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Abstract—A dual Pyroelectric InfraRed (PIR) sensor node is
used for human activity monitoring by using simple data pro-
cessing techniques. We first point out the limitations of existing
approaches, employing PIR sensors, for activity monitoring. We
study the spectral characteristics of the sensor data for the cases
of varying distance between the sensor and moving object as well
as the speed of the object under observation. The sampled data
from two PIR sensors, is first processed individually to determine
the activity window size, which is then fed to a simple algorithm
to determine direction of motion. We also claim that human count
can be obtained for special scenarios. Preliminary results of our
experimentation show the effectiveness of the simple algorithm
proposed and give us an avenue for estimating more involved
parameters used for speed and localization.

Index Terms—Multi-sensor, activity monitoring, data fusion,
pyroelectric IR.

I. INTRODUCTION

Human activity monitoring has always been of much impor-
tance, because of a large class of applications, ranging from
surveillance to tracking and from smart environments to navi-
gation. Traditionally, human activity monitoring is performed
using image sensors producing large data volumes resulting
in huge data processing overheads. This may be required to
extract certain features of interest, for instance, number of
people, position, direction and speed of motion [1] to name a
few. Although activity monitoring approaches based on visual
sensor solutions provide accurate results, they require large
investment and significant infrastructure deployment. Contrary
to that, a system based on pyroelectric infrared (PIR) sensors
exploit pyroelectricity to detect an object, which is not at
thermal equilibrium with its environment [2]. PIR sensors have
seen wide deployments in commercial applications, to detect
human presence, to trigger security alarms, to control lighting.
In addition, these sensors have also found applications in
thermal imaging, radiometry, thermometry as well as biometry
[3], [4].

While a single PIR sensor is widely used for each surveil-
lance region in security related applications to detect an
intruder [5], multiple PIR sensors are needed for more ad-
vanced applications such as to achieve coverage [6], assist
video surveillance [7] as well as perform tracking [8]. PIR

sensors has been used to differentiate a still person from its
background [5]. The authors in [6] have employed four PIR
sensors to achieve 360◦ coverage while performing human
detection. Since the outputs from all four PIR sensors are
fed to the summing amplifier before feeding to the analog-
to-digital converter (ADC), this results in inaccessibility of
individual sensor outputs to the algorithm. Doing so limits the
performance of the sensor node to only human detection. A
video surveillance system using multi-modal sensor integration
is proposed in [7], where a camera-based tracking system is
integrated with a wireless PIR sensor network.

PIR sensors have also been integrated with other sensing
modalities to achieve lightweight processing. The problem of
localization in a dynamic environment is considered in [9]
by using PIR and ultrasonic sensors simultaneously. Linear
regression along with smoothing is used for distance correction
leading to accurate localization. The multi-modal sensor node
design in [6] integrates PIR sensors with acoustic and magnetic
sensors to differentiate among humans, soldiers and vehicles.
The idea is based on exploiting multiple sensor modalities to
achieve the objective.

The task of human monitoring and tracking using PIR
sensors can also be implemented in a hierarchical network.
This involves the collective actions of sensing modules acting
as slaves, a synchronization and error rejection module as a
master and a data fusion module termed as a host, as discussed
in [8]. In this particular implementation, the geometric sensor
module is designed with multiple PIR sensors, each equipped
with a Fresnel lens array to obtain a spatially modulated field
of view. In addition to tracking, PIR sensors can also be used to
detect, differentiate and describe human activity. A multimodal
system using a dual PIR sensor node for direction of motion
detection using a sensor activation sequence is presented in [7]
[10]. The usage of the polarity of the first pulse produced by
the sensor for determining the direction of motion limits the
applicability of this approach. In [11] the authors have used
PIR enabled sensor nodes with information exchange with a
base station to determine the direction and number of people.
However, this approach is limited due to the requirement for
accurate time synchronization across the sensor nodes and
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communication overhead involved. Our proposed approach
partially addresses these issues by integrating two PIR sensors
at each sensor node providing accurate timing for the sampled
data from the two PIR sensors and eliminating associated
communication overhead.

