auxp || p->xhatwinr.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->xhatwinr);
 if (!p->expxhatwinl.auxp || p->expxhatwinl.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->expxhatwinl);
 if (!p->expxhatwinr.auxp || p->expxhatwinr.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->expxhatwinr);

57

 memset(p->logmagl.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->logmagr.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->xhatwinl.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->xhatwinr.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->expxhatwinl.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->expxhatwinr.auxp, 0, irlength * sizeof(MYFLT));

 /* delay buffers */
 if (!p->delmeml.auxp || p->delmeml.size < (int)(sr * maxdeltime) * sizeof(MYFLT))
 csound->AuxAlloc(csound, (int)(sr * maxdeltime) * sizeof(MYFLT), &p->delmeml);
 if (!p->delmemr.auxp || p->delmemr.size < (int)(sr * maxdeltime) * sizeof(MYFLT))
 csound->AuxAlloc(csound, (int)(sr * maxdeltime) * sizeof(MYFLT), &p->delmemr);

 memset(p->delmeml.auxp, 0, (int)(sr * maxdeltime) * sizeof(MYFLT));
 memset(p->delmemr.auxp, 0, (int)(sr * maxdeltime) * sizeof(MYFLT));

 if (!p->win.auxp && p->win.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->win);

 win = (MYFLT *)p->win.auxp;

 /* min phase win defined for irlength point impulse! */
 win[0] = FL(1.0);
 for(i = 1; i < (irlength / 2); i++)
 win[i] = FL(2.0);
 win[(irlength / 2)] = FL(1.0);
 for(i = ((irlength / 2) + 1); i < irlength; i++)
 win[i] = FL(0.0);

 p->mdtl = (int)(0.00095f * sr);
 p->mdtr = (int)(0.00095f * sr);
 p->delayfloat = 0.;

 p->ptl = 0;
 p->ptr = 0;

 /* setup values used to check if src has moved, illegal values to start with to ensure
 first read */
 p->anglev = -1;
 p->elevv = -41;

 return OK;
}

static int hrtfmove_process(CSOUND *csound, hrtfmove *p)
{
 /* local pointers to p */
 MYFLT *in = p->in;
 MYFLT *outsigl = p->outsigl;
 MYFLT *outsigr = p->outsigr;

 /* common buffers and variables */
 MYFLT *insig = (MYFLT *)p->insig.auxp;
 MYFLT *outl = (MYFLT *)p->outl.auxp;
 MYFLT *outr = (MYFLT *)p->outr.auxp;

 MYFLT *hrtflpad = (MYFLT *)p->hrtflpad.auxp;
 MYFLT *hrtfrpad = (MYFLT *)p->hrtfrpad.auxp;

 MYFLT *complexinsig = (MYFLT *)p->complexinsig.auxp;
 MYFLT *hrtflfloat = (MYFLT *)p->hrtflfloat.auxp;
 MYFLT *hrtfrfloat = (MYFLT *)p->hrtfrfloat.auxp;
 MYFLT *outspecl = (MYFLT *)p->outspecl.auxp;
 MYFLT *outspecr = (MYFLT *)p->outspecr.auxp;

 MYFLT *overlapl = (MYFLT *)p->overlapl.auxp;
 MYFLT *overlapr = (MYFLT *)p->overlapr.auxp;

 MYFLT elev = *p->kelev;
 MYFLT angle = *p->kangle;

58

 int counter = p->counter;
 int n;

 /* pointers into HRTF files: floating point data (even in 64 bit csound) */
 float *fpindexl;
 float *fpindexr;

 int i,j,elevindex, angleindex, skip = 0;

 int minphase = p->minphase;
 int phasetrunc = p->phasetrunc;

 MYFLT sr = p->sr;

 int irlength = p->irlength;
 int irlengthpad = p->irlengthpad;
 int overlapsize = p->overlapsize;

 /* local variables, mainly used for simplification */
 MYFLT elevindexstore;
 MYFLT angleindexlowstore;
 MYFLT angleindexhighstore;

 /* interpolation values */
 MYFLT *lowl1 = (MYFLT *)p->lowl1.auxp;
 MYFLT *lowr1 = (MYFLT *)p->lowr1.auxp;
 MYFLT *lowl2 = (MYFLT *)p->lowl2.auxp;
 MYFLT *lowr2 = (MYFLT *)p->lowr2.auxp;
 MYFLT *highl1 = (MYFLT *)p->highl1.auxp;
 MYFLT *highr1 = (MYFLT *)p->highr1.auxp;
 MYFLT *highl2 = (MYFLT *)p->highl2.auxp;
 MYFLT *highr2 = (MYFLT *)p->highr2.auxp;
 MYFLT *currentphasel = (MYFLT *)p->currentphasel.auxp;
 MYFLT *currentphaser = (MYFLT *)p->currentphaser.auxp;

 /* local interpolation values */
 MYFLT elevindexhighper, angleindex2per, angleindex4per;
 int elevindexlow, elevindexhigh, angleindex1, angleindex2, angleindex3, angleindex4;
 MYFLT magl,magr,phasel,phaser, magllow, magrlow, maglhigh, magrhigh;

 /* phase truncation buffers and variables */
 MYFLT *oldhrtflpad = (MYFLT *)p->oldhrtflpad.auxp;
 MYFLT *oldhrtfrpad = (MYFLT *)p->oldhrtfrpad.auxp;
 MYFLT *outlold = (MYFLT *)p->outlold.auxp;
 MYFLT *outrold = (MYFLT *)p->outrold.auxp;
 MYFLT *outspecoldl = (MYFLT *)p->outspecoldl.auxp;
 MYFLT *outspecoldr = (MYFLT *)p->outspecoldr.auxp;
 MYFLT *overlapoldl = (MYFLT *)p->overlapoldl.auxp;
 MYFLT *overlapoldr = (MYFLT *)p->overlapoldr.auxp;

 int oldelevindex = p ->oldelevindex;
 int oldangleindex = p ->oldangleindex;

 int cross = p ->cross;
 int l = p->l;
 int initialfade = p->initialfade;

 int crossfade;
 int crossout;

 int fade = p->fade;
 int fadebuffer = p->fadebuffer;

 /* minimum phase buffers */
 MYFLT *logmagl = (MYFLT *)p->logmagl.auxp;
 MYFLT *logmagr = (MYFLT *)p->logmagr.auxp;
 MYFLT *xhatwinl = (MYFLT *)p->xhatwinl.auxp;
 MYFLT *xhatwinr = (MYFLT *)p->xhatwinr.auxp;
 MYFLT *expxhatwinl = (MYFLT *)p->expxhatwinl.auxp;
 MYFLT *expxhatwinr = (MYFLT *)p->expxhatwinr.auxp;

59

 /* min phase window */
 MYFLT *win = (MYFLT *)p->win.auxp;

 /* min phase delay variables */
 MYFLT *delmeml = (MYFLT *)p->delmeml.auxp;
 MYFLT *delmemr = (MYFLT *)p->delmemr.auxp;
 MYFLT delaylow1, delaylow2, delayhigh1, delayhigh2, delaylow, delayhigh;
 MYFLT delayfloat = p->delayfloat;
 int ptl = p->ptl;
 int ptr = p->ptr;
 int mdtl = p->mdtl;
 int mdtr = p->mdtr;
 int posl, posr;
 MYFLT outvdl, outvdr, vdtl, vdtr, fracl, fracr, rpl, rpr;

 /* start indices at correct value (start of file)/ zero indices. */
 fpindexl = (float *) p->fpbeginl;
 fpindexr = (float *) p->fpbeginr;

 n = csound->ksmps;

 for(j = 0; j < n; j++)
 {
 /* ins and outs */
 insig[counter] = in[j];

 outsigl[j] = outl[counter];
 outsigr[j] = outr[counter];

 counter++;

 if(phasetrunc)
 {
 /* used to ensure fade does not happen on first run */
 if(initialfade < (irlength + 2))
 initialfade++;
 }

 if(counter == irlength)
 {
 /* process a block */
 crossfade = 0;
 crossout = 0;

 if(elev > FL(90.0))
 elev = FL(90.0);
 if(elev < FL(-40.0))
 elev = FL(-40.0);

 while(angle < FL(0.0))
 angle += FL(360.0);
 while(angle >= FL(360.0))
 angle -= FL(360.0);

 /* only update if location changes! */
 if(angle != p->anglev || elev != p->elevv)
 {
 /* two nearest elev indices to avoid recalculating */
 elevindexstore = (elev - minelev) / elevincrement;
 elevindexlow = (int)elevindexstore;

 if(elevindexlow < 13)
 elevindexhigh = elevindexlow + 1;
 /* highest index reached */
 else
 elevindexhigh = elevindexlow;

 /* get percentage value for interpolation */
 elevindexhighper = elevindexstore – elevindexlow;

60

 /* read using an index system based on number of points measured per elevation
 at mit */

 /* lookup indices, used to check for crossfade */
 elevindex = (int)(elevindexstore + FL(0.5));
 angleindex = (int)(angle / (FL(360.0) / elevationarray[elevindex]) + FL(0.5));
 angleindex = angleindex % elevationarray[elevindex];

 /* avoid recalculation */
 angleindexlowstore = angle / (FL(360.) / elevationarray[elevindexlow]);
 angleindexhighstore = angle / (FL(360.) / elevationarray[elevindexhigh]);

 /* 4 closest indices, 2 low and 2 high */
 angleindex1 = (int)angleindexlowstore;

 angleindex2 = angleindex1 + 1;
 angleindex2 = angleindex2 % elevationarray[elevindexlow];

 angleindex3 = (int)angleindexhighstore;

 angleindex4 = angleindex3 + 1;
 angleindex4 = angleindex4 % elevationarray[elevindexhigh];

 /* angle percentages for interp */
 angleindex2per = angleindexlowstore – angleindex1;
 angleindex4per = angleindexhighstore – angleindex3;

 if(phasetrunc)
 {
 if(angleindex!=oldangleindex || elevindex!=oldelevindex)
 {

 /* store last point and turn crossfade on, provided that initialfade value
 indicates first block processed! */

 /* (otherwise,there will be a fade in at the start). */
 if(initialfade>irlength)
 {
 /* post warning if fades ovelap */
 if(cross)
 {
 csound->Message(csound,Str("\nWARNING: fades are overlapping: this could

lead to noise: reduce fade size or change trajectory\n\n"));
 cross = 0;
 }
 /* reset l, use as index to fade */
 l = 0;
 crossfade = 1;
 /* store old data */
 for(i = 0; i < irlengthpad; i++)
 {
 oldhrtflpad[i] = hrtflpad[i];
 oldhrtfrpad[i] = hrtfrpad[i];
 }
 }

 /* store point for current phase as trajectory comes closer to a new index */
 skip = 0;
 /* store current phase */
 if(angleindex > elevationarray[elevindex] / 2)
 {
 for(i = 0; i < elevindex; i++)
 skip +=((int)(elevationarray[i]/ 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindex] - angleindex); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 currentphasel[i] = fpindexr[skip + i];
 currentphaser[i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindex; i++)

61

 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 currentphasel[i] = fpindexl[skip+i];
 currentphaser[i] = fpindexr[skip+i];
 }
 }
 }
 }

 /* for next check */
 p->oldelevindex = elevindex;
 p->oldangleindex = angleindex;

 /* read 4 nearest HRTFs */
 skip = 0;
 /* switch l and r */
 if(angleindex1>elevationarray[elevindexlow]/2)
 {
 for(i = 0; i < elevindexlow; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i=0;i<(elevationarray[elevindexlow] – angleindex1); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = fpindexr[skip+i];
 lowr1[i] = fpindexl[skip+i];
 }
 }
 else
 {
 for(i = 0; i < elevindexlow; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex1; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = fpindexl[skip+i];
 lowr1[i] = fpindexr[skip+i];
 }
 }

 skip = 0;
 if(angleindex2 > elevationarray[elevindexlow] / 2)
 {
 for(i = 0; i < elevindexlow; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for(I = 0;I < (elevationarray[elevindexlow] - angleindex2); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = fpindexr[skip+i];
 lowr2[i] = fpindexl[skip+i];
 }
 }
 else
 {
 for(i = 0; i < elevindexlow; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for(i = 0; i < angleindex2; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = fpindexl[skip+i];
 lowr2[i] = fpindexr[skip+i];
 }
 }

 skip = 0;

62

 if(angleindex3>elevationarray[elevindexhigh]/2)
 {
 for(i = 0; i < elevindexhigh; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexhigh] – angleindex3); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl1[i] = fpindexr[skip+i];
 highr1[i] = fpindexl[skip+i];
 }
 }
 else
 {
 for(i = 0; i < elevindexhigh; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex3; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl1[i] = fpindexl[skip+i];
 highr1[i] = fpindexr[skip+i];
 }
 }

 skip = 0;
 if(angleindex4>elevationarray[elevindexhigh]/2)
 {
 for(i = 0; i < elevindexhigh; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexhigh] – angleindex4); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl2[i] = fpindexr[skip+i];
 highr2[i] = fpindexl[skip+i];
 }
 }
 else
 {
 for(i = 0; i < elevindexhigh; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex4; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl2[i] = fpindexl[skip+i];
 highr2[i] = fpindexr[skip+i];
 }
 }

 /* interpolation */
 /* 0 Hz and Nyq...absoulute values for mag */
 magllow = FL(fabs(lowl1[0])) + (FL(fabs(lowl2[0])) - FL(fabs(lowl1[0]))) *
 angleindex2per;
 maglhigh = FL(fabs(highl1[0])) + (FL(fabs(highl2[0])) – FL(fabs(highl1[0]))) *
 angleindex4per;
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 if(minphase)
 {
 logmagl[0] = LOG((magl == FL(0.0) ? FL(0.00000001) : magl));
 }
 /* this is where real values of 0hz and nyq needed: if neg real, 180 degree phase
 */
 /* if data was complex, mag interp would use fabs() inherently, phase would be
 0/pi */
 /* if pi, real is negative! */
 else
 {
 if(currentphasel[0] < FL(0.))
 hrtflfloat[0] = -magl;

63

 else
 hrtflfloat[0] = magl;
 }

 magllow = FL(fabs(lowl1[1])) + (FL(fabs(lowl2[1])) - FL(fabs(lowl1[1]))) *

 angleindex2per;
 maglhigh = FL(fabs(highl1[1])) + (FL(fabs(highl2[1])) - FL(fabs(highl1[1]))) *
 angleindex4per;
 magl = magllow + (maglhigh-magllow) * elevindexhighper;
 if(minphase)
 {
 logmagl[1] = LOG(magl == FL(0.0) ? FL(0.00000001) : magl);
 }
 else
 {
 if(currentphasel[1] < FL(0.))
 hrtflfloat[1] = -magl;
 else
 hrtflfloat[1] = magl;
 }

 magrlow = FL(fabs(lowr1[0])) + (FL(fabs(lowr2[0])) - FL(fabs(lowr1[0]))) *
 angleindex2per;
 magrhigh = FL(fabs(highr1[0])) + (FL(fabs(highr2[0])) – FL(fabs(highr1[0]))) *
 angleindex4per;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
 if(minphase)
 {
 logmagr[0] = LOG(magr == FL(0.0) ? FL(0.00000001) : magr);
 }
 else
 {
 if(currentphaser[0] < FL(0.))
 hrtfrfloat[0] = -magr;
 else
 hrtfrfloat[0] = magr;
 }

 magrlow = FL(fabs(lowr1[1])) + (FL(fabs(lowr2[1])) - FL(fabs(lowr1[1]))) *
 angleindex2per;
 magrhigh = FL(fabs(highr1[1])) + (FL(fabs(highr2[1])) - FL(fabs(highr1[1]))) *
 angleindex4per;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
 if(minphase)
 {
 logmagr[1] = LOG(magr == FL(0.0) ? FL(0.00000001) : magr);
 }
 else
 {
 if(currentphaser[1] < FL(0.))
 hrtfrfloat[1] = -magr;
 else
 hrtfrfloat[1] = magr;
 }

 /* remaining values */
 for(i = 2; i < irlength; i += 2)
 {
 /* interpolate high and low mags */
 magllow = lowl1[i] + (lowl2[i] – lowl1[i]) * angleindex2per;
 maglhigh = highl1[i] + (highl2[i] – highl1[i]) * angleindex4per;

 magrlow = lowr1[i] + (lowr2[i] – lowr1[i]) * angleindex2per;
 magrhigh = highr1[i] + (highr2[i] – highr1[i]) * angleindex4per;

 /* interpolate high and low results */
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;

 if(phasetrunc)
 {

64

 /* use current phase, back to rectangular */
 phasel = currentphasel[i + 1];
 phaser = currentphaser[i + 1];

 /* polar to rectangular */
 hrtflfloat[i] = magl * COS(phasel);
 hrtflfloat[i+1] = magl * SIN(phasel);

 hrtfrfloat[i] = magr * COS(phaser);
 hrtfrfloat[i+1] = magr * SIN(phaser);
 }

 if(minphase)
 {
 /* store log magnitudes, 0 phases for ifft, do not allow log(0.0) */
 logmagl[i] = LOG(magl == FL(0.0) ? FL(0.00000001) : magl);
 logmagr[i] = LOG(magr == FL(0.0) ? FL(0.00000001) : magr);

 logmagl[i + 1] = FL(0.0);
 logmagr[i + 1] = FL(0.0);
 }
 }

 if(minphase)
 {
 /* ifft!...see Oppehneim and Schafer for min phase process...based on real
 cepstrum method */
 csound->InverseRealFFT(csound, logmagl, irlength);
 csound->InverseRealFFT(csound, logmagr, irlength);

 /* window, note no need to scale on csound iffts... */
 for(i = 0; i < irlength; i++)
 {
 xhatwinl[i] = logmagl[i] * win[i];
 xhatwinr[i] = logmagr[i] * win[i];
 }

 /* fft */
 csound->RealFFT(csound, xhatwinl, irlength);
 csound->RealFFT(csound, xhatwinr, irlength);

 /* exponential of result */
 /* 0 hz and nyq purely real... */
 expxhatwinl[0] = EXP(xhatwinl[0]);
 expxhatwinl[1] = EXP(xhatwinl[1]);
 expxhatwinr[0] = EXP(xhatwinr[0]);
 expxhatwinr[1] = EXP(xhatwinr[1]);

 /* exponential of real, cos/sin of imag */
 for(i = 2; i < irlength; i += 2)
 {
 expxhatwinl[i] = EXP(xhatwinl[i]) * COS(xhatwinl[i + 1]);
 expxhatwinl[i+1] = EXP(xhatwinl[i]) * SIN(xhatwinl[i + 1]);
 expxhatwinr[i] = EXP(xhatwinr[i]) * COS(xhatwinr[i + 1]);
 expxhatwinr[i+1] = EXP(xhatwinr[i]) * SIN(xhatwinr[i + 1]);
 }

 /* ifft for output buffers */
 csound->InverseRealFFT(csound, expxhatwinl, irlength);
 csound->InverseRealFFT(csound, expxhatwinr, irlength);

 /* output */
 for(i= 0; i < irlength; i++)
 {
 hrtflpad[i] = expxhatwinl[i];
 hrtfrpad[i] = expxhatwinr[i];
 }
 }

 /* use current phase and interped mag directly */
 if(phasetrunc)

65

 {
 /* ifft */
 csound->InverseRealFFT(csound, hrtflfloat, irlength);
 csound->InverseRealFFT(csound, hrtfrfloat, irlength);

 for (i = 0; i < irlength; i++)
 {
 /* scale and pad buffers with zeros to fftbuff */
 hrtflpad[i] = hrtflfloat[i];
 hrtfrpad[i] = hrtfrfloat[i];
 }
 }

 /* zero pad impulse */
 for(i = irlength; i < irlengthpad; i++)
 {
 hrtflpad[i] = FL(0.0);
 hrtfrpad[i] = FL(0.0);
 }

 /* back to freq domain */
 csound->RealFFT(csound, hrtflpad, irlengthpad);
 csound->RealFFT(csound, hrtfrpad, irlengthpad);

 if(minphase)
 {
 /* read delay data: 4 nearest points, as above */
 /* point 1 */
 skip = 0;
 if(angleindex1 > elevationarray[elevindexlow] / 2)
 {
 for (i = 0; i < elevindexlow; i++)
 skip += ((int)(elevationarray[i] / 2) + 1);

 for(i = 0; i < (elevationarray[elevindexlow] - angleindex1); i++)
 skip++;
 delaylow1 = minphasedels[skip];
 }
 else
 {
 for (i = 0; i < elevindexlow; i++)

 skip += ((int)(elevationarray[i] / 2) + 1);
 for(i = 0; i < angleindex1; i++)
 skip++;
 delaylow1 = minphasedels[skip];
 }

 /* point 2 */
 skip = 0;
 if(angleindex2 > elevationarray[elevindexlow] / 2)
 {
 for (i = 0; i < elevindexlow; i++)
 skip += ((int)(elevationarray[i] / 2) + 1);
 for(i = 0; i < (elevationarray[elevindexlow] - angleindex2); i++)
 skip++;
 delaylow2 = minphasedels[skip];
 }
 else
 {
 for (i = 0; i < elevindexlow; i++)
 skip += ((int)(elevationarray[i] / 2) + 1);
 for (i = 0; i < angleindex2; i++)
 skip++;
 delaylow2 = minphasedels[skip];
 }

 /* point 3 */
 skip = 0;
 if(angleindex3 > elevationarray[elevindexhigh] / 2)
 {
 for (i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1);

66

 for(i = 0; i < (elevationarray[elevindexhigh] - angleindex3); i++)
 skip++;
 delayhigh1 =minphasedels[skip];
 }
 else
 {
 for (i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1);
 for (i = 0; i < angleindex3; i++)
 skip++;
 delayhigh1 = minphasedels[skip];
 }

 /* point 4 */
 skip = 0;
 if(angleindex4 > elevationarray[elevindexhigh] / 2)
 {
 for (i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1);
 for(i = 0; i < (elevationarray[elevindexhigh] – angleindex4); i++)
 skip++;
 delayhigh2 = minphasedels[skip];
 }
 else
 {
 for (i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1);
 for (i = 0; i < angleindex4; i++)
 skip++;
 delayhigh2 = minphasedels[skip];
 }

 /* delay interp */
 delaylow = delaylow1 + ((delaylow2 – delaylow1) * angleindex2per);
 delayhigh = delayhigh1 + ((delayhigh2 – delayhigh1) * angleindex4per);
 delayfloat = delaylow + ((delayhigh – delaylow) * elevindexhighper);
 p->delayfloat = delayfloat;
 }
 /* end of angle/elev change process */
 p->elevv = elev;
 p->anglev = angle;
 }

 /* look after overlap add */
 for(i = 0; i < overlapsize ; i++)
 {
 overlapl[i] = outl[i + irlength];
 overlapr[i] = outr[i + irlength];
 /* look after fade */
 if(phasetrunc)
 {
 if(crossfade)
 {
 overlapoldl[i] = outl[i + irlength];
 overlapoldr[i] = outr[i + irlength];
 }
 /* overlap will be previous fading out signal */
 if(cross)
 {
 overlapoldl[i] = outlold[i + irlength];
 overlapoldr[i] = outrold[i + irlength];
 }
 }
 }

 /* insert insig */
 for (i = 0; i < irlength; i++)
 complexinsig[i] = insig[i];

 for (i = irlength; i < irlengthpad; i++)
 complexinsig[i] = FL(0.0);

67

 csound->RealFFT(csound, complexinsig, irlengthpad);

 /* complex mult function... */
 csound->RealFFTMult(csound, outspecl, hrtflpad, complexinsig, irlengthpad,
 FL(1.0));
 csound->RealFFTMult(csound, outspecr, hrtfrpad, complexinsig, irlengthpad,

FL(1.0));

 /* convolution is the inverse FFT of above result */
 csound->InverseRealFFT(csound, outspecl, irlengthpad);
 csound->InverseRealFFT(csound, outspecr, irlengthpad);

 /* real values, scaled (by a little more than usual to ensure no clipping) sr
 related */
 for(i = 0; i < irlengthpad; i++)
 {
 outl[i] = outspecl[i] / (sr / FL(38000.0));
 outr[i] = outspecr[i] / (sr / FL(38000.0));
 }

 if(phasetrunc)
 {
 /* setup for fades */
 if(crossfade || cross)
 {
 crossout = 1;

 csound->RealFFTMult(csound, outspecoldl, oldhrtflpad, complexinsig,

 irlengthpad, FL(1.0));
 csound->RealFFTMult(csound, outspecoldr, oldhrtfrpad, complexinsig,

 irlengthpad, FL(1.0));

 csound->InverseRealFFT(csound, outspecoldl, irlengthpad);
 csound->InverseRealFFT(csound, outspecoldr, irlengthpad);

 /* scaled */
 for(i = 0; i < irlengthpad; i++)
 {
 outlold[i] = outspecoldl[i] / (sr / FL(38000.0));
 outrold[i] = outspecoldr[i] / (sr / FL(38000.0));
 }

 cross++;
 /* number of processing buffers in a fade */
 cross = cross % fade;
 }

 if(crossout)
 {
 /* do fade */
 for(i = 0; i < irlength; i++)
 {
 outl[i] = ((outlold[i] + (i<overlapsize ? overlapoldl[i] : 0)) * (FL(1.0)

 – FL(l) / fadebuffer)) + (outl[i] + (i < overlapsize ?
 overlapl[i] : 0)) * FL(l)/fadebuffer);

 outr[i] = ((outrold[i] + (i<overlapsize ? overlapoldr[i] : 0)) * (FL(1.0)
 – FL(l) / fadebuffer)) + ((outr[i] + (i < overlapsize ?
 overlapr[i] : 0)) * FL(l)/fadebuffer);

 l++;
 }
 }
 else
 for(i = 0; i < irlength; i++)
 {
 outl[i] = outl[i] + (i < overlapsize ? overlapl[i] : FL(0.0));
 outr[i] = outr[i] + (i < overlapsize ? overlapr[i] : FL(0.0));
 }
 }

 if(minphase)

68

 {
 /* use output direcly and add delay in time domain */
 for(i = 0; i < irlength; i++)
 {
 outl[i] = outl[i] + (i < overlapsize ? overlapl[i] : FL(0.0));
 outr[i] = outr[i] + (i < overlapsize ? overlapr[i] : FL(0.0));
 }

 if(angle > FL(180.0))
 {
 vdtr = delayfloat * sr;
 vdtl = FL(0.0);
 }
 else
 {
 vdtr = FL(0.0);
 vdtl = delayfloat * sr;
 }

 /* delay right */
 if(vdtr > mdtr)
 vdtr = FL(mdtr);
 for(i = 0; i < irlength; i++)
 {
 rpr = ptr - vdtr;
 rpr = (rpr >= 0 ? (rpr < mdtr ? rpr : rpr - mdtr) : rpr + mdtr);
 posr = (int) rpr;
 fracr = rpr - posr;
 delmemr[ptr] = outr[i];
 outvdr = delmemr[posr] + fracr * (delmemr[(posr + 1 < mdtr ? posr + 1 : 0)]

 - delmemr[posr]);
 outr[i] = outvdr;
 ptr = (ptr != mdtr - 1 ? ptr + 1 : 0);
 }

 /* delay left */
 if(vdtl > mdtl)
 vdtl = FL(mdtl);
 for(i = 0; i < irlength; i++)
 {
 rpl = ptl - vdtl;
 rpl = (rpl >= 0 ? (rpl < mdtl ? rpl : rpl - mdtl) : rpl + mdtl);
 posl = (int) rpl;
 fracl = rpl - (int) posl;
 delmeml[ptl] = outl[i];
 outvdl = delmeml[posl] + fracl * (delmeml[(posl + 1 < mdtl ? posl + 1 : 0)]

 - delmeml[posl]);
 outl[i] = outvdl;
 ptl = (ptl != mdtl - 1 ? ptl + 1 : 0);
 }

 p->ptl = ptl;
 p->ptr = ptr;
 }

 /* reset counter */
 counter = 0;
 if(phasetrunc)
 {
 /* update */
 p->cross = cross;
 p->l = l;
 }

 } /* end of irlength == counter */

 } /* end of ksmps audio loop */

 /* update */
 p->counter = counter;
 if(phasetrunc)

69

 p->initialfade = initialfade;

 return OK;
}

/* Csound hrtf magnitude interpolation, woodworth phase, static source: */
/* overlap add convolution */

