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Abstract

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based Wireless

Local Area Networks (WLANs) are becoming pervasive. As the most commonly em-

ployed standard in WLANs, IEEE 802.11 not only gives rise to health and safety

concern from the general public, but also has the potential for enhanced performance.

Our contributions in this thesis are twofold: (1) We extend a recently introduced

model of transmitted power in WLANs to cover unsaturated conditions when sta-

tions do not always have packets to send. we implement an experimental verification

of the original analytic model and the extended one. We confirm the estimated maxi-

mum power is substantially lower than the International Commission on Non-Ionizing

Radiation Protection (ICNIRP) limit; (2) We propose two decentralized Multiple Ac-

cess Control (MAC) schemes that converge to collision-free schedules almost surely

and therefore improve throughput performance. In adopting decentralized learning

techniques, the convergence times of both schemes are brief. Decentralized sched-

ule length adaption is introduced to provide long-run fair access to the medium and

scalability of the MAC schemes to networks of any size.
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Chapter 1

Introduction

Wireless networks for local area communication have become increasingly ubiqui-

tous during recent years, and have received considerable research attention [1][2]. A

study group 802.11 was formed under IEEE (Institute of Electrical and Electronics

Engineers) project 802 to recommend an international standard for Wireless Local

Area Networks (WLANs), which seek to ensure standardized protocols across differ-

ent manufacturers. In WLANs, the Multiple Access Control (MAC) uses a Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol with binary

exponential backoff to regulate how participants communicate via a common physi-

cal medium. In this thesis, we consider how to experimentally evaluate transmitted

power for WLANs based on mathematical models of the 802.11 MAC in saturated

conditions [3][4] and unsaturated conditions [5], as well as how to improve network

performance for CSMA/CA based WLANs.

1.1 An overview of WLANs

A series of CSMA/CA based standards [6] are specified by IEEE to define the medium

access function, which is primarily designed for WLANs but also encompassed wireless

mesh networks. A brief overview of theses standards is given in this section.

1.1.1 IEEE 802.11

Wireless is a broadcast medium, with transmissions received by every station for

whom the transmitter is within its carrier sensing range. IEEE 802.11 wireless net-

works with current hardware cannot support transmission and reception at the same
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time, because the difference between the power of reception and of transmission of

a packet is significant. Each station has to share time on the medium with those

in its local area. This medium-sharing scheme is referred to as Carrier Sense Multi-

ple Access (CSMA), which is a listen-before-talk protocol. That is, a station cannot

transmit until it senses the channel is idle. Collisions take place when more than

one station starts to transmit simultaneously after sensing the medium to be idle.

Failure to receive an acknowledgement (ACK) within a specified ACK timeout period

will cause the source station to retransmit the packet. A scheme called CA (Colli-

sion Avoidance), which we will explain in detail later, is employed to decrease the

likelihood of the stations colliding repeatedly in the presence of contention.

IEEE 802.11 MAC defines two different access mechanisms, the mandatory Dis-

tributed Coordination Function (DCF) which provides channel access based on decen-

tralized CSMA/CA principles, and the optional Point Coordination Function (PCF)

which provides centrally controlled channel access through polling.

DCF access scheme

DCF is the basic access mechanism of 802.11 and is based on CSMA/CA. Before

transmitting a frame, the station senses the medium (carrier sensing). If the medium

is found idle for at least a DCF Inter-Frame Space (DIFS) time period (34µs in

802.11a, 50µs in 802.11b and 28µs in 802.11g), the station starts to transmit if no

other stations are transmitting. The other stations sense the medium is busy and

wait until it becomes idle at least for the DIFS time period before attempting to win

access. Two methods are employed to determine whether the medium is busy or not.

With physical carrier sensing, the wireless medium is sensed at the physical layer. On

the other hand, virtual carrier sensing works at the MAC layer. If a station receives

a frame that is not destined for it, it checks the duration field in the frame header,

which records the time of one successful transmission (including ACK, frame spacing,

etc), and then defers the access to the medium for the duration time period. When

the destination station receives a frame, it sends back an ACK frame to the source

station after a Short Inter-Frame Space (SIFS) time period (16µs in 802.11a, 20µs in

802.11b, and 10µs in 802.11g). SIFS is shorter than DIFS, so no other stations can

gain access to the medium. A typical operation is illustrated in Fig 1.1, where “data”

includes MAC header, physical header and a packet.

The above example leads to collisions if more than one station senses the medium

2
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Figure 1.1: Basic DCF access scheme

is idle for the DIFS period and start to transmit at the same time. In order to

avoid such collisions, stations have to wait for an additional time beyond DIFS before

transmitting if the medium is sensed idle. This additional time is random, referred

to the backoff time, which is the time of integer backoff counter multiplying the idle

slot of fixed length σµs (9µs in 802.11a, 20µs in 802.11b and 9µs in 802.11g).

CA regulates this additional random delay to help to avoid collisions, otherwise

all stations would try to transmit and collide with each other again as soon as the

medium becomes idle for the next DIFS period. As the medium is sensed idle for a

DIFS period, the station starts to decrease its backoff counter by one for each idle slot

time. If the medium becomes busy during this backoff process, it pauses its backoff

counter, and resumes it after sensing the idle medium for the DIFS time period. When

the counter decreases to zero, the station starts to transmit, after which the station

having packets to send, regardless of success or failure, starts a new backoff process by

uniformly choosing a new random backoff value to update its backoff counter from the

interval [0, CW −1], called the current Contention Window. At the first transmission

attempt or after a successful transmission, CW is set at its minimal value CWmin.

After each failure, CW is doubled until it reaches its maximum value CWmax. For

the most commonly used physical layer, 802.11b and the Direct Sequence Spread

Spectrum (DSSS) PHY, CWmin and CWmax are set at 32 and 1024 respectively.

DCF also specifies a maximum number of retransmissions for one packet as retry

limit. If the number equals the retry limit, the packet is discarded, and CW is reset

to CWmin.

When a sending station does not receive an ACK in the ACK timeout period, it

assumes that a collision has occurred and enters into the backoff stage again after the

medium is sensed idle for the DIFS period, such that the new backoff value is chosen

uniformly at random using a CW that is twice the previous CW .
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Due to random chosen backoff value for all stations, the DCF scheme does not

completely eliminate the collisions. There is a persistent non-zero likelihood of colli-

sions [3] even after a long period operation.

PCF access scheme

In PCF, a Point Coordinator (PC), which is typically located at the Access Point

(AP), manages the medium access via a polling scheme, such that the PC polls

individual station to assign access to the medium depending on their requirements.

