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Abstract

We present two infinite families of APN functions on GF (2n) where n
is divisible by 3 but not 9. Our families contain two already known
families as special cases. We also discuss the inequivalence proof (by
computation) which shows that these functions are new.

1 Introduction

Let L = GF (2n) for some positive integer n. A function f : L −→ L is said
to be almost perfect nonlinear (APN) on L if the number of solutions in L
of the equation

f(x + q) + f(x) = p

is at most 2, for all p, q ∈ L, q 6= 0. Equivalently, f is APN if the set
{f(x + q) + f(x) : x ∈ L} has size 2n−1 for each q ∈ L∗. Clearly, as L has
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characteristic 2, the number of solutions to the above equation must be an
even number for any function f on L.

APN functions were introduced in [13] by Nyberg, who defined them
as the mappings with highest resistance to differential cryptanalysis. In
other words, APN functions are those for which the plaintext difference
x − y yields the ciphertext difference f(x) − f(y) with probability 1/2n−1.
Since Nyberg’s characterization, many papers have been written on APN
functions, although not many different families of such functions are known.

The main result of this paper is a construction of a new family of APN
functions.

Two functions f, g : L −→ L are called extended affine (EA) equivalent
if there exist affine permutations A1, A2 and an affine map A such that
g = A1 ◦ f ◦ A2 + A.

Until recently, all known APN functions were EA equivalent to one of a
short list of monomial functions, namely the Gold, Kasami-Welch, inverse,
Welch, Niho and Dobbertin functions. For some time it was conjectured
that this list was the complete list of APN functions up to EA equivalence.

A more general notion of equivalence has been suggested in [10], which
is referred to as Carlet-Charpin-Zinoviev (CCZ) equivalence. Two functions
are called CCZ equivalent if the graph of one can be obtained from the graph
of the other by an affine permutation of the product space. EA equivalence
is a special case of CCZ equivalence.

We say that f : L −→ L is differentially m−uniform if the polynomial
f(x + q) + f(x) + p has at most m roots in L, for any p, q ∈ L, q 6= 0. Then
f is APN on L if and only if it is differentially 2-uniform on L. Differential
uniformity, and resistance to linear and differential attacks, are invariants
of CCZ equivalence.

In [7], Proposition 3, the authors express necessary and sufficient condi-
tions for EA equivalence of functions in terms of CCZ equivalence and use
this to construct several examples of APN functions that are CCZ equivalent
to the Gold functions, but not EA equivalent to any monomial function. This
showed that the original conjecture is false. The new question was whether
all APN functions are CCZ equivalent to one on the list.

In 2006 a sporadic example of a binomial APN function that is not
CCZ equivalent to any power mapping was given in [12]. A family of APN
binomials on fields F2n , where n is divisible by 3 but not 9, was presented
in [3]. In [4] these have been shown to be EA inequivalent to any monomial
function, and CCZ inequivalent to the Gold or Kasami-Welch functions.
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For the case n = 6, in [11] Dillon presented a list of CCZ inequivalent APN
functions on GF (2n), found by computer search.

Below we list all the infinite families of non-monomial APN functions
known at the time of writing. These families are all pairwise CCZ inequiv-
alent.

1.
f(x) = x2s+1 + αx2ik+2mk+s

,

where n = 3k, (k, 3) = (s, 3k) = 1, k ≥ 3, i ≡ sk mod 3, m ≡ −i

mod 3, α = t2
k−1 and t is primitive (see Budaghyan, Carlet, Felke,

Leander [3]).

2.
f(x) = x2s+1 + αx2ik+2mk+s

,

where n = 4k, (k, 2) = (s, 2k) = 1, k ≥ 3, i ≡ sk mod 4, m = 4 − i,

α = t2
k−1 and t is primitive (see Budaghyan, Carlet, Leander [5]). This

family generalizes an example found for n = 12 by Edel, Kyureghyan,
Pott [12].

3.

f(x) = αx2s+1 + α2k

x2k+s+2k

+ βx2k+1 +

k−1
∑

i=1

γix
2k+i+2i

,

where n = 2k, α and β are primitive elements of GF (2n), and γi ∈
GF (2k) for each i, and (k, s) = 1, k is odd, s is odd (see Bracken,
Byrne, Markin, McGuire [1]).

4.
f(x) = x3 + Tr(x9),

over GF (2n), any n (see Budaghyan, Carlet, Leander [6]).