/* aleft, aright hrtfstat ain, iang, iel, ifilel, ifiler [,iradius = 8.8, isr =
44100]...options of 48 and 96k sr */

/* see definitions above */

typedef struct
{
 OPDS h;
 /* outputs and inputs */
 MYFLT *outsigl, *outsigr;
 MYFLT *in, *iangle, *ielev, *ifilel, *ifiler, *oradius, *osr;

 /*see definitions in INIT*/
 int irlength, irlengthpad, overlapsize;
 MYFLT sroverN;

 int counter;
 MYFLT sr;

 /* hrtf data padded */
 AUXCH hrtflpad,hrtfrpad;
 /* in and output buffers */
 AUXCH insig, outl, outr;

 /* memory local to perform method */
 /* insig fft */
 AUXCH complexinsig;
 /* hrtf buffers (rectangular complex form) */
 AUXCH hrtflfloat, hrtfrfloat;
 /* spectral data */
 AUXCH outspecl, outspecr;

 /* overlap data */
 AUXCH overlapl, overlapr;

 /* interpolation buffers */
 AUXCH lowl1, lowr1, lowl2, lowr2, highl1, highr1, highl2, highr2;

 /* buffers for impulse shift */
 AUXCH leftshiftbuffer, rightshiftbuffer;
}
hrtfstat;

static int hrtfstat_init(CSOUND *csound, hrtfstat *p)
{
 /* left and right data files: spectral mag, phase format. */
 MEMFIL *fpl = NULL, *fpr = NULL;
 char filel[MAXNAME], filer[MAXNAME];

 /* interpolation values */
 MYFLT *lowl1;
 MYFLT *lowr1;
 MYFLT *lowl2;
 MYFLT *lowr2;
 MYFLT *highl1;
 MYFLT *highr1;
 MYFLT *highl2;
 MYFLT *highr2;

 MYFLT *hrtflfloat;
 MYFLT *hrtfrfloat;

 MYFLT *hrtflpad;

70

 MYFLT *hrtfrpad;

 MYFLT elev = *p->ielev;
 MYFLT angle = *p->iangle;
 MYFLT r = *p->oradius;
 MYFLT sr = *p->osr;

 /* pointers into HRTF files */
 float *fpindexl=NULL;
 float *fpindexr=NULL;

 /* time domain impulse length, padded, overlap add */
 int irlength, irlengthpad, overlapsize;

 int i, skip = 0;

 /* local interpolation values */
 MYFLT elevindexhighper, angleindex2per, angleindex4per;
 int elevindexlow, elevindexhigh, angleindex1, angleindex2, angleindex3, angleindex4;
 MYFLT magl, magr, phasel, phaser, magllow, magrlow, maglhigh, magrhigh;

 /* local variables, mainly used for simplification */
 MYFLT elevindexstore;
 MYFLT angleindexlowstore;
 MYFLT angleindexhighstore;

 /* woodworth values */
 MYFLT radianangle, radianelev, itd, itdww, freq;

 /* shift */
 int shift;
 MYFLT *leftshiftbuffer;
 MYFLT *rightshiftbuffer;

 /* sr */
 if(sr != FL(44100.0) && sr != FL(48000.0) && sr != FL(96000.0))
 sr = FL(44100.0);
 p->sr = sr;

 if (UNLIKELY(csound->esr != sr))
 csound->Message(csound, Str("\n\nWARNING!!:\nOrchestra SR not compatible with HRTF

 processing SR of: %.0f\n\n"), sr);

 /* setup as per sr */
 if(sr == 44100 || sr == 48000)
 {
 irlength = 128;
 irlengthpad = 256;
 overlapsize = (irlength - 1);
 }
 else if(sr == 96000)
 {
 irlength = 256;
 irlengthpad = 512;
 overlapsize = (irlength - 1);
 }

 /* copy in string name... */
 strcpy(filel, (char*) p->ifilel);
 strcpy(filer, (char*) p->ifiler);

 /* reading files, with byte swap */
 if (UNLIKELY((fpl = csound->ldmemfile2withCB(csound, filel, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load left data file, exiting\n\n"));

 if (UNLIKELY((fpr = csound->ldmemfile2withCB(csound, filer, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load right data file, exiting\n\n"));

71

 p->irlength = irlength;
 p->irlengthpad = irlengthpad;
 p->overlapsize = overlapsize;

 p->sroverN = sr/irlength;

 /* start indices at correct value (start of file)/ zero indices. (don't need to store
 here, as only accessing in INIT) */
 fpindexl = (float *) fpl->beginp;
 fpindexr = (float *) fpr->beginp;

 /* buffers */
 if (!p->insig.auxp || p->insig.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->insig);
 if (!p->outl.auxp || p->outl.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outl);
 if (!p->outr.auxp || p->outr.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outr);
 if (!p->hrtflpad.auxp || p->hrtflpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->hrtflpad);
 if (!p->hrtfrpad.auxp || p->hrtfrpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->hrtfrpad);
 if (!p->complexinsig.auxp || p->complexinsig.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p-> complexinsig);
 if (!p->hrtflfloat.auxp || p->hrtflfloat.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->hrtflfloat);
 if (!p->hrtfrfloat.auxp || p->hrtfrfloat.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->hrtfrfloat);
 if (!p->outspecl.auxp || p->outspecl.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outspecl);
 if (!p->outspecr.auxp || p->outspecr.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad*sizeof(MYFLT), &p->outspecr);
 if (!p->overlapl.auxp || p->overlapl.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize*sizeof(MYFLT), &p->overlapl);
 if (!p->overlapr.auxp || p->overlapr.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize*sizeof(MYFLT), &p->overlapr);

 memset(p->insig.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->outl.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outr.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtflpad.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtfrpad.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->complexinsig.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtflfloat.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->hrtfrfloat.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->outspecl.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outspecr.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->overlapl.auxp, 0, overlapsize * sizeof(MYFLT));
 memset(p->overlapr.auxp, 0, overlapsize * sizeof(MYFLT));

 /* interpolation values */
 if (!p->lowl1.auxp || p->lowl1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowl1);
 if (!p->lowr1.auxp || p->lowr1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowr1);
 if (!p->lowl2.auxp || p->lowl2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowl2);
 if (!p->lowr2.auxp || p->lowr2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowr2);
 if (!p->highl1.auxp || p->highl1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highl1);
 if (!p->highr1.auxp || p->highr1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highr1);
 if (!p->highl2.auxp || p->highl2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highl2);
 if (!p->highr2.auxp || p->highr2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highr2);

 /* best to zero, for future changes (filled in init) */
 memset(p->lowl1.auxp, 0, irlength * sizeof(MYFLT));

72

 memset(p->lowr1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowl2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowr2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highl1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highl2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highr1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highr2.auxp, 0, irlength * sizeof(MYFLT));

 /* shift buffers */
 if (!p->leftshiftbuffer.auxp || p->leftshiftbuffer.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->leftshiftbuffer);
 if (!p->rightshiftbuffer.auxp || p->rightshiftbuffer.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->rightshiftbuffer);

 memset(p->leftshiftbuffer.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->rightshiftbuffer.auxp, 0, irlength * sizeof(MYFLT));

 lowl1 = (MYFLT *)p->lowl1.auxp;
 lowr1 = (MYFLT *)p->lowr1.auxp;
 lowl2 = (MYFLT *)p->lowl2.auxp;
 lowr2 = (MYFLT *)p->lowr2.auxp;
 highl1 = (MYFLT *)p->highl1.auxp;
 highr1 = (MYFLT *)p->highr1.auxp;
 highl2 = (MYFLT *)p->highl2.auxp;
 highr2 = (MYFLT *)p->highr2.auxp;

 leftshiftbuffer = (MYFLT *)p->leftshiftbuffer.auxp;
 rightshiftbuffer = (MYFLT *)p->rightshiftbuffer.auxp;

 hrtflfloat = (MYFLT *)p->hrtflfloat.auxp;
 hrtfrfloat = (MYFLT *)p->hrtfrfloat.auxp;

 hrtflpad = (MYFLT *)p->hrtflpad.auxp;
 hrtfrpad = (MYFLT *)p->hrtfrpad.auxp;

 if(r <= 0 || r > 15)
 r = FL(8.8);

 if(elev > FL(90.0))
 elev = FL(90.0);
 if(elev < FL(-40.0))
 elev = FL(-40.0);

 while(angle < FL(0.0))
 angle += FL(360.0);
 while(angle >= FL(360.0))
 angle -= FL(360.0);

 /* two nearest elev indices to avoid recalculating */
 elevindexstore = (elev - minelev) / elevincrement;
 elevindexlow = (int)elevindexstore;

 if(elevindexlow < 13)
 elevindexhigh = elevindexlow + 1;
 /* highest index reached */
 else
 elevindexhigh = elevindexlow;

 /* get percentage value for interpolation */
 elevindexhighper = elevindexstore - elevindexlow;

 /* avoid recalculation */
 angleindexlowstore = angle / (FL(360.) / elevationarray[elevindexlow]);
 angleindexhighstore = angle / (FL(360.) / elevationarray[elevindexhigh]);

 /* 4 closest indices, 2 low and 2 high */
 angleindex1 = (int)angleindexlowstore;

 angleindex2 = angleindex1 + 1;
 angleindex2 = angleindex2 % elevationarray[elevindexlow];

73

 angleindex3 = (int)angleindexhighstore;

 angleindex4 = angleindex3 + 1;
 angleindex4 = angleindex4 % elevationarray[elevindexhigh];

 /* angle percentages for interp */
 angleindex2per = angleindexlowstore - angleindex1;
 angleindex4per = angleindexhighstore - angleindex3;

 /* read 4 nearest HRTFs */
 skip = 0;
 /* switch l and r */
 if(angleindex1 > elevationarray[elevindexlow] / 2)
 {
 for(i = 0; i < elevindexlow; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexlow] – angleindex1); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = fpindexr[skip + i];
 lowr1[i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindexlow; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex1; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = fpindexl[skip + i];
 lowr1[i] = fpindexr[skip + i];
 }
 }

 skip = 0;
 if(angleindex2 > elevationarray[elevindexlow] / 2)
 {
 for(i = 0; i < elevindexlow; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexlow] – angleindex2); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = fpindexr[skip + i];
 lowr2[i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindexlow; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex2; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = fpindexl[skip + i];
 lowr2[i] = fpindexr[skip + i];
 }
 }

 skip = 0;
 if(angleindex3 > elevationarray[elevindexhigh] / 2)
 {
 for(i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexhigh] – angleindex3); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)

74

 {
 highl1[i] = fpindexr[skip + i];
 highr1[i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindexhigh; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex3; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl1[i] = fpindexl[skip + i];
 highr1[i] = fpindexr[skip + i];
 }
 }

 skip = 0;
 if(angleindex4 > elevationarray[elevindexhigh] / 2)
 {
 for(i = 0; i < elevindexhigh; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexhigh] – angleindex4); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl2[i] = fpindexr[skip + i];
 highr2[i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindexhigh; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex4; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl2[i] = fpindexl[skip + i];
 highr2[i] = fpindexr[skip + i];
 }
 }

 /* woodworth process */
 /* ITD formula, check which ear is relevant to calculate angle from */
 if(angle > FL(180.))
 radianangle = (angle - FL(180.)) * FL(PI / 180.);
 else
 radianangle = angle * FL(PI / 180.);
 /* degrees to radians */
 radianelev = elev * FL(PI / 180.);

 /* get in correct range for formula */
 if(radianangle > FL(PI / 2.0))
 radianangle = FL(PI) - radianangle;

 /* woodworth formula for itd */
 itdww = (radianangle + sinf(radianangle)) * r * cosf(radianelev) / FL(c);

 /* 0 Hz and Nyq... */
 /* these are real values...may be neg (implying phase of pi: in phase truncation),
 so need fabs... */
 magllow = FL(fabs(lowl1[0])) + (FL(fabs(lowl2[0])) – FL(fabs(lowl1[0]))) *
 angleindex2per;
 maglhigh = FL(fabs(highl1[0])) + (FL(fabs(highl2[0])) – FL(fabs(highl1[0]))) *
 angleindex4per;
 hrtflfloat[0] = magllow + (maglhigh - magllow) * elevindexhighper;

 magllow = FL(fabs(lowl1[1])) + (FL(fabs(lowl2[1])) – FL(fabs(lowl1[1]))) *
 angleindex2per;

75

 maglhigh = FL(fabs(highl1[1])) + (FL(fabs(highl2[1])) – FL(fabs(highl1[1]))) *
 angleindex4per;
 hrtflfloat[1] = magllow + (maglhigh - magllow) * elevindexhighper;

 magrlow = FL(fabs(lowr1[0])) + (FL(fabs(lowr2[0])) – FL(fabs(lowr1[0]))) *
 angleindex2per;
 magrhigh = FL(fabs(highr1[0])) + (FL(fabs(highr2[0])) – FL(fabs(highr1[0]))) *
 angleindex4per;
 hrtfrfloat[0] = magrlow + (magrhigh - magrlow) * elevindexhighper;

 magrlow = FL(fabs(lowr1[1])) + (FL(fabs(lowr2[1])) – FL(fabs(lowr1[1]))) *
 angleindex2per;
 magrhigh = FL(fabs(highr1[1])) + (FL(fabs(highr2[1])) – FL(fabs(highr1[1]))) *
 angleindex4per;
 hrtfrfloat[1] = magrlow + (magrhigh - magrlow) * elevindexhighper;

 /* magnitude interpolation */
 for(i = 2; i < irlength; i+=2)
 {
 /* interpolate high and low mags */
 magllow = lowl1[i] + (lowl2[i] - lowl1[i]) * angleindex2per;
 maglhigh = highl1[i]+(highl2[i] - highl1[i]) * angleindex4per;

 magrlow = lowr1[i] + (lowr2[i] - lowr1[i]) * angleindex2per;
 magrhigh = highr1[i] + (highr2[i] - highr1[i]) * angleindex4per;

 /* interpolate high and low results */
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;

 freq = (i / 2) * p->sroverN;

 /* non linear itd...last value in array = 1.0, so back to itdww */
 if(p->sr == 96000)
 {
 if ((i / 2) < 6)
 itd = itdww * nonlinitd96k[(i / 2) - 1];
 }
 if(p->sr == 48000)
 {
 if ((i / 2) < 6)
 itd = itdww * nonlinitd48k[(i / 2) - 1];
 }
 if(p->sr == 44100)
 {
 if((i / 2) < 6)
 itd = itdww * nonlinitd[(i / 2) - 1];
 }

 if(angle > FL(180.))
 {
 phasel = TWOPI_F * freq * (itd / 2);
 phaser = TWOPI_F * freq * -(itd / 2);
 }
 else
 {
 phasel = TWOPI_F * freq * -(itd / 2);
 phaser = TWOPI_F * freq * (itd / 2);
 }

 /* polar to rectangular */
 hrtflfloat[i] = magl * COS(phasel);
 hrtflfloat[i+1] = magl * SIN(phasel);

 hrtfrfloat[i] = magr * COS(phaser);
 hrtfrfloat[i+1] = magr * SIN(phaser);
 }

 /* ifft */
 csound->InverseRealFFT(csound, hrtflfloat, irlength);
 csound->InverseRealFFT(csound, hrtfrfloat, irlength);

76

 for (i = 0; i < irlength; i++)
 {
 /* scale and pad buffers with zeros to fftbuff */
 leftshiftbuffer[i] = hrtflfloat[i];
 rightshiftbuffer[i] = hrtfrfloat[i];
 }

 /* shift for causality...impulse as is is centred around zero time lag...then phase
 added. */
 /* this step centres impulse around centre tap of filter (then phase moves it for
 correct itd...) */
 shift = irlength / 2;

 for(i = 0; i < irlength; i++)
 {
 hrtflpad[i] = leftshiftbuffer[shift];
 hrtfrpad[i] = rightshiftbuffer[shift];

 shift++;
 shift = shift % irlength;
 }

 /* zero pad impulse */
 for(i = irlength; i < irlengthpad; i++)
 {
 hrtflpad[i] = FL(0.0);
 hrtfrpad[i] = FL(0.0);
 }

 /* back to freq domain */
 csound->RealFFT(csound, hrtflpad, irlengthpad);
 csound->RealFFT(csound, hrtfrpad, irlengthpad);

 /* initialize counter */
 p->counter = 0;

 return OK;
}

static int hrtfstat_process(CSOUND *csound, hrtfstat *p)
{
 /* local pointers to p */
 MYFLT *in = p->in;
 MYFLT *outsigl = p->outsigl;
 MYFLT *outsigr = p->outsigr;

 /* common buffers and variables */
 MYFLT *insig = (MYFLT *)p->insig.auxp;
 MYFLT *outl = (MYFLT *)p->outl.auxp;
 MYFLT *outr = (MYFLT *)p->outr.auxp;

 MYFLT *hrtflpad = (MYFLT *)p->hrtflpad.auxp;
 MYFLT *hrtfrpad = (MYFLT *)p->hrtfrpad.auxp;

 MYFLT *complexinsig = (MYFLT *)p->complexinsig.auxp;
 MYFLT *outspecl = (MYFLT *)p->outspecl.auxp;
 MYFLT *outspecr = (MYFLT *)p->outspecr.auxp;

 MYFLT *overlapl = (MYFLT *)p->overlapl.auxp;
 MYFLT *overlapr = (MYFLT *)p->overlapr.auxp;

 int counter = p->counter;
 int n, j, i;

 int irlength = p->irlength;
 int irlengthpad = p->irlengthpad;
 int overlapsize = p->overlapsize;

 MYFLT sr = p->sr;

77

 n = csound->ksmps;

 for(j = 0; j < n; j++)
 {
 /* ins and outs */
 insig[counter] = in[j];

 outsigl[j] = outl[counter];
 outsigr[j] = outr[counter];

 counter++;

 if(counter == irlength)
 {
 /* process a block */
 /* look after overlap add stuff */
 for(i = 0; i < overlapsize ; i++)
 {
 overlapl[i] = outl[i+irlength];
 overlapr[i] = outr[i+irlength];
 }

 /* insert insig for complex real,im fft, zero pad */
 for (i = 0; i < irlength; i++)
 complexinsig[i] = insig[i];

 for (i = irlength; i < irlengthpad; i++)
 complexinsig[i] = FL(0.0);

 csound->RealFFT(csound, complexinsig, irlengthpad);

 /* complex multiplication */
 csound->RealFFTMult(csound, outspecl, hrtflpad, complexinsig, irlengthpad,
 FL(1.0));
 csound->RealFFTMult(csound, outspecr, hrtfrpad, complexinsig, irlengthpad,
 FL(1.0));

 /* convolution is the inverse FFT of above result */
 csound->InverseRealFFT(csound, outspecl, irlengthpad);
 csound->InverseRealFFT(csound, outspecr, irlengthpad);

 /* scaled by a factor related to sr...? */
 for(i = 0; i < irlengthpad; i++)
 {
 outl[i] = outspecl[i] / (sr / FL(38000.0));
 outr[i] = outspecr[i] / (sr / FL(38000.0));
 }

 for(i = 0; i < irlength; i++)
 {
 outl[i] = outl[i] + (i < overlapsize ? overlapl[i] : FL(0.0));
 outr[i] = outr[i] + (i < overlapsize ? overlapr[i] : FL(0.0));
 }

 /* reset counter */
 counter = 0;

 } /* end of irlength == counter */

 } /* end of ksmps audio loop */

 /* update */
 p->counter = counter;

 return OK;
}

/* Csound hrtf magnitude interpolation, dynamic woodworth trajectory */
/* stft from fft.cpp in sndobj... */

78

/* stft based on sndobj implementation...some notes: */
/* using an overlapskip (same as m_counter) for in and out to control seperately for
 clarity... */

/* aleft, aright hrtfmove2 ain, kang, kel, ifilel, ifiler [, ioverlap = 4, iradius =
 8.8, isr = 44100] */
/* ioverlap is stft overlap, iradius is head radius, sr can also be 48000 and 96000 */

typedef struct
{
 OPDS h;
 /* outputs and inputs */
 MYFLT *outsigl, *outsigr;
 MYFLT *in, *kangle, *kelev, *ifilel, *ifiler, *ooverlap, *oradius, *osr;

 /* check if relative source has changed! */
 MYFLT anglev, elevv;

 /* see definitions in INIT */
 int irlength;
 MYFLT sroverN;
 MYFLT sr;

 /* test inputs in init, get accepted value/default, and store in variables below. */
 int overlap;
 MYFLT radius;

 int hopsize;

 float *fpbeginl,*fpbeginr;

 /* to keep track of process */
 int counter, t;

 /* in and output buffers */
 AUXCH inbuf;
 AUXCH outbufl, outbufr;

 /* memory local to perform method */
 /* insig fft */
 AUXCH complexinsig;
 /* hrtf buffers (rectangular complex form) */
 AUXCH hrtflfloat, hrtfrfloat;
 /* spectral data */
 AUXCH outspecl, outspecr;

 /* interpolation buffers */
 AUXCH lowl1,lowr1,lowl2,lowr2,highl1,highr1,highl2,highr2;

 /* stft window */
 AUXCH win;
 /* used for skipping into next stft array on way in and out */
 AUXCH overlapskipin, overlapskipout;

}
hrtfmove2;

static int hrtfmove2_init(CSOUND *csound, hrtfmove2 *p)
{
 /* left and right data files: spectral mag, phase format. */
 MEMFIL *fpl = NULL, *fpr = NULL;

 char filel[MAXNAME], filer[MAXNAME];

 /* time domain impulse length */
 int irlength;

 /* stft window */
 MYFLT *win;
 /* overlap skip buffers */
 int *overlapskipin, *overlapskipout;

79

 MYFLT *inbuf;
 MYFLT *outbufl, *outbufr;

 int overlap = (int)*p->ooverlap;
 MYFLT r = *p->oradius;
 MYFLT sr = *p->osr;

 int i = 0;

 if(sr != 44100 && sr != 48000 && sr != 96000)
 sr = 44100;
 p->sr = sr;

 if (UNLIKELY(csound->esr != sr))
 csound->Message(csound, Str("\n\nWARNING!!:\nOrchestra SR not compatible with HRTF
 processing SR of: %.0f\n\n"), sr);

 /* setup as per sr */
 if(sr == 44100 || sr == 48000)
 irlength = 128;
 else if(sr == 96000)
 irlength = 256;

 /* copy in string name... */
 strcpy(filel, (char*) p->ifilel);
 strcpy(filer, (char*) p->ifiler);

 /* reading files, with byte swap */
 if (UNLIKELY((fpl = csound->ldmemfile2withCB(csound, filel, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load left data file, exiting\n\n"));

 if (UNLIKELY((fpr = csound->ldmemfile2withCB(csound, filer, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load right data file, exiting\n\n"));

 p->irlength = irlength;
 p->sroverN = sr / irlength;

 /* file handles */
 p->fpbeginl = (float *) fpl->beginp;
 p->fpbeginr = (float *) fpr->beginp;

 if(overlap != 2 && overlap != 4 && overlap != 8 && overlap != 16)
 overlap = 4;
 p->overlap = overlap;

 if(r <= 0 || r > 15)
 r = FL(8.8);
 p->radius = r;

 p->hopsize = (int)(irlength / overlap);

 /* buffers */
 if (!p->inbuf.auxp || p->inbuf.size < (overlap * irlength) * sizeof(MYFLT))
 csound->AuxAlloc(csound, (overlap * irlength) * sizeof(MYFLT), &p->inbuf);
 /* 2d arrays in 1d! */
 if (!p->outbufl.auxp || p->outbufl.size < (overlap * irlength) * sizeof(MYFLT))
 csound->AuxAlloc(csound, (overlap * irlength) * sizeof(MYFLT), &p->outbufl);
 if (!p->outbufr.auxp || p->outbufr.size < (overlap * irlength) * sizeof(MYFLT))
 csound->AuxAlloc(csound, (overlap * irlength) * sizeof(MYFLT), &p->outbufr);
 if (!p->complexinsig.auxp || p->complexinsig.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p-> complexinsig);
 if (!p->hrtflfloat.auxp || p->hrtflfloat.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->hrtflfloat);
 if (!p->hrtfrfloat.auxp || p->hrtfrfloat.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->hrtfrfloat);
 if (!p->outspecl.auxp || p->outspecl.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->outspecl);

80

 if (!p->outspecr.auxp || p->outspecr.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->outspecr);

 memset(p->inbuf.auxp, 0, (overlap*irlength) * sizeof(MYFLT));
 memset(p->outbufl.auxp, 0, (overlap*irlength) * sizeof(MYFLT));
 memset(p->outbufr.auxp, 0, (overlap*irlength) * sizeof(MYFLT));
 memset(p->complexinsig.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->hrtflfloat.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->hrtfrfloat.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->outspecl.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->outspecr.auxp, 0, irlength * sizeof(MYFLT));

 /* interpolation values */
 if (!p->lowl1.auxp || p->lowl1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowl1);
 if (!p->lowr1.auxp || p->lowr1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowr1);
 if (!p->lowl2.auxp || p->lowl2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowl2);
 if (!p->lowr2.auxp || p->lowr2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowr2);
 if (!p->highl1.auxp || p->highl1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highl1);
 if (!p->highr1.auxp || p->highr1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highr1);
 if (!p->highl2.auxp || p->highl2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highl2);
 if (!p->highr2.auxp || p->highr2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highr2);

 memset(p->lowl1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowr1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowl2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowr2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highl1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highl2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highr1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highr2.auxp, 0, irlength * sizeof(MYFLT));

 if (!p->win.auxp || p->win.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->win);
 if (!p->overlapskipin.auxp || p->overlapskipin.size < overlap * sizeof(int))
 csound->AuxAlloc(csound, overlap * sizeof(int), &p->overlapskipin);
 if (!p->overlapskipout.auxp || p->overlapskipout.size < overlap * sizeof(int))
 csound->AuxAlloc(csound, overlap * sizeof(int), &p->overlapskipout);

 memset(p->win.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->overlapskipin.auxp, 0, overlap * sizeof(int));
 memset(p->overlapskipout.auxp, 0, overlap * sizeof(int));

 win = (MYFLT *)p->win.auxp;
 overlapskipin = (int *)p->overlapskipin.auxp;
 overlapskipout = (int *)p->overlapskipout.auxp;
 inbuf = (MYFLT *)p->inbuf.auxp;
 outbufl = (MYFLT *)p->outbufl.auxp;
 outbufr = (MYFLT *)p->outbufr.auxp;

 /* window is hanning */
 for(i = 0; i < irlength; i++)
 win[i] = FL(0.5) - FL((0.5 * cos(i * TWOPI / FL(irlength – 1))));

 for(i = 0; i < overlap; i++)
 {
 /* so, for example in overlap 4: will be 0, 32, 64, 96 if ir = 128 */
 overlapskipin[i] = p->hopsize * i;
 overlapskipout[i] = p->hopsize * i;
 }

 /* initialise */
 p->counter = 0;
 p->t = 0;

81

 /* setup values used to check if src has moved, illegal values to start with to ensure
 first read */
 p->anglev = -1;
 p->elevv = -41;

 return OK;
}

static int hrtfmove2_process(CSOUND *csound, hrtfmove2 *p)
{
 /* local pointers to p */
 MYFLT *in = p->in;
 MYFLT *outsigl = p->outsigl;
 MYFLT *outsigr = p->outsigr;

 /* common buffers and variables */
 MYFLT *inbuf = (MYFLT *)p->inbuf.auxp;

 MYFLT *outbufl = (MYFLT *)p->outbufl.auxp;
 MYFLT *outbufr = (MYFLT *)p->outbufr.auxp;

 MYFLT outsuml = FL(0.0), outsumr = FL(0.0);

 MYFLT *complexinsig = (MYFLT *)p->complexinsig.auxp;
 MYFLT *hrtflfloat = (MYFLT *)p->hrtflfloat.auxp;
 MYFLT *hrtfrfloat = (MYFLT *)p->hrtfrfloat.auxp;
 MYFLT *outspecl = (MYFLT *)p->outspecl.auxp;
 MYFLT *outspecr = (MYFLT *)p->outspecr.auxp;

 MYFLT elev = *p->kelev;
 MYFLT angle = *p->kangle;
 int overlap = p->overlap;
 MYFLT r = p->radius;

 MYFLT sr = p->sr;
 MYFLT sroverN = p->sroverN;

 int hopsize = p->hopsize;

 MYFLT *win = (MYFLT *)p->win.auxp;
 int *overlapskipin = (int *)p->overlapskipin.auxp;
 int *overlapskipout = (int *)p->overlapskipout.auxp;

 int counter = p ->counter;
 int t = p ->t;
 int n;

 /* pointers into HRTF files */
 float *fpindexl;
 float *fpindexr;

 int i, j, skip = 0;

 /* interpolation values */
 MYFLT *lowl1 = (MYFLT *)p->lowl1.auxp;
 MYFLT *lowr1 = (MYFLT *)p->lowr1.auxp;
 MYFLT *lowl2 = (MYFLT *)p->lowl2.auxp;
 MYFLT *lowr2 = (MYFLT *)p->lowr2.auxp;
 MYFLT *highl1 = (MYFLT *)p->highl1.auxp;
 MYFLT *highr1 = (MYFLT *)p->highr1.auxp;
 MYFLT *highl2 = (MYFLT *)p->highl2.auxp;
 MYFLT *highr2 = (MYFLT *)p->highr2.auxp;

 /* local interpolation values */
 MYFLT elevindexhighper, angleindex2per, angleindex4per;
 int elevindexlow, elevindexhigh, angleindex1, angleindex2, angleindex3, angleindex4;
 MYFLT magl, magr, phasel, phaser, magllow, magrlow, maglhigh, magrhigh;

 /* woodworth values */
 MYFLT radianangle, radianelev, itd, itdww, freq;

82

 int irlength = p->irlength;

 /* local variables, mainly used for simplification */
 MYFLT elevindexstore;
 MYFLT angleindexlowstore;
 MYFLT angleindexhighstore;

 /* start indices at correct value (start of file)/ zero indices.