It combines a contention period with a contention free period, at the beginning of

which the PC sends a beacon frame. All stations listen to this frame containing the

maximum duration of the contention free period. All contention free transmissions

are separated only by SIFS and the PCF interframe space. Both of these are shorter

than the DIFS, so DCF stations cannot gain access to the medium. The PC can also

send a beacon to end the contention free period. Stations receiving this will then

revert to using the DCF scheme. As in the PCF scheme, stations do not contend for

the medium and instead transmit at the allocated time controlled centrally by PC, the

access scheme is referred as contention-free channel access. The disadvantage of this

scheme is its centralized nature. It has polling overheads and is less robust to partial

information. Consequently, it is not implemented on most commodity platforms. It

also requires the network to work in an infrastructure mode with an AP and stations,

and so cannot be applied to other wireless networks such as an wireless multi-hop

mesh network.

1.1.2 other standards

The maximum PHY rate of the original protocol 802.11 [6] is only 2 Mbps, which

is too slow to meet the requirements of modern applications. Therefore, to support

higher throughput, a series of extensions to the original 802.11 protocol are introduced

in PHY layer which leave the MAC layer unchanged. For 802.11b [7] and 802.11g [8],

a PHY layer standard in 2.4 GHz radio band is specified. Three orthogonal channels

are supported and maximum rates are 11 Mbps and 54 Mbps per channel respectively.

In addition to this, 802.11b employs complementary code keying (CCK) modulation,

while 802.11g also uses orthogonal frequency division multiplexing (OFDM) modula-

tion as well. IEEE 802.11a [9] specifies a 5 GHz radio band in PHY layer, and is not

interoperable with 802.11b/g. It also supports three orthogonal channels with the
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AC CWmin CWmax AIFSN TXOP limit
AC BK CWmin CWmax 7 0
AC BE CWmin CWmax 3 0
AC VI CWmin/2 CWmax 2 3.008ms
AC VO CWmin/4 CWmax/2 2 1.504ms

Table 1.1: Default ACs Parameter values

maximum rate of 54 Mbps per channel based on OFDM modulation.

IEEE 802.11e [10] aims to support quality of service (QoS) by making changes to

the MAC layer of 802.11. It defines two access schemes: the decentralized contention-

based Enhanced Distributed Channel Access (EDCA) and the centrally controlled

contention-free Hybrid Coordination Function Controlled Channel Access (HCCA).

We only briefly describe the EDCA as the HCCA is not considered in this thesis.

For each station, four first-in-first-out (FIFO) queues called Access Categories

(AC) are introduced to provide different priorities to access the medium. The four

Access Categories are named AC BK (background), AC BE (Best effort), AC VI

(Video) and AC VO (Voice), where AC BK has the lowest and AC VO has the high-

est priority. Incoming packets from upper layers are mapped into different ACs ac-

cording to their priorities. Each AC behaves similarly to a single DCF station con-

tending for the medium. The different priorities of them are specified by the relative

CSMA/CA parameters CWmin, CWmax, AIFS (Arbitration Inter-Frame Space), and

TXOP (transmission opportunity). CWmin and CWmax have been defined in the pre-

vious section as the minimal and maximum values of contention window. AIFS takes

the role of DIFS with AIFS = AIFSN × σ+ SIFS. TXOP specifies the time dura-

tion an queue may transmit after winning access to the medium. TXOP is defined by

a maximum duration called the TXOP limit. Multiple frames can be transmitted in

a TXOP burst, if the transmission duration does not exceed the TXOP limit and the

frames belong to the same queue. This process is called as contention free bursting

(CFB), where the consecutive frames are separated by SIFS time periods instead of

AIFS plus the post backoff period. The default values for all four ACs can be seen in

Table 1.1. When queues at the same station attempt to transmit at the same time, a

virtual collision occurs and the queue with higher priority is allowed to transmit.
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1.2 The Contributions in this thesis

We make two contributions in this thesis. Firstly, IEEE 802.11 networks use radio

frequency (RF) energy and regulations stipulating the maximum transmit power used

by WLANs are set by the Federal Communication Commission (FCC) and European

Conference of Postal and Telecommunications Administrations (CEPT). The Inter-

national Commission on Non-Ionizing Radiation Protection (ICNIRP) [11] defined

acceptable thresholds for absorbed radiation power at 80 mW kg−1 for the general

public and 400 mW kg−1 for occupational exposure (whole body). Preliminary results

suggested that exposure from standard deployments of WLANs are well within in-

ternationally accepted ICNIRP guidelines [12][13]. While WLANs have not attracted

the same level of interest as mobile phone networks, there still exists public concern

regarding health and safety issues, particularly in schools [14] but also in homes and

offices [15][16]. The trend is toward denser Wi-Fi deployments, such as in hotspots

in urban areas. A house or apartment could have ten WLANs devices, including

broadband routers, laptops, phones, PDAs, games consoles and media players. It is

therefore useful to model and evaluate how the radiated power scales with the number

of stations and level of activity in order to determine if radiation levels are within

acceptable limits. This information, based on analytic models, may be of use for both

retrospectively assessing RF levels or for planning of future WLAN use, where mea-

surement is not possible. In this thesis we introduce models for estimating the power

output of WLANs in unsaturated conditions based on the existing power model in

saturated conditions [17] and conduct an experimental verification of the the original

analytic model and the extended one. Results confirm that the estimated maximum

power is substantially lower than the acceptable limit given by ICNIRP. Parts of this

work have been published in the journal Health Physics by Fang and Malone [18].

Our second contribution is related to improving network performance. As the

most commonly employed MAC in WLANs, DCF and its 802.11e counterpart EDCA

regulate the random backoff process to decrease the likelihood of the stations collid-

ing again. In a network with more than one transmitter, a significant disadvantage

of the DCF is that there is a persistent non-zero chance of collision. The network

throughput is substantially degraded when a large number of stations are contend-

ing for the medium [3]. In this thesis we propose completely decentralized learning

MAC schemes, which can be regarded as evolutions of the Learning Binary Expo-
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nential Backoff (L-BEB) [19] and Zero Collision (ZC) [20] incorporating ideas from

the self-managed decentralized channel selection algorithm [21]. We prove that these

new access methods converge to a collision-free schedule, if one exists. By avoiding

collisions, network throughput is significantly higher than DCF. In particular, reduc-

ing the convergence time to collision-free operation offers improved performance for

delay-sensitive periodic traffic such as the voice and game data or when there are

many stations and the IEEE 802.11 collision rate is likely to be large. Faster conver-

gence times also accommodate changing network conditions. Finally, we propose a

schedule length adaption scheme that is decentralized, but retains long-run fairness

properties. This enables scalability of these new MACs to networks of any size.

1.3 Outline

This thesis is organized as follows. In Chapter 2, we present the analytical models of

transmitted power for WLANs, and conduct the experimental verifications of them.

In Chapter 3, learning MAC schemes are proposed to achieve collision-free access

in WLANs. Chapter 4 shows the performance evaluation of these MAC schemes.