5.
f(x) = ux2−k+2k+s

+ u2k

x2s+1 + vx2k+s+2s

,

where n = 3k, u is primitive, v ∈ GF (2k), (s, 3k) = 1, (3, k) = 1 and
3 divides k + s (see Bracken, Byrne, Markin, McGuire [1]).
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6.
F (x) = u2k

x2−k+2k+s

+ ux2s+1 + vx2−k+1

where n = 3k, s and k are positive integers with k + s divisible by
three and (s, 3k) = (3, k) = 1, u is a primitive element of GF (23k) and
v ∈ GF (2k) (this paper).

7.
F (x) = u2k

x2−k+2k+s

+ ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s

where n = 3k, s and k are positive integers with k + s divisible by
three and (s, 3k) = (3, k) = 1, u is a primitive element of GF (23k) and
v,w ∈ GF (2k) with vw 6= 1 (this paper).

In general, establishing CCZ equivalence of arbitrary functions is ex-
tremely difficult. There are, however, a number of invariants of CCZ equiv-
alence that can be useful in the classification of functions. A nice link with
coding theory is that a pair of functions f and g on L are CCZ equivalent
on L if and only if the binary codes with parity check matrices

Hf =





1 · · · 1
x1 · · · x2n

f(x1) · · · f(x2n)



 , Hg =





1 · · · 1
x1 · · · x2n

g(x) · · · g(x2n )





are equivalent over GF (2), see [1]. Here xi, f(xi) and g(xi) are expressions
of xi, f(xi) and g(xi) respectively as binary vectors of length n in L viewed
as a GF (2) vector space and L = {x1, ..., x2n}.

In this paper we introduce a new family of APN functions on fields of
order 23k where k is not divisible by 3. The family of polynomials has the
form

F (x) = u2k

x2−k+2k+s

+ ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s

with certain constraints on the integers s, k and on u, v,w ∈ GF (23k) (see
Theorem 2.1, or Family 7 in the introduction). Curiously, setting w = 0
gives a different family of trinomial APN functions (Family 6, see Section
3).

The layout of this paper is as follows. In the next section we show
that our polynomials are indeed APN functions on GF (23k). Using code
equivalence, in Section 3 we explain the fact that these functions are not
CCZ equivalent to any known APN functions when n = 12, and are therefore
new.
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2 New APN functions

The following theorem construct quadratic quadrinomial APN functions on
GF (2n) whenever n is divisible by 3 but not 9. A quadratic monomial is one
of the form x2i+2j

for some integers i and j. Observe that if f(x) = x2i+2j
,

then
f(x + q) + f(x) + f(q) = x2i

q2j

+ x2j

q2i

is a linear function in x, whose kernel has the same size as any of its trans-
lates, such as the solution set of f(x) + f(x + q) = p in L, for any p ∈ L.
Because of this property, proving whether or not a quadratic polynomial is
APN is more tangible than one that is not quadratic. For this reason, all of
the recently discovered families of APN functions have been quadratic.

We will show that our polynomial F (x) is APN by computing the size
of the kernel of the corresponding linear map

F (x + q) + F (x) + F (q).

Theorem 2.1 Let s and k be positive integers with k + s divisible by three

and (s, 3k) = (3, k) = 1. Let u be a primitive element of GF (23k) and let

v,w ∈ GF (2k) with vw 6= 1. Then the function

F (x) = u2k

x2−k+2k+s

+ ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s

is APN over GF (23k).

Proof:
We show that for every p and q (with q 6= 0) in GF (23k) the equation

F (x) + F (x + q) = p

has at most two solutions by counting the number of solutions to the equa-
tion

F (x) + F (x + q) + F (q) = 0.

This gives

F (x) + F (x + q) + F (q) = u2k

(x2k+s

q2−k

+ q2k+s

x2−k

) + u(x2s

q + q2s

x)

+ v(x2−k

q + q2−k

x) + wu2k+1(x2s

q2k+s

+ q2s

x2k+s

) = 0.

Replace x with xq to obtain

u2k

q2−k+2k+s

(x2k+s

+ x2−k

) + uq2s+1(x2s

+ x) + vq2−k+1(x2−k

+ x)

+wu2k+1q2k+s+2s

(x2s

+ x2k+s

) = 0,
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and collect terms in x to get

∆(x) := (vq2−k+1 + uq2s+1)x + (vq2−k+1 + u2k

q2−k+2k+s

)x−k

+(wu2k+1q2k+s+2s

+ uq2s+1)x2s

+ (wu2k+1q2k+s+2s

+ u2k

q2−k+2k+s

)xk+s = 0.

We write
∆(x) = Ax + Bx2−k

+ Cx2s

+ Dx2k+s

where

A = vq2−k+1 + uq2s+1, B = vq2−k+1 + u2k

q2−k+2k+s

,

C = wu2k+1q2k+s+2s

+ uq2s+1, D = wu2k+1q2k+s+2s

+ u2k

q2−k+2k+s

.