*/
 fpindexl = (float *) p->fpbeginl;
 fpindexr = (float *) p->fpbeginr;

 n = csound->ksmps;

 /* ksmps loop */
 for(j = 0; j < n; j++)
 {
 /* distribute the signal and apply the window */
 /* according to a time pointer (kept by overlapskip[n]) */
 for(i = 0; i < overlap; i++)
 {
 inbuf[(i * irlength) + overlapskipin[i]] = in[j] * win[overlapskipin[i]];
 overlapskipin[i]++;
 }

 counter++;

 if(counter == hopsize)
 {
 /* process a block */
 if(elev > FL(90.0))
 elev = FL(90.0);
 if(elev < FL(-40.0))
 elev = FL(-40.0);

 while(angle < FL(0.0))
 angle += FL(360.0);
 while(angle >= FL(360.0))
 angle -= FL(360.0);

 if(angle != p->anglev || elev != p->elevv)
 {
 /* two nearest elev indices to avoid recalculating */
 elevindexstore = (elev - minelev) / elevincrement;
 elevindexlow = (int)elevindexstore;

 if(elevindexlow < 13)
 elevindexhigh = elevindexlow + 1;
 /* highest index reached */
 else
 elevindexhigh = elevindexlow;

 /* get percentage value for interpolation */
 elevindexhighper = elevindexstore – elevindexlow;

 /* avoid recalculation */
 angleindexlowstore = angle / (FL(360.) / elevationarray[elevindexlow]);
 angleindexhighstore = angle / (FL(360.) / elevationarray[elevindexhigh]);

 /* 4 closest indices, 2 low and 2 high */
 angleindex1 = (int)angleindexlowstore;

 angleindex2 = angleindex1 + 1;
 angleindex2 = angleindex2 % elevationarray[elevindexlow];

 angleindex3 = (int)angleindexhighstore;

 angleindex4 = angleindex3 + 1;
 angleindex4 = angleindex4 % elevationarray[elevindexhigh];

83

 /* angle percentages for interp */
 angleindex2per = angleindexlowstore – angleindex1;
 angleindex4per = angleindexhighstore – angleindex3;

 /* read 4 nearest HRTFs */
 skip = 0;
 /* switch l and r */
 if(angleindex1>elevationarray[elevindexlow]/2)
 {
 for(i = 0; i < elevindexlow; i++)
 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexlow] – angleindex1); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = fpindexr[skip + i];
 lowr1[i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindexlow; i++)
 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex1; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = fpindexl[skip + i];
 lowr1[i] = fpindexr[skip + i];
 }
 }

 skip = 0;
 if(angleindex2>elevationarray[elevindexlow]/2)
 {
 for(i = 0; i < elevindexlow; i++)
 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexlow] – angleindex2); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = fpindexr[skip + i];
 lowr2[i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindexlow; i++)

 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex2; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = fpindexl[skip + i];
 lowr2[i] = fpindexr[skip + i];
 }
 }

 skip = 0;
 if(angleindex3>elevationarray[elevindexhigh]/2)
 {
 for(i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexhigh] - angleindex3); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl1[i] = fpindexr[skip + i];
 highr1[i] = fpindexl[skip + i];
 }

84

 }
 else
 {
 for(i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex3; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl1[i] = fpindexl[skip + i];
 highr1[i] = fpindexr[skip + i];
 }
 }

 skip = 0;
 if(angleindex4>elevationarray[elevindexhigh]/2)
 {
 for(i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexhigh] - angleindex4); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl2[i] = fpindexr[skip + i];
 highr2[i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindexhigh; i++)
 skip += ((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex4; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl2[i] = fpindexl[skip + i];
 highr2[i] = fpindexr[skip + i];
 }
 }

 /* woodworth process */
 /* ITD formula, check which ear is relevant to calculate angle from */

/* degrees to radians */
 if(angle > FL(180.))
 radianangle = (angle - FL(180.0)) * FL(PI / 180.0);
 else
 radianangle = angle * FL(PI / 180.0);
 radianelev = elev * FL(PI / 180.0);

 /* get in correct range for formula */
 if(radianangle > (PI / 2.0))
 radianangle = FL(PI) - radianangle;

 /* woodworth formula for itd */
 itdww = (radianangle + sinf(radianangle)) * r * cosf(radianelev) / FL(c);

 /* 0 Hz and Nyq... */
 /* need fabs() here, to get mag, as 0hz and nyq stored as a real value, to allow
 for possible negative, implying phase of pi (in phase truncation) */
 magllow = FL(fabs(lowl1[0])) + (FL(fabs(lowl2[0])) - FL(fabs(lowl1[0]))) *
 angleindex2per;
 maglhigh = FL(fabs(highl1[0])) + (FL(fabs(highl2[0])) – FL(fabs(highl1[0]))) *
 angleindex4per;
 hrtflfloat[0] = magllow + (maglhigh - magllow) * elevindexhighper;

 magllow = FL(fabs(lowl1[1])) + (FL(fabs(lowl2[1])) - FL(fabs(lowl1[1]))) *
 angleindex2per;
 maglhigh = FL(fabs(highl1[1])) + (FL(fabs(highl2[1])) - FL(fabs(highl1[1]))) *
 angleindex4per;
 hrtflfloat[1] = magllow + (maglhigh - magllow) * elevindexhighper;

85

 magrlow = FL(fabs(lowr1[0])) + (FL(fabs(lowr2[0])) - FL(fabs(lowr1[0]))) *
 angleindex2per;
 magrhigh = FL(fabs(highr1[0])) + (FL(fabs(highr2[0])) – FL(fabs(highr1[0]))) *
 angleindex4per;
 hrtfrfloat[0] = magrlow + (magrhigh - magrlow) * elevindexhighper;

 magrlow = FL(fabs(lowr1[1])) + (FL(fabs(lowr2[1])) - FL(fabs(lowr1[1]))) *
 angleindex2per;
 magrhigh = FL(fabs(highr1[1])) + (FL(fabs(highr2[1])) – FL(fabs(highr1[1]))) *
 angleindex4per;
 hrtfrfloat[1] = magrlow + (magrhigh - magrlow) * elevindexhighper;

 /* magnitude interpolation */
 for(i = 2; i < irlength; i += 2)
 {
 /* interpolate high and low mags */
 magllow = lowl1[i] + (lowl2[i] – lowl1[i]) * angleindex2per;
 maglhigh = highl1[i] + (highl2[i] – highl1[i]) * angleindex4per;

 magrlow = lowr1[i] + (lowr2[i] – lowr1[i]) * angleindex2per;
 magrhigh = highr1[i] + (highr2[i] – highr1[i]) * angleindex4per;

 /* interpolate high and low results */
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;

 freq = (i / 2) * sroverN;

 /* non linear itd...last value in array = 1.0, so back to itdww */
 if(p->sr == 96000)
 {
 if ((i / 2) < 6)
 itd = itdww * nonlinitd96k[(i / 2) - 1];
 }
 if(p->sr == 48000)
 {
 if ((i / 2) < 6)
 itd = itdww * nonlinitd48k[(i / 2) - 1];
 }
 if(p->sr == 44100)
 {
 if((i / 2) < 6)
 itd = itdww * nonlinitd[(i / 2) - 1];
 }

 if(angle > FL(180.))
 {
 phasel=TWOPI_F * freq * (itd/2);
 phaser=TWOPI_F * freq * -(itd/2);}
 else
 {
 phasel=TWOPI_F * freq * -(itd/2);
 phaser=TWOPI_F * freq * (itd/2);
 }

 /* polar to rectangular */
 hrtflfloat[i] = magl * COS(phasel);
 hrtflfloat[i+1] = magl * SIN(phasel);

 hrtfrfloat[i] = magr * COS(phaser);
 hrtfrfloat[i+1] = magr * SIN(phaser);
 }

 p->elevv = elev;
 p->anglev = angle;
 }

 /* t used to read inbuf...*/
 t--;
 if(t < 0)
 t = overlap - 1;

86

 /* insert insig for complex real, im fft */
 for(i = 0; i < irlength; i++)
 complexinsig[i] = inbuf[(t * irlength) + i];

 /* zero the current input sigframe time pointer */
 overlapskipin[t] = 0;

 csound->RealFFT(csound, complexinsig, irlength);

 csound->RealFFTMult(csound, outspecl, hrtflfloat, complexinsig, irlength,FL(1.0));
 csound->RealFFTMult(csound, outspecr, hrtfrfloat, complexinsig, irlength,FL(1.0));

 /* convolution is the inverse FFT of above result */
 csound->InverseRealFFT(csound, outspecl, irlength);
 csound->InverseRealFFT(csound, outspecr, irlength);

 /* need scaling based on overlap (more overlaps -> louder) and sr... */
 for(i = 0; i < irlength; i++)
 {
 outbufl[(t * irlength) + i] = outspecl[i] / (overlap * FL(0.5) * (sr /
 FL(44100.0)));
 outbufr[(t * irlength) + i] = outspecr[i] / (overlap * FL(0.5) * (sr /
 FL(44100.0)));
 }

 } /* end of !counter % hopsize */

 /* output = sum of all relevant outputs: eg if overlap = 4 and counter = 0, */
 /* outsigl[j] = outbufl[0] + outbufl[128 + 96] + outbufl[256 + 64] + outbufl[384 +
 32]; */
 /* * * * * [] + */
 /* * * * [*] + */
 /* * * [*] * + */
 /* * [*] * * = */
 /* stft! */

 outsuml = outsumr = FL(0.0);

 for(i = 0; i < (int)overlap; i++)
 {
 outsuml += outbufl[(i * irlength) + overlapskipout[i]] * win[overlapskipout[i]];
 outsumr += outbufr[(i * irlength) + overlapskipout[i]] * win[overlapskipout[i]];
 overlapskipout[i]++;
 }

 if(counter == hopsize)
 {
 /* zero output incrementation... */
 /* last buffer will have gone from 96 to 127...then 2nd last will have gone from
 64 to 127... */
 overlapskipout[t] = 0;
 counter = 0;
 }

 outsigl[j] = outsuml;
 outsigr[j] = outsumr;

 } /* end of ksmps audio loop */

 /* update */
 p->t = t;
 p->counter = counter;

 return OK;
}

/* see csound manual (extending csound) for details of below */
static OENTRY localops[] =
{
 { "hrtfmove", sizeof(hrtfmove),5, "aa", "akkSSooo",

87

 (SUBR)hrtfmove_init, NULL, (SUBR)hrtfmove_process },
 { "hrtfstat", sizeof(hrtfstat),5, "aa", "aiiSSoo",
 (SUBR)hrtfstat_init, NULL, (SUBR)hrtfstat_process },
 { "hrtfmove2", sizeof(hrtfmove2),5, "aa", "akkSSooo",
 (SUBR)hrtfmove2_init, NULL, (SUBR)hrtfmove2_process }
};

LINKAGE

88

Appendix 3: Binaural Reverb Opcodes

3.1 hrtfearly

/*
Brian Carty
PhD Code August 2010
binaural reverb: early reflections
*/

#include "csdl.h"
#define SQUARE(X) (X)*(X)

/* definitions, from mit */
#define minelev -40
#define elevincrement 10

static const int elevationarray[14] = {56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24,

 12, 1 };

/* for ppc byte switch */
#ifdef WORDS_BIGENDIAN
static int swap4bytes(CSOUND* csound, MEMFIL* mfp)
{
 char c1, c2, c3, c4;
 char *p = mfp->beginp;
 int size = mfp->length;

 while (size >= 4)
 {
 c1 = p[0]; c2 = p[1]; c3 = p[2]; c4 = p[3];
 p[0] = c4; p[1] = c3; p[2] = c2; p[3] = c1;
 size -= 4; p +=4;
 }

 return OK;
}
#else
static int (*swap4bytes)(CSOUND*, MEMFIL*) = NULL;
#endif

/* low pass filter for overall surface shape */
MYFLT filter(MYFLT* sig, MYFLT highcoeff, MYFLT lowcoeff, MYFLT *del, int vecsize, MYFLT

 sr)
{
 MYFLT costh, coef;
 int i;

 /* setup filter */
 MYFLT T = FL(1.0) / sr;
 MYFLT twopioversr = FL(2.0 * PI * T);
 MYFLT freq;
 MYFLT check;
 MYFLT scale, nyqresponse, irttwo, highresponse, lowresponse, cosw, a, b, c, x, y;

 irttwo = FL(1.0 / sqrt(2.0));

 /* simple filter deals with difference in low and high */
 highresponse = FL(1.0) - highcoeff;
 lowresponse = FL(1.0) - lowcoeff;
 /* scale factor: walls assumed to be low pass */
 scale = lowresponse;
 nyqresponse = highresponse + lowcoeff;
 /* should always be lowpass! */
 if(nyqresponse > irttwo)

89

 nyqresponse = irttwo;

 /* calculate cutoff, according to nyqresponse */
 /* w = twopioversr * f (= sr / (MYFLT)2.0) (w = pi in the case of nyq...2pi/sr * sr/2)
 */
 /* cosw = (MYFLT)cos(w);... = -1 in case of nyq */
 cosw = FL(-1.0);

 a = c = FL(SQUARE(nyqresponse) - FL(1.0));
 b = (FL(2.0) * cosw * FL(SQUARE(nyqresponse))) - FL(2.0);
 /* '+' and '-' sqrt in quadratic equation give equal results in this scenario:
 working backwards to find cutoff freq of simple tone filter! */
 x = (-b + FL(sqrt(SQUARE(b) - FL(4.0) * a * c))) / (FL(2.0) * a);
 y = (-FL(SQUARE(x)) - FL(1.0)) / (FL(2.0) * x);

 check = FL(2.0) - y;
 /* check for legal acos arg */
 if(check < FL(-1.0))
 check = FL(-1.0);
 freq = FL(acos(check));
 freq /= twopioversr;

 /* filter */
 costh = FL(2.0) - FL(cos(freq * twopioversr));
 coef = FL((sqrt(costh * costh - 1.0) - costh));

 for(i = 0; i < vecsize; i++)
 {
 /* filter */
 sig[i] = (sig[i] * (1 + coef) - *del * coef);
 /* scale */
 sig[i] *= scale;
 /* store */
 *del = sig[i];
 }

 return *sig;
}

/* band pass for surface detail, from csound eqfil */
MYFLT band(MYFLT* sig, MYFLT cfreq, MYFLT bw, MYFLT g, MYFLT *del, int vecsize, MYFLT
 sr)
{
 MYFLT T = FL(1.0) / sr;
 MYFLT pioversr = FL(PI) * T;
 MYFLT a = FL(cos(cfreq * pioversr * 2.0));
 MYFLT b = FL(tan(bw * pioversr));
 MYFLT c = (FL(1.0) - b) / (FL(1.0) + b);
 MYFLT w, y;
 int i;

 for(i = 0; i < vecsize; i++)
 {
 w = sig[i] + a * (FL(1.0) + c) * del[0] - c * del[1];
 y = w * c - a * (FL(1.0) + c) * del[0] + del[1];
 sig[i] = FL(0.5) * (y + sig[i] + g * (sig[i] - y));
 del[1] = del[0];
 del[0] = w;
 }

 return *sig;
}

typedef struct
{
 OPDS h;
 /* out l/r, low rt60, high rt60, amp, delay for latediffuse */
 MYFLT *outsigl, *outsigr, *irt60low, *irt60high, *imfp;
 /* input, source, listener, hrtf files, default room, [fadelength, sr, order, threed,
 headrot, roomsize, wall high and low absorb coeffs, gain for 3 band pass, same for
 floor and ceiling] */

90

 MYFLT *in, *srcx, *srcy, *srcz, *lstnrx, *lstnry, *lstnrz, *ifilel, *ifiler,
 *idefroom, *ofade, *osr, *porder, *othreed, *Oheadrot, *ormx, *ormy, *ormz,
 *owlh, *owll, *owlg1, *owlg2, *owlg3, *oflh, *ofll, *oflg1, *oflg2,
 *oflg3, *oclh, *ocll, *oclg1, *oclg2, *oclg3;

 /* check if relative source has changed, to avoid recalculations */
 MYFLT srcxv, srcyv, srczv, lstnrxv, lstnryv, lstnrzv;
 MYFLT srcxk, srcyk, srczk, lstnrxk, lstnryk, lstnrzk;
 MYFLT rotatev;

 /* processing buffer sizes, depends on sr */
 int irlength, irlengthpad, overlapsize;
 MYFLT sr;
 int counter;

 /* crossfade preparation and checks */
 int fade, fadebuffer;
 int initialfade;

 /* interpolation buffer declaration */
 AUXCH lowl1, lowr1, lowl2, lowr2;
 AUXCH highl1, highr1, highl2, highr2;
 AUXCH hrtflinterp, hrtfrinterp, hrtflpad, hrtfrpad;
 AUXCH hrtflpadold, hrtfrpadold;

 /* convolution and in/output buffers */
 AUXCH inbuf,inbufpad;
 AUXCH outlspec, outrspec;
 AUXCH outlspecold, outrspecold;
 AUXCH overlapl, overlapr;
 AUXCH overlaplold, overlaprold;

 /* no of impulses based on order */
 int impulses, order;
 int M;
 /* 3d check*/
 int threed;

 /* speed of sound*/
 MYFLT c;

 /* Image Model*/
 MYFLT rmx, rmy, rmz;
 int maxdelsamps;

 /* for each reflection*/
 AUXCH hrtflpadspec, hrtfrpadspec, hrtflpadspecold, hrtfrpadspecold;
 AUXCH outl, outr, outlold, outrold;
 AUXCH currentphasel, currentphaser;
 AUXCH dell, delr;
 AUXCH tempsrcx, tempsrcy, tempsrcz;
 AUXCH dist;
 AUXCH dtime;
 AUXCH amp;

 /* temp o/p buffers */
 AUXCH predell, predelr;

 /* processing values that need to be kept for each reflection*/
 /* dynamic values based on no. fo impulses*/
 AUXCH oldelevindex, oldangleindex;
 AUXCH cross, l, delp, skipdel;
 AUXCH vdt;

 /* wall details */
 MYFLT wallcoeflow, wallcoefhigh, wallg1, wallg2, wallg3;
 MYFLT floorcoeflow, floorcoefhigh, floorg1, floorg2, floorg3;
 MYFLT ceilingcoeflow, ceilingcoefhigh, ceilingg1, ceilingg2, ceilingg3;
 /* wall filter q*/
 MYFLT q;

91

 /* file pointers*/
 float *fpbeginl, *fpbeginr;

} early;

static int early_init(CSOUND *csound, early *p)
{
 /* iterator */
 int i;

 /* left and right data files: spectral mag, phase format.*/
 MEMFIL *fpl=NULL, *fpr=NULL;
 char filel[MAXNAME],filer[MAXNAME];

 /* processing sizes*/
 int irlength, irlengthpad, overlapsize;

 /* walls: surface area*/
 MYFLT wallS1, wallS2, cfS;

 /* rt60 */
 MYFLT Salphalow, Salphahigh;
 MYFLT vol;

 /* room */
 MYFLT rmx, rmy, rmz;
 /* default room */
 int defroom;

 /* dynamic values, based on number of impulses...*/
 int *oldelevindex;
 int *oldangleindex;
 int *skipdel;

 /* order calculation */
 int impulses = 1;
 int temp = 2;

 /* defs for delay lines */
 MYFLT maxdist = FL(0.0);
 MYFLT maxdtime;
 int maxdelsamps;

 /* late tail */
 MYFLT meanfreepath;
 MYFLT surfacearea = FL(0.0);

 /* setup defaults for optional parameters */
 int fade = (int)*p->ofade;
 MYFLT sr = *p->osr;
 int threed = (int)*p->othreed;
 int order = (int)*p->porder;

 /* fade length: default 8, max 24, min 1 (fade is a local variable)*/
 if(fade < 1 || fade > 24)
 fade = 8;
 p->fade = fade;

 /* threed defaults to 2d! */
 if(threed < 0 || threed > 1)
 threed = 0;
 p->threed = threed;

 /* order: max 4, default 1 */
 if(order < 0 || order > 4)
 order = 1;
 p->order = order;

 /* sr, defualt 44100 */
 if(sr != 44100 && sr != 48000 && sr != 96000)
 sr = 44100;

92

 p->sr = sr;

 if (UNLIKELY(csound->esr != sr))
 csound->Message(csound, Str("\n\nWARNING!!:\nOrchestra SR not compatible with HRTF

 processing SR of: %.0f\n\n"), sr);

 /* setup as per sr */
 if(sr == 44100 || sr == 48000)
 {
 irlength = 128;
 irlengthpad = 256;
 overlapsize = (irlength - 1);
 }
 else if(sr == 96000)
 {
 irlength = 256;
 irlengthpad = 512;
 overlapsize = (irlength - 1);
 }

 /* copy in string name...*/
 strcpy(filel, (char*) p->ifilel);
 strcpy(filer, (char*) p->ifiler);

 /* reading files, with byte swap */
 if (UNLIKELY((fpl = csound->ldmemfile2withCB(csound, filel, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load left data file, exiting\n\n"));

 if (UNLIKELY((fpr = csound->ldmemfile2withCB(csound, filer, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load right data file, exiting\n\n"));

 /* file handles */
 p->fpbeginl = (float *) fpl->beginp;
 p->fpbeginr = (float *) fpr->beginp;

 /* setup structure values */
 p->irlength = irlength;
 p->irlengthpad = irlengthpad;
 p->overlapsize = overlapsize;
 p->c = 344.0;

 /* zero structure values */
 p->counter = 0;
 p->initialfade = 0;
 p->M = 0;

 /* the amount of buffers to fade over */
 p->fadebuffer = (int)fade * irlength;

 defroom = (int)*p->idefroom;
 /* 3 default rooms allowed*/
 if(defroom > 3)
 defroom = 1;

 /* setup wall coeffs: walls: plasterboard, ceiling: painted plaster, floor: carpet if
 any default room is chosen, default parameters for walls/ceiling/floor */
 if(defroom)
 {
 p->wallcoefhigh = FL(.3);
 p->wallcoeflow = FL(.1);
 p->wallg1 = FL(.75);
 p->wallg2 = FL(.95);
 p->wallg3 = FL(.9);
 p->floorcoefhigh = FL(.6);
 p->floorcoeflow = FL(.1);
 p->floorg1 = FL(.95);
 p->floorg2 = FL(.6);

93

 p->floorg3 = FL(.35);
 p->ceilingcoefhigh = FL(.2);
 p->ceilingcoeflow = FL(.1);
 p->ceilingg1 = FL(1.0);
 p->ceilingg2 = FL(1.0);
 p->ceilingg3 = FL(1.0);
 }
 /* otherwise use values, if valid */
 else
 {
 p->wallcoefhigh = (*p->owlh > FL(0.0) && *p->owlh < FL(1.0)) ? *p->owlh : FL(.3);
 p->wallcoeflow = (*p->owll > FL(0.0) && *p->owll < FL(1.0)) ? *p->owll : FL(.1);
 p->wallg1 = (*p->owlg1 > FL(0.0) && *p->owlg1 < FL(10.0)) ? *p->owlg1 : FL(.75);
 p->wallg2 = (*p->owlg2 > FL(0.0) && *p->owlg2 < FL(10.0)) ? *p->owlg2 : FL(.95);
 p->wallg3 = (*p->owlg3 > FL(0.0) && *p->owlg3 < FL(10.0)) ? *p->owlg3 : FL(.9);
 p->floorcoefhigh = (*p->oflh > FL(0.0) && *p->oflh < FL(1.0)) ? *p->oflh : FL(.6);
 p->floorcoeflow = (*p->ofll > FL(0.0) && *p->ofll < FL(1.0)) ? *p->ofll : FL(.1);
 p->floorg1 = (*p->oflg1 > FL(0.0) && *p->oflg1 < FL(10.0)) ? *p->oflg1 : FL(.95);
 p->floorg2 = (*p->oflg2 > FL(0.0) && *p->oflg2 < FL(10.0)) ? *p->oflg2 : FL(.6);
 p->floorg3 = (*p->oflg3 > FL(0.0) && *p->oflg3 < FL(10.0)) ? *p->oflg3 : FL(.35);
 p->ceilingcoefhigh = (*p->oclh > FL(0.0) && *p->oclh < FL(1.0)) ? *p->oclh : FL(.2);
 p->ceilingcoeflow = (*p->ocll > FL(0.0) && *p->ocll < FL(1.0)) ? *p->ocll : FL(.1);
 p->ceilingg1 = (*p->oclg1 > FL(0.0) && *p->oclg1 < FL(10.0)) ? *p->oclg1 : FL(1.);
 p->ceilingg2 = (*p->oclg2 > FL(0.0) && *p->oclg2 < FL(10.0)) ? *p->oclg2 : FL(1.);
 p->ceilingg3 = (*p->oclg3 > FL(0.0) && *p->oclg3 < FL(10.0)) ? *p->oclg3 : FL(1.);
 }

 /* medium room */
 if(defroom == 1)
 {
 rmx = 10;
 rmy = 10;
 rmz = 3;
 }
 /* small */
 else if(defroom == 2)
 {
 rmx = 4;
 rmy = 4;
 rmz = 3;
 }
 /* large */
 else if(defroom == 3)
 {
 rmx = 20;
 rmy = 25;
 rmz = 7;
 }

 /* read values if they exist, use medium if not valid (must be at least a 2 * 2 * 2
 room! */
 else
 {
 rmx = *p->ormx >= FL(2.0) ? *p->ormx : 10;
 rmy = *p->ormy >= FL(2.0) ? *p->ormy : 10;
 rmz = *p->ormz >= FL(2.0) ? *p->ormz : 3;
 }

 /* store */
 p->rmx = rmx;
 p->rmy = rmy;
 p->rmz = rmz;

 /* how many sources? */
 if(threed)
 {
 for(i = 1; i <= order; i++)
 {
 impulses += (4 * i);
 if(i <= (order - 1))
 /* sources = 2d impulses for order, plus 2 * each preceding no of impulses eg

94

 order 2: 2d = 1 + 4 + 8 = 13, 3d + 2*5 + 2 = 25*/
 temp += 2*impulses;
 else
 impulses = impulses + temp;
 }
 }
 else
 {
 for(i = 1; i <= order; i++)
 /* there will be 4 * order additional impulses for each order*/
 impulses += (4*i);
 }
 p->impulses = impulses;

 /* allocate memory, reuse if possible: interpolation buffers */
 if (!p->lowl1.auxp || p->lowl1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowl1);
 if (!p->lowr1.auxp || p->lowr1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowr1);
 if (!p->lowl2.auxp || p->lowl2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowl2);
 if (!p->lowr2.auxp || p->lowr2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->lowr2);
 if (!p->highl1.auxp || p->highl1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highl1);
 if (!p->highr1.auxp || p->highr1.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highr1);
 if (!p->highl2.auxp || p->highl2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highl2);
 if (!p->highr2.auxp || p->highr2.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->highr2);
 if (!p->hrtflinterp.auxp || p->hrtflinterp.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->hrtflinterp);
 if (!p->hrtfrinterp.auxp || p->hrtfrinterp.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->hrtfrinterp);

 memset(p->lowl1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowr1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowl2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->lowr2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highl1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highl2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highr1.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->highr2.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->hrtflinterp.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->hrtfrinterp.auxp, 0, irlength * sizeof(MYFLT));