Chapter 5 draws conclusions and discusses future work.
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Chapter 2

Mathematical Modeling and

Experimental Verification of

Transmitted power of

WLANs

2.1 Introduction

Wireless Local Area Networks (WLANs) are now common in many places. WLANs

use Radio Frequency (RF) energy and regulations stipulating the maximum trans-

mit power are set by the FCC (Federal Communications Commission) and CEPT

(European Conference of Postal and Telecommunications Administrations). Signals

are transmitted at low powers, typically 0.1 W for both computers and access points

(APs) in the ISM (industrial, scientific and medical) band at 2.4 GHz or at 5 GHz.

Although WLANs have not attracted the same level of interest as mobile phone net-

works, sometimes concern arises among the public regarding health and safety issues

related to exposure to radio frequency (RF) energy, particularly in schools [14] but

also in homes and offices [15][16].

The impact of electromagnetic fields on health is reviewed by the International

Commission on Non-Ionizing Radiation Protection (ICNIRP) with a long literature

review [11]. Acceptable thresholds for absorbed radiated power given by the ICNIRP
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are 80mW kg−1 for the general public and 400mW kg−1 for occupational exposure.

Experimental results [12][13] so far show that exposures from standard deployments of

WLANs are well within internationally accepted ICNIRP guidelines. The chairman

of the UK’s Health Protection Agency (a body established to protect the public

from environmental hazards, including non-ionizing radiation) has stated it would

be timely to carry out further research as this technology is rolled out. The trend

is toward denser WLANs deployments, such as extremely dense hotspots in urban

areas. A recent report1 released by a commercial firm shows that there are presently

more than 289,000 public WLANs hot spots in operation in 140 countries. A house

or apartment could have ten wireless devices, including broadband routers, laptops,

phones, PDAs, games consoles and media players. Classrooms or conference halls

could have larger numbers of devices with high levels of activity. It is therefore useful

to model and evaluate how the radiated power scales with the number of stations and

level of activity to determine if radiation levels are within acceptable international

limits. Such models may be of use for both retrospectively assessing RF levels or for

planning of future WLANs where measurement is not possible in advance.

Malone and Malone [17] proposed a model of total transmitted power which is a

function of the number of stations in WLANs that are assumed to always be busy.

In this thesis we consider how to estimate the power output of WLANs that are

not always busy. As noted by various authors [12][13], WLANs transmissions are

intermittent and time-averaged powers depend on the amount of data transferred. It

is this issue that we consider. Factors such as the speed of broadband access links and

the speed at which people can navigate the network serve to restrict how busy WLANs

can become. For example, a photographer might send large files to clients each day,

but the speed is restricted by a broadband link. Alternatively, someone watching

YouTube videos will not tend to download faster than they can watch them. Of

course, the wireless link may become congested in cases with fast links (e.g. a large

school/campus) or where network transfers are local (e.g. backing data up to a local

server). Thus we will look at both cases of unsaturated and saturated networks.

Most deployments of WLANs are based on the widely used IEEE 802.11 technol-

ogy. In this thesis, we concentrate on WLANs based on the IEEE 802.11 standard

and its amendments. The technology is popularly known by the name Wi-Fi and is

supported by an industry group, the Wi-Fi Alliance. We do not consider other tech-

1http://www.jiwire.com/downloads/pdf/JiWire MobileAudienceInsights Q409.pdf
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nologies such as WiMAX (Worldwide Interoperability for Microwave Access) or 3G.

In the most typical WLAN scenario (known as an infrastructure mode network), ev-

ery station communicates with an access point (AP) connected to the wired Internet.

Widely deployed IEEE 802.11b and IEEE 802.11g networks operate in the unlicensed

spectrum at 2.4 GHz; IEEE 802.11a utilizes spectrum around 5 GHz. We focus on

802.11b in the 2.4G Hz band, because it is supported by almost all existing hardware.

Nonetheless, our theoretical results extend directly to 802.11a and 802.11g.

WLANs devices only transmit and radiate power when they have packets to send

and when they are permitted to do so by the IEEE 802.11 protocol. The 802.11

Medium Access Control (MAC) protocol regulates the channel access scheme. We are

interested in the impact of this MAC on transmitted power. If more than one device

transmits at a time the result is a collision, where no data is successfully transferred.

The MAC attempts to control transmissions so that there is a high likelihood that

only one device transmits at a time. This is achieved by the MAC by inserting random

time gaps (called backoff periods) after transmissions and collisions. Thus, the MAC

has a significant impact on transmitted power by 802.11 devices, achieving a middle

ground between all devices transmitting at once and just one device transmitting

at a time. An IEEE 802.11 MAC model is proposed in [3] to predict the network

performance such as throughput. From that model, the probability that a station

attempts to transmit in a typical slot can be calculated, as can the probability that

transmission results in a collision. Theses quantities are determined as a function

of the number of stations and the network parameters, assuming that each device

always has a packet to send. Based on this analytical model, Malone and Malone [17]

estimate the mean transmitted power as a function of the number of stations under

the same assumptions and study the total power emitted in error-free, error-prone,

broadcast and unicast networks.

To consider unsaturated networks, we extend the model of power output beyond

the saturated situation using the unsaturated models [5][22]. These models allow

the amount of network traffic at each device to be varied. The models consider two

extremes: Duffy et al. [22] assume that traffic arriving while the device is busy will

be queued until it can be transmitted, whereas Malone et al. [5] assume such traffic

is discarded without being transmitted. We call the first one the infinite buffer model

and the latter the no buffer model. We also present experimental results to compare

the predictions with the saturated model presented in [17] and the unsaturated models
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that are described in this thesis. We apply these models to consider the power output

associated in a number of scenarios.

Note that we calculate the sum of the power of all stations in the network, rather

than the exposure at a particular point. As in [17] we omit some factors for calcu-

lating exposure, such as the distances between devices, reception errors caused by

absorption/reflection in the environment or interference from other devices sharing

the same frequency and so on. Similarly, we assume that maximum transmitter power

approximates actual transmit power. These assumptions provide upper bounds of the

transmitted power involved in exposure and are considered further in our discussion.

2.2 Modeling transmitted power

The 802.11 MAC defines two different access mechanisms, the mandatory Distributed

Coordination Function (DCF) and the Point Coordination Function (PCF). The PCF

provides centrally controlled channel access via a polling scheme, but is rarely used

in practice. They are described in Section 1.1 of this thesis. The models we are

interested in are of the DCF.

2.2.1 Bianchi’s Model of the DCF

In [3][4], a mean field Markov Chain model was established to evaluate the perfor-

mance of 802.11 DCF as a function of the number of station in saturated conditions.