Clearly 0 is a root of ∆(x). Moreover ∆(1) = A + B + C + D = 0. If we
show that 0 and 1 are the only solutions of ∆(x) = 0, then we will have
proved that F (x) is APN on GF (23k).

First we demonstrate that none of A,B,C or D vanish for any q ∈
GF (23k)∗. If A = 0 we have u = vq2−k−2s

which implies u2k
= vq1−2k+s

.
By hypothesis, k + s is divisible by 3, so that 1 − 2k+s is divisible by 7,
and hence q1−2k+s

is a 7th power in GF (23k). Since 3 does not divide k,
7 does not divide 2k − 1, so the map x 7→ x7 is a permutation on GF (2k).

Then v ∈ GF (2k) can be expressed as a 7th power. This means that u2k

and hence u is a 7th power in GF (23k). This gives a contradiction as 7 is
a divisor of 23k − 1 and we chose u to be primitive in GF (23k). We deduce
that A 6= 0. Similar arguments show that B,C and D are all nonzero.

Next we define the linearized polynomial:

Lθ(T ) := T + θT 2k

+ θ2k+1T 2−k

.

When T = θx + x2−k
and θ is a (2k − 1)-th power, a routine calculation

verifies that Lθ(T ) = 0 for all x ∈ GF (23k). Observe that

A

B
=

vq2−k+1 + uq2s+1

vq2−k+1 + u2kq2−k+2k+s
=

v + uq2s−2−k

v + u2kq2k+s−1
= (v + uq2s−2−k

)1−2k

,

which gives

LA
B

(

A

B
x + x2−k

)

= 0. (1)

Now
∆(x)

B
= (

A

B
x + x2−k

) + (
C

B
x2s

+
D

B
xk+s) = 0.
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Applying this to Equation 1 gives

LA
B

(

∆(x)

B

)

= LA
B

(

C

B
x2s

+
D

B
x2k+s

)

= 0.

We compute this as

(B2−k+2k

C + D2−k

A2k+1)x2s

+ (B2−k+2k

D + B2−k

AC2k

)x2k+s

+(B2−k

AD2k

+ A2k+1C2−k

)x2−k+s

= 0.

We substitute in the values of A,B,C, and D and after simplification we
obtain the following

(vw + 1)uq2k+1+2s

(vq2−k

+ uq2s

)(u2k

q2k+s+2k

+ u2−k

q2−k+s+1)x2s

+(vw + 1)u2k

q2k+1+2k+s

(vq2−k

+ uq2s

)(uq2k+2s

+ u2−k

q2−k+s+2−k

)x2k+s

+(vw + 1)u2−k

q2k+1+2−k+s

(vq2−k

+ uq2s

)(u2k

q2k+s+2−k

+ uq2s+1)x2−k+s

= 0.

As we chose v and w such that v 6= w−1 and as A 6= 0 we can divide
the equation by (vw +1)q2k+1(vq2−k

+uq2s
)u2−k+1q2−k+s+2s+1 and take the

expression to the 2−s power to obtain

(1 + a−2k−s

)x + (a2−s

+ a−2k−s

)xk + (1 + a2−s

)x2−k

= 0, (1)

where a = u2k−1q2−k+2k+s−2s−1. Now we consider L C
D

(∆(x)
D

) = 0. We know

L C
D

(x2s
+ C

D
x2k+s

) = 0, as

C

D
=

wu2k+1q2k+s+2s
+ uq2s+1

wu2k+1q2k+s+2s
+ u2k

q2−k+2k+s
= (w + u−1q2−k−2s

)2
k−1.

This implies L C
D

(A
D

x + B
D

x2−k
) = 0, which we compute as

(C2−k+2k

A + C2−k

DB2k

)x + (C2−k

DA2k

+ D2k+1B2−k

)xk

+(C2−k+2k

B + D2k+1A−k)x2−k

= 0.

A similar computation to the one used above will yield

(1 + a−2−k

)x + (1 + a)x2k

+ (a + a−2−k

)x2−k

= 0. (2)
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Now we combine equations (1) and (2) such that the terms in x2−k
cancel.

This will give

((1 + a−2k−s

)(a + a−2−k

) + (1 + a−2−k

)(1 + a−s))x+

((a2−s

+ a−2k−s

)(a + a−2−k

) + (1 + a)(1 + a−s))x2k

= 0

which is the same as

((1 + a−2k−s

)(a + a−2−k

) + (1 + a−2−k

)(1 + a2−s

))(x + x2k

) = 0.