 /* hrtf processing buffers */
 if (!p->hrtflpad.auxp || p->hrtflpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->hrtflpad);
 if (!p->hrtfrpad.auxp || p->hrtfrpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->hrtfrpad);
 if (!p->hrtflpadold.auxp || p->hrtflpadold.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->hrtflpadold);
 if (!p->hrtfrpadold.auxp || p->hrtfrpadold.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->hrtfrpadold);

 memset(p->hrtflpad.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtfrpad.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtflpadold.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtfrpadold.auxp, 0, irlengthpad * sizeof(MYFLT));

 /* convolution & processing */
 if (!p->inbuf.auxp || p->inbuf.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->inbuf);
 if (!p->inbufpad.auxp || p->inbufpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p-> inbufpad);

 memset(p->inbuf.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->inbufpad.auxp, 0, irlengthpad * sizeof(MYFLT));

95

 if (!p->outlspec.auxp || p->outlspec.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->outlspec);
 if (!p->outrspec.auxp || p->outrspec.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->outrspec);

 memset(p->outlspec.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outrspec.auxp, 0, irlengthpad * sizeof(MYFLT));

 if (!p->outlspecold.auxp || p->outlspecold.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->outlspecold);
 if (!p->outrspecold.auxp || p->outrspecold.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->outrspecold);

 memset(p->outlspecold.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->outrspecold.auxp, 0, irlengthpad * sizeof(MYFLT));

 if (!p->overlapl.auxp || p->overlapl.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize * sizeof(MYFLT), &p->overlapl);
 if (!p->overlapr.auxp || p->overlapr.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize * sizeof(MYFLT), &p->overlapr);

 memset(p->overlapl.auxp, 0, overlapsize * sizeof(MYFLT));
 memset(p->overlapr.auxp, 0, overlapsize * sizeof(MYFLT));

 if (!p->overlaplold.auxp || p->overlaplold.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize * sizeof(MYFLT), &p->overlaplold);
 if (!p->overlaprold.auxp || p->overlaprold.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize * sizeof(MYFLT), &p->overlaprold);

 memset(p->overlaplold.auxp, 0, overlapsize * sizeof(MYFLT));
 memset(p->overlaprold.auxp, 0, overlapsize * sizeof(MYFLT));

 /* dynamic values, based on no. of impulses*/
 if (!p->predell.auxp || p->predell.size < irlength * impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * impulses * sizeof(MYFLT), &p->predell);
 if (!p->predelr.auxp || p->predelr.size < irlength * impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * impulses * sizeof(MYFLT), &p->predelr);

 memset(p->predell.auxp, 0, irlength * impulses * sizeof(MYFLT));
 memset(p->predelr.auxp, 0, irlength * impulses * sizeof(MYFLT));

 if (!p->cross.auxp || p->cross.size < impulses * sizeof(int))
 csound->AuxAlloc(csound, impulses * sizeof(int), &p->cross);
 if (!p->l.auxp || p->l.size < impulses * sizeof(int))
 csound->AuxAlloc(csound, impulses * sizeof(int), &p->l);
 if (!p->delp.auxp || p->delp.size < impulses * sizeof(int))
 csound->AuxAlloc(csound, impulses * sizeof(int), &p->delp);
 if (!p->skipdel.auxp || p->skipdel.size < impulses * sizeof(int))
 csound->AuxAlloc(csound, impulses * sizeof(int), &p->skipdel);
 if (!p->vdt.auxp || p->vdt.size < impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, impulses * sizeof (MYFLT), &p->vdt);

 memset(p->cross.auxp, 0, impulses * sizeof(int));
 memset(p->l.auxp, 0, impulses * sizeof(int));
 memset(p->delp.auxp, 0, impulses * sizeof(int));
 memset(p->vdt.auxp, 0, impulses * sizeof(MYFLT));
 /* skipdel looked after below */

 /* values distinct to each reflection*/
 if (!p->tempsrcx.auxp || p->tempsrcx.size < impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, impulses * sizeof(MYFLT), &p->tempsrcx);
 if (!p->tempsrcy.auxp || p->tempsrcy.size < impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, impulses * sizeof(MYFLT), &p->tempsrcy);
 if (!p->tempsrcz.auxp || p->tempsrcz.size < impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, impulses * sizeof(MYFLT), &p->tempsrcz);
 if (!p->dist.auxp || p->dist.size < impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, impulses * sizeof(MYFLT), &p->dist);
 if (!p->dtime.auxp || p->dtime.size < impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, impulses * sizeof(MYFLT), &p->dtime);
 if (!p->amp.auxp || p->amp.size < impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, impulses * sizeof(MYFLT), &p->amp);

96

 memset(p->tempsrcx.auxp, 0, impulses * sizeof(MYFLT));
 memset(p->tempsrcy.auxp, 0, impulses * sizeof(MYFLT));
 memset(p->tempsrcz.auxp, 0, impulses * sizeof(MYFLT));
 memset(p->dist.auxp, 0, impulses * sizeof(MYFLT));
 memset(p->dtime.auxp, 0, impulses * sizeof(MYFLT));
 memset(p->amp.auxp, 0, impulses * sizeof(MYFLT));

 if (!p->oldelevindex.auxp || p->oldelevindex.size < impulses * sizeof(int))
 csound->AuxAlloc(csound, impulses * sizeof(int), &p->oldelevindex);
 if (!p->oldangleindex.auxp || p->oldangleindex.size < impulses * sizeof(int))
 csound->AuxAlloc(csound, impulses * sizeof(int), &p->oldangleindex);

 /* no need to zero above, as filled below...*/

 /* -1 for first check */
 oldelevindex = (int *)p->oldelevindex.auxp;
 oldangleindex = (int *)p->oldangleindex.auxp;

 for(i = 0; i < impulses; i++)
 oldelevindex[i] = oldangleindex[i] = -1;

 /* more values distinct to each reflection */
 if(!p->hrtflpadspec.auxp || p->hrtflpadspec.size < irlengthpad * impulses *
 sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * impulses * sizeof(MYFLT), &p->hrtflpadspec);
 if(!p->hrtfrpadspec.auxp || p->hrtfrpadspec.size < irlengthpad * impulses *
 sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * impulses * sizeof(MYFLT), &p->hrtfrpadspec);

 memset(p->hrtflpadspec.auxp, 0, irlengthpad * impulses * sizeof(MYFLT));
 memset(p->hrtfrpadspec.auxp, 0, irlengthpad * impulses * sizeof(MYFLT));

 if (!p->hrtflpadspecold.auxp || p->hrtflpadspecold.size < irlengthpad * impulses *
 sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * impulses * sizeof(MYFLT),
 &p->hrtflpadspecold);
 if (!p->hrtfrpadspecold.auxp || p->hrtfrpadspecold.size < irlengthpad * impulses *
 sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * impulses * sizeof(MYFLT),
 &p->hrtfrpadspecold);

 memset(p->hrtflpadspecold.auxp, 0, irlengthpad * impulses * sizeof(MYFLT));
 memset(p->hrtfrpadspecold.auxp, 0, irlengthpad * impulses * sizeof(MYFLT));

 if (!p->outl.auxp || p->outl.size < irlengthpad * impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * impulses * sizeof(MYFLT), &p->outl);
 if (!p->outr.auxp || p->outr.size < irlengthpad * impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * impulses * sizeof(MYFLT), &p->outr);

 memset(p->outl.auxp, 0, irlengthpad * impulses * sizeof(MYFLT));
 memset(p->outr.auxp, 0, irlengthpad * impulses * sizeof(MYFLT));

 if (!p->outlold.auxp || p->outlold.size < irlengthpad * impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * impulses * sizeof(MYFLT), &p->outlold);
 if (!p->outrold.auxp || p->outrold.size < irlengthpad * impulses * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * impulses * sizeof(MYFLT), &p->outrold);

 memset(p->outlold.auxp, 0, irlengthpad * impulses * sizeof(MYFLT));
 memset(p->outrold.auxp, 0, irlengthpad * impulses * sizeof(MYFLT));

 if (!p->currentphasel.auxp || p->currentphasel.size < irlength * impulses *
 sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * impulses * sizeof(MYFLT), &p->currentphasel);
 if (!p->currentphaser.auxp || p->currentphaser.size < irlength * impulses *
 sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * impulses * sizeof(MYFLT), &p->currentphaser);

 memset(p->currentphasel.auxp, 0, irlength * impulses * sizeof(MYFLT));
 memset(p->currentphaser.auxp, 0, irlength * impulses * sizeof(MYFLT));

97

 /* setup rt60 calcs...*/
 /* rectangular room: surface area of opposite walls, and floor/ceiling */
 wallS1 = rmy * rmz;
 wallS2 = rmx * rmz;
 cfS = rmx * rmy;

 /* volume and surface areas, for rt60 calc, for high and low frequencies */
 vol = rmx * rmy * rmz;

 /* add all surfaces, 2 of each wall in shoebox geometry */
 Salphalow = wallS1 * FL(log(1.0 - p->wallcoeflow)) * FL(2.0);
 Salphalow += wallS2 * FL(log(1.0 - p->wallcoeflow)) * FL(2.0);
 Salphalow += cfS * FL(log(1.0 - p->floorcoeflow));
 Salphalow += cfS * FL(log(1.0 - p->ceilingcoeflow));
 Salphahigh = wallS1 * FL(log(1.0 - p->wallcoefhigh)) * FL(2.0);
 Salphahigh += wallS2 * FL(log(1.0 - p->wallcoefhigh)) * FL(2.0);
 Salphahigh += cfS * FL(log(1.0 - p->floorcoefhigh));
 Salphahigh += cfS * FL(log(1.0 - p->ceilingcoefhigh));

 /* wall filter quality factor (4 octaves for required spread!: .2666667) (2 octaves =
 .6667 implies 125 - 500, cf 250, 500 - 2k, cf 1k, 2000 - 8000, cf 4k) (4 octaves =
 .2666667 implies 62.5 - 1000, cf 250, 250 - 4000, cf 1k, 1000 - 16k, cf 4k */
 p->q = FL(.2666667);

 *p->irt60low = (FL(-0.161) * vol)/Salphalow;
 *p->irt60high = (FL(-0.161) * vol)/Salphahigh;

 /* calculate max delay according to max dist from order */
 /* use hypotenuse rule to get max dist */
 /* could calculate per order, but designed for low order use */
 maxdist = FL(sqrt(SQUARE(rmx) + SQUARE(rmy)));
 if(threed)
 maxdist = FL(sqrt(SQUARE(maxdist)+ SQUARE(rmz)));
 maxdist = maxdist * (order + 1);

 maxdtime = maxdist / p->c;
 maxdelsamps = (int)(maxdtime * sr);
 p->maxdelsamps = maxdelsamps;

 surfacearea = FL(2.0) * wallS1 + FL(2.0) * wallS2 + FL(2.0) * cfS;

 meanfreepath = FL(4.0) * vol / (surfacearea * p->c);

 /* set output...*/
 *p->imfp = meanfreepath;

 /* allocate delay memory for each impulse */
 if (!p->dell.auxp || p->dell.size < maxdelsamps * sizeof(MYFLT) * impulses)
 csound->AuxAlloc(csound, maxdelsamps * sizeof(MYFLT) * impulses, &p->dell);
 if (!p->delr.auxp || p->delr.size < maxdelsamps * sizeof(MYFLT) * impulses)
 csound->AuxAlloc(csound, maxdelsamps * sizeof(MYFLT) * impulses, &p->delr);

 memset(p->dell.auxp, 0, maxdelsamps * impulses * sizeof(MYFLT));
 memset(p->delr.auxp, 0, maxdelsamps * impulses * sizeof(MYFLT));

 /* amount to skip in to each del line */
 skipdel = (int *)p->skipdel.auxp;

 for(i = 0; i < impulses; i++)
 skipdel[i] = i * maxdelsamps;

 /* setup values used to check if relative source position has changed, start at
 illegal value to ensure first process read */
 p->srcxv = FL(-1.0);
 p->srcyv = FL(-1.0);
 p->srczv = FL(-1.0);
 p->lstnrxv = FL(-1.0);
 p->lstnryv = FL(-1.0);
 p->lstnrzv = FL(-1.0);
 p->srcxk = FL(-1.0);
 p->srcyk = FL(-1.0);

98

 p->srczk = FL(-1.0);
 p->lstnrxk = FL(-1.0);
 p->lstnryk = FL(-1.0);
 p->lstnrzk = FL(-1.0);

 p->rotatev = FL(0.0);

 return OK;
}

static int early_process(CSOUND *csound, early *p)
{
 /* iterators */
 int n, i, j;

 /* local pointers to p */
 MYFLT *in = p->in;
 MYFLT *outsigl = p->outsigl;
 MYFLT *outsigr = p->outsigr;

 int irlength = p->irlength;
 int irlengthpad = p->irlengthpad;
 int overlapsize = p->overlapsize;

 int counter = p->counter;

 /* convolution buffers */
 MYFLT *lowl1 = (MYFLT *)p->lowl1.auxp;
 MYFLT *lowr1 = (MYFLT *)p->lowr1.auxp;
 MYFLT *lowl2 = (MYFLT *)p->lowl2.auxp;
 MYFLT *lowr2 = (MYFLT *)p->lowr2.auxp;
 MYFLT *highl1 = (MYFLT *)p->highl1.auxp;
 MYFLT *highr1 = (MYFLT *)p->highr1.auxp;
 MYFLT *highl2 = (MYFLT *)p->highl2.auxp;
 MYFLT *highr2 = (MYFLT *)p->highr2.auxp;
 MYFLT *hrtflinterp = (MYFLT *)p->hrtflinterp.auxp;
 MYFLT *hrtfrinterp = (MYFLT *)p->hrtfrinterp.auxp;

 /* hrtf processing buffers */
 MYFLT *hrtflpad = (MYFLT *)p->hrtflpad.auxp;
 MYFLT *hrtfrpad = (MYFLT *)p->hrtfrpad.auxp;
 MYFLT *hrtflpadold = (MYFLT *)p->hrtflpadold.auxp;
 MYFLT *hrtfrpadold = (MYFLT *)p->hrtfrpadold.auxp;

 /* pointers into HRTF files: floating point data(even in 64 bit csound)*/
 float *fpindexl = (float *)p->fpbeginl;
 float *fpindexr = (float *)p->fpbeginr;

 /* local copies */
 MYFLT srcx = *p->srcx;
 MYFLT srcy = *p->srcy;
 MYFLT srcz = *p->srcz;
 MYFLT lstnrx = *p->lstnrx;
 MYFLT lstnry = *p->lstnry;
 MYFLT lstnrz = *p->lstnrz;
 MYFLT rotate = *p->Oheadrot;

 MYFLT sr = p->sr;

 /* local variables, mainly used for simplification */
 MYFLT elevindexstore;
 MYFLT angleindexlowstore;
 MYFLT angleindexhighstore;

 /* for reading */
 MYFLT angle, elev;
 int elevindex;
 int angleindex;
 int skip = 0;

 /* crossfade preparation and checks */

99

 int fade = p->fade;
 int fadebuffer = p->fadebuffer;
 int initialfade = p->initialfade;
 int crossfade;
 int crossout;

 /* interpolation variable declaration: local */
 int elevindexlow, elevindexhigh, angleindex1, angleindex2, angleindex3, angleindex4;
 MYFLT elevindexhighper, angleindex2per, angleindex4per;
 MYFLT magllow, magrlow, maglhigh, magrhigh, magl, magr, phasel, phaser;

 /* convolution and in/output buffers */
 MYFLT *inbuf = (MYFLT *)p->inbuf.auxp;
 MYFLT *inbufpad = (MYFLT *)p->inbufpad.auxp;
 MYFLT *outlspec = (MYFLT *)p->outlspec.auxp;
 MYFLT *outrspec = (MYFLT *)p->outrspec.auxp;
 MYFLT *outlspecold = (MYFLT *)p->outlspecold.auxp;
 MYFLT *outrspecold = (MYFLT *)p->outrspecold.auxp;
 MYFLT *overlapl = (MYFLT *)p->overlapl.auxp;
 MYFLT *overlapr = (MYFLT *)p->overlapr.auxp;
 MYFLT *overlaplold = (MYFLT *)p->overlaplold.auxp;
 MYFLT *overlaprold = (MYFLT *)p->overlaprold.auxp;
 MYFLT *predell = (MYFLT *)p->predell.auxp;
 MYFLT *predelr = (MYFLT *)p->predelr.auxp;

 MYFLT outltot, outrtot;

 /* distinct to each reflection */
 MYFLT *hrtflpadspec = (MYFLT *)p->hrtflpadspec.auxp;
 MYFLT *hrtfrpadspec = (MYFLT *)p->hrtfrpadspec.auxp;
 MYFLT *hrtflpadspecold = (MYFLT *)p->hrtflpadspecold.auxp;
 MYFLT *hrtfrpadspecold = (MYFLT *)p->hrtfrpadspecold.auxp;
 MYFLT *outl = (MYFLT *)p->outl.auxp;
 MYFLT *outr = (MYFLT *)p->outr.auxp;
 MYFLT *outlold = (MYFLT *)p->outlold.auxp;
 MYFLT *outrold = (MYFLT *)p->outrold.auxp;
 MYFLT *currentphasel = (MYFLT *)p->currentphasel.auxp;
 MYFLT *currentphaser = (MYFLT *)p->currentphaser.auxp;
 MYFLT *dell = (MYFLT *)p->dell.auxp;
 MYFLT *delr = (MYFLT *)p->delr.auxp;

 /* as above */
 int *oldelevindex = (int *)p->oldelevindex.auxp;
 int *oldangleindex = (int *)p->oldangleindex.auxp;
 int *cross = (int *)p->cross.auxp;
 int *l = (int *)p->l.auxp;
 int *delp = (int *)p->delp.auxp;
 int *skipdel = (int *)p->skipdel.auxp;
 MYFLT *vdt = (MYFLT *)p->vdt.auxp;
 MYFLT *dist = (MYFLT *)p->dist.auxp;
 MYFLT *dtime = (MYFLT *)p->dtime.auxp;
 MYFLT *amp = (MYFLT *)p->amp.auxp;
 MYFLT *tempsrcx = (MYFLT *)p->tempsrcx.auxp;
 MYFLT *tempsrcy = (MYFLT *)p->tempsrcy.auxp;
 MYFLT *tempsrcz = (MYFLT *)p->tempsrcz.auxp;
 MYFLT tempdist;

 /* from structure */
 int impulses = p->impulses;
 int order = p->order;
 int M = p->M;
 int threed = p->threed;

 /* used in vdel */
 int maxdelsamps = p->maxdelsamps;
 MYFLT c = p->c;
 int pos;
 MYFLT rp, frac;

 /* room size */
 MYFLT rmx = p->rmx;

100

 MYFLT rmy = p->rmy;
 MYFLT rmz = p->rmz;

 /* xc = x coordinate, etc...*/
 int xc, yc, zc, lowz, highz;

 /* to simplify formulae, local */
 MYFLT formx, formy, formz;
 int formxpow, formypow, formzpow;

 int wallreflections, floorreflections, ceilingreflections;
 MYFLT delsinglel, delsingler;
 MYFLT deldoublel[2], deldoubler[2];

 /* temp variables, for efficiency */
 MYFLT tempx, tempy;

 /* angle / elev calc of source location */
 MYFLT newpntx, newpnty, newpntz;
 MYFLT ab,ac,bc;
 MYFLT coselev;

 /* processing size! */
 n = csound->ksmps;

 /* check for legal src/lstnr locations */
 /* restricted to being inside room! */
 if(srcx > (rmx - FL(.1)))
 srcx = rmx - FL(.1);
 if(srcx < FL(.1))
 srcx = FL(.1);
 if(srcy > (rmy - FL(.1)))
 srcy = rmy - FL(.1);
 if(srcy < FL(.1))
 srcy = FL(.1);
 if(srcz > (rmz - FL(.1)))
 srcz = rmz - FL(.1);
 if(srcz < FL(.1))
 srcz = FL(.1);
 if(lstnrx > (rmx - FL(.1)))
 lstnrx = rmx - FL(.1);
 if(lstnrx < FL(.1))
 lstnrx = FL(.1);
 if(lstnry > (rmy - FL(.1)))
 lstnry = rmy - FL(.1);
 if(lstnry < FL(.1))
 lstnry = FL(.1);
 if(lstnrz > (rmz - FL(.1)))
 lstnrz = rmz - FL(.1);
 if(lstnrz < FL(.1))
 lstnrz = FL(.1);

 /* k rate computations: sources, distances, delays, amps for each image source. */
 /* need minus values for formula... */

 /* only update if relative source updates! improves speed in static sources by a
 factor of 2-3! */
 if(srcx != p->srcxk || srcy != p->srcyk || srcz != p->srczk || lstnrx != p->lstnrxk ||
 lstnry != p->lstnryk || lstnrz != p->lstnrzk)
 {
 p->srcxk = srcx;
 p->srcyk = srcy;
 p->srczk = srcz;
 p->lstnrxk = lstnrx;
 p->lstnryk = lstnry;
 p->lstnrzk = lstnrz;

 for(xc = -order; xc <= order; xc++)
 {
 for(yc = abs(xc) - order; yc <= order - abs(xc); yc++)
 {

101

 /* only scroll through z plane if 3d required...*/
 if(threed)
 {
 lowz = abs(yc) - (order - abs(xc));
 highz = (order - abs(xc)) - abs(yc);
 }
 else
 {
 lowz = 0;
 highz = 0;
 }
 for(zc = lowz; zc <= highz; zc++)
 {
 /* to avoid recalculation, especially at audio rate for delay, later on */
 formxpow = (int)pow(-1.0, xc);
 formypow = (int)pow(-1.0, yc);
 formzpow = (int)pow(-1.0, zc);
 formx = (xc + (1 - formxpow)/2) * rmx;
 formy = (yc + (1 - formypow)/2) * rmy;
 formz = (zc + (1 - formzpow)/2) * rmz;

 /* image */
 tempsrcx[M] = formxpow * srcx + formx;
 tempsrcy[M] = formypow * srcy + formy;
 tempsrcz[M] = formzpow * srcz + formz;

 /* Calculate delay here using source and listener location */

 dist[M] = FL(sqrt(SQUARE(tempsrcx[M] - lstnrx) + SQUARE(tempsrcy[M] - lstnry,)
 + SQUARE(tempsrcz[M] - lstnrz)));

 /* in seconds... */
 dtime[M] = dist[M] / c;

 /* furthest allowable distance....max amp = 1. */
 tempdist = (dist[M] < FL(.45) ? FL(.45) : dist[M]);

 /* high amp value may cause clipping on early reflections...reduce overall amp
 if so...*/
 /* SPL inverse distance law */
 amp[M] = FL(.45) / tempdist;

 /* vdels for distance processing: */
 vdt[M] = dtime[M] * sr;
 if(vdt[M] > maxdelsamps)
 vdt[M] = FL(maxdelsamps);

 M++;
 M = M % impulses;
 }
 }
 }
 }

 /* a rate... */
 for(j=0;j<n;j++)
 {
 /* input */
 inbuf[counter] = in[j];

 /* output */
 outltot = 0.0;
 outrtot = 0.0;

 /* for each reflection */
 for(M = 0; M < impulses; M++)
 {
 /* a rate vdel: */
 rp = delp[M] - vdt[M];
 rp = (rp >= 0 ? (rp < maxdelsamps ? rp : rp - maxdelsamps) : rp + maxdelsamps);
 frac = rp - (int)rp;
 /* shift into correct part of buffer */

102

 pos = (int)rp + skipdel[M];
 /* write to l and r del lines */
 dell[delp[M] + skipdel[M]] = predell[counter + M * irlength] * amp[M];
 delr[delp[M] + skipdel[M]] = predelr[counter + M * irlength] * amp[M];
 /* read, at variable interpolated speed */
 outltot += dell[pos] + frac*(dell[(pos + 1 < (maxdelsamps + skipdel[M]) ? pos + 1
 : skipdel[M])] - dell[pos]);
 outrtot += delr[pos] + frac*(delr[(pos + 1 < (maxdelsamps + skipdel[M]) ? pos + 1
 : skipdel[M])] - delr[pos]);
 delp[M] = (delp[M] != maxdelsamps - 1 ? delp[M] + 1 : 0);

 outsigl[j] = outltot;
 outsigr[j] = outrtot;
 }
 counter++;

 /* used to ensure fade does not happen on first run */
 if(initialfade < (irlength + 2))
 initialfade++;

 /* 'hrtf buffer' rate */
 if(counter == irlength)
 {
 /* reset */
 M = 0;
 /* run according to formula */
 for(xc = -order; xc <= order; xc++)
 {
 for(yc = abs(xc) - order; yc <= order - abs(xc); yc++)
 {
 /* only scroll through z plane if 3d required... */
 if(threed)
 {
 lowz = abs(yc) - (order - abs(xc));
 highz = (order - abs(xc)) - abs(yc);
 }
 else
 {
 lowz = 0;
 highz = 0;
 }
 for(zc = lowz; zc <= highz; zc++)
 {
 /* zero */
 crossout = 0;
 crossfade = 0;

 /* avoid unnecessary processing if relative source location has not changed
 */
 if(srcx != p->srcxv || srcy != p->srcyv || srcz != p->srczv || lstnrx !=
 p->lstnrxv || lstnry != p->lstnryv || lstnrz != p->lstnrzv || rotate !=
 p->rotatev)
 {
 /* if first process complete (128 samps in) and source is too close to
 listener: warning, do not process */
 /* duda and martens range dependence jasa 98: 5 times radius: near
 field...hrtf changes! */
 if(dist[M] < FL(.45) && initialfade > irlength)
 ; /* do not process... */
 else
 {
 /* to avoid case where atan2 is invalid */
 tempx = tempsrcx[M] - lstnrx;
 tempy = tempsrcy[M] - lstnry;
 if(tempx == 0 && tempy == 0)
 angle = 0;
 else
 {
 /* - to invert anticlockwise to clockwise */
 angle = FL(-(atan2(tempy, tempx)) * 180.0 / PI);
 /* add 90 to go from y axis (front) */

103

 angle = angle + 90;
 }

 /* xy point will be same as source, z same as listener: a workable
 triangle */
 newpntx = tempsrcx[M];
 newpnty = tempsrcy[M];
 newpntz = lstnrz;

 /* ab: source to listener, ac: source to new point under/over source, bc
 listener to new point */
 /* a = source, b = listener, c = new point */
 ab = FL(sqrt(SQUARE(tempsrcx[M] - lstnrx) + SQUARE(tempsrcy[M] –

 lstnry) + SQUARE(tempsrcz[M] - lstnrz)));
 ac = FL(sqrt(SQUARE(tempsrcx[M] - newpntx) + SQUARE(tempsrcy[M] –
 newpnty) + SQUARE(tempsrcz[M] - newpntz)));
 bc = FL(sqrt(SQUARE(lstnrx - newpntx) + SQUARE(lstnry - newpnty) +
 SQUARE(lstnrz - newpntz)));

 /* elev: when bc == 0 -> source + listener at same x,y point (may happen
 in first run, checked after that) angle = 0, elev = 0 if at same
 point, or source may be directly above/below */
 if(bc == FL(0.0))
 {
 /* source at listener */
 if(ac == FL(0.0))
 elev = FL(0.0);
 /* source above listener */
 else
 elev = FL(90.0);
 }
 else
 {
 /* cosine rule */
 coselev = FL((SQUARE(bc) + SQUARE(ab) - SQUARE(ac)) / (2.0 * ab
 * bc));
 elev = FL(acos(coselev)* 180.0 / PI);
 }

 /* if z coefficient of source < listener: source below listener...*/
 if(tempsrcz[M] < lstnrz)
 elev *= -1;

 if(elev > FL(90.0))
 elev = FL(90.0);
 if(elev < FL(-40.0))
 elev = FL(-40.0);

 /* two nearest elev indices to avoid recalculating */
 elevindexstore = (elev - minelev) / elevincrement;
 elevindexlow = (int)elevindexstore;

 if(elevindexlow < 13)
 elevindexhigh = elevindexlow + 1;
 /* highest index reached */
 else
 elevindexhigh = elevindexlow;