This model describes the behaviour of an 802.11 MAC as a discrete time Markov

Chain and allows various important properties to be predicted, such as each station’s

throughput and their collision probabilities. Here we provide a detailed review of

Bianchi’s model as it is the model we use for the DCF in saturated conditions. We

then briefly describe some of its extensions to this model developed by [22][5], and

use these models into the extended models of transmitted power.

The Markov Chain [23] of interest to us is a discrete-time stochastic process with

finite states. As it is a Markov Chain, the probability of choosing any given state

only depends on the current state and is independent of the prior history. The long-

term properties of Markov Chains are connected with its invariant distribution (its

stationary distribution). Given any initial state, each state in the Markov Chain is

visited with its stationary probability after the system has been running for a infinite

number of iterations, if a stationary distribution exists.
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In [3][5], a 2-dimensional stochastic process (s(t), b(t)) is introduced to model the

backoff behaviour of the DCF scheme for a stations what always has a packet to send.

Let b(t) denote the station’s backoff counter, which is decremented at the end of each

slot. The slot used in this model represents either an idle slot, a slot with a successful

transmission or a slot in which a collision occurs. For an idle slot, the duration lasts

a physical slot time. For a successful transmission or collision slot, b(t) is frozen for

the duration of a transmission, and is subsequently decreased by one. When b(t)

reaches zero, a transmission occurs and a new backoff starts. If the result of this

transmission is failure, the packet is retained for retransmission or discarded if the

retry limit M is reached. On collision, the contention window doubles if it does not

reach its maximum value Wm. If it reaches, Wm is then used as the new contention

window size where m is the maximum backoff stage. The backoff value is randomly

and uniformly from {0, · · · ,Wi−1} at backoff stage i. If the result of the transmission

is successful, the contention window is reset to its minimal value W0 and the backoff

value is uniformly and randomly assigned from {0, · · · ,W0 − 1}. This implies b(t)

depends on the history of collision. The variable s(t) ∈ {0, · · · ,M} is used to record

how many collisions the present packet has experienced, where the retry limit M is

bigger than m, the maximum backoff stage.

Bianchi [3] makes certain judicious simplifying assumptions to create an analyti-

cally tractable model:

1. Failed transmissions only occur as a consequence of collision;

2. All stations are saturated, always having packets to send;

3. For any given station, conditional on transmission attempt, the probability of

collision, p, is constant and independent of the station’s collision history of the

station and all other stations. In particular, it does not depend on the backoff

stage at which the transmission is made.

4. In the mean field approximation the impact of each station is small compared

to the entire WLAN, which generates the self-consistent equation. With this

in mind we observe that the probability that each station does not experience

a collision given that it is attempting to transmit is the probability that no

other station is transmitting. Let τ(p) be the stations’s stationary attempted

transmission probability given the conditional collision probability is p and n
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be the number of stations. This logic gives the following relationship:

1− p = (1− τ(p))n−1. (2.1)

The assumptions 1, 2, 3 and 4 have been relaxed and investigated by subsequent

research such as [24][25]. Under Bianchi’s assumptions, the 2-dimensional stochastic

process (s(t), b(t)) forms a discrete-time Markov Chain as illustrated in Figure 2.1,

where the conditional collision probability p is assumed known and Wi is defined as

the contention window size at the backoff stage i as

Wi = 2min(i,m)W0. (2.2)

In this Markov Chain, all states are aperiodic, recurrent and non-null, and thus

the process is ergodic [23] and a stationary distribution exists. We define π(s(t) =

i, b(t) = k) to be the probability that the backoff counter is k for the backoff stage i at

the time t. We let bi,k = limt→∞ π(s(t) = i, b(t) = k) be the stationary distribution

of this Markov Chain at the state (i, k). Since each station only attempts to transmit

when the backoff counter reaches zero, the transmission attempt probability τ(p) is

τ(p) =

m∑
i=0

bi,0. (2.3)

We are interested in the τ(p) given the stationary probability bi,k of the Markov

Chain. With a little elementary algebra, bi,k can be calculated explicitly and τ(p) is

then obtained [3]. Providing more insight, as observed by Kumar, et al. [26][27] and

reviewed by Duffy [28], τ(p) can be obtained directly as a deduction from the renewal

reward theorem.

For a station i ∈ {1, · · · , n} in the WLAN, define Ck := 1 if the kth transmission

by station i results in a collision and Ck := 0 if it results in a success. By assumption

3, P (Ck = 1) = p. We also define Uj as the uniform distribution on {1, · · · ,Wj} so

that this variable counts how many idle slots a station observes before transmission

rather than its backoff counter. Thus, viewing the number of transmission attempts

for each packet as a reward associated with the renewal cycle of the number of slots

a packet spends being processed in the MAC, we yield the following formula for the

transmission probability for a given conditional collision probability p.
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Figure 2.1: Markov Chain proposed in Bianchi’s Model

τ(p) =
E(1 + C0 + C0C1 + · · ·+ C0C1 · · ·CM )

E(U0 + C0U1 + C0C1U2 + · · ·+ C0C1 · · ·CMUM )

=
1 + p+ p2 + · · ·+ pM

W0/2 + pW1/2 + · · ·+ pMWM/2
. (2.4)

The renewal reward theorem is employed to illustrate that the model is insensi-

tive to the backoff distribution at any given backoff stage. This means the uniform

distribution {Uj} only enter into the formula in equation (2.4) through their expecta-

tions, so that any other collection of backoff distribution with the same mean number

of slots to be counted down, Wj/2, at each stage j, will give rise to the same sta-

tionary attempt probability τ(p). Combining with equation (2.2) and the network

parameters, we simplify equation (2.4) into

τ(p) =
2(1− pM+1)

W0(1− p− p(2p)m)/(1− 2p)−W02mpM+1
. (2.5)

This is the expression used in [17] to calculate τ in saturated conditions.
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2.2.2 Saturated Model of Transmitted Model

Based on the analysis of DCF’s performance, the transmission probability τ can be

calculated by combining equation (2.5) and equation (2.1) given the number of stations

n and network parameters. If no stations transmit, then no energy is transmitted.

If a single station transmits, then we will have a successful transmission. If r > 2

station transmits, we will have r simultaneous transmissions followed by a timeout

while the transmission wait for an ACK (Acknowledgement) but do not receive one.

Thus the average energy transmitted, as sum of these three contributions, during one

slot time is obtained as below:

E = 0(1− τ)n + Esnτ(1− τ)n−1 + Ec
n∑

r=2

rCn
r τ

r(1− τ)n−r

= (Es − Ec)nτ(1− τ)n−1 + Ecnτ,

where Cn
r is the usual binomial coefficient, Es and Ec are the mean energies consumed

by a successful transmission and a collided transmission respectively. These quantities

can be estimated by introducing the nominal power output P0 (say 100mW) and

the mean time the medium is busy for a successful transmission, TEs , and collision

transmission, TEc , which exclude the idle-medium time such as SIFS (Short Interframe

Space). They are given as below:

Es = P0TEs = P0(2 preamble+ (header + payload)/rate+ACK) (2.6)

and

Ec = P0TEc = P0(preamble+ (header + payload)/rate+ACK), (2.7)

where preamble, header, payload and ack are the times/sizes used for each of these

transmissions and rate is the speed at which data is transmitted, see Table 2.1 for more

details. The calculation of these quantities is described in detail in the appendix of

[17], and depends on packet lengths, protocol constants and so on. Quantities such as

the signal propagation delay also have a small impact. The values used in this thesis

are shown in Table 2.1 mirroring 802.11b which is employed by our experimental

testbed.