Rest of the paper is organized as follows. In Section II
we discuss the approaches taken in literature to obtain the
basic set of parameters, leading to an effective human activity
monitoring system. Section III outlines the procedure for data
acquisition and the simple algorithms used for processing that
data. In Section IV we provide the results for different param-
eters of interest obtained using simple processing techniques
discussed in Section III. Finally, we conclude in Section V
with some future directions.

II. HUMAN ACTIVITY MONITORING

Usually PIR sensors are designed as part of an overall in-
trusion detection system, where alarms are activated whenever
a PIR output exceeds a predefined threshold. Multiple PIR
sensors along with simple signal processing algorithms can
be used to obtain parameters of interest for human activity
monitoring (e.g. direction of motion, speed and distance of the
object and counting these objects to name a few). The first step
towards this objective involves distinguishing each individual
object and determining its direction of motion as it enters
the field-of-view (FOV) of the sensor. The next step involves
counting the number of human beings passing through the
sensor FOV and estimating the speed of motion. However,
there are two key issues in counting the objects, passing by,
and measuring their speed of motion.

The first issue is related to counting the number of people
passing through the area under observation. There are situa-
tions where more than one human being, for instance multiple
persons having a conversation and walking parallel to each
other are passing through the FOV of the sensor and are close
enough to one another that their collective PIR sensor output
is almost similar to the case of one person passing. This is
because the excitation duration and as a result the size of event
window are proportional to human body ‘thickness, which
appears to be the same for the two scenarios. The second issue
is related to speed measurement. Different approaches from the
literature, discussed below are limited in their applicability due
to the following key features of the sensor response:
• Signal strength at the output of the sensor is not only a

function of distance but also speed of the moving object.
For instance a relatively slow moving object at the same
distance will produce a weaker signal compared to an
object moving at a higher speed. This is can be seen
from our experimental results shown in Fig. 1. The results
in Fig. 1 also show the effect of speed on the spectral
characteristics of the output signal.

• The other key aspect of the sensor signal response is the
effect of the distance between the sensor and the moving
object. The change in distance not only affects the signal
strength, but also the spectral characteristics of the sensor
response. This can be seen from the experimental results

in Fig. 2, where a change in distance from 1 m to 2 m
results in a frequency change from 1.2 Hz to 0.55 Hz
corresponding to the strongest frequency component.
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Fig. 1. Experimental results for three different speeds and the corresponding
spectrum at a fixed distance form the PIR sensor.
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Fig. 2. Spectral characteristics as a function of varying distance between the
moving human object and the PIR sensor at a fixed speed.

A. Direction of Motion

A specialized lens arrangement is used in [11] for determin-
ing the direction of motion. Specifically, the authors reduced
the Fresnel lens horizontal span to a minimum, and choose
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a two element PIR sensor, to obtain a phase shift of 180◦ in
the sensor response for the opposite direction. This approach
is limited, since using a different lens arrangement or a PIR
sensor with an arbitrary number of elements may not give
the same response. A multimodal system using a dual PIR
sensor node for direction of motion detection using the sensor
activation sequence is presented in [7] [10]. Our approach to
the problem of direction of motion is somewhat similar to the
one in [7], but we measure the phase delay in the responses
from the two PIR sensors. The phase delay not only provides
an accurate direction detection but also helps in estimating the
speed of the moving object.

B. Human Counting

An automated people counting system using low resolution
cameras along with a thermal imagery sensor is discussed in
[12]. The two imaging systems complement each other in
counting people for the low and high density cases. A PIR
based direction of motion detection as well as counting of
humans, using a specialized Fresnel lens is proposed in [13].
Three physically distributed sensor nodes along the hallway
are used for counting people. Two different cases of people
walking in line and walking side by side are considered and
same direction of motion, for all the objects in the group, is
assumed. An accuracy of 75% is claimed for the case when
multiple persons are walking side by side.

C. Speed Measurement

The authors in [14] have used the frequency variations
as a raw indicator of speed. Twenty repetitive independent
back and forth walks are performed for three different speeds
namely fast, moderate and slow, along a fixed-path (hence at
same distance from the sensor). The authors do not consider
the variation in the spectral characteristics as a result of
varying the gap between the sensor and the walking person.
As we will observe from the empirical results, there is a
considerable difference in spectral characteristics due to the
varying distance. Hence spectral variations alone can not be
used as a measure of speed and it is necessary to take into
account the effect of distance.