 /* get percentage value for interpolation */
 elevindexhighper = elevindexstore - elevindexlow;

 /* head rotation */
 angle -= rotate;

 while(angle < FL(0.0))
 angle += FL(360.0);
 while(angle >= FL(360.0))
 angle -= FL(360.0);

 /* as above,lookup index, used to check for crossfade */
 elevindex = (int)(elevindexstore + 0.5);

104

 angleindex = (int)(angle / (360.0 / elevationarray[elevindex]) + 0.5);
 angleindex = angleindex % elevationarray[elevindex];

 /* avoid recalculation */
 angleindexlowstore = angle / (FL(360.0) / elevationarray[elevindexlow]);
 angleindexhighstore = angle / (FL(360.0) /
 elevationarray[elevindexhigh]);

 /* 4 closest indices, 2 low and 2 high */
 angleindex1 = (int)angleindexlowstore;

 angleindex2 = angleindex1 + 1;
 angleindex2 = angleindex2 % elevationarray[elevindexlow];

 angleindex3 = (int)angleindexhighstore;

 angleindex4 = angleindex3 + 1;
 angleindex4 = angleindex4 % elevationarray[elevindexhigh];

 /* angle percentages for interp */
 angleindex2per = angleindexlowstore - angleindex1;
 angleindex4per = angleindexhighstore - angleindex3;

 /* crossfade happens if index changes:nearest measurement changes, 1st
 step: store old values */
 if (oldelevindex[M] != elevindex || oldangleindex[M] != angleindex)
 {
 if(initialfade > irlength)
 {
 /* warning on overlapping fades */
 if(cross[M])
 {
 csound->Message(csound, "\nWARNING: fades are overlapping: this

could lead to noise: reduce fade size or
change trajectory\n\n");

 cross[M] = 0;
 }
 /* reset l */
 l[M] = 0;
 crossfade = 1;
 for(i = 0; i < irlengthpad; i++)
 {
 hrtflpadspecold[irlengthpad * M + i] = hrtflpadspec[irlengthpad *
 M + i];
 hrtfrpadspecold[irlengthpad * M + i] = hrtfrpadspec[irlengthpad *
 M + i];
 }
 }

 skip = 0;
 /* store current phase */
 if(angleindex > elevationarray[elevindex] / 2)
 {
 for(i = 0; i < elevindex; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindex] - angleindex); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 currentphasel[irlength * M + i] = fpindexr[skip + i];
 currentphaser[irlength * M + i] = fpindexl[skip + i];
 }
 }
 else
 {
 for(i = 0; i < elevindex; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)

105

 {
 currentphasel[irlength * M + i] = fpindexl[skip+i];
 currentphaser[irlength * M + i] = fpindexr[skip+i];
 }
 }
 }

 /* for next check */
 oldelevindex[M] = elevindex;
 oldangleindex[M] = angleindex;

 /* read 4 nearest HRTFs */
 /* switch l and r */
 skip = 0;
 if(angleindex1 > elevationarray[elevindexlow] / 2)
 {
 for(i = 0; i < elevindexlow; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexlow] - angleindex1); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = fpindexr[skip+i];
 lowr1[i] = fpindexl[skip+i];
 }
 }
 else
 {
 for(i = 0; i < elevindexlow; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex1; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = fpindexl[skip+i];
 lowr1[i] = fpindexr[skip+i];
 }
 }

 skip = 0;
 if(angleindex2 > elevationarray[elevindexlow] / 2)
 {
 for(i = 0; i < elevindexlow; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexlow] - angleindex2); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = fpindexr[skip+i];
 lowr2[i] = fpindexl[skip+i];
 }
 }
 else
 {
 for(i = 0; i < elevindexlow; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex2; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 lowl2[i] = fpindexl[skip+i];
 lowr2[i] = fpindexr[skip+i];
 }
 }

 skip = 0;
 if(angleindex3 > elevationarray[elevindexhigh] / 2)
 {
 for(i = 0; i < elevindexhigh; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexhigh] - angleindex3); i++)

106

 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl1[i] = fpindexr[skip+i];
 highr1[i] = fpindexl[skip+i];
 }
 }
 else
 {
 for(i = 0; i < elevindexhigh; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex3; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl1[i] = fpindexl[skip+i];
 highr1[i] = fpindexr[skip+i];
 }
 }

 skip = 0;
 if(angleindex4 > elevationarray[elevindexhigh] / 2)
 {
 for(i = 0; i < elevindexhigh; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindexhigh] - angleindex4); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl2[i] = fpindexr[skip+i];
 highr2[i] = fpindexl[skip+i];
 }
 }
 else
 {
 for(i = 0; i < elevindexhigh; i ++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex4; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 highl2[i] = fpindexl[skip+i];
 highr2[i] = fpindexr[skip+i];
 }
 }

 /* magnitude interpolation */
 /* 0hz and Nyq */
 magllow = FL(fabs(lowl1[0])) + (FL(fabs(lowl2[0]) - fabs(lowl1[0]))) *
 angleindex2per;
 maglhigh = FL(fabs(highl1[0])) + (FL(fabs(highl2[0]) - fabs(highl1[0])))
 * angleindex4per;
 magrlow = FL(fabs(lowr1[0])) + (FL(fabs(lowr2[0]) - fabs(lowr1[0]))) *
 angleindex2per;
 magrhigh = FL(fabs(highr1[0])) + (FL(fabs(highr2[0]) - fabs(highr1[0])))
 * angleindex4per;
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
 if(currentphasel[M * irlength] < FL(0.0))
 hrtflinterp[0] = - magl;
 else
 hrtflinterp[0] = magl;
 if(currentphaser[M * irlength] < FL(0.0))
 hrtfrinterp[0] = - magr;
 else
 hrtfrinterp[0] = magr;

 magllow = FL(fabs(lowl1[1])) + (FL(fabs(lowl2[1]) - fabs(lowl1[1]))) *
 angleindex2per;
 maglhigh = FL(fabs(highl1[1])) + (FL(fabs(highl2[1]) - fabs(highl1[1])))
 * angleindex4per;

107

 magrlow = FL(fabs(lowr1[1])) + (FL(fabs(lowr2[1]) - fabs(lowr1[1]))) *
 angleindex2per;
 magrhigh = FL(fabs(highr1[1])) + (FL(fabs(highr2[1]) - fabs(highr1[1])))
 * angleindex4per;
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
 if(currentphasel[M * irlength + 1] < FL(0.))
 hrtflinterp[1] = - magl;
 else
 hrtflinterp[1] = magl;
 if(currentphaser[M * irlength + 1] < FL(0.))
 hrtfrinterp[1] = - magr;
 else
 hrtfrinterp[1] = magr;

 /* other values are complex, in fftw format */
 for(i = 2; i < irlength; i += 2)
 {
 /* interpolate high and low magnitudes */
 magllow = lowl1[i] + (lowl2[i] - lowl1[i]) * angleindex2per;
 maglhigh = highl1[i] + (highl2[i] - highl1[i]) * angleindex4per;

 magrlow = lowr1[i] + (lowr2[i] - lowr1[i]) * angleindex2per;
 magrhigh = highr1[i] + (highr2[i] - highr1[i]) * angleindex4per;

 /* interpolate high and low results,use current phase */
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 phasel = currentphasel[M * irlength + i + 1];

 /* polar to rectangular */
 hrtflinterp[i] = magl * FL(cos(phasel));
 hrtflinterp[i + 1] = magl * FL(sin(phasel));

 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
 phaser = currentphaser[M * irlength + i + 1];

 hrtfrinterp[i] = magr * FL(cos(phaser));
 hrtfrinterp[i + 1] = magr * FL(sin(phaser));
 }

 csound->InverseRealFFT(csound, hrtflinterp, irlength);
 csound->InverseRealFFT(csound, hrtfrinterp, irlength);

 /* wall filters... */
 /* all 4 walls are the same! (trivial to make them different...) */
 /* x axis, wall1 (left) */
 wallreflections = (int)abs((int)(xc * .5 - .25 + (.25 * pow(-1.0,
 xc))));
 /* wall2, x (right) */
 wallreflections += (int)abs((int)(xc * .5 + .25 - (.25 * pow(-1.0,
 xc))));
 /* yaxis, wall3 (bottom) */
 wallreflections += (int)abs((int)(yc * .5 - .25 + (.25 * pow(-1.0,
 yc))));
 /* yaxis, wall 4 (top) */
 wallreflections += (int)abs((int)(yc * .5 + .25 - (.25 * pow(-1.0,
 yc))));
 if(threed)
 {
 /* floor (negative z) */
 floorreflections = (int)abs((int)(zc * .5 - .25 + (.25 * pow(-1.0,
 zc))));
 /* ceiling (positive z) */
 ceilingreflections = (int)abs((int)(zc * .5 + .25 - (.25 * pow(-1.0,
 zc))));
 }

 /* fixed parameters on bands etc (to limit no of inputs), but these
 could trivially be variable */
 /* note: delay values can be reused: zeroed every time as only used in
 processing hrtf, once every irlength, so not used continuously...*/

108

 /* if processing was continuous, would need separate mem for each
 filter, store for next run etc...*/
 for(i = 0; i < wallreflections; i++)
 {
 delsinglel = delsingler = FL(0.0);
 filter(hrtflinterp, p->wallcoefhigh, p->wallcoeflow, &delsinglel,
 irlength, sr);
 filter(hrtfrinterp, p->wallcoefhigh, p->wallcoeflow, &delsingler,
 irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(250.0), FL(250.0) / p->q, p->wallg1, deldoublel,
 irlength, sr);
 band(hrtfrinterp, FL(250.0), FL(250.0) / p->q, p->wallg1, deldoubler,
 irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(1000.0), FL(1000.0) / p->q, p->wallg2,
 deldoublel, irlength, sr);
 band(hrtfrinterp, FL(1000.0), FL(1000.0) / p->q, p->wallg2,
 deldoubler, irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(4000.0), FL(4000.0) / p->q, p->wallg3,
 deldoublel, irlength, sr);
 band(hrtfrinterp, FL(4000.0), FL(4000.0) / p->q, p->wallg3,
 deldoubler, irlength, sr);
 }
 if(threed)
 {
 for(i = 0; i < floorreflections; i++)
 {
 delsinglel = delsingler = FL(0.0);
 filter(hrtflinterp, p->floorcoefhigh, p->floorcoeflow, &delsinglel,
 irlength, sr);
 filter(hrtfrinterp, p->floorcoefhigh, p->floorcoeflow, &delsingler,
 irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(250.0), FL(250.0) / p->q, p->floorg1,
 deldoublel, irlength, sr);
 band(hrtfrinterp, FL(250.0), FL(250.0) / p->q, p->floorg1,
 deldoubler, irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(1000.0), FL(1000.0) / p->q, p->floorg2,
 deldoublel, irlength, sr);
 band(hrtfrinterp, FL(1000.0), FL(1000.0) / p->q, p->floorg2,
 deldoubler, irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(4000.0), FL(4000.0) / p->q, p->floorg3,
 deldoublel, irlength, sr);
 band(hrtfrinterp, FL(4000.0), FL(4000.0) / p->q, p->floorg3,
 deldoubler, irlength, sr);
 }
 for(i = 0; i < ceilingreflections; i++)
 {
 delsinglel = delsingler = FL(0.0);
 filter(hrtflinterp, p->ceilingcoefhigh, p->ceilingcoeflow,
 &delsinglel, irlength, sr);
 filter(hrtfrinterp, p->ceilingcoefhigh, p->ceilingcoeflow,
 &delsingler, irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(250.0), FL(250.0) / p->q, p->ceilingg1,
 deldoublel, irlength, sr);
 band(hrtfrinterp, FL(250.0), FL(250.0) / p->q, p->ceilingg1,
 deldoubler, irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(1000.0), FL(1000.0) / p->q, p->ceilingg2,
 deldoublel, irlength, sr);
 band(hrtfrinterp, FL(1000.0), FL(1000.0) / p->q, p->ceilingg2,
 deldoubler, irlength, sr);
 deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1] = 0.0;
 band(hrtflinterp, FL(4000.0), FL(4000.0) / p->q, p->ceilingg3,
 deldoublel, irlength, sr);
 band(hrtfrinterp, FL(4000.0), FL(4000.0) / p->q, p->ceilingg3,

109

 deldoubler, irlength, sr);
 }
 }

 for(i = 0; i < irlength; i++)
 {
 hrtflpad[i] = hrtflinterp[i];
 hrtfrpad[i] = hrtfrinterp[i];
 }

 for(i = irlength; i < irlengthpad; i++)
 {
 hrtflpad[i] = FL(0.0);
 hrtfrpad[i] = FL(0.0);
 }

 /* back to freq domain */
 csound->RealFFT(csound, hrtflpad, irlengthpad);
 csound->RealFFT(csound, hrtfrpad, irlengthpad);

 /* store */
 for(i = 0; i < irlengthpad; i++)
 {
 hrtflpadspec[M * irlengthpad + i] = hrtflpad[i];
 hrtfrpadspec[M * irlengthpad + i] = hrtfrpad[i];
 }
 }
 } /* end of source / listener relative change process */

 /* look after overlap add */
 for(i = 0; i < overlapsize ; i++)
 {
 overlapl[i] = outl[M * irlengthpad + i + irlength];
 overlapr[i] = outr[M * irlengthpad + i + irlength];
 if(crossfade)
 {
 overlaplold[i] = outl[M * irlengthpad + i + irlength];
 overlaprold[i] = outr[M * irlengthpad + i + irlength];
 }
 /* overlap will be previous fading out signal */
 if(cross[M])
 {
 overlaplold[i] = outlold[M * irlengthpad + i + irlength];
 overlaprold[i] = outrold[M * irlengthpad + i + irlength];
 }
 }

 /* insert insig */
 for (i = 0; i < irlength; i++)
 inbufpad[i] = inbuf[i];

 for (i = irlength; i < irlengthpad; i++)
 inbufpad[i] = FL(0.0);

 csound->RealFFT(csound, inbufpad, irlengthpad);

 for(i = 0; i < irlengthpad; i ++)
 {
 hrtflpad[i] = hrtflpadspec[M * irlengthpad + i];
 hrtfrpad[i] = hrtfrpadspec[M * irlengthpad + i];
 }

 /* convolution: spectral multiplication */
 csound->RealFFTMult(csound, outlspec, hrtflpad, inbufpad, irlengthpad,

 FL(1.0));
 csound->RealFFTMult(csound, outrspec, hrtfrpad, inbufpad, irlengthpad,
 FL(1.0));

 csound->InverseRealFFT(csound, outlspec, irlengthpad);
 csound->InverseRealFFT(csound, outrspec, irlengthpad);

110

 /* scale */
 for(i = 0; i < irlengthpad; i++)
 {
 outlspec[i] = outlspec[i]/(sr/FL(38000.0));
 outrspec[i] = outrspec[i]/(sr/FL(38000.0));
 }

 /* store */
 for(i = 0; i < irlengthpad; i++)
 {
 outl[M * irlengthpad + i] = outlspec[i];
 outr[M * irlengthpad + i] = outrspec[i];
 }

 /* setup for fades */
 if(crossfade || cross[M])
 {
 crossout = 1;

 /* need to put these values into a buffer for processing */
 for(i = 0; i < irlengthpad; i++)
 {
 hrtflpadold[i] = hrtflpadspecold[M * irlengthpad + i];
 hrtfrpadold[i] = hrtfrpadspecold[M * irlengthpad + i];
 }

 /* convolution */
 csound->RealFFTMult(csound, outlspecold, hrtflpadold, inbufpad,

 irlengthpad, FL(1.0));
 csound->RealFFTMult(csound, outrspecold, hrtfrpadold, inbufpad,
 irlengthpad, FL(1.0));

 /* ifft, back to time domain */
 csound->InverseRealFFT(csound, outlspecold, irlengthpad);
 csound->InverseRealFFT(csound, outrspecold, irlengthpad);

 /* scale */
 for(i = 0; i < irlengthpad; i++)
 {
 outlspecold[i] = outlspecold[i]/(sr/FL(38000.0));
 outrspecold[i] = outrspecold[i]/(sr/FL(38000.0));
 }

 /* o/p real values */
 for(i = 0; i < irlengthpad; i++)
 {
 outlold[M * irlengthpad + i] = outlspecold[i];
 outrold[M * irlengthpad + i] = outrspecold[i];
 }

 cross[M]++;
 cross[M] = cross[M] % fade;
 }

 if(crossout)
 for(i = 0; i < irlength; i++)
 {
 predell[i + M * irlength] = (outlspecold[i] + (i < overlapsize ?
 overlaplold[i] : FL(0.0))) * FL(1. - (FL(l[M]) / fadebuffer)) +
 (outlspec[i] + (i < overlapsize ? overlapl[i] : FL(0.0))) * (FL(l[M])
 / fadebuffer);
 predelr[i + M * irlength] = (outrspecold[i] + (i < overlapsize ?
 overlaprold[i] : FL(0.0))) * FL(1. - (FL(l[M]) / fadebuffer)) +
 (outrspec[i] + (i < overlapsize ? overlapr[i] : FL(0.0))) * (FL(l[M])
 / fadebuffer);
 l[M]++;
 }
 else
 for(i = 0; i < irlength; i++)
 {
 predell[i + M * irlength] = outlspec[i] + (i < overlapsize ? overlapl[i]

111

 : FL(0.0));
 predelr[i + M * irlength] = outrspec[i] + (i < overlapsize ? overlapr[i]
 : FL(0.0));
 }

 M++;
 M = M % impulses;

 } /* z */
 } /* y */
 } /* x */

 counter = 0;
 /* need to store these values here, as storing them after check would not allow
 each impulse to be processed! */
 p->srcxv = srcx;
 p->srcyv = srcy;
 p->srczv = srcz;
 p->lstnrxv = lstnrx;
 p->lstnryv = lstnry;
 p->lstnrzv = lstnrz;
 p->rotatev = rotate;

 } /* end of counter == irlength */

 /* update */
 p->counter = counter;
 p->initialfade = initialfade;

 } /* end of ksmps loop */

 return OK;
}

static OENTRY localops[] =
{
 {
 "hrtfearly", sizeof(early), 5, "aaiii", "axxxxxxSSioopoOoooooooooooooooooo",
 (SUBR)early_init, NULL, (SUBR)early_process
 }
};

LINKAGE

112

3.2 hrtfreverb

/*
Brian Carty
PhD Code August 2010
binaural reverb: diffuse field
*/

#include "csdl.h"
#define SQUARE(X) (X)*(X)

/* endian issues: swap bytes for ppc */
#ifdef WORDS_BIGENDIAN
static int swap4bytes(CSOUND* csound, MEMFIL* mfp)
{
 char c1, c2, c3, c4;
 char *p = mfp->beginp;
 int size = mfp->length;

 while (size >= 4)
 {
 c1 = p[0]; c2 = p[1]; c3 = p[2]; c4 = p[3];
 p[0] = c4; p[1] = c3; p[2] = c2; p[3] = c1;
 size -= 4; p +=4;
 }

 return OK;
}
#else
static int (*swap4bytes)(CSOUND*, MEMFIL*) = NULL;
#endif

/* matrices for feedback delay network (fdn) */
#define mthird -1.f / 3
#define tthird 2.f / 3
#define msix -1.f / 6
#define fsix 5.f / 6
#define mtw -1.f / 12
#define etw 11.f / 12

static const MYFLT matrix6[36] =
 {tthird,mthird,mthird,mthird,mthird,mthird,
 mthird,tthird,mthird,mthird,mthird,mthird,
 mthird,mthird,tthird,mthird,mthird,mthird,
 mthird,mthird,mthird,tthird,mthird,mthird,
 mthird,mthird,mthird,mthird,tthird,mthird,
 mthird,mthird,mthird,mthird,mthird,tthird};

static const MYFLT matrix12[144] =
 {fsix,msix,msix,msix,msix,msix,msix,msix,msix,msix,msix,msix,
 msix,fsix,msix,msix,msix,msix,msix,msix,msix,msix,msix,msix,
 msix,msix,fsix,msix,msix,msix,msix,msix,msix,msix,msix,msix,
 msix,msix,msix,fsix,msix,msix,msix,msix,msix,msix,msix,msix,
 msix,msix,msix,msix,fsix,msix,msix,msix,msix,msix,msix,msix,
 msix,msix,msix,msix,msix,fsix,msix,msix,msix,msix,msix,msix,
 msix,msix,msix,msix,msix,msix,fsix,msix,msix,msix,msix,msix,
 msix,msix,msix,msix,msix,msix,msix,fsix,msix,msix,msix,msix,
 msix,msix,msix,msix,msix,msix,msix,msix,fsix,msix,msix,msix,
 msix,msix,msix,msix,msix,msix,msix,msix,msix,fsix,msix,msix,
 msix,msix,msix,msix,msix,msix,msix,msix,msix,msix,fsix,msix,
 msix,msix,msix,msix,msix,msix,msix,msix,msix,msix,msix,fsix};

static const MYFLT matrix24[576] =

{etw,mtw
,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw

113

,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw
,mtw,etw
,mtw
,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw
,mtw,etw,mtw
,mtw
,mtw,etw,mtw
,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw,mtw,mtw,mtw
,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,mtw,etw,mtw,mtw
,mtw
,etw,mtw
,mtw,mtw,mtw,etw};

/* for delay line lengths */
static const int primes[229] =
 {
 17, 23, 59, 71, 113, 127, 163, 191, 211, 229,
 271, 283, 313, 337, 359, 373, 409, 461, 541, 587,
 631, 691, 709, 773, 829, 863, 919, 971, 1039, 1069,
 1123, 1171, 1217, 1259, 1303, 1373, 1423, 1483, 1511, 1597,
 1627, 1669, 1733, 1787, 1847, 1867, 1913, 1951, 2027, 2081,
 2131, 2179, 2213, 2269, 2333, 2383, 2423, 2467, 2531, 2579,
 2617, 2671, 2729, 2789, 2837, 2861, 2917, 2999, 3011, 3083,
 3121, 3169, 3209, 3259, 3331, 3389, 3449, 3469, 3533, 3571,
 3613, 3671, 3727, 3779, 3821, 3889, 3917, 3989, 4001, 4051,
 4111, 4177, 4231, 4271, 4337, 4391, 4447, 4483, 4517, 4567,
 4621, 4691, 4733, 4787, 4817, 4861, 4919, 4967, 5023, 5077,
 5113, 5167, 5233, 5297, 5309, 5351, 5441, 5483, 5507, 5563,
 5641, 5683, 5711, 5783, 5821, 5857, 5927, 5981, 6011, 6067,
 6121, 6173, 6217, 6271, 6317, 6361, 6421, 6473, 6529, 6581,
 6607, 6661, 6733, 6793, 6841, 6883, 6911, 6961, 7027, 7057,
 7109, 7177, 7211, 7297, 7349, 7393, 7417, 7481, 7523, 7561,
 7607, 7673, 7717, 7789, 7841, 7879, 7919, 7963, 8017, 8081,
 8111, 8167, 8209, 8287, 8317, 8377, 8443, 8467, 8521, 8563,
 8623, 8677, 8713, 8761, 8831, 8867, 8923, 8963, 9013, 9059,
 9109, 9187, 9221, 9257, 9323, 9371, 9413, 9461, 9511, 9587,
 9631, 9679, 9721, 9781, 9803, 9859, 9949, 9973, 10039, 10079,
 10111, 10177, 10211, 10259, 10333, 10391, 10429, 10459, 10513, 10589,
 10607, 10663, 10711, 10799, 10831, 10859, 10909, 10979, 11003
 };

typedef struct
{
 OPDS h;
 /* in / out */
 /* outputs l/r and delay required for late del...*/
 MYFLT *outsigl, *outsigr, *idel;
 /* mean free path and order are optional, meanfp defaults to medium room, opcode
 can be used as stand alone binaural reverb, or spatially accurate taking meanfp and
 order from earlies opcode */
 MYFLT *insig, *ilowrt60, *ihighrt60, *ifilel, *ifiler, *osr, *omeanfp, *porder;

 /* internal data / class variables */
 MYFLT delaytime;
 int delaytimeint, basedelay;

 /* number of delay lines */
 int M;

 /* delay line iterators */

114

 int u, v, w, x, y, z;
 int ut, vt, wt, xt, yt, zt;
 int utf1, vtf1, wtf1, xtf1, ytf1, ztf1;
 int utf2, vtf2, wtf2, xtf2, ytf2, ztf2;

 /* buffer lengths, change for different sr */
 int irlength;
 int irlengthpad;
 int overlapsize;

 /* memory buffers: delays */
 AUXCH delays;
 /* filter coeffs */
 AUXCH gi, ai;
 /* matrix manipulations */
 AUXCH inmat, inmatlp, dellp, outmat;
 /* delays */
 AUXCH del1, del2, del3, del4, del5, del6;
 AUXCH del1t, del2t, del3t, del4t, del5t, del6t;
 AUXCH del1tf, del2tf, del3tf, del4tf, del5tf, del6tf, del7tf, del8tf, del9tf, del10tf,
 del11tf, del12tf;
 /* filter variables, spectral manipulations */
 AUXCH power, HRTFave, num, denom, cohermags, coheru, coherv;
 AUXCH filtout, filtuout, filtvout, filtpad, filtupad, filtvpad;

 /* output of matrix cycle, with IIRs in combs and FIR tone, then l and r o/p processed
 with u and v coherence filters */
 /* with overlap buffers for overlap add convolution */
 AUXCH matrixlu, matrixrv;
 AUXCH olmatrixlu, olmatrixrv;
 /* above processed with hrtf l and r filters */
 /* with overlap buffers for overlap add convolution */
 AUXCH hrtfl, hrtfr;
 AUXCH olhrtfl, olhrtfr;
 /* filter coeff */
 MYFLT b;
 /* 1st order FIR mem */
 MYFLT inoldl, inoldr;
 /* for storing hrtf data used to create filters */
 AUXCH buffl, buffr;

 /* counter */
 int counter;

 MYFLT sr;

}hrtfreverb;

int hrtfreverb_init(CSOUND *csound, hrtfreverb *p)
{
 /* left and right data files: spectral mag, phase format */
 MEMFIL *fpl = NULL, *fpr = NULL;
 char filel[MAXNAME],filer[MAXNAME];
 /* files contain floats */
 float *fpindexl, *fpindexr;

 /* processing sizes */
 int irlength, irlengthpad, overlapsize;

 /* pointers used to fill buffers in data structure */
 int *delaysp;
 MYFLT *gip, *aip;
 MYFLT *powerp, *HRTFavep, *nump, *denomp, *cohermagsp, *coherup, *cohervp;
 MYFLT *filtoutp, *filtuoutp, *filtvoutp, *filtpadp, *filtupadp, *filtvpadp;
 MYFLT *bufflp, *buffrp;

 /* iterators, file skip */
 int i, j;
 int skip = 0;
 int skipdouble = 0;

115

 /* used in choice of delay line lengths */
 int basedelay;

 /* local filter variables for spectral manipulations */
 MYFLT rel, rer, retemp, iml, imr, imtemp;

 /* setup filters */
 MYFLT T, alpha, aconst, exp;
 int clipcheck = 0;

 MYFLT sr = (MYFLT)*p->osr;
 MYFLT meanfp = (MYFLT)*p->omeanfp;
 int order = (int)*p->porder;

 /* delay line variables */
 MYFLT delaytime, meanfporder;
 int delaytimeint;
 int Msix, Mtwelve, Mtwentyfour;
 int meanfpsamps, meanfpordersamps;
 int test;

 MYFLT rt60low = (MYFLT)*p->ilowrt60;
 MYFLT rt60high = (MYFLT)*p->ihighrt60;

 int M;

 /* sr, defualt 44100 */
 if(sr != 44100 && sr != 48000 && sr != 96000)
 sr = 44100;
 p->sr = sr;

 if (UNLIKELY(csound->esr != sr))
 csound->Message(csound, Str("\n\nWARNING!!:\nOrchestra SR not compatible with HRTF
 processing SR of: %.0f\n\n"), sr);

 /* meanfp: defaults to room size 10 * 10 * 3 (max of 1: v. large room, min according
 to min room dimensions in early: 2 * 2 * 2) */
 if(meanfp <= 0.003876 || meanfp > 1)
 meanfp = FL(0.0109);