If we show that (1 + a−2k−s
)(a + a−2−k

) + (1 + a−2−k
)(1 + a2−s

) 6= 0 for all
possible values of a then we could conclude that x ∈ GF (2k). To this end
we consider the expression

(1 + a−2k−s

)(a + a−2−k

) = (1 + a−2−k

)(1 + a2−s

).

Rearranging we obtain

a =
(1 + a−1)

2−k

(1 + a−1)2
k−s

(1 + a)2
−s

(1 + a)2
k

.

This implies a is a (2k+s − 1)-th power which in turn implies that it is a

seventh power. As a = u2k−1q2−k+2k+s−2s−1 = u2k−1q(2k+s−1)(1−2−k) we see
that if a is a seventh power then so is u2k−1 but this is not possible as k is not
divisible by three and u is primitive. We can now state that all solutions to
∆(x) = 0 are in GF (2k). Applying this to our original expression for ∆(x)
gives

(uq2s+1 + u2k

q2−k+2k+s

)(x + x2s

) = 0.

If uq2s+1 + u2k
q2−k+2k+s

= 0 then a = 1, but 1 is a seventh power, hence
(x + x2s

) = 0 which implies x = 0 or 1 as s is relatively prime to 3k.

3 Equivalence

It remains to show that the new family of APN functions introduced in this
paper is indeed “new”. We therefore need to demonstrate that these func-
tions are not CCZ equivalent to any known APN function. Unfortunately
no techniques currently exist for proving this by hand, and we resort to a
demonstration by computer for small values of n. We attempt to show that
the corresponding error-correcting codes are inequivalent, which is necessary
and sufficient as we said in the introduction, and is proved in [1].
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One standard method of proving two codes to be inequivalent is to show
that they have a different weight distribution (if this is the case). However,
all the evidence shows that these codes all have the same weight distribution
as the code for the function x3 (we have proved this for Family 5 in [2]). We
will use other invariants.

Our quadrinomial Family 7

F (x) = u2k

x2−k+2k+s

+ ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s

actually contains as a special case three of the families listed in the in-
troduction, two of which are already known. These are the binomial Family
1 when v = w = 0, and the trinomial Family 5 when v = 0, w 6= 0. Family
7 also contains Family 6 as a special case. We claim that these four families
are pairwise CCZ inequivalent.

For smaller dimensions than 12, CCZ equivalence can be directly deter-
mined by testing equivalence of the asssociated codes with Magma. For the
case n = 6 the polynomials introduced here take one of the following forms:

ux3 + vu5x10 + vx17 + u4x24

ux3 + vx17 + u4x24

ux3 + vu5x10 + u4x24

ux3 + u4x24,

for some primitive element u ∈ GF (26) and v ∈ GF (4). In the first 3
cases, the polynomials are CCZ equivalent to

x3 + x10 + ux24,

which appears in Dillon’s list, and in the last instance the polynomial is
CCZ equivalent to x3. Therefore, n = 6 is not a sufficiently large value of n
to distinguish our four families, but does distinguish family 1 from families
5,6,7.

The next smallest possible value of n to consider is n = 12, so k = 4.
Example functions (with s = 5) from the four families are in the following
table.
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Function Class

u16x768 + ux33 + x257 + u290x544 Theorem 2.1
NEW (Family 7)

u16x768 + ux33 + x257 Theorem 2.1 with v 6= 0, w = 0
NEW (Family 6)

u16x768 + ux33 + u290x544 Theorem 2.1
with v = 0, w 6= 0 (Family 5)

u16x768 + ux33 Theorem 2.1
v = w = 0 (Family 1)

Magma has a built in test for code equivalence, which is sufficient for
n < 12. This test involves performing a backtrack search using the action
of the automorphism group of the code on the words of minimum weight.
However, for n = 12 each of these codes has 1,397,760 words of miniumum
weight and this is beyond the capability of the Leon package PERM for code
equivalence that is used in Magma and other systems.

John Cannon, Gabi Nebe and Allan Steel proved these codes to be in-
equivalent using a different approach. Firstly, the delta 2-rank of the four
APN functions was determined. The first three functions were found to have
delta 2-rank 7900 while the fourth has delta 2-rank 7816. Hence the fourth
APN function is CCZ inequivalent to the first three. All four functions were
then shown to be pairwise CCZ inequivalent using a new invariant based on
combinatorial properties of the words of minimum weight of the codes. All
computations were done using Magma. We refer the reader to [8] for details.

In conclusion, [8] shows that our APN functions are new.

Acknowledgements We thank John Cannon, Gabriele Nebe, and Allan
Steel for their work on APN functions and Magma.
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