Another approach used for vehicular traffic speed mea-
surement employing PIR sensors is discussed in [15]. The
proposed method is based on measuring the time, the vehicle
takes to traverse a fixed distance, between the footprints of the
FOVs of the two sensors on the roadway. Consider an object
moving at constant speed v and being detected by a PIR sensor
for the time interval t. If there are two sensors placed close to
each other, such that the midpoints of their FOVs are separated
by a distance d, as shown in Fig. 3, then

d =
∫ t2

t1

vdt, (1)

where t1 and t2 correspond to the time instances when the
moving object reaches the sensor FOV midpoints correspond-
ing to the center of the event window. The assumption here
is that the object is moving in a narrow pathway (of width

c as depicted in Fig. 3) to approximate the distance d as a
constant. This results in two sensors producing approximately
similar output regardless of how the moving object approaches
the detector. For this fixed value of d as depicted in Fig. 3,
the expression in (1) can be rewritten as

v =
d

t2 − t1
(2)

which is used in [14] for speed measurement. The result in
(2) can be used to estimate the speed of moving objects only
for constant d. This result will not be valid for human activity
monitoring, where the distance between the sensor and the
moving object changes considerably.

D. Distance Measurement

Distance estimation using two sensor nodes is discussed
in [13], where the wireless sensor nodes are installed on the
opposite sides of the hallway. They use two different features,
the relative amplitude and signal duration from two different
sensors, for distance estimation. The results in [13] show
that only region based approximate distance classification is
possible using this arrangement.

l

d

d1

d2

FOV

Dual PIR 

Sensor

c

Fig. 3. Physical arrangement of two PIR sensors and their FOV. To limit the
error due to relative proximity of the human object to the sensor we assume
that c/l ¿ 1 leading to d ≈ d1 and d ≈ d2.

III. DATA ACQUISITION AND PROCESSING

The data is either sampled directly or amplified before
sampling depending on the signal magnitude at the sensor
output. Digital potentiometers are used for dynamic amplifier
gain control to improve performance range. We have used
periodic sampling at a rate of 0.1 kHz for data sampling from
two PIR sensors simultaneously. The choice of the sampling
rate is to cover a wide range of pedestrian walking speeds.
The experiments are performed indoors under bright light
conditions.

Data from two PIR sensors mounted on a single node, for
distance and speed variation of a single moving object, is
analyzed for the spectral characteristics. Zero padding was
used to improve the resolution of our small size data set.
The frequency components corresponding to peak amplitude at
different distances and moving speeds are shown in Fig. 4 and
Fig. 5 respectively. As can be seen from the results, an increase
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in the distance results in a decrease in the frequency of the
strongest spectral component. On the other hand, increasing
speed leads to an increase in the frequency as expected.

A. Event Window Calculation

To facilitate human detection and motion tracking, the
following data processing is proposed. The duration of each
sensor excitation, including the start and end times, should
first be found. Then, the number of people as well as their
direction of passage through the sensor node viewpoint at a
given time interval can be deduced. The RMS values of sensor
outputs at event windows are recorded in an attempt to observe
its relationship with distance l from the sensor as well as the
speed of the moving object. Correlation analysis of delayed
sensor outputs is employed to calculate the relative phase delay
of both signals, one of the parameters that relates to the speed
of object passage.
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Fig. 4. Spectral characteristics as a function of distance variation between
the moving human object and PIR sensor for an approximate fixed speed of
5 km/h.

The general steps used to find the duration of sensor
excitation in the form of event window w is illustrated in
Fig. 6. As can be seen from Fig. 6, the first low-pass filter
is responsible for removing the background noise inherited in
the sensor signals and can be different for indoor and outdoor
situations. Currently, a third-order Butterworth filter with a
cut-off frequency of 5 Hz is employed. The filtered and full-
wave rectified signal is then quantized prior to the application
to second low-pass filtering. Each individual temporal sensor
excitation is segmented by the second first-order Butterworth
low-pass filtering with a 0.5 Hz cut-off, which creates an
‘enclosure’ envelope for each excitation. Finally, a gradient
search on the binary signal is performed in each enclosure to
detect the event window start and end times, and hence the
duration of sensor excitation.
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Fig. 5. Variation of spectral characteristics as a function of human speed at a
fixed distance of 2.8 m. Experiments for speeds ranging from ”slow walking”
to ”running” are performed.
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Fig. 6. Block diagram of data processing from single PIR sensor sampled
at 10 msec.