We also consider saturated broadcast traffic. The calculation for broadcast traffic
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Physical rate=11Mbps
Payload size = 1400 bytes

preamble = 192µs header=28 bytes
W0 32 Contention Window
m 5 maximum Backoff stage
M 7 retry limit

SIFS 10µs Short Interframe Space
δ 1µs Propagation Delay

ACK 202µs Acknowledgement
Ti 20µs Idle Slot Time
Ts 1515µs Average time of a Successful Transmission
Tc 1281µs Average time of a Collision
Es 145µs Mean Energy of a Successful Transmission
Ec 123µs Mean Energy of a collision

Table 2.1: MAC and PHY parameters mirroring 802.11b

only differs because an ACK is never sent in response to the reception of a packet.

The value of collision time and relative energy remain unchanged. We obtain Es as

Es = P0TEs = P0(2 preamble+ (header + payload)/rate). (2.8)

The medium is idle, when none of stations are transmitting with the probability

(1 − τ)n. A successful transmission occurs, when only one station is transmitting

with the probability τ(1 − τ)n−1. Then the probability that a collision occurs is

1− (1− τ)n − nτ(1− τ)n−1. Thus we give the average length of a slot time T as

T = Ti(1− τ)n + Tsnτ(1− τ)n−1 + Tc(1− (1− τ)n − nτ(1− τ)n−1), (2.9)

where Ti is the length of an idle state, Ts is the mean time for a successful transmission

and Tc is the mean time for a collided transmission. They are easily calculated from

the IEEE 802.11 standards and network settings.

Then the mean power is obtained by [17] as

P =
E
T

=
(Es − Ec)nτ(1− τ)n−1 + Ecnτ

Ti(1− τ)n + Tsnτ(1− τ)n−1 + Tc(1− (1− τ)n − nτ(1− τ)n−1)
(2.10)

We can also give an expression for the duty cycle for RF energy from WLANs

devices based on IEEE 802.11. The duty cycle (or duty factor) is a measure of the

fraction of the time during which a RF is transmitting. It is an useful factor because

it is related to peak and average power in the determination of total energy output.

For WLANs it equals the fraction of the time during which at least one station is
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transmitting. We obtain the duty cycle for the whole network as:

Dnet =
TEsnτ(1− τ)n−1 + TEc(1− (1− τ)n − nτ(1− τ)n−1)

Ti(1− τ)n + Tsnτ(1− τ)n−1 + Tc(1− (1− τ)n − nτ(1− τ)n−1)
. (2.11)

The duty cycle for a single station’s activity will be

Dsta =
TEsτ(1− p) + TEcτp

Ti(1− τ)n + Tsnτ(1− τ)n−1 + Tc(1− (1− τ)n − nτ(1− τ)n−1)
. (2.12)

We note that the energy associated with a given station can be obtained by mul-

tiplying the duty cycle by the nominal power. The power for the network can then

be obtained by summing the power outputs over all stations, to give the same result

as equation (2.10).

2.2.3 Unsaturated Model of Transmitted Model

In the unsaturated case, we aim to obtain the transmission probability τ given n

and the level of the traffic by considering two unsaturated models [5][22] based on

different assumption of buffer size. After obtaining the transmission probability, the

transmitted power can be predicted by equation (2.10). Firstly, we let q be the

probability of a packet arriving at the MAC during an average slot time, and r be

the probability that at least one packet in the buffer after the station successfully

transmits or discards a packet. The main difference of the unsaturated model from

the saturated one is the introduction of new state called “Idle state” corresponding

to the station which has no packet to send when a backoff process is finished. By

assuming all packets experience a backoff period, we neglect the states of post backoff

as most authors do [5]. The augmented Markov Chain is depicted in Figure 2.2. We

consider the transitions from (i, 0), i ∈ [0,m] where the counter reaches zero: if there

is no packet available to send, it goes to Idle state; otherwise a new backoff stage at 0

process is triggered. Starting from Idle state, the change of state depends on whether

at least one packet arrives while the station is idle: if no packet arrives, we stay in

this state, otherwise it starts a new backoff stage at 0.

As in Section 2.2.1, we employ the renewal reward theorem to directly generate an

expression for the transmission probability τ := τ(p, q, r). The assumptions 2, 3, and

4 in Bianchi’s model are still applied in this case. For a given station we define the

following sequence: Qk = 1 if after the kth successful transmission (or a packet discard
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Figure 2.2: Unsaturated Markov Chain

as a consequence of retry limit exceedance) there is a packet waiting for sending and

Qk = 0 if there is no packet available for the station. We make the assumption that

P (Qk = 1) = r and P (Qk = 0) = 1− r. These transitions are present in Figure 2.2.

After a successful transmission (or discard), the expected number of slots (1 − r)/q

until another packet is available is the probability that there is no packet awaiting

transmission 1 − r, times the expected number of slots until a packet arrives 1/q.

Then we have that

τ(p, q, r) =
E(1 + C0 + C0C1 + · · ·+ C0C1 · · ·CM )

E(U0 + C0U1 + C0C1U2 + · · ·+ C0C1 · · ·CMUM ) + (1− r)/q

=
1 + p+ p2 + · · ·+ pM

W0/2 + pW1/2 + · · ·+ pMWM/2 + (1− r)/q
. (2.13)

and with equation (2.2), it is followed by

τ(p, q, r) =
2(1− pM+1)

W0(1− p− p(2p)m)/(1− 2p)−W02mpM+1 + 2(1− p)(1− r)/q
. (2.14)
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We consider a traffic arrival model using a Poisson traffic model [29]. That is, if

packets arrive at the MAC in a Poisson manner with a rate λ packets per second,

then eλT is the probability that no packets arrive in an expected slot time T according

to the probability mass function of the Poisson distribution. It then generates q as

1 − e−λT , the probability that one or more packets arrive in an expected slot time.

An expression is given for q for a traffic arrival rate of λ packets per second using a

Poisson traffic model:

q = 1− e−λT , (2.15)

where T is the mean slot time in equation (2.9). In [17], other traffic models are

considered, but they are found to have similar performance in terms of throughput

and conditional collision probability. Hence we only consider the Poisson model here.