 /* order: defaults to 1 (4 is max for earlies) */
 if(order < 0 || order > 4)
 order = 1;

 /* rt60 values must be positive and non zero */
 if(rt60low <= 0)
 rt60low = FL(0.01);

 if(rt60high <= 0)
 rt60high = FL(0.01);

 /* setup as per sr */
 if(sr == 44100 || sr == 48000)
 {
 irlength = 128;
 irlengthpad = 256;
 overlapsize = (irlength - 1);
 }
 else if(sr == 96000)
 {
 irlength = 256;
 irlengthpad = 512;
 overlapsize = (irlength - 1);
 }

 /* copy in string name... */
 strcpy(filel, (char*) p->ifilel);
 strcpy(filer, (char*) p->ifiler);

 /* reading files, with byte swap */
 if (UNLIKELY((fpl = csound->ldmemfile2withCB(csound, filel, CSFTYPE_FLOATS_BINARY,

116

 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load left data file, exiting\n\n"));

 if (UNLIKELY((fpr = csound->ldmemfile2withCB(csound, filer, CSFTYPE_FLOATS_BINARY,
 swap4bytes)) == NULL))
 return
 csound->InitError(csound, Str("\n\n\nCannot load right data file, exiting\n\n"));

 /* do not need to be in p, as only used in init */
 fpindexl = (float *)fpl->beginp;
 fpindexr = (float *)fpr->beginp;

 /* setup structure values */
 p->irlength = irlength;
 p->irlengthpad = irlengthpad;
 p->overlapsize = overlapsize;

 /* allocate memory */
 if (!p->power.auxp || p->power.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->power);
 if (!p->HRTFave.auxp || p->HRTFave.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->HRTFave);
 if (!p->num.auxp || p->num.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->num);
 if (!p->denom.auxp || p->denom.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->denom);
 if (!p->cohermags.auxp || p->cohermags.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->cohermags);
 if (!p->coheru.auxp || p->coheru.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->coheru);
 if (!p->coherv.auxp || p->coherv.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->coherv);

 if (!p->filtout.auxp || p->filtout.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->filtout);
 if (!p->filtuout.auxp || p->filtuout.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->filtuout);
 if (!p->filtvout.auxp || p->filtvout.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->filtvout);
 if (!p->filtpad.auxp || p->filtpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->filtpad);
 if (!p->filtupad.auxp || p->filtupad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->filtupad);
 if (!p->filtvpad.auxp || p->filtvpad.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->filtvpad);

 /* zero numerator and power buffer, as they accumulate */
 memset(p->power.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->num.auxp, 0, irlength * sizeof(MYFLT));
 /* no need to zero other above mem, as it will be filled in init */

 if (!p->matrixlu.auxp || p->matrixlu.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->matrixlu);
 if (!p->matrixrv.auxp || p->matrixrv.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->matrixrv);
 if (!p->olmatrixlu.auxp || p->olmatrixlu.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize * sizeof(MYFLT), &p->olmatrixlu);
 if (!p->olmatrixrv.auxp || p->olmatrixrv.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize * sizeof(MYFLT), &p->olmatrixrv);
 if (!p->hrtfl.auxp || p->hrtfl.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->hrtfl);
 if (!p->hrtfr.auxp || p->hrtfr.size < irlengthpad * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlengthpad * sizeof(MYFLT), &p->hrtfr);
 if (!p->olhrtfl.auxp || p->olhrtfl.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize * sizeof(MYFLT), &p->olhrtfl);
 if (!p->olhrtfr.auxp || p->olhrtfr.size < overlapsize * sizeof(MYFLT))
 csound->AuxAlloc(csound, overlapsize * sizeof(MYFLT), &p->olhrtfr);

 memset(p->matrixlu.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->matrixrv.auxp, 0, irlengthpad * sizeof(MYFLT));

117

 memset(p->olmatrixlu.auxp, 0, overlapsize * sizeof(MYFLT));
 memset(p->olmatrixrv.auxp, 0, overlapsize * sizeof(MYFLT));
 memset(p->hrtfl.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->hrtfr.auxp, 0, irlengthpad * sizeof(MYFLT));
 memset(p->olhrtfl.auxp, 0, overlapsize * sizeof(MYFLT));
 memset(p->olhrtfr.auxp, 0, overlapsize * sizeof(MYFLT));

 if (!p->buffl.auxp || p->buffl.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->buffl);
 if (!p->buffr.auxp || p->buffr.size < irlength * sizeof(MYFLT))
 csound->AuxAlloc(csound, irlength * sizeof(MYFLT), &p->buffr);

 memset(p->buffl.auxp, 0, irlength * sizeof(MYFLT));
 memset(p->buffr.auxp, 0, irlength * sizeof(MYFLT));

 /* buffers to store hrtf data */
 bufflp = (MYFLT *)p->buffl.auxp;
 buffrp = (MYFLT *)p->buffr.auxp;

 /* 0 delay iterators */
 p->u = p->v = p->w = p->x = p->y = p->z = 0;
 p->ut = p->vt = p->wt = p->xt = p->yt = p->zt = 0;
 p->utf1 = p->vtf1 = p->wtf1 = p->xtf1 = p->ytf1 = p->ztf1 = 0;
 p->utf2 = p->vtf2 = p->wtf2 = p->xtf2 = p->ytf2 = p->ztf2 = 0;

 /* calculate delayline lengths */
 meanfporder = meanfp * (order + 1);
 meanfpsamps = (int)(meanfp * sr);
 meanfpordersamps = (int)(meanfporder * sr);

 /* setup reverb time */
 delaytime = rt60low > rt60high ? rt60low : rt60high;

 /* in samples */
 delaytime *= sr;
 /* schroeder suggests 0.15 modes per Hz, so M should be > 0.15 t60 */
 delaytime /= 7;

 /* which no. of delay lines implies ave delay nearest to mfp(which is an appropriate
 ave)? */
 Msix = abs((int)(delaytime / 6) - meanfpsamps);
 Mtwelve = abs((int)(delaytime / 12) - meanfpsamps);
 Mtwentyfour = abs((int)(delaytime / 24) - meanfpsamps);
 M = Mtwelve < Mtwentyfour ? (Msix < Mtwelve ? 6 : 12) : 24;

 delaytime /= M;
 delaytimeint = (int)delaytime;

 if(delaytimeint < meanfpsamps)
 delaytimeint = meanfpsamps;

 /* maximum value, according to primes array and delay line allocation */
 if(delaytimeint > 10112)
 delaytimeint = 10112;

 /* minimum values, according to primes array and delay line allocation */
 if(M==6)
 {
 if(delaytimeint < 164)
 delaytimeint = 164;
 }
 if(M==12)
 {
 if(delaytimeint < 374)
 delaytimeint = 374;
 }
 if(M==24)
 {
 if(delaytimeint < 410)
 delaytimeint = 410;
 }

118

 /* allocate memory based on M: number of delays */
 if (!p->delays.auxp || p->delays.size < M * sizeof(int))
 csound->AuxAlloc(csound, M * sizeof(int), &p->delays);
 if (!p->gi.auxp || p->gi.size < M * sizeof(MYFLT))
 csound->AuxAlloc(csound, M * sizeof(MYFLT), &p->gi);
 if (!p->ai.auxp || p->ai.size < M * sizeof(MYFLT))
 csound->AuxAlloc(csound, M * sizeof(MYFLT), &p->ai);
 if (!p->inmat.auxp || p->inmat.size < M * sizeof(MYFLT))
 csound->AuxAlloc(csound, M * sizeof(MYFLT), &p->inmat);
 if (!p->inmatlp.auxp || p->inmatlp.size < M * sizeof(MYFLT))
 csound->AuxAlloc(csound, M * sizeof(MYFLT), &p->inmatlp);
 if (!p->dellp.auxp || p->dellp.size < M * sizeof(MYFLT))
 csound->AuxAlloc(csound, M * sizeof(MYFLT), &p->dellp);
 if (!p->outmat.auxp || p->outmat.size < M * sizeof(MYFLT))
 csound->AuxAlloc(csound, M * sizeof(MYFLT), &p->outmat);

 memset(p->delays.auxp, 0, M * sizeof(int));
 memset(p->gi.auxp, 0, M * sizeof(MYFLT));
 memset(p->ai.auxp, 0, M * sizeof(MYFLT));
 memset(p->inmat.auxp, 0, M * sizeof(MYFLT));
 memset(p->inmatlp.auxp, 0, M * sizeof(MYFLT));
 memset(p->dellp.auxp, 0, M * sizeof(MYFLT));
 memset(p->outmat.auxp, 0, M * sizeof(MYFLT));

 /* choose appropriate base delay times */
 for(i = 0; i < 212; i++)
 {
 if(M == 6)
 test = (i > 6 ? i : 6) - 6;
 else if(M == 12)
 test = (i > 15 ? i : 15) - 15;
 else
 test = (i > 16 ? i : 16) - 16;

 if(primes[i] > delaytimeint || primes[test] > meanfpordersamps)
 {
 basedelay = i - 1;
 if(primes[test] > meanfpordersamps)
 csound->Message(csound, "\nfdn delay > earlies del..., fixed!");
 *p->idel = FL(meanfpordersamps - primes[test - 1]) / sr;
 break;
 }
 }

 delaysp = (int *)p->delays.auxp;

 /* fill delay data, note this data can be filled locally */
 delaysp[0] = primes[basedelay];
 delaysp[1] = primes[basedelay + 3];
 delaysp[2] = primes[basedelay - 3];
 delaysp[3] = primes[basedelay + 6];
 delaysp[4] = primes[basedelay - 6];
 delaysp[5] = primes[basedelay + 9];
 if(M ==12 || M==24)
 {
 delaysp[6] = primes[basedelay - 9];
 delaysp[7] = primes[basedelay + 12];
 delaysp[8] = primes[basedelay - 12];
 delaysp[9] = primes[basedelay + 15];
 delaysp[10] = primes[basedelay - 15];
 delaysp[11] = primes[basedelay + 18];
 }
 if(M ==24)
 {
 /* fill in gaps... */
 delaysp[12] = primes[basedelay + 1];
 delaysp[13] = primes[basedelay - 1];
 delaysp[14] = primes[basedelay + 4];
 delaysp[15] = primes[basedelay - 4];
 delaysp[16] = primes[basedelay + 7];

119

 delaysp[17] = primes[basedelay - 7];
 delaysp[18] = primes[basedelay + 10];
 delaysp[19] = primes[basedelay - 10];
 delaysp[20] = primes[basedelay + 13];
 delaysp[21] = primes[basedelay - 13];
 delaysp[22] = primes[basedelay + 16];
 delaysp[23] = primes[basedelay - 16];
 }

 /* setup and zero delay lines */
 if (!p->del1.auxp || p->del1.size < delaysp[0] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[0] * sizeof(MYFLT), &p->del1);
 if (!p->del2.auxp || p->del2.size < delaysp[1] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[1] * sizeof(MYFLT), &p->del2);
 if (!p->del3.auxp || p->del3.size < delaysp[2] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[2] * sizeof(MYFLT), &p->del3);
 if (!p->del4.auxp || p->del4.size < delaysp[3] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[3] * sizeof(MYFLT), &p->del4);
 if (!p->del5.auxp || p->del5.size < delaysp[4] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[4] * sizeof(MYFLT), &p->del5);
 if (!p->del6.auxp || p->del6.size < delaysp[5] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[5] * sizeof(MYFLT), &p->del6);

 memset(p->del1.auxp, 0, delaysp[0] * sizeof(MYFLT));
 memset(p->del2.auxp, 0, delaysp[1] * sizeof(MYFLT));
 memset(p->del3.auxp, 0, delaysp[2] * sizeof(MYFLT));
 memset(p->del4.auxp, 0, delaysp[3] * sizeof(MYFLT));
 memset(p->del5.auxp, 0, delaysp[4] * sizeof(MYFLT));
 memset(p->del6.auxp, 0, delaysp[5] * sizeof(MYFLT));

 /* if 12 delay lines required */
 if(M == 12 || M==24)
 {
 if (!p->del1t.auxp || p->del1t.size < delaysp[6] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[6] * sizeof(MYFLT), &p->del1t);
 if (!p->del2t.auxp || p->del2t.size < delaysp[7] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[7] * sizeof(MYFLT), &p->del2t);
 if (!p->del3t.auxp || p->del3t.size < delaysp[8] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[8] * sizeof(MYFLT), &p->del3t);
 if (!p->del4t.auxp || p->del4t.size < delaysp[9] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[9] * sizeof(MYFLT), &p->del4t);
 if (!p->del5t.auxp || p->del5t.size < delaysp[10] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[10] * sizeof(MYFLT), &p->del5t);
 if (!p->del6t.auxp || p->del6t.size < delaysp[11] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[11] * sizeof(MYFLT), &p->del6t);

 memset(p->del1t.auxp, 0, delaysp[6] * sizeof(MYFLT));
 memset(p->del2t.auxp, 0, delaysp[7] * sizeof(MYFLT));
 memset(p->del3t.auxp, 0, delaysp[8] * sizeof(MYFLT));
 memset(p->del4t.auxp, 0, delaysp[9] * sizeof(MYFLT));
 memset(p->del5t.auxp, 0, delaysp[10] * sizeof(MYFLT));
 memset(p->del6t.auxp, 0, delaysp[11] * sizeof(MYFLT));
 }
 if(M==24)
 {
 if (!p->del1tf.auxp || p->del1tf.size < delaysp[12] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[12] * sizeof(MYFLT), &p->del1tf);
 if (!p->del2tf.auxp || p->del2tf.size < delaysp[13] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[13] * sizeof(MYFLT), &p->del2tf);
 if (!p->del3tf.auxp || p->del3tf.size < delaysp[14] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[14] * sizeof(MYFLT), &p->del3tf);
 if (!p->del4tf.auxp || p->del4tf.size < delaysp[15] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[15] * sizeof(MYFLT), &p->del4tf);
 if (!p->del5tf.auxp || p->del5tf.size < delaysp[16] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[16] * sizeof(MYFLT), &p->del5tf);
 if (!p->del6tf.auxp || p->del6tf.size < delaysp[17] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[17] * sizeof(MYFLT), &p->del6tf);
 if (!p->del7tf.auxp || p->del7tf.size < delaysp[18] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[18] * sizeof(MYFLT), &p->del7tf);
 if (!p->del8tf.auxp || p->del8tf.size < delaysp[19] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[19] * sizeof(MYFLT), &p->del8tf);

120

 if (!p->del9tf.auxp || p->del9tf.size < delaysp[20] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[20] * sizeof(MYFLT), &p->del9tf);
 if (!p->del10tf.auxp || p->del10tf.size < delaysp[21] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[21] * sizeof(MYFLT), &p->del10tf);
 if (!p->del11tf.auxp || p->del11tf.size < delaysp[22] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[22] * sizeof(MYFLT), &p->del11tf);
 if (!p->del12tf.auxp || p->del12tf.size < delaysp[23] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[23] * sizeof(MYFLT), &p->del12tf);

 memset(p->del1tf.auxp, 0, delaysp[12] * sizeof(MYFLT));
 memset(p->del2tf.auxp, 0, delaysp[13] * sizeof(MYFLT));
 memset(p->del3tf.auxp, 0, delaysp[14] * sizeof(MYFLT));
 memset(p->del4tf.auxp, 0, delaysp[15] * sizeof(MYFLT));
 memset(p->del5tf.auxp, 0, delaysp[16] * sizeof(MYFLT));
 memset(p->del6tf.auxp, 0, delaysp[17] * sizeof(MYFLT));
 memset(p->del7tf.auxp, 0, delaysp[18] * sizeof(MYFLT));
 memset(p->del8tf.auxp, 0, delaysp[19] * sizeof(MYFLT));
 memset(p->del9tf.auxp, 0, delaysp[20] * sizeof(MYFLT));
 memset(p->del10tf.auxp, 0, delaysp[21] * sizeof(MYFLT));
 memset(p->del11tf.auxp, 0, delaysp[22] * sizeof(MYFLT));
 memset(p->del12tf.auxp, 0, delaysp[23] * sizeof(MYFLT));
 }

 powerp = (MYFLT *)p->power.auxp;
 HRTFavep = (MYFLT *)p->HRTFave.auxp;
 nump = (MYFLT *)p->num.auxp;
 denomp = (MYFLT *)p->denom.auxp;
 cohermagsp = (MYFLT *)p->cohermags.auxp;
 coherup = (MYFLT *)p->coheru.auxp;
 cohervp = (MYFLT *)p->coherv.auxp;

 /* usually, just go through all files; in this case, just doubled due to symmetry
 (with exceptions, as below) */
 for(i = 0; i < 368; i ++)
 {
 /* if at a measurement where no doubling for symmetry necessary... */
 if(i == 0 || i == 28 || i == 29 || i == 59 || i == 60 || i == 96 || i == 97 || i ==
 133 || i == 134 || i == 170 || i == 171 || i == 207 || i == 208 || i == 244 || i
 == 245 || i == 275 || i == 276 || i == 304 || i == 305 || i == 328 || i == 346
 || i == 347 || i == 359 || i == 360 || i == 366 || i == 367)
 skipdouble = 1;
 else
 skipdouble = 0;

 for(j = 0; j < irlength; j ++)
 {
 bufflp[j] = fpindexl[skip + j];
 buffrp[j] = fpindexr[skip + j];
 }

 /* deal with 0 hz and nyq: may be a negative real val, no need for fabs() as
 squaring anyway! */
 /* skipdouble: l = r */
 if(skipdouble)
 {
 powerp[0] = powerp[0] + FL(SQUARE(bufflp[0]));
 powerp[1] = powerp[1] + FL(SQUARE(bufflp[1]));
 }
 /* include both */
 else
 {
 powerp[0] = powerp[0] + FL(SQUARE(bufflp[0])) + FL(SQUARE(buffrp[0]));
 powerp[1] = powerp[1] + FL(SQUARE(bufflp[1])) + FL(SQUARE(buffrp[1]));
 }

 for(j = 2; j < irlength; j += 2)
 {
 if(skipdouble)
 powerp[j] = powerp[j] + (MYFLT)SQUARE(bufflp[j]);
 else
 powerp[j] = powerp[j] + (MYFLT)SQUARE(bufflp[j]) + (MYFLT)SQUARE(buffrp[j]);

121

 powerp[j + 1] = FL(0.0);
 }
 skip += irlength;
 }

 for(i = 0; i < irlength; i++)
 HRTFavep[i] = FL(sqrt(powerp[i] / 710));

 fpindexl = (float *)fpl->beginp;
 fpindexr = (float *)fpr->beginp;
 skip = 0;

 /* coherence values */
 for(i = 0; i< 368; i++)
 {
 /* if at a measurement where no doubling for symmetry necessary... */
 if(i == 0 || i == 28 || i == 29 || i == 59 || i == 60 || i == 96 || i == 97 || i =
 133 || i == 134 || i == 170 || i == 171 || i == 207 || i == 208 || i == 244 || i
 == 245 || i == 275 || i == 276 || i == 304 || i == 305 || i == 328 || i == 346
 || i == 347 || i == 359 || i == 360 || i == 366 || i == 367)
 skipdouble = 1;
 else
 skipdouble = 0;

 for(j = 0; j < irlength; j ++)
 {
 bufflp[j] = fpindexl[skip + j];
 buffrp[j] = fpindexr[skip + j];
 }

 /* back to rectangular to find numerator: need complex nos */
 /* 0Hz and Nyq ok as real */
 if(skipdouble)
 {
 nump[0] = nump[0] + (bufflp[0] * buffrp[0]);
 nump[1] = nump[1] + (bufflp[1] * buffrp[1]);
 }
 else
 {
 nump[0] = nump[0] + (bufflp[0] * buffrp[0]) + (buffrp[0] * bufflp[0]);
 nump[1] = nump[1] + (bufflp[1] * buffrp[1]) + (buffrp[1] * bufflp[1]);
 }

 /* complex multiplication */
 /* (a + i b)(c + i d) */
 /* = (a c - b d) + i(a d + b c) */
 /* conjugate: d becomes -d -> = (a c + b d) + i(- a d + b c) */
 /* doing l * conj r and r * conj l here, as dataset symmetrical...for non-
 symmetrical, just go through all and do l * conj r */
 for(j = 2; j < irlength; j += 2)
 {
 rel = bufflp[j] * (MYFLT)cos(bufflp[j + 1]);
 iml = bufflp[j] * (MYFLT)sin(bufflp[j + 1]);
 rer = buffrp[j] * (MYFLT)cos(buffrp[j + 1]);
 imr = buffrp[j] * (MYFLT)sin(buffrp[j + 1]);
 if(skipdouble)
 {
 nump[j] = nump[j] + ((rel * rer) + (iml * imr));
 nump[j + 1] = nump[j + 1] + ((rel * -imr) + (iml * rer));
 }
 else
 {
 nump[j] = nump[j] + ((rel * rer) + (iml * imr)) + ((rer * rel) + (imr * iml));
 nump[j + 1] = nump[j + 1] + ((rel * -imr) + (iml * rer)) + ((rer * -iml) + (imr
 * rel));
 }
 }
 skip += irlength;
 }

 /* 0 & nyq = fabs() for mag... */

122

 nump[0] = FL(fabs(nump[0]));
 nump[1] = FL(fabs(nump[1]));

 /* magnitudes of sum of conjugates */
 for(i = 2; i < irlength; i += 2)
 {
 retemp = nump[i];
 imtemp = nump[i + 1];
 nump[i] = FL(sqrt(SQUARE(retemp) + SQUARE(imtemp)));
 nump[i + 1] = FL(0.0);
 }

 /* sqrt (powl * powr) powl = powr in symmetric case, so just power[] needed */
 for(i = 0; i < irlength; i++)
 denomp[i] = powerp[i];

 /* coherence values */
 cohermagsp[0] = nump[0] / denomp[0];
 cohermagsp[1] = nump[1] / denomp[1];

 for(i = 2; i < irlength; i += 2)
 {
 cohermagsp[i] = nump[i] / denomp[i];
 cohermagsp[i+1] = FL(0.0);
 }

 /* coherence formula */
 coherup[0] = FL(sqrt((1.0 + cohermagsp[0]) / 2.0));
 coherup[1] = FL(sqrt((1.0 + cohermagsp[1]) / 2.0));
 cohervp[0] = FL(sqrt((1.0 - cohermagsp[0]) / 2.0));
 cohervp[1] = FL(sqrt((1.0 - cohermagsp[1]) / 2.0));

 for(i = 2; i < irlength; i += 2)
 {
 coherup[i] = FL(sqrt((1.0 + cohermagsp[i]) / 2.0));
 cohervp[i] = FL(sqrt((1.0 - cohermagsp[i]) / 2.0));
 coherup[i + 1] = FL(0.0);
 cohervp[i + 1] = FL(0.0);
 }

 /* no need to go back to rectangular for fft, as phase = 0, so same */
 csound->InverseRealFFT(csound, HRTFavep, irlength);
 csound->InverseRealFFT(csound, coherup, irlength);
 csound->InverseRealFFT(csound, cohervp, irlength);

 filtoutp = (MYFLT *)p->filtout.auxp;
 filtuoutp = (MYFLT *)p->filtuout.auxp;
 filtvoutp = (MYFLT *)p->filtvout.auxp;
 filtpadp = (MYFLT *)p->filtpad.auxp;
 filtupadp = (MYFLT *)p->filtupad.auxp;
 filtvpadp = (MYFLT *)p->filtvpad.auxp;

 /* shift */
 for(i = 0; i < irlength; i++)
 {
 filtoutp[i] = HRTFavep[(i + (irlength / 2)) % irlength];
 filtuoutp[i] = coherup[(i + (irlength / 2)) % irlength];
 filtvoutp[i] = cohervp[(i + (irlength / 2)) % irlength];
 }

 for(i = 0; i < irlength; i++)
 {
 filtpadp[i] = filtoutp[i];
 filtupadp[i] = filtuoutp[i];
 filtvpadp[i] = filtvoutp[i];
 }
 for(i = irlength; i < irlengthpad; i++)
 {
 filtpadp[i] = FL(0.0);
 filtupadp[i] = FL(0.0);
 filtvpadp[i] = FL(0.0);

123

 }

 csound->RealFFT(csound, filtpadp, irlengthpad);
 csound->RealFFT(csound, filtupadp, irlengthpad);
 csound->RealFFT(csound, filtvpadp, irlengthpad);

 T = FL(1.0 / sr);

 gip = (MYFLT *)p->gi.auxp;
 aip = (MYFLT *)p->ai.auxp;

 do
 {
 clipcheck = 0;
 alpha = rt60high / rt60low;
 p->b = FL((1.0 - alpha) / (1.0 + alpha));
 aconst = FL((log(10.0) / 4.0) * (1.0 - (1.0 / SQUARE(alpha))));
 for(i = 0; i < M; i++)
 {
 exp = FL((-3.0 * delaysp[i] * T) / rt60low);
 gip[i] = FL(pow(10.0, exp));
 aip[i] = exp * aconst;

 if(aip[i] > .99 || aip[i] < -.99)
 {
 csound->Message("\nwarning, approaching instability, fixed with a flat late

 reverb!");
 clipcheck = 1;
 if(aip[i] > .99)
 rt60high = rt60low;
 else
 rt60low = rt60high;
 break;
 }

 }
 }while(clipcheck);

 /* initialise counter and filter delays */
 p->counter = 0;
 p->inoldl = 0;
 p->inoldr = 0;
 p->M = M;

 return OK;
}

int hrtfreverb_process(CSOUND *csound, hrtfreverb *p)
{
 int i, j, k, n = csound->ksmps;

 /* signals in, out */
 MYFLT *in = p->insig;
 MYFLT *outl = p->outsigl;
 MYFLT *outr = p->outsigr;

 /* pointers to delay data */
 MYFLT *del1p, *del2p, *del3p, *del4p, *del5p, *del6p;
 MYFLT *del1tp, *del2tp, *del3tp, *del4tp, *del5tp, *del6tp;
 MYFLT *del1tfp, *del2tfp, *del3tfp, *del4tfp, *del5tfp, *del6tfp, *del7tfp, *del8tfp,
 *del9tfp, *del10tfp, *del11tfp, *del12tfp;
 int *delaysp;

 /* matrix manipulation */
 MYFLT *inmatp, *inmatlpp, *dellpp, *outmatp;

 /* delay line iterators */
 int u, v, w, x, y, z;
 int ut, vt, wt, xt, yt, zt;
 int utf1, vtf1, wtf1, xtf1, ytf1, ztf1;
 int utf2, vtf2, wtf2, xtf2, ytf2, ztf2;

124

 /* number of delays */
 int M = p->M;

 /* FIR temp variables */
 MYFLT tonall, tonalr;
 MYFLT b = p->b;

 /* IIR variables */
 MYFLT *gip, *aip;

 /* counter */
 int counter = p->counter;

 /* matrix/coher and hrtf filter buffers, with overlap add buffers */
 MYFLT *matrixlup = (MYFLT *)p->matrixlu.auxp;
 MYFLT *matrixrvp = (MYFLT *)p->matrixrv.auxp;
 MYFLT *olmatrixlup = (MYFLT *)p->olmatrixlu.auxp;
 MYFLT *olmatrixrvp = (MYFLT *)p->olmatrixrv.auxp;
 MYFLT *hrtflp = (MYFLT *)p->hrtfl.auxp;
 MYFLT *hrtfrp = (MYFLT *)p->hrtfr.auxp;
 MYFLT *olhrtflp = (MYFLT *)p->olhrtfl.auxp;
 MYFLT *olhrtfrp = (MYFLT *)p->olhrtfr.auxp;

 /* processing lengths */
 int irlength = p->irlength;
 int irlengthpad = p->irlengthpad;
 int overlapsize = p->overlapsize;

 /* 1st order FIR mem */
 MYFLT inoldl = p->inoldl;
 MYFLT inoldr = p->inoldr;

 /* filters, created in INIT */
 MYFLT *filtpadp = (MYFLT *)p->filtpad.auxp;
 MYFLT *filtupadp = (MYFLT *)p->filtupad.auxp;
 MYFLT *filtvpadp = (MYFLT *)p->filtvpad.auxp;