During testing, a minimum distance of l (Fig. 3), currently
set at 2 m, is used to prevent saturated sensor excitation. Also,
it is found that the absolute mean sensor outputs provides more
accurate timing information of node excitation compared to
zero-mean outputs. This is because a more effective low-pass
filtering is possible for non-negative signals compared to the
ones with fluctuations above and below the mean value.

B. Human Counting

Due to the incorporation of two PIR sensors in a sensor
node, the approaching direction of a human with respect to
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the sensor node can readily be checked by comparing the sign
of the phase delay between the two sensor outputs. The phase
delay can be readily computed as

φdelay = arg max
φ

[C(y1(ts1 , te1),

−y2(ts2 + φ, te2 + φ))] (3)

where φ is the relative phase delay in the output from sensor
2 with respect to the sensor 1 output, C denotes the cross-
correlation between two signals, y(a, b) represents the sensor
output within interval a and b while ts and te are the start
and end times of an event window, respectively. Note that
the negative polarity in y2 is to account for the physical
arrangement of the two PIR sensors, which are mounted 180◦

phase shifted on the sensor board. Taking this into account
would produce a higher average Cmax than performing cross-
correlation analysis for the two sensor outputs with the same
polarity. The magnitude of the phase delay is also related to the
speed v of human motion, while the magnitude of maximum
correlation,

Cmax = C(y1(ts1 , te1),−y2(ts2 + φdelay, te2 + φdelay)) (4)

indicates the accuracy of phase delay matching. A value of
Cmax approaching unity suggests near perfect matching. In
practice, a maximum absolute phase delay threshold |φmax|
should be included in the data processing to prevent matching
with sensor excitations from the previous or the following
event windows.

C. Speed and Distance Measurement

Since the speed and distance affect the signal amplitude as
well as frequency, it becomes a non-trivial task to measure
both parameters simultaneously. One possible approach is to
employ multiple sensor nodes and combined their relative
position information to estimate these parameters. Alterna-
tively, we can fix one of the parameters to estimate the other,
although this leads to a solution with limited practicality.
Another possible solution is to consider using multiple sensor
modalities to resolve for one parameter. For instance using an
ultrasonic sensor we can estimate the distance fairly accurately
[9], which can be used to extract the speed from frequency.

IV. EXPERIMENTAL RESULTS

This Section presents some preliminary results on human
activity monitoring. Fig. 7(a) shows the raw output of one of
the sensors and the event window duration (marked as vertical
solid lines with their equivalent numerical values shown in
black above the event window) corresponding to the variation
in the distance. The numerical values in grey represent the
envelop of the filtered signal. The result in Fig. 7(b) shows
the results for the variation in speed. As can be observed
from Fig. 7(a) that event window duration varies between
3.17s and 1.73s for different distances while for the case of
speed variation the event window varies between 4.68s and
1s. By minimizing the event window variation for the case
of different distances, it can be used for differentiating the
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Fig. 7. The raw sensor signal for a moving object and the resulting windowed
output for a given threshold level for (a) increasing distance at an approximate
speed of 5 km/h, (b) increasing speed at a fixed distance of 2.8 m. The raw
signal is obtained from a 10-bit ADC with thresholds at 10 and 1000 to avoid
saturation.

signal spectral changes due to varying speed from those due
to varying distance.

The data from two sensors is processed and the maximum
cross correlation is computed in order to obtain the phase
delay. Table I gives the phase delay corresponding to different
distances. Since the person was walking back and forth in
front of the two PIR sensors, the resulting phase delay has
corresponding sign reversals to show the direction of motion.
Table I also gives the cross-correlation coefficients at different
distances. This approach for determining the direction of mo-
tion is more robust and generalized compared to the polarity
based special case. An increase in the phase delay due to
increasing distance is because of larger separation between
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TABLE I
CROSS-CORRELATION BASED PHASE DELAY VARIATION AS A FUNCTION

OF DISTANCE FOR v = 5 km/h.