An expression for r is discussed based on two assumptions of buffer size.

Infinite buffer model

Firstly, we consider one unsaturated model with infinite buffer introduced in [22]. In

order to obtain r, we consider the distribution B(p) of the number of states in the

Markov Chain that pass for each packet prior to a successful transmission given the

conditional collision probability p. [28] gives the expectation of B(p) as

E(B(p)) =
W0(1− p− p(2p)m)

2(1− 2p)(1− p)
− W02

mpM+1

2(1− p)
. (2.16)

In this case, each station is effectively an M/G/1 queue [30]. We use a common

assumption [22]: after a packet is sent, the probability that the queue is busy can be

approximated by the stationary probability that the buffer is not empty for the M/G/1

queue. This is , from standard results in queueing theory, the stationary probability

r that at least one packet is available after a transmission is min (1, λE(B(p))T ).

Combining equation (2.15), it gives

r = min (1,−E(B(p)) log(1− q)) . (2.17)

No buffer model

Secondly, another unsaturated model of 802.11 DCF [5] is introduced based on ideal-

ized assumption of no buffer. That is, no packets can be buffered until the end of a

service period and the likelihood of a packet arrival during a slot of average length is
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the probability that an inter-arrival time is shorter than the average slot time. It is

achieved by setting r = 0 with q given by equation (2.15).

In conclusion, for saturated traffic, the relationship between the transmission

probability and the conditional collision probability can be obtained by combining

equation (2.1) and equation (2.5). From equation (2.10), the transmitted power is

estimated for a given number of stations. In the non-saturated infinite buffer case,

we use equation (2.1) equation (2.14), equation (2.15) and equation (2.17) to find τ

and then the transmitted power can be calculated theoretically using equation (2.10)

for different numbers of stations and traffic loads. Similarly, estimations for the no

buffer case can be obtained using equation (2.14) and equation (2.15).

2.3 Experimental Verification

2.3.1 Experimental Apparatus

Our experiments are carried out based on our IEEE 802.11 wireless testbed as shown

in Figure 2.3, which is configured in the infrastructure mode. This is a similar con-

figuration to that which might be found with a number of devices in a home or in

a public hot spot. Each station denotes a laptop or other wireless equipment using

IEEE 802.11 WLANs. The testbed includes 9 stations that are a collection of PC-

based embedded Linux boxes based on Soekris net4801 [31], a desktop PC (Personal

Computer) acting as a client station and another desktop PC acting as an access

point. All devices are installed with an Atheros AR5215 802.11b/g PCI card with an

external antenna. All stations, including the AP, run on a Linux 2.6.8.1 kernel and a

version of the MADWIFI [32] wireless driver which we have modified to allow greater

logging and control. The desktop PC is employed as a station to record detailed per-

packet statistics. An advantage of this PC acting as a station is that there is adequate

storage space, competent random access memory (RAM) and central processing unit

(CPU) for the collection of statistics. All stations are connected through 100 Mbps

wired cables to a desktop PC that controls the testbed system.

We use a number of common tools in the traffic engineering community in our

testbed. We use systcl to specify traffic parameters, such as fixed data rate. We use

ssh and scp are used to manage the network and control traffic sources over wired

Ethernet ports. The megn tool is used to generate User Datagram Protocol (UDP)

traffic [33]. Another athstats tool is also used to collect statistics from the wireless
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Figure 2.3: Schematic diagram of the wireless testbed

driver.

We implement our experiments based on two measurement methods. For the first

method we record the number of successful transmissions and collisions by analyzing

a trace file produced by the modified driver and stored only in the desktop PC station.

We then scale up the number of transmissions/collisions by the number of stations in

the wireless network to approximate results for the whole network. We are assuming

that the network is symmetric and so the performance of other stations is the same

as the desktop PC. This technique only requires us to record data at one PC, but we

can only expect accurate results if the traffic load on the stations is symmetric and

are in a symmetric environment.

Our second measurement technique uses athstats, which records basic statistics

relating to the wireless card. We focus on the number of transmitted frames, the

number of retries and the number of failed transmissions. We record these statistics

for each station in our testbed. Compared to the first method, we expect higher

accuracy, as we now have a picture of the whole system’s performance. We will

compare results generated by both of methods in the Section 2.3.2.

In our experiments, we try to configure all stations identically to make the network

symmetric. Regardless, there still exist some differences due to the environment. An

example is depicted in Figure 2.4 and Figure 2.5, which show the total number of

retries and transmissions as the load is varied. The stars are the results for the

desktop PC station, with the lines for the other 8 stations from the infinite buffer

experiment based on 11 Mbps data rate and 100s experiment time. Results are
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Figure 2.4: Number of Retries for each station vs. offered load
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Figure 2.5: Number of Transmissions for each station vs. offered load

shown for 9 stations operating at the same time with the same network parameters.

It is evident that most of stations are similar in terms of transmission transmissions

and retry times. One station shows a much smaller number of retries. We will see

in Section 2.3.2 that this symmetry actually has a small impact in the prediction of

transmitted power which, in this case, is dominated by the number of successful times

rather than the number of retries.

After obtaining the desired statistics ns (the number of successful transmissions)

and nc (the number of collisions), the transmitted power is calculated as

P =
nsES + ncEC

Ttotal
(2.18)
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Figure 2.6: Transmitted power vs. Number of stations for unicast network

where ES and EC are the mean energy associated with a successful transmission and

a collision; Ttotal is the time for the whole experiment, which is calculated accurately

by subtracting first in-queue time by last in-queue time. They are calculated in the

same way as their theoretical counterparts as described in Section 2.2.

2.3.2 Results

We use the parameter values of our network in Table 2.1 combined with the analysis in

Section 2.2 to compare the theoretical transmitted power with our measured estimates

as we vary the number of stations or the offered load. In the experiments, UDP is

generated at 11 Mbps to saturate the network. The experiment is run for 100 seconds.

Figure 2.6 shows the transmitted power comparison between theory and experi-

ments in saturated conditions. As expected, the power increases for larger number

of stations. We see good match between theory and experiments regardless of our

measurement method: as predicted the power goes from slightly below the nominal

value to around the nominal value as the number of stations is increased.

Note that the results of experimental method 1 are slightly more variable. This

is because of the network is not symmetric in practice as shown in Figure 2.4 and

Figure 2.5. We see better agreement with model predictions using method 2, which

more accurately reflects the total power actually transmitted.

Broadcast packets are considered in [17], because the 802.11 backoff mechanism
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Figure 2.7: Transmitted power vs. Number of stations for broadcast network

operates differently for packets that are destined to groups of devices. The differences

arise from the fact that no ACK packet is sent, because no one host can know if the

whole group has received the packet. We compare the predictions of the model with

results in our testbed in Figure 2.7. As expected, we see slightly higher power output

than in Figure 2.6, and the match between the theory and the experimental result

remains good.