 MYFLT sr = p->sr;

 del1p = (MYFLT *)p->del1.auxp;
 del2p = (MYFLT *)p->del2.auxp;
 del3p = (MYFLT *)p->del3.auxp;
 del4p = (MYFLT *)p->del4.auxp;
 del5p = (MYFLT *)p->del5.auxp;
 del6p = (MYFLT *)p->del6.auxp;

 if(M==12 || M==24)
 {
 del1tp = (MYFLT *)p->del1t.auxp;
 del2tp = (MYFLT *)p->del2t.auxp;
 del3tp = (MYFLT *)p->del3t.auxp;
 del4tp = (MYFLT *)p->del4t.auxp;
 del5tp = (MYFLT *)p->del5t.auxp;
 del6tp = (MYFLT *)p->del6t.auxp;
 }
 if(M==24)
 {
 del1tfp = (MYFLT *)p->del1tf.auxp;
 del2tfp = (MYFLT *)p->del2tf.auxp;
 del3tfp = (MYFLT *)p->del3tf.auxp;
 del4tfp = (MYFLT *)p->del4tf.auxp;
 del5tfp = (MYFLT *)p->del5tf.auxp;
 del6tfp = (MYFLT *)p->del6tf.auxp;
 del7tfp = (MYFLT *)p->del7tf.auxp;
 del8tfp = (MYFLT *)p->del8tf.auxp;
 del9tfp = (MYFLT *)p->del9tf.auxp;
 del10tfp = (MYFLT *)p->del10tf.auxp;
 del11tfp = (MYFLT *)p->del11tf.auxp;
 del12tfp = (MYFLT *)p->del12tf.auxp;
 }

125

 delaysp = (int *)p->delays.auxp;

 inmatp = (MYFLT *)p->inmat.auxp;
 inmatlpp = (MYFLT *)p->inmatlp.auxp;
 dellpp = (MYFLT *)p->dellp.auxp;
 outmatp = (MYFLT *)p->outmat.auxp;

 gip = (MYFLT *)p->gi.auxp;
 aip = (MYFLT *)p->ai.auxp;

 /* point to structure */
 u = p->u;
 v = p->v;
 w = p->w;
 x = p->x;
 y = p->y;
 z = p->z;
 if(M==12 || M==24)
 {
 ut = p->ut;
 vt = p->vt;
 wt = p->wt;
 xt = p->xt;
 yt = p->yt;
 zt = p->zt;
 }
 if(M==24)
 {
 utf1 = p->utf1;
 vtf1 = p->vtf1;
 wtf1 = p->wtf1;
 xtf1 = p->xtf1;
 ytf1 = p->ytf1;
 ztf1 = p->ztf1;
 utf2 = p->utf2;
 vtf2 = p->vtf2;
 wtf2 = p->wtf2;
 xtf2 = p->xtf2;
 ytf2 = p->ytf2;
 ztf2 = p->ztf2;
 }

 /* processing loop */
 for(i=0; i < n; i++)
 {
 /* tonal filter: 1 - b pow(z,-1) / 1 - b
 1/1-b in - b/1-b in(old) */
 /* dot product of l and r = 0 for uncorrelated */
 tonall = (del1p[u] - del2p[v] + del3p[w] - del4p[x] + del5p[y] - del6p[z]);
 if(M==12 || M==24)
 tonall += (del1tp[ut] - del2tp[vt] + del3tp[wt] - del4tp[xt] + del5tp[yt] –
 del6tp[zt]);
 if(M==24)
 tonall += (del1tfp[utf1] - del2tfp[vtf1] + del3tfp[wtf1] - del4tfp[xtf1] +
 del5tfp[ytf1] - del6tfp[ztf1] + del7tfp[utf2] - del8tfp[vtf2] +
 del9tfp[wtf2] - del10tfp[xtf2] + del11tfp[ytf2] - del12tfp[ztf2]);
 matrixlup[counter] = FL(((1.0 / (1.0 - b)) * tonall) - ((b / (1.0 - b)) * inoldl));
 matrixlup[counter] /= M;
 inoldl = tonall;

 tonalr = (del1p[u] + del2p[v] + del3p[w] + del4p[x] + del5p[y] + del6p[z]);
 if(M==12 || M==24)
 tonalr += (del1tp[ut] + del2tp[vt] + del3tp[wt] + del4tp[xt] + del5tp[yt] +
 del6tp[zt]);
 if(M==24)
 tonalr += (del1tfp[utf1] - del2tfp[vtf1] + del3tfp[wtf1] - del4tfp[xtf1] +
 del5tfp[ytf1] - del6tfp[ztf1] + del7tfp[utf2] - del8tfp[vtf2] +
 del9tfp[wtf2] - del10tfp[xtf2] + del11tfp[ytf2] - del12tfp[ztf2]);
 matrixrvp[counter] = FL(((1.0 / (1.0 - b)) * tonalr) - ((b / (1.0 - b)) * inoldr));
 matrixrvp[counter] /= M;

126

 inoldr = tonalr;

 /* inputs from del lines (need more for larger fdn) */
 inmatp[0] = del1p[u];
 inmatp[1] = del2p[v];
 inmatp[2] = del3p[w];
 inmatp[3] = del4p[x];
 inmatp[4] = del5p[y];
 inmatp[5] = del6p[z];

 if(M==12 || M==24)
 {
 inmatp[6] = del1tp[ut];
 inmatp[7] = del2tp[vt];
 inmatp[8] = del3tp[wt];
 inmatp[9] = del4tp[xt];
 inmatp[10] = del5tp[yt];
 inmatp[11] = del6tp[zt];
 }
 if(M==24)
 {
 inmatp[12] = del1tfp[utf1];
 inmatp[13] = del2tfp[vtf1];
 inmatp[14] = del3tfp[wtf1];
 inmatp[15] = del4tfp[xtf1];
 inmatp[16] = del5tfp[ytf1];
 inmatp[17] = del6tfp[ztf1];
 inmatp[18] = del7tfp[utf2];
 inmatp[19] = del8tfp[vtf2];
 inmatp[20] = del9tfp[wtf2];
 inmatp[21] = del10tfp[xtf2];
 inmatp[22] = del11tfp[ytf2];
 inmatp[23] = del12tfp[ztf2];
 }

 /* low pass each
 filter:
 gi (1 - ai / 1 - ai pow(z,-1))
 op = gi - gi ai x(n) + ai del
 del = op */

 for(j = 0; j < M; j++)
 {
 inmatlpp[j] = (gip[j] * (1 - aip[j]) * inmatp[j]) + (aip[j] * dellpp[j]);
 dellpp[j] = inmatlpp[j];
 }

 /* matrix mult: multiplying a vector by a matrix:
 embedded householders cause stability issues, as reported by Murphy...*/
 for(j = 0; j < M; j++)
 {
 outmatp[j] = FL(0.0);
 for(k = 0; k < M; k++)
 {
 if(M==24)
 outmatp[j] += (matrix24[j * M + k] * inmatlpp[k]);
 else if(M==12)
 outmatp[j] += (matrix12[j * M + k] * inmatlpp[k]);
 else
 outmatp[j] += (matrix6[j * M + k] * inmatlpp[k]);
 }
 }

 del1p[u] = outmatp[0] + in[i];
 del2p[v] = outmatp[1] + in[i];
 del3p[w] = outmatp[2] + in[i];
 del4p[x] = outmatp[3] + in[i];
 del5p[y] = outmatp[4] + in[i];
 del6p[z] = outmatp[5] + in[i];
 if(M == 12 || M == 24)
 {

127

 del1tp[ut] = outmatp[6] + in[i];
 del2tp[vt] = outmatp[7] + in[i];
 del3tp[wt] = outmatp[8] + in[i];
 del4tp[xt] = outmatp[9] + in[i];
 del5tp[yt] = outmatp[10] + in[i];
 del6tp[zt] = outmatp[11] + in[i];
 }
 if(M == 24)
 {
 del1tfp[utf1] = outmatp[12] + in[i];
 del2tfp[vtf1] = outmatp[13] + in[i];
 del3tfp[wtf1] = outmatp[14] + in[i];
 del4tfp[xtf1] = outmatp[15] + in[i];
 del5tfp[ytf1] = outmatp[16] + in[i];
 del6tfp[ztf1] = outmatp[17] + in[i];
 del7tfp[utf2] = outmatp[18] + in[i];
 del8tfp[vtf2] = outmatp[19] + in[i];
 del9tfp[wtf2] = outmatp[20] + in[i];
 del10tfp[xtf2] = outmatp[21] + in[i];
 del11tfp[ytf2] = outmatp[22] + in[i];
 del12tfp[ztf2] = outmatp[23] + in[i];
 }

 u = (u != delaysp[0] - 1 ? u + 1 : 0);
 v = (v != delaysp[1] - 1 ? v + 1 : 0);
 w = (w != delaysp[2] - 1 ? w + 1 : 0);
 x = (x != delaysp[3] - 1 ? x + 1 : 0);
 y = (y != delaysp[4] - 1 ? y + 1 : 0);
 z = (z != delaysp[5] - 1 ? z + 1 : 0);

 if(M == 12 || M == 24)
 {
 ut = (ut != delaysp[6] - 1 ? ut + 1 : 0);
 vt = (vt != delaysp[7] - 1 ? vt + 1 : 0);
 wt = (wt != delaysp[8] - 1 ? wt + 1 : 0);
 xt = (xt != delaysp[9] - 1 ? xt + 1 : 0);
 yt = (yt != delaysp[10] - 1 ? yt + 1 : 0);
 zt = (zt != delaysp[11] - 1 ? zt + 1 : 0);
 }
 if(M == 24)
 {
 utf1 = (utf1 != delaysp[12] - 1 ? utf1 + 1 : 0);
 vtf1 = (vtf1 != delaysp[13] - 1 ? vtf1 + 1 : 0);
 wtf1 = (wtf1 != delaysp[14] - 1 ? wtf1 + 1 : 0);
 xtf1 = (xtf1 != delaysp[15] - 1 ? xtf1 + 1 : 0);
 ytf1 = (ytf1 != delaysp[16] - 1 ? ytf1 + 1 : 0);
 ztf1 = (ztf1 != delaysp[17] - 1 ? ztf1 + 1 : 0);
 utf2 = (utf2 != delaysp[18] - 1 ? utf2 + 1 : 0);
 vtf2 = (vtf2 != delaysp[19] - 1 ? vtf2 + 1 : 0);
 wtf2 = (wtf2 != delaysp[20] - 1 ? wtf2 + 1 : 0);
 xtf2 = (xtf2 != delaysp[21] - 1 ? xtf2 + 1 : 0);
 ytf2 = (ytf2 != delaysp[22] - 1 ? ytf2 + 1 : 0);
 ztf2 = (ztf2 != delaysp[23] - 1 ? ztf2 + 1 : 0);
 }

 /* output, increment counter */
 outl[i] = hrtflp[counter];
 outr[i] = hrtfrp[counter];

 counter++;

 if(counter == irlength)
 {
 for(j = irlength; j < irlengthpad; j++)
 {
 matrixlup[j] = FL(0.0);
 matrixrvp[j] = FL(0.0);
 }

 /* fft result from matrices */
 csound->RealFFT(csound, matrixlup, irlengthpad);

128

 csound->RealFFT(csound, matrixrvp, irlengthpad);

 /* convolution: spectral multiplication */
 csound->RealFFTMult(csound, matrixlup, matrixlup, filtupadp, irlengthpad,

 (MYFLT)1.0);
 csound->RealFFTMult(csound, matrixrvp, matrixrvp, filtvpadp, irlengthpad,
 (MYFLT)1.0);

 /* ifft result */
 csound->InverseRealFFT(csound, matrixlup, irlengthpad);
 csound->InverseRealFFT(csound, matrixrvp, irlengthpad);

 for(j = 0; j < irlength; j++)
 {
 matrixlup[j] = matrixlup[j] + (j < overlapsize ? olmatrixlup[j] : FL(1.0));
 matrixrvp[j] = matrixrvp[j] + (j < overlapsize ? olmatrixrvp[j] : FL(1.0));
 }

 /* store overlap for next time */
 for(j = 0; j < overlapsize; j++)
 {
 olmatrixlup[j] = matrixlup[j + irlength];
 olmatrixrvp[j] = matrixrvp[j + irlength];
 }

 /* coherence formula */
 for(j = 0; j < irlength; j++)
 {
 hrtflp[j] = matrixlup[j] + matrixrvp[j];
 hrtfrp[j] = matrixlup[j] - matrixrvp[j];
 }

 for(j = irlength; j < irlengthpad; j++)
 {
 hrtflp[j] = FL(0.0);
 hrtfrp[j] = FL(0.0);
 }

 /* fft result from matrices */
 csound->RealFFT(csound, hrtflp, irlengthpad);
 csound->RealFFT(csound, hrtfrp, irlengthpad);

 /* convolution: spectral multiplication */
 csound->RealFFTMult(csound, hrtflp, hrtflp, filtpadp, irlengthpad, FL(1.0));
 csound->RealFFTMult(csound, hrtfrp, hrtfrp, filtpadp, irlengthpad, FL(1.0));

 /* ifft result */
 csound->InverseRealFFT(csound, hrtflp, irlengthpad);
 csound->InverseRealFFT(csound, hrtfrp, irlengthpad);

 /* scale */
 for(j = 0; j < irlengthpad; j++)
 {
 hrtflp[j] = hrtflp[j]/(sr / FL(38000.0));
 hrtfrp[j] = hrtfrp[j]/(sr / FL(38000.0));
 }

 for(j = 0; j < irlength; j++)
 {
 hrtflp[j] = hrtflp[j] + (j < overlapsize ? olhrtflp[j] : FL(0.0));
 hrtfrp[j] = hrtfrp[j] + (j < overlapsize ? olhrtfrp[j] : FL(0.0));
 }

 /* store overlap for next time */
 for(j = 0; j < overlapsize; j++)
 {
 olhrtflp[j] = hrtflp[j + irlength];
 olhrtfrp[j] = hrtfrp[j + irlength];
 }

 counter = 0;

129

 } /* end of irlength loop */
 } /* end of ksmps loop */

 /* keep for next time */
 p->counter = counter;

 p->u = u;
 p->v = v;
 p->w = w;
 p->x = x;
 p->y = y;
 p->z = z;
 if(M == 12 || M == 24)
 {
 p->ut = ut;
 p->vt = vt;
 p->wt = wt;
 p->xt = xt;
 p->yt = yt;
 p->zt = zt;
 }
 if(M == 24)
 {
 p->utf1 = utf1;
 p->vtf1 = vtf1;
 p->wtf1 = wtf1;
 p->xtf1 = xtf1;
 p->ytf1 = ytf1;
 p->ztf1 = ztf1;
 p->utf2 = utf2;
 p->vtf2 = vtf2;
 p->wtf2 = wtf2;
 p->xtf2 = xtf2;
 p->ytf2 = ytf2;
 p->ztf2 = ztf2;
 }

 p->inoldl = inoldl;
 p->inoldr = inoldr;

 return OK;
}

static OENTRY localops[] =
{
 {
 "hrtfreverb", sizeof(hrtfreverb), 5, "aai", "aiiSSoop",
 (SUBR)hrtfreverb_init, NULL, (SUBR)hrtfreverb_process
 }
};

LINKAGE

130

Appendix 4: MultiBin

4.1 MultiBin.py

#Brian Carty
#PhD Code
#MultiBin, August 2010

import csnd
from Tkinter import *
import tkSimpleDialog
import tkMessageBox
import cmath, math

#inherit frame...class is a frame!
class Application(Frame):

 #global reverb on/off
 reverb = 0
 #how many sources currently active?
 count = 0
 #how many sources removed in current scene
 removed = 0
 #how many sources have been 'clear alled'
 allremoved = 0
 #source instrument on?
 playing = 0

 def move(self, event):
 #widget that called the event
 loc = event.widget
 #set, in case of canvas scroll?...
 x = loc.canvasx(event.x)
 y = loc.canvasy(event.y)
 #find_withtag returns list (tuple) of matching items, in order created:
 #only 1 item will be returned here (or if they are at same loc, most recently
 created)...
 item = loc.find_withtag("current")
 #text only has 2 coords...
 loc.coords(item, x, y)
 #choose value based on default room sizes/inputted size
 #head is item 2, oval 3, rectangle 1, then sources in order created...
 #if > no of items active, subtract no of removed...also subtract total removed...
 if item[0] - 3 - self.allremoved > self.count:
 chno = item[0] - 3 - self.allremoved - self.removed
 else:
 chno = item[0] - 3 - self.allremoved

 self.cs.SetChannel("xsrc%d" %chno, (x / self.sizex) * self.roomarray[0])
 #send inverted y to csound...
 y = self.sizey - y
 self.cs.SetChannel("ysrc%d" %chno, (y / self.sizey) * self.roomarray[1])

 #a simpler move function, as head will always be on same channel
 def movehead(self, event):
 #widget that called the event
 loc = event.widget
 #set, in case of canvas scroll?...
 self.headx = loc.canvasx(event.x)
 #invert y throughout
 self.heady = loc.canvasy(event.y)
 #y = self.sizey - y
 item = loc.find_withtag("current")[0]
 #head coords...include existing measured rotation...
 loc.coords(item, self.headx + self.rot[0].real, self.heady + self.rot[0].imag,

131

 self.headx + self.rot[1].real, self.heady + self.rot[1].imag,
 self.headx + self.rot[2].real, self.heady + self.rot[2].imag,
 self.headx + self.rot[3].real, self.heady + self.rot[3].imag,
 self.headx + self.rot[4].real, self.heady + self.rot[4].imag,
 self.headx + self.rot[5].real, self.heady + self.rot[5].imag,
 self.headx + self.rot[6].real, self.heady + self.rot[6].imag)
 #move range
 self.canvas.coords(self.oval, self.headx - self.range, self.heady - self.range,
 self.headx + self.range, self.heady + self.range)
 self.cs.SetChannel("xhead", (self.headx / self.sizex) * self.roomarray[0])
 #send inverted y to csound...
 y = self.sizey - self.heady
 self.cs.SetChannel("yhead", (y / self.sizey) * self.roomarray[1])

 def select(self, event):
 loc = event.widget
 item = loc.find_withtag("current")
 #red if selected!
 loc.itemconfig(item, fill = "red")

 def deselect(self, event):
 loc = event.widget
 item = loc.find_withtag("current")
 loc.itemconfig(item, fill = "blue")

 def play(self):
 self.perf.InputMessage("i1 0 -1")
 self.playing = 1

 def stop(self):
 if self.playing:
 self.perf.InputMessage("i-1 0 -1")
 self.playing = 0

 def headrotate(self, event):
 degrees = self.rotscale.get()
 self.cs.SetChannel("rot", degrees)
 #rotate polygon...use complex maths here, as it more elegant
 offset = complex(self.headx, self.heady)
 radangle = math.radians(degrees)
 compangle = cmath.exp(radangle * 1j)
 #angle, from centre of non rotated polygon, rotate by point at 0, 0, add offset
 again at end...
 self.rot[0] = compangle * (complex(self.headx + 5, self.heady + 10) - offset)
 self.rot[1] = compangle * (complex(self.headx + 10, self.heady) - offset)
 self.rot[2] = compangle * (complex(self.headx + 5, self.heady - 10) - offset)
 self.rot[3] = compangle * (complex(self.headx, self.heady - 13) - offset)
 self.rot[4] = compangle * (complex(self.headx - 5, self.heady - 10) - offset)
 self.rot[5] = compangle * (complex(self.headx - 10, self.heady) - offset)
 self.rot[6] = compangle * (complex(self.headx - 5, self.heady + 10) - offset)
 #add offset again...
 self.canvas.coords(self.head, self.rot[0].real + self.headx, self.rot[0].imag +
 self.heady, self.rot[1].real + self.headx, self.rot[1].imag + self.heady,

self.rot[2].real + self.headx, self.rot[2].imag + self.heady,
self.rot[3].real + self.headx, self.rot[3].imag + self.heady,
self.rot[4].real + self.headx, self.rot[4].imag + self.heady,
self.rot[5].real + self.headx, self.rot[5].imag + self.heady,
self.rot[6].real + self.headx, self.rot[6].imag + self.heady)

 def lateamp(self, event):
 vol = self.latescale.get()
 self.cs.SetChannel("lateamp", vol)

 def end(self):
 self.perf.Stop()
 self.perf.Join()
 self.master.destroy()

 #generic: new speaker
 def newspeaker(self, x, y):
 self.count = self.count + 1

132

 no = str(self.count)

 self.canvas.create_text(x, y, text = no, fill = 'blue', tags = 'drag')

 #invert y for csound
 y = self.sizey - y

 S = 'i101.{0} 0 -1 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} \
 {11} {12} {13} {14} {15} {16} {17} {18} {19} {20}' \
 .format(self.count, (x / self.sizex) * self.roomarray[0], (y / self.sizey) *

self.roomarray[1], self.roomarray[0], self.roomarray[1], self.roomarray[2],
self.roomarray[3], self.roomarray[4], self.roomarray[5], self.roomarray[6],
self.roomarray[7], self.roomarray[8], self.roomarray[9], self.roomarray[10],
self.roomarray[11], self.roomarray[12], self.roomarray[13], self.roomarray[14],
self.roomarray[15], self.roomarray[16], self.roomarray[17])

 #set channel
 self.cs.SetChannel("xsrc%d" %self.count, (x / self.sizex) * self.roomarray[0])
 self.cs.SetChannel("ysrc%d" %self.count, (y / self.sizey) * self.roomarray[1])
 self.perf.InputMessage(S)

 #turn on global late reverb, if not already on (may have added and removed sources!)
 if self.count == 1:
 if self.reverb == 0:
 self.perf.InputMessage("i102 0 -1")
 self.reverb = 1
 print "reverb"

 def newsrc(self):
 #default add source: in front of listener
 self.src = location(self)
 if self.src.flag:
 mode = self.src.locationdata[0]
 if mode == 1:
 self.newpolar(self.src.locationdata[2], self.src.locationdata[1])
 #simpler scenario...
 elif mode == 2:
 self.srcx = self.src.locationdata[1]
 self.srcy = self.src.locationdata[2]

 #invert y for pixel location
 self.srcy = self.sizey - self.srcy
 #validate location, leave other validation up to csound...wall params...room
 limits...
 #src must be minimum 10 cm from wall, as per csound
 if self.srcx > self.sizex - (.1 / self.roomarray[0]) * self.sizex:
 self.srcx = self.sizex - (.1 / self.roomarray[0]) * self.sizex
 if self.srcx < (.1 / self.roomarray[0]) * self.sizex:
 self.srcx = (.1 / self.roomarray[0]) * self.sizex
 if self.srcy > self.sizey - (.1 / self.roomarray[1]) * self.sizey:
 self.srcy = self.sizey - (.1 / self.roomarray[1]) * self.sizey
 if self.srcy < (.1 / self.roomarray[1]) * self.sizey:
 self.srcy = (.1 / self.roomarray[1]) * self.sizey

 self.newspeaker(self.srcx, self.srcy)

 def newpolar(self, angle, distance):
 radangle = math.radians(angle)
 #angle measured from centre, clockwise...
 #sin gives x coord...cos y...
 #srcx and srcy are temp variables used for each source
 self.srcx = math.sin(radangle)
 self.srcy = math.cos(radangle)
 #radius: same if calculated from x or y params, as per setup
 mult = self.sizex / self.roomarray[0] * distance
 self.srcx *= mult
 self.srcy *= mult
 #relative to listener/centre
 self.srcx += self.sizex / 2
 self.srcy += self.sizey / 2

133

 #each default setup will call a unique function...
 #need different menu for different possible ambi, vbap setups in csound...
 #mode 4 ambisonics
 def ambi4(self):
 self.clearall()
 #local variables here
 #angles: anticlockwise
 ang = -22.5
 if self.roomarray[0] < self.roomarray[1]:
 dist = self.roomarray[0] / 3
 else:
 dist = self.roomarray[1] / 3
 for i in range(1, 9):
 self.newpolar(ang, dist)
 #invert y for pixel location
 self.srcy = self.sizey - self.srcy
 self.newspeaker(self.srcx, self.srcy)
 ang -= 45

 #from manual example...
 def vbap8(self):
 self.clearall()
 ang = 15
 if self.roomarray[0] < self.roomarray[1]:
 dist = self.roomarray[0] / 3
 else:
 dist = self.roomarray[1] / 3
 for i in range(1, 9):
 self.newpolar(ang, dist)
 #invert y for pixel location
 self.srcy = self.sizey - self.srcy
 self.newspeaker(self.srcx, self.srcy)
 if i == 4:
 ang += 30
 else:
 ang += 50

 #simple, externalised stereo
 def stereo(self):
 self.clearall()
 if self.roomarray[0] < self.roomarray[1]:
 dist = self.roomarray[0] / 3
 else:
 dist = self.roomarray[1] / 3
 self.newpolar(30, dist)
 #invert y for pixel location
 self.srcy = self.sizey - self.srcy
 self.newspeaker(self.srcx, self.srcy)
 self.newpolar(-30, dist)
 self.srcy = self.sizey - self.srcy
 self.newspeaker(self.srcx, self.srcy)

 def clear(self):
 #last element of array = [-1]
 recent = self.canvas.find_all()[-1]
 self.canvas.delete(recent)
 self.perf.InputMessage("i-101.%d 0 -1" %self.count)
 print "i-101.%d 0 -1 SENT" %self.count

 def clearrecent(self):
 if self.count > 0:
 self.clear()
 self.count -= 1
 self.removed += 1

 def clearall(self):
 self.stop()
 while self.count > 0:
 self.clear()
 self.count -= 1
 self.allremoved += 1

134

 self.allremoved += self.removed
 self.removed = 0

 #get parameters...
 def newscene(self):
 #stop playback
 self.stop()
 self.rm = room(self)
 #if not cancel...
 if self.rm.flag:
 self.clearall()
 #turn off reverb
 if self.reverb == 1:
 self.perf.InputMessage("i-102 0 -1")
 self.reverb = 0
 print "reverb off"
 #globals off
 self.perf.InputMessage("i-100 0 -1")

 for i in range(18):
 self.roomarray[i] = self.rm.rmdata[i]

 self.sizey = self.sizex / self.roomarray[0] * self.roomarray[1]
 self.canvas.configure(width = self.sizex, height = self.sizey)
 #useful canvas area...needs to be min .1m from wall
 self.canvas.coords(self.rect, (.1 / self.roomarray[0]) * self.sizex + 1, (.1 /

 self.roomarray[1]) * self.sizey + 1,
 self.sizex + 2 - (.1 / self.roomarray[0]) * self.sizex,
 self.sizey + 2 - (.1 / self.roomarray[1]) * self.sizey)
 self.canvas.itemconfigure(self.rect, fill = "white", outline = "grey")
 #initialise
 self.headx = self.sizex / 2
 self.heady = self.sizey / 2
 #reset rotation
 self.rotscale.set(0)
 #reset amp
 self.latescale.set(0.3)
 #move 'head' to middle
 self.canvas.coords(self.head, self.headx + 5, self.heady + 10, self.headx + 10,

 self.heady, self.headx + 5, self.heady - 10, self.headx,
 self.heady - 13, self.headx - 5, self.heady - 10,
 self.headx - 10, self.heady, self.headx - 5, self.heady + 10)

 #near field range
 self.range = self.sizex / self.roomarray[0] * .45
 self.canvas.coords(self.oval, self.headx - self.range, self.heady - self.range,
 self.headx + self.range, self.heady + self.range)
 #head back to middle!
 self.cs.SetChannel("xhead", self.roomarray[0] / 2)
 self.cs.SetChannel("yhead", self.roomarray[1] / 2)
 #rotation back to 0
 self.cs.SetChannel("rot", 0)
 self.statusstring = ("x: %.2f, y: %.2f z: %.2f" %(self.roomarray[0],
 self.roomarray[1], self.roomarray[2]))
 self.status.config(text = self.statusstring)
 self.status.update_idletasks()
 # globals back on
 self.perf.InputMessage("i100 0 -1 %f %f" %(self.roomarray[0] / 2,
 self.roomarray[1] / 2))

 def about(self):
 tkMessageBox.showwarning("Hi", "MultiBin v 1.0\nAugust 2010\nby Brian Carty\nUses
Csound opcodes hrtfealry & hrtfreverb\nfor help and blurb, see bmcarty.com")

 def __init__(self, master = None):
 master.title("MultiBin")

 Frame.__init__(self, master)

 #csound setup: turn on, wait for input!
 self.cs = csnd.Csound()
 self.cs.Compile("MultiBin.csd")

135

 self.perf = csnd.CsoundPerformanceThread(self.cs)
 self.perf.Play()