Distance (m) Phase Delay Cross-correlation Coefficient
1.3 0.5100 0.7012
1.3 -0.4300 0.8341
1.8 0.7700 0.8980
1.8 -0.6300 0.8694
2.3 0.8300 0.9224
2.3 -0.8300 0.8608
2.8 1.0600 0.8730
2.8 -1.0000 0.6667
3.3 1.1200 0.7927
3.3 -1.0100 0.6537
3.8 1.3600 0.6677
3.8 -1.0900 0.5324

TABLE II
CROSS-CORRELATION BASED PHASE DELAY VARIATION AS A FUNCTION

OF SPEED FOR l = 2.8 m.

Speed (Kmph) Phase Delay Cross-correlation Coefficient
1 2.6900 0.7116
1 -2.0900 0.7878
2 2.0500 0.8217
2 -1.6200 0.7995
3 1.1400 0.8341
3 -1.0800 0.8067
5 1.1000 0.8635
5 -0.9800 0.8171

10 0.6400 0.9130
10 -0.6200 0.8372
15 0.3700 0.8399
15 -0.4200 0.7909

the mid points of the FOVs of the two PIR sensors. The phase
delay variation for different speeds and a single object moving
back and forth, is provided in Table II. As expected, the phase
delay corresponding to higher speed of motion is small, i.e.
0.37 and −0.42 in contrast to the phase delays of 2.69 and
−2.09 corresponding to very slow speed.

Using the event window duration and the direction of
motion, the objective of counting people can be achieved for
the cases: 1) a single person enters or exits at an entrance: 2)
multiple people enter or exit in a queue. In the case, where
multiple people walking in a queue are close to each other,
the sensor excitations do not have any region of inactivity
separating the sensor excitations. However, the knowledge of
phase delay can be used to get a rough estimate of the speed,
which along with event window duration provides the count
of the people present in the queue.

We have also studied the effect of distance and speed
variations on the received signal strength. Root mean square
(RMS) is used as a measure of received signal strength
variation. Fig. 8 shows the normalized RMS corresponding
to its event window duration as a function of distance. The
results show closeness of the RMS values for two opposite
directions of motion. The RMS variation as a function of the
speed of the moving object is shown in Fig. 9, where the
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Fig. 8. The Normalized RMS, based on event window duration, as a function
of distance variation for v = 5 km/h.
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Fig. 9. The Normalized RMS, based on event window duration, as a function
of speed variation for l = 2.8 m.

responses are different for opposite directions of motion. This
is due to the fact that the two sensors had different background
views.

To obtain an estimate for the speed a simple algorithm
is not possible, because different parameters varying with
speed are also affected by distance. For instance, as we
observed earlier that the duration of event window changes
from 3.17s to 1.73s at different distances for fixed speed v
compared to a variation of 4.68s to 1s for the case when
the speed is changed for a fixed distance l (Fig. 7). As a
result we may not use event window duration for reasonably
accurate estimate of distance. This implies that the use of the
event window duration along with frequency and amplitude
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parameters may not lead to simple algorithms to determine
the distance parameter accurately. On the other hand, from
Fig. 5, signal frequency changes approximately linearly and is
a more reliable parameter for speed estimation by fixing the
distance parameter l. Using a curve fit to the speed data in
Fig. 5 we obtain the linear relationship of f = 0.0867v +0.3,
which can be used to estimate v provided l is fixed. In future
we plan to use ultrasonic sensor for estimating the distance
along with PIR sensors to develop an improved human activity
monitoring system.

V. DISCUSSION AND CONCLUSIONS

We have developed lightweight signal processing algorithms
for sensor nodes equipped with dual Pyroelectric InfraRed
(PIR) sensors to achieve the objective of human activity
monitoring. First the limitations of the existing approaches for
activity monitoring are discussed. Next the spectral character-
istics of the sensor data for varying distance and speed of the
moving objects are analyzed. Data from dual PIR sensor nodes
is first processed individually to determine the activity window
size, which is then used to determine direction of motion.
Human count for special scenarios can be obtained using the
direction of motion and event window durations. Preliminary
results of our experimentation show the effectiveness of the
simple algorithms proposed. In future, we intend to extend
the proposed algorithms for estimating the object speed and
localization using distributed algorithms, involving multiple
sensor nodes with collaborative sensing, while achieving a real
time implementation.
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