In Figure 2.7 and Figure 2.6, we observe the power being an approximately linear

function of the number of saturated stations. The model has captured the intercept

(80 mW) and slope (around 2 or 4 mW per station for non-broadcast/broadcast).

For non-broadcast packets, we expect this slope to decrease for larger numbers of

active stations, as the MAC’s backoff will tend to reduce the transmission rate. This

behavior is predicted by the model, as shown by [17], but our testbed is not large

enough to verify the result. In the next section, we will focus on results obtained by

the measurement method 2 due to its better accuracy.

We are also interested in the transmitted power of unsaturated traffic for WLANs.

The experimental results are shown in Figure 2.8 and Figure 2.9 for the big buffer and

the no buffer respectively. We look at the non-saturated case with a 11Mbps data

rate and 100s experiment time. In practical implementations, we approximate the

infinite buffer with 200 packet buffer and the no buffer with a one packet buffer. We

show the results of method 2 and equivalent model predictions for 2, 5 and 9 devices
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Figure 2.8: Transmitted power vs. offered load. Infinite buffer

as we vary the load. The match between theory and experiments is excellent over

lower traffic loads.

There is also good agreement as the network becomes saturated. For heavy load,

the small buffer shows an almost perfect match for the cases of 2 stations and 5

stations, but underestimates by about 7% for 9 stations. In contrast, the big buffer

presents a better match with theory in the case of 5 stations, but slightly overestimates

the power for 2 and 9 stations. In the intermediate region, larger discrepancies are

evident.

We also present the results of our duty cycle calculations. Figure 2.10 demonstrates

the difference between the duty cycle of the entire network and the duty cycle summed

over the stations as predicted by the model described in Section 2.2.2. Collisions allow

the duty cycle summed over all stations to exceed 100%, which leads to the power

exceeding the nominal value. Since our testbed results are per-station statistics,

they only allow us to compare the duty cycle summed over stations with the model

(Figure 2.11 and Figure 2.12).

Figure 2.11 shows that the duty cycle of the saturated network increases quickly

from approximately 75% at 1 station to approximately 105% at 9 stations. Figure 2.12

shows how the duty cycle is small when the non-saturated 0.5 Mbps traffic is used, and

increases linearly to around 6 Mbps. As these results are essentially rescaled versions

of our power graphs, we see similarly good matches between model predictions and

experimental results.
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Figure 2.9: Transmitted power vs. offered load. No buffer
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Figure 2.10: Duty Cycle vs. Number of stations. as predicted by the model
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Figure 2.11: Duty Cycle vs. Number of stations for the saturated network
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Figure 2.12: Duty Cycle vs. offered load. Infinite Buffer
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These differences observed between theory and experiments may be attributed to

the assumptions of the theoretical model: the network is not completely symmetric

and we approximate an infinite buffer or no buffer with 200 packets or 1 packet.

While the models are clearly not capturing the physical systems exactly, the power

predictions are still quite satisfactory. Overall, the infinite buffer model’s predictions

appear better and are likely to better reflect the configuration of actual devices.

2.3.3 Discussion

When estimating the power output of a network, it may be useful to be able to es-

timate the largest possible power, regardless of traffic conditions. Intuition would

suggest that the most power will be output when the network has the most to send,

and is likely to be an implicit assumption of experimental studies. However, one fea-

ture of random-access MAC systems, such as 802.11, is that better data throughput

can sometimes be achieved before the network becomes saturated. This is demon-

strated, for example, in [5]: for larger numbers of stations as load is increased the

network’s throughput increases to a peak and then decreases to its saturated level.

Interestingly, we see no power pre-saturation peak. We believe this is because, for

realistic parameters, the expression for power (equation (2.10)) is a strictly increasing

function of transmission probability, unlike the expression for throughput [3]. This

suggests that the upper-limit on outputted power of a network can be reasonably

approximated by calculating the throughput when the network is saturated.

Another interesting observation from the graphs that the power is a linear function

of the offered load when there is a small amount of traffic in the network. This arises

because the number of collisions for light loaded traffic is small, and so each packet

is transmitted just once successfully. Since 802.11 has a per-packet power overhead

(for preamble, headers and ACK) and then a per-byte power cost (for transmitting

the actual data) we may approximate the power as:

P = P0(pps)(preamble+ header/rate+ACK) + (bps)/rate (2.19)

where pps is the number of packets per second and bps is the number of bytes per

second. Figure 2.13 shows the results of applying this rule of thumb to our experi-

mental data. Note that the predictions are independent of the number of stations,

and actually match well until the network reaches saturation. This suggests that this
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Figure 2.13: Power vs. offered load with simple lightly-loaded approximation

will be a useful approximation for lightly loaded networks.

Combining these two observations gives a simpler technique for estimating the

power, if we know the amount of traffic. First, we use equation (2.19) to predict the

power. Then we compare this to the power for a saturated network, and take the

minimum. As examples, consider the following situations.

1. An architect who uploads a large amount of data through their 1Mbps broad-

band link is concerned about their RF exposure. We need to determine the

total number of bytes per second and packets per second being sent over the

network so that we can use equation (2.19). We note that there will actually

be two senders in this wireless network: the station uploading the data and the

access point, which will be sending higher level response packets. Protocols are

usually designed so that these response packets are sent for every one or two

packets, but will be much smaller (60 or 70 bytes). To estimate the number

of packets per second that can be sent over a 1Mbps link, we need to know

the packet size in bits. Packet sizes of 1400-1500 bytes are typical on modern

broadband networks, so we use 1400 bytes = 11200 bits. This gives a figure of

1Mbps/11200 = 89 packets per second in one direction. We double this, to allow

for the responses in the other direction. The number of bits per second will be

1Mbps in one direction and roughly (1Mbps) (70bytes)/1400bytes = 0.05Mbps

in the other direction. For a Wi-Fi rate of 11Mbps, we can use equation (16) to
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estimate the power as about 17mW. This is well below the saturated power of

just over 80mW, so we do not need to make any adjustment.

2. An office worker registers a complaint about a colleague who spends their lunch

breaks watching YouTube videos, and is worried about the impact of the con-

tinuous downloads. This example is very similar to the previous example but

the traffic now flows from AP to station. The constraint is how fast the user

needs to download video in order to watch it for a period of time. Gill et al.

[34] show that most YouTube videos are encoded at a rate between 300 and

400Kbps, with the mean and median falling in this range. Starting with a rate

of 400Kbps rather than 1Mbps, we may repeat the above calculation to get a

value around 7mW.

3. In a high-school class, 30 students are encouraged to watch a short documentary

from YouTube on their laptops at the end of each class. Parents express concern

about 30 wireless devices being used at the same time.In this case we now have

400KB * 30 users traffic from the access point to the laptops, plus the response

packets from the laptops to the access point. Calculating as above, we get

a power estimate of around 203mW. Checking Figure 2.10, we find that the

summed duty cycle for 30 saturated nodes is just over 1.2, suggesting that

power actually saturates around 120mW, rather than the potential 30*100mW.