 #create a Menu base
 self.menu = Menu(self)
 #add it
 self.master.config(menu = self.menu)
 #create menu
 self.filemenu = Menu(self.menu)
 #file menu
 self.menu.add_cascade(label = "File", menu = self.filemenu)
 #this choice is required before processing begins!
 self.filemenu.add_command(label = "New Scene(==Restart)", command = self.newscene)
 self.filemenu.add_command(label = "New Source", command = self.newsrc)
 self.filemenu.add_separator()
 self.filemenu.add_command(label = "'Ideal' Stereo", command = self.stereo)
 #ambisonics: layout 4 from bformdec1
 self.filemenu.add_command(label = "Ambi - Octogon", command = self.ambi4)
 self.filemenu.add_command(label = "VBAP - 8 Channel", command = self.vbap8)
 self.filemenu.add_separator()
 #clear
 self.filemenu.add_command(label = "Clear Recent", command = self.clearrecent)
 self.filemenu.add_command(label = "Clear All", command = self.clearall)
 self.filemenu.add_separator()
 self.filemenu.add_command(label = "Exit", command = self.end)
 self.helpmenu = Menu(self.menu)
 self.menu.add_cascade(label = "Help", menu = self.helpmenu)
 self.helpmenu.add_command(label = "About...", command = self.about)

 #button for source on/off, dial for head rotation
 self.playbut = Button(master, text = "Start Playback Instr", command = self.play)
 self.stopbut = Button(master, text = "Stop", command = self.stop)

 #scale widget for head rotation
 self.rotscale = Scale(master, orient = HORIZONTAL, label = "Head Rotation",

 from_ = -90.0, to = 90.0, length = 120, cursor = "exchange",
 resolution = .1, command = self.headrotate)

 #scale for output level of late reverb
 self.latescale = Scale(master, orient = HORIZONTAL, label = "Late Amp", from_ = 0,
 to = .99, length = 120, resolution = .01,

 command = self.lateamp)

 #status: hints for user
 self.statusstring = "default room: x: 10.00, y: 10.00, z: 3.00"
 self.status = Label(master, text = self.statusstring, relief = SUNKEN, anchor = W)

 #canvas, default size for first run...
 self.canvas = Canvas(master, bg = "grey", width = 400, height = 400)

 #setup grid...
 self.playbut.grid(row = 0, column = 0)
 self.stopbut.grid(row = 0, column = 1)
 self.rotscale.grid(row = 0, column = 2)
 self.latescale.grid(row = 0, column = 3)
 self.canvas.grid(row = 1, column = 0, columnspan = 4)
 self.status.grid(row = 2, column = 0, columnspan = 4, sticky = E + W)

 #set reverb...
 self.latescale.set(0.3)

 #defaults
 #roomarray data order: rmx, rmy, rmz, wlh, wll, wl1, wl2, wl3, flh, fll, fl1, fl2,
 fl3, clh, cll, cl1, cl2, cl3
 self.roomarray = [10.0, 10.0, 10.0, 3.0, .3, .1, .75, .95, .9, .6, .1, .95, .6, .35,
 .2, .1, 1.0, 1.0, 1.0]

 self.sizex = 400.0
 self.sizey = self.sizex / self.roomarray[0] * self.roomarray[1]
 #useful canvas area...needs to be min .1m from wall
 #canvas goes from 1 - 401, add extra 1 to bottom right corner as rect is contained

136

 within this point
 self.rect = self.canvas.create_rectangle((.1 / self.roomarray[0]) * self.sizex + 1,
 (.1 / self.roomarray[1]) * self.sizey + 1,
 self.sizex + 2 - (.1 / self.roomarray[0]) * self.sizex,
 self.sizey + 2 - (.1 / self.roomarray[1]) * self.sizey,
 fill = "white", outline = "grey")
 #initialise
 self.headx = self.sizex / 2
 self.heady = self.sizey / 2
 #initialise to zero...for rotation
 self.rot = []
 for i in range (7):
 self.rot.append(complex(0, 0))
 #head best as last object, most recent will be selected first!
 self.range = self.sizex / self.roomarray[0] * .45
 self.oval = self.canvas.create_oval(self.headx - self.range, self.heady –

 self.range, self.headx + self.range,
 self.heady + self.range, outline = "grey")

 #points for polygon of head...
 self.head = self.canvas.create_polygon(self.headx + 5, self.heady + 10,
 self.headx + 10, self.heady, self.headx + 5,

 self.heady - 10, self.headx, self.heady - 13,
 self.headx - 5, self.heady - 10,
 self.headx - 10, self.heady, self.headx - 5,
 self.heady + 10, fill = "green",
 tags = "draghead", outline = "black")

 self.cs.SetChannel("xhead", self.roomarray[0] / 2)
 self.cs.SetChannel("yhead", self.roomarray[1] / 2)
 self.cs.SetChannel("rot", 0)
 self.cs.SetChannel("lateamp", 0.3)
 self.perf.InputMessage("i100 0 -1 %f %f" %(self.roomarray[0] / 2,

 self.roomarray[1] / 2))
 #link 'drag' to functions
 self.canvas.tag_bind('drag','<B1-Motion>', self.move)
 self.canvas.tag_bind('drag','<ButtonPress>', self.select)
 self.canvas.tag_bind('drag','<ButtonRelease>', self.deselect)
 self.canvas.tag_bind('draghead','<B1-Motion>', self.movehead)
 #closing window also ends csd...
 self.master.protocol("WM_DELETE_WINDOW", self.end)

#dialog for room creation
class room(tkSimpleDialog.Dialog):

 flag = 0

 def body(self, master):
 self.complex = IntVar()
 Checkbutton(master, variable = self.complex, text = "Show Complex Params?",
 command = self.check).grid(row = 0, column = 0)
 Label(master, text = "Room X:").grid(row = 2, column = 0)
 Label(master, text = "Room Y:").grid(row = 3, column = 0)
 Label(master, text = "Room Z:").grid(row = 4, column = 0)

 #empty list
 self.r = []
 for i in range (3):
 self.r.append(Entry(master, width = 10))
 self.r[0].insert(0, "10")
 self.r[1].insert(0, "10")
 self.r[2].insert(0, "3")
 for i in range (3):
 self.r[i].grid(row = i + 2, column = 1)
 Label(master, text = "High Ab Coef:").grid(row = 1, column = 2)
 Label(master, text = "Low Ab Coef:").grid(row = 2, column = 2)
 Label(master, text = "Band 1(cf: 250Hz):").grid(row = 3, column = 2)
 Label(master, text = "Band 2(cf: 1000Hz):").grid(row = 4, column = 2)
 Label(master, text = "Band 3(cf: 4000Hz):").grid(row = 5, column = 2)
 Label(master, text = "Walls").grid(row = 0, column = 3)

 self.w = []
 for i in range (5):

137

 self.w.append(Entry(master, width = 10))
 self.w[0].insert(0, ".3")
 self.w[1].insert(0, ".1")
 self.w[2].insert(0, ".75")
 self.w[3].insert(0, ".95")
 self.w[4].insert(0, ".9")
 for i in range (5):
 self.w[i].grid(row = i + 1, column = 3)

 Label(master, text = "Floor").grid(row = 0, column = 4)
 self.f = []
 for i in range (5):
 self.f.append(Entry(master, width = 10))
 self.f[0].insert(0, ".6")
 self.f[1].insert(0, ".1")
 self.f[2].insert(0, ".95")
 self.f[3].insert(0, ".6")
 self.f[4].insert(0, ".35")
 for i in range (5):
 self.f[i].grid(row = i + 1, column = 4)

 Label(master, text = "Ceiling").grid(row = 0, column = 5)
 self.c = []
 for i in range (5):
 self.c.append(Entry(master, width = 10))
 self.c[0].insert(0, ".2")
 self.c[1].insert(0, ".1")
 self.c[2].insert(0, "1.0")
 self.c[3].insert(0, "1.0")
 self.c[4].insert(0, "1.0")
 for i in range (5):
 self.c[i].grid(row = i + 1, column = 5)

 #disable extra parameters by default
 for i in range (5):
 self.w[i].configure(state = DISABLED)
 self.f[i].configure(state = DISABLED)
 self.c[i].configure(state = DISABLED)

 #initial focus
 return self.r[0]

 def apply(self):
 #avoid error on cancel with flag...
 self.flag = 1
 self.rmdata = []
 for i in range (3):
 self.rmdata.append(float(self.r[i].get()))
 for i in range (5):
 self.rmdata.append(float(self.w[i].get()))
 for i in range (5):
 self.rmdata.append(float(self.f[i].get()))
 for i in range (5):
 self.rmdata.append(float(self.c[i].get()))

 def check(self):
 if self.complex.get() == 0:
 for i in range (5):
 self.w[i].configure(state = DISABLED)
 self.f[i].configure(state = DISABLED)
 self.c[i].configure(state = DISABLED)
 else:
 for i in range (5):
 self.w[i].configure(state = NORMAL)
 self.f[i].configure(state = NORMAL)
 self.c[i].configure(state = NORMAL)

class location(tkSimpleDialog.Dialog):

 flag = 0

138

 def body(self, master):
 self.mode = IntVar()
 self.r1 = Radiobutton(master, text = "Angle, Distance Input", value = 1,

 variable = self.mode, command = self.rect)
 #need to do this separately to return correct type self.r1...
 self.r1.grid(row = 0, column = 0, columnspan = 2)
 Label(master, text="OR").grid(row = 0, column = 2)
 Radiobutton(master, text = "X, Y Coordinates", value = 2, variable = self.mode,
 command = self.polar).grid(row = 0, column = 3, columnspan = 2)
 Label(master, text="Note: All values must fit on canvas/in room specified, and will

 be truncated accordingly!").grid(row = 1, columnspan = 4)
 Label(master, text="Distance from Centre:").grid(row = 2, column = 0)
 Label(master, text="Angle:").grid(row = 3, column = 0)
 Label(master, text="X:").grid(row = 2, column = 3)
 Label(master, text="Y:").grid(row = 3, column = 3)
 self.r1.select()

 self.e = []
 for i in range (4):
 self.e.append(Entry(master, width = 10))
 self.e[0].insert(0, "1")
 self.e[1].insert(0, "0")
 self.e[2].insert(0, "100")
 self.e[3].insert(0, "100")
 for i in range (2):
 self.e[i].grid(row = i + 2, column = 1)
 for i in range (2):
 self.e[i + 2].grid(row = i + 2, column = 4)

 for i in range (2):
 self.e[i + 2].configure(state = DISABLED)

 #initial focus
 return self.e[0]

 def apply(self):
 self.flag = 1
 dist = float(self.e[0].get())
 angle = float(self.e[1].get())
 x = float(self.e[2].get())
 y = float(self.e[3].get())
 temp = self.mode.get()
 #fill in array...
 if temp == 1:
 self.locationdata = 1, dist, angle
 elif temp == 2:
 self.locationdata = 2, x, y

 def rect(self):
 for i in range (2):
 self.e[i].configure(state = NORMAL)
 for i in range (2):
 self.e[i+ 2].configure(state = DISABLED)

 def polar(self):
 for i in range (2):
 self.e[i].configure(state = DISABLED)
 for i in range (2):
 self.e[i+ 2].configure(state = NORMAL)

app = Application(Tk())
app.mainloop()

139

Appendix 5: Opcode Manual Pages

hrtfmove

hrtfmove - Generates dynamic 3d binaural audio for headphones using magnitude interpolation and phase

truncation.

Description

This opcode takes a source signal and spatialises it in the three-dimensional space around a listener by

convolving the it with stored head related transfer function (HRTF) based filters.

Syntax

aleft, aright hrtfmove asrc, kAz, kElev, ifilel, ifiler [, imode, ifade, isr]

Initialisation
ifilel - left HRTF spectral data file.

ifiler - right HRTF spectral data file .

Note:

Spectral datafiles (based on the MIT HRTF database) are available in three different sampling rates: 44.1,

48 and 96 kHz and are labelled accordingly. Input and processing sr should match datafile sr. Files should

be in the current directory or the SADIR (see Environment Variables).

imode - optional, default 0 for phase truncation, 1 for minimum phase

ifade - optional, number of processing buffers for phase change crossfade (default 8). Legal range is 1-24.

A low value is recommended for complex sources (4 or less: a higher value may make the crossfade

audible), a higher value (8 or more: a lower value may make the inconsistency when the filter changes

phase values audible) for narrowband sources. Does not effect minimum phase processing.

Note:

Occasionally fades may overlap (when unnaturally fast/complex trajectories are requested). In this case, a

warning will be printed. Use a smaller crossfade or slightly change trajectory to avoid any possible

audible discontinuities that may arise.

isr - optional, default 44.1kHz, legal values: 44100, 48000 and 96000.

Performance
asrc - Input/source signal.

kAz - azimuth value in degrees. Positive values represent position on the right, negative values are

positions on the left.

kElev - elevation value in degrees. Positive values represent position above horizontal, negative values are

positions below horizontal (min -40).

Artefact-free user-defined trajectories are made possible using an interpolation algorithm based on

spectral magnitude interpolation and phase truncation. Crossfades are implemented to minimise/eliminate

any inconsistencies caused by updating phase values. These crossfades are performed over a user

140

definable number of convolution processing buffers. Complex sources may only need to crossfade over 1

buffer; narrow band sources may need several. The opcode also offers minimum-phase based processing,

a more traditional and complex method. In this mode, the HRTF filters used are reduced to minimum-

phase representations and the interpolation process then uses the relationship between minimum-phase

magnitude and phase spectra. Interaural time difference, which is inherent to the phase truncation process,

is reintroduced in the minimum-phase process using variable delay lines.

Example

Here is an example of the hrtfmove opcode.

<CsoundSynthesizer>
<CsOptions>
; realtime audio out
; -o dac
; For Non-realtime ouput leave only the line below:
 -o hrtf.wav
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 10
nchnls = 2

gasrc init 0

instr 1 ;a plucked string

 kamp = p4
 kcps = cpspch(p5)
 icps = cpspch(p5)

 a1 pluck kamp, kcps, icps, 0, 1

 gasrc = gasrc + a1

endin

instr 10 ;uses output from instr1 as source

 kaz linseg 0, p3, 720 ;2 full rotations

 aleft,aright hrtfmove gasrc, kaz, 0, "hrtf-44100-left.dat", "hrtf-44100-right.dat"

 outs aleft, aright

 gasrc = 0

endin

</CsInstruments>
<CsScore>

; Play Instrument 1: a simple arpeggio
i1 0 .2 15000 8.00
i1 + .2 15000 8.04
i1 + .2 15000 8.07
i1 + .2 15000 8.11
i1 + .2 15000 9.02
i1 + 1.5 15000 8.11
i1 + 1.5 15000 8.07
i1 + 1.5 15000 8.04
i1 + 1.5 15000 8.00
i1 + 1.5 15000 7.09
i1 + 1.5 15000 8.00

141

; Play Instrument 10 for 10 seconds.
i10 0 10

</CsScore>
</CsoundSynthesizer>

142

hrtfmove2

hrtfmove2 - Generates dynamic 3D binaural audio for headphones using a Woodworth based spherical-

head model with improved low-frequency phase accuracy.

Description

This opcode takes a source signal and spatialises it in the three dimensional space around a listener using

head related transfer function (HRTF) based filters.

Syntax

aleft, aright hrtfmove2 asrc, kAz, kElev, ifilel, ifiler [, ioverlap, iradius, isr]

Initialisation
ifilel - left HRTF spectral data file

ifiler - right HRTF spectral data file

Note:

Spectral datafiles (based on the MIT HRTF database) are available in 3 different sampling rates: 44.1, 48

and 96 kHz and are labelled accordingly. Input and processing sr should match datafile sr. Files should be

in the current directory or the SADIR (see Environment Variables).

ioverlap - optional, number of overlaps for STFT processing (default 4). See STFT section of manual.

iradius - optional, head radius used for phase spectra calculation in centimetres (default 8.8).

isr - optional, default 44.1kHz, legal values: 44100, 48000 and 96000.

Performance
asrc - Input/source signal.

kAz - azimuth value in degrees. Positive values represent position on the right, negative values are

positions on the left.

kElev - elevation value in degrees. Positive values represent position above horizontal, negative values are

positions below horizontal (min -40).

Artefact-free user-defined trajectories are made possible using an interpolation algorithm based on

spectral magnitude interpolation and a derived phase spectrum employing the Woodworth spherical-head

model. Accuracy is increased for the data set provided by extracting and applying a frequency-dependent

scaling factor to the phase spectra, leading to a more precise low-frequency interaural time difference.

Users can control head radius for the phase derivation, allowing a crude level of individualisation. The

dynamic source version of the opcode uses a Short Time Fourier Transform algorithm to avoid artefacts

caused by derived phase spectra changes. STFT processing means this opcode is more computationally

intensive than hrtfmove using phase truncation, but phase is constantly updated by hrtfmove2.

Example

Here is an example of the hrtfmove2 opcode.

<CsoundSynthesizer>
<CsOptions>
; Select flags here

143

; realtime audio out
; -o dac
; For Non-realtime ouput leave only the line below:
 -o hrtf.wav
</CsOptions>
<CsInstruments>

sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

gasrc init 0

instr 1 ;a plucked string

 kamp = p4
 kcps = cpspch(p5)
 icps = cpspch(p5)

 a1 pluck kamp, kcps, icps, 0, 1

 gasrc = gasrc + a1

endin

instr 10 ;uses output from instr1 as source

 kaz linseg 0, p3, 720 ;2 full rotations

 aleft,aright hrtfmove2 gasrc, kaz, 0, "hrtf-44100-left.dat", "hrtf-44100-right.dat"

 outs aleft, aright

 gasrc = 0

endin

</CsInstruments>
<CsScore>

; Play Instrument 1: a simple arpeggio
i1 0 .2 15000 8.00
i1 + .2 15000 8.04
i1 + .2 15000 8.07
i1 + .2 15000 8.11
i1 + .2 15000 9.02
i1 + 1.5 15000 8.11
i1 + 1.5 15000 8.07
i1 + 1.5 15000 8.04
i1 + 1.5 15000 8.00
i1 + 1.5 15000 7.09
i1 + 1.5 15000 8.00

; Play Instrument 10 for 10 seconds.
i10 0 10

</CsScore>
</CsoundSynthesizer>

144

hrtfstat

hrtfstat - Generates static 3D binaural audio for headphones using a Woodworth based spherical-head

model with improved low-frequency phase accuracy.

Description

This opcode takes a source signal and spatialises it in the three dimensional space around a listener using

head related transfer function (HRTF) based filters. It produces a static output (azimuth and elevation

parameters are i-rate), because a static source allows much more efficient processing than hrtfmove and

hrtfmove2.

Syntax

aleft, aright hrtfstat asrc, iAz, iElev, ifilel, ifiler [,iradius, isr]

Initialisation
iAz - azimuth value in degrees. Positive values represent position on the right, negative values are

positions on the left.

iElev - elevation value in degrees. Positive values represent position above horizontal, negative values are

positions below horizontal (min -40).

ifilel - left HRTF spectral data file

ifiler - right HRTF spectral data file

Note:

Spectral datafiles (based on the MIT HRTF database) are available in 3 different sampling rates: 44.1, 48

and 96 kHz and are labelled accordingly. Input and processing sr should match datafile sr. Files should be

in the current directory or the SADIR (see Environment Variables).

iradius - optional, head radius used for phase spectra calculation in centimetres (default 8.8)

isr - optional (default 44.1kHz). Legal values are 44100, 48000 and 96000.

Performance
asrc - Input/source signal

Accurate static spatialisation is made possible using an interpolation algorithm based on spectral

magnitude interpolation and a derived phase employing the Woodworth spherical-head model. Accuracy

is increased for the data set provided by extracting and applying a frequency-dependent scaling factor to

the phase spectra, leading to a more precise low-frequency interaural time difference. Users can control

head radius for the phase derivation, allowing a crude level of individualisation. The static source version

of the opcode uses overlap-add convolution (it does not need STFT processing, see hrtfmove2), and is

thus considerably more efficient than hrtfmove2 or hrtfmove, but is not designed to generate moving

sources.

Example

Here is an example of the hrtfstat opcode.

<CsoundSynthesizer>

145

<CsOptions>
; Select flags here
; realtime audio out
; -o dac
; For Non-realtime ouput leave only the line below:
-o hrtf.wav

</CsOptions>
<CsInstruments>

sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

gasrc init 0

instr 1 ;a plucked string

 kamp = p4
 kcps = cpspch(p5)
 icps = cpspch(p5)

 a1 pluck kamp, kcps, icps, 0, 1

 gasrc = gasrc + a1

endin

instr 10 ;uses output from instr1 as source

 aleft,aright hrtfstat gasrc, 90, 0, "hrtf-44100-left.dat","hrtf-44100-right.dat"

 outs aleft, aright

 gasrc = 0

endin

</CsInstruments>
<CsScore>

; Play Instrument 1: a plucked string
i1 0 2 20000 8.00

; Play Instrument 10 for 2 seconds.
i10 0 2

</CsScore>
</CsoundSynthesizer>

146

hrtfearly

hrtfearly - Generates 3D binaural audio with high-fidelity early reflections in a parametric room using a

Phase Truncation algorithm. Although valid as a stand alone opcode, hrtfearly is designed to work with

hrtfreverb to provide spatially accurate, dynamic binaural reverberation. A number of sources can be

processed dynamically using a number of hrtfearly instances. All can then be processed with one instance

of hrtfreverb.

Description

This opcode essentially nests the hrtfmove opcode in an image model for a user-definable shoebox shaped

room. A default room can be selected, or advanced room parameters can be used. Room surfaces can be

controlled with high and low-frequency absorption coefficients and gain factors of a three-band equaliser.

Syntax

aleft, aright, irt60low, irt60high, imfp hrtfearly asrc, ksrcx, ksrcy, ksrcz, klstnrx, klstnry, klstnrz, ifilel,

ifiler, idefroom, [ifade, isr, iorder, ithreed, kheadrot, iroomx, iroomy, iroomz, iwallhigh, iwalllow,

iwallgain1, iwallgain2, iwallgain3, ifloorhigh, ifloorlow, ifloorgain1, ifloorgain2, ifloorgain3,

iceilinghigh, iceilinglow, iceilinggain1, iceilinggain2, iceilinggain3]

Initialisation
ifilel - left HRTF spectral data file

ifiler - right HRTF spectral data file

Note:

Spectral datafiles (based on the MIT HRTF database) are available in three different sampling rates: 44.1,

48 and 96 kHz and are labelled accordingly. Input and processing sr should match datafile sr. Files should

be in the current directory or the SADIR (see Environment Variables).

idefroom – default room, medium (1: 10 10 3), small (2: 3 4 3) or large (3: 20 25 7). Wall

details (high coef, low coef, gain1, gain2, gain3): .3, .1, .75, .95, .9. Floor: .6, .1, .95, .6, .35. Ceiling: .2,

.1, 1, 1, 1. If any other value is entered for default room (e.g. 0), optional room parameters will be read.

ifade - optional, number of processing buffers for phase change crossfade (default 8). Legal range is 1-24.

See hrtfmove.

isr - optional (default 44.1 kHz). Legal values are 44100, 48000 and 96000.

iorder - optional, order of images processed: higher order: more reflections. Defaults to 1, legal range: 0-4.

ithreed - optional, process image sources in three dimensions (1) or two (0: default).

iroomx - optional, x room size in metres, will be read if no valid default room is entered (all below

parameters behave similarly). Minimum room size is 2 2 2.

iroomy - optional, y room size.

iroomz - optional, z room size.

iwallhigh - optional, high frequency wall absorption coefficient (all 4 walls are assumed identical).

Absorption coefficients will affect reverb time output.

iwalllow - optional, low frequency wall absorption coefficient.

iwallgain1 - optional, gain on filter centred at 250 Hz (all filters have a Q implying 4 octaves)

iwallgain2 - optional, as above, centred on 1000 Hz.

iwallgain3 - optional, as above, centred on 4000 Hz.

ifloorhigh, ifloorlow, ifloorgain1, ifloorgain2, ifloorgain3 - as above for floor.

iceilinghigh, iceilinglow, iceilinggain1, iceilinggain2, iceilinggain3 - as above for ceiling.

147

Performance
ksrcx – source x location, must be 10 cm inside room. Also, near-field HRTFs not processed, so source

will not change spatially within a 45 cm radius of the listener. These restrictions also apply to location

parameters below.

ksrcy – source y location.

ksrcz – source z location.

klstnrx, klstnry, klstnrz – listener location, as above.

kheadrot - optional, angular value for head rotation. Positive implies source movement to the right.

asrc - Input/source signal

Output
irt60low - suggested low frequency reverb tme for later binaural reverb.

irt60high - as above, for high frequency.

imfp - mean free path of room, to be used with later reverb.

Example

Here is a simple example of the hrtfearly and hrtfreverb opcodes.

<CsoundSynthesizer>
<CsOptions>
; Select flags here
; realtime audio out
; -o dac
; For Non-realtime ouput leave only the line below:
-o hrtf.wav

</CsOptions>
<CsInstruments>

sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

gasrc init 0

instr 1 ;a plucked string

 kamp = p4
 kcps = cpspch(p5)
 icps = cpspch(p5)

 a1 pluck kamp, kcps, icps, 0, 1

 gasrc = gasrc + a1

endin

instr 10 ;uses output from instr1 as source

 ;simple path for source
 kx line 2, p3, 9

 ;early reflections: room default 1
 aearlyl,aearlyr, irt60low, irt60high, imfp hrtfearly gasrc, kx, 5, 1, 5, 1, 1,
 "hrtf-44100-left.dat", "hrtf-44100-right.dat", 1

 ;later reverb, uses outputs from hrtfearly
 arevl, arevr, idel hrtfreverb gasrc, irt60low, irt60high, "hrtf-44100-left.dat",
 "hrtf-44100-right.dat", 44100, imfp

148

 ;delayed and scaled
 alatel delay arevl * .1, idel
 alater delay arevr * .1, idel

 outs aearlyl + alatel, aearlyr + alater

 gasrc = 0

endin

</CsInstruments>
<CsScore>

; Play Instrument 1: a simple arpeggio
i1 0 .2 15000 8.00
i1 + .2 15000 8.04
i1 + .2 15000 8.07
i1 + .2 15000 8.11
i1 + .2 15000 9.02
i1 + 1.5 15000 8.11
i1 + 1.5 15000 8.07
i1 + 1.5 15000 8.04
i1 + 1.5 15000 8.00
i1 + 1.5 15000 7.09
i1 + 1.5 15000 8.00

; Play Instrument 10 for 11 seconds.
i10 0 11

</CsScore>
</CsoundSynthesizer>

149

hrtfreverb

hrtfreverb – A binaural, dynamic FDN based diffuse-field reverberator. The opcode works independently

as an efficient, flexible reverberator. It is, however, designed for use with hrtfearly to provide spatially

accurate reverberation with user definable source trajectories. Accurate interaural coherence is also

provided.

Description

A frequency-dependent, efficient reverberant field is created based on low and high frequency desired

reverb times. The opcode is designed to work with hrtfearly, ideally using its outputs as inputs. However,

hrtfreverb can be used as a standalone tool. Stability is enforced.

Syntax

aleft, aright, idel hrtfreverb asrc, ilowrt60, ihighrt60, ifilel, ifiler [,isr, imfp, iorder]

Initialisation
ilowrt60 - low frequency reverb time.

Ihighrt60 – high frequency reverb time.

ifilel - left HRTF spectral data file

ifiler - right HRTF spectral data file

Note:

Spectral datafiles (based on the MIT HRTF database) are available in three different sampling rates: 44.1,

48 and 96 kHz and are labelled accordingly. Input and processing sr should match datafile sr. Files should

be in the current directory or the SADIR (see Environment Variables).

isr - optional (default 44.1kHz). Legal values are 44100, 48000 and 96000.

imfp - optional, mean free path, defaults to that of a medium room from hrtfearly (.0109). If used with

hrtfearly, the mean free path of the room can be used to calculate the appropriate delay for the later

reverb. Legal range: the mean free path of the smallest room allowed by hrtfearly (0.003876) – 1.

iorder – optional, order of early reflection processing. If used with hrtfearly, the order of early reflections

can be used to calculate the appropriate delay on the later reverb.

Performance
asrc - Input/source signal

Output
idel – if used with hrtfearly, the appropriate delay for the later reverb, based on the room and order of

processing.

Example

See the hrtfearly manual page for a simple example of the hrtfearly and hrtfreverb opcodes.