Unsurprisingly, these powers are low when compared to the ICNIRP limit of 80mW

kg−1. However we now have a quick way to estimate power, provided that some

information about the traffic is available in the WLANs.

2.4 Summary

In conclusion, we have extended the recently introduced model of transmitted power

[17] from saturated conditions to unsaturated conditions. Through our testbed ex-

periments, we have verified this model and see a close match between theoretical

predictions and experimental results. We find that the power of a saturated network

is a reasonable upper bound on the power of an unsaturated network. For lightly

loaded networks, we also offer a simple but accurate technique for approximating the

power output. Finally, we give some examples of how these techniques might be ap-

plied, and confirm that the estimated maximum power is substantially lower than the
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internationally acceptable limit given by ICNIRP.

In the thesis, we have focused on the total transmitted power of WLANs by assum-

ing the nominal power 0.1 W. When more information is available, for example mixed

output powers, distances from devices, antenna details, reflection patterns, etc, these

could be incorporated into the model via the per-node duty cycle in equation (2.12).

By weighting this duty cycle with per-node factors, such as output power, antenna

gains and power decline due to distance, more exact dose calculations could be per-

formed. Forster [13] provides a detailed discussion of factors that could be accounted

for. Some of the work contained in this chapter appears in Fang and Malone [18].
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Chapter 3

Design of Decentralized

Learning MAC Schemes for

Collision-free Access in

WLANs

3.1 Introduction

As the most commonly employed Multiple Access Control (MAC) scheme in WLANs,

the IEEE 802.11 Distributed Coordination Function (DCF) as described in Sec-

tion 1.1.1 regulates access to the medium based on the Carrier Sense Multiple Ac-

cess/Collision Avoidance (CSMA/CA). In this MAC, time on the medium is divided

into idle slots of fixed length σ µs, and busy slots of variable length caused by trans-

mission. Frames are positively acknowledged to allow retransmission on failure. In

a network with more than one transmitter using the DCF, there exists a persistent

non-zero likelihood of collisions. In particular, the throughput performance is sub-

stantially degraded when a large number of stations are contending for the medium

[3]. As we have discussed in Section 2.2, collisions can also increase the transmitted

power output.

In contrast, Time Division Multiple Access (TDMA) based MACs can make better

use of the radio channel by eliminating collisions. However, traditional TDMA has
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Figure 3.1: Network throughput vs. number of stations, comparison of MACs. Sched-
ule length C = 16. ns-2 simulations. L-ZC overlays ZC.

drawbacks, typically employ a central controller that must maintain detailed knowl-

edge of each station queue occupancy and their topology which requires extra data

exchange.

Combining advantages of both TDMA and CSMA/CA, new hybrid MAC pro-

tocols have recently been proposed. For example, Figure 3.1 shows the throughput

performance of a number of MACs that we will discuss, which can be seen to out-

perform DCF by almost 30% by avoiding collisions. For example, Learning Binary

Exponential Backoff (L-BEB) [19] uses a fixed or reselected random backoff value to

achieve collision-avoidance. Like 802.11’s DCF, it chooses backoff values based on the

success or failure of the last transmission, making it amenable to implementation on

existing platforms. Other similar schemes have also been proposed, see Section 3.2

for a brief review. Another collision-free scheme, ZC (Zero-Collision), was proposed

in [20]. In contrast to DCF and L-BEB, this MAC requires information about every

slot, not just those where it transmits. By using this additional information about

slot occupancy, ZC achieves significantly faster convergence than L-BEB, but is not

as readily implementable on existing hardware.

In this thesis, we propose two learning MACs for collision-free access as evolutions

of the L-BEB and the ZC in terms of two positive aspects:

1. We incorporate ideas from a decentralized channel selection algorithm intro-

duced in [21][35], inspired by learning automata [36], to improve convergence
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times of these MACs. In particular, we propose a fully decentralized Learning

MAC (L-MAC) that uses the same information as L-BEB, but achieves conver-

gence orders of magnitude more quickly. Similar ideas are also applied to ZC,

and we demonstrate a learning version, L-ZC that provides convergence that is

faster than ZC.

2. In Figure 3.1, throughput begins to fall when the number of stations exceeds 16,

a fixed schedule length employed by these learning MACs resulting in unavoid-

able collisions. We introduce a mechanism that automatically adapts schedule

length in a decentralized fashion that does not require agreement between sta-

tions while crucially retaining fairness properties expected of the MAC. This

allows that MACs to scale to any number of stations.

These MACs are fully decentralized and do not require information exchange

among transmitting stations or additional control frames that would increase sys-

tem complexity. L-MAC only uses feedback concerning whether each transmission

is successful or not. This information is already provided by IEEE 802.11 hardware

and, thus, L-MAC can be implemented with relatively minor changes on a flexible

MAC platform. In contrast both ZC and L-ZC require additional information on each

slot on the medium, restricting their implementation to future hardware, but provide

enhanced performance.

We prove that these new access methods converge to a collision-free schedule,

if one exists. In doing so, we address a lacuna1 in the analysis in [20]. We show

how to set the learning parameters of these algorithms. In the case of L-MAC, we

use simulations to choose parameters that offer a good balance between fairness and

capacity. For L-ZC we provide mathematical analysis of the convergence that enables

analytic optimization of the algorithms parameters.

By avoiding collisions, network throughput is significantly higher than DCF. In

particular, reducing the convergence time to collision-free operation offers improved

performance for delay-sensitive periodic traffic such as the voice and game data in

addition to many station where the IEEE 802.11 collision rate is likely to be large [3].

Faster convergence times also accommodate changing network conditions. Finally,

by addressing the fundamental issue of how to adapt the schedule lengths for these

access schemes in a decentralized way, while retaining fairness, this enables scalability

1The number of stations colliding is assumed to form a Markov chain, however additional state
is needed for this to be true.
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to networks of any size.

This work was performed in collaboration with K. Duffy, D. Malone and D. Leith

(NUIM) and is being prepared for submission for publication.

3.2 Related Work

Z-MAC [37] is a hybrid protocol that combines TDMA with CSMA. Z-MAC assigns

each station a slot, but other stations can borrow the slot, with contention, if its owner

has no data to send; the collision-free MAC proposed in [38] has less communication

complexity. Both of these MACs experience the same drawback that extra informa-

tion exchange beacons are required. These introduce additional system complexity,

including neighbour discovery, local frame exchange and global time synchronization.

A collision-free MAC is introduced in [39] for wireless mesh backbones that reduces

the control overhead greatly when compared to the DCF protocol. It guarantees

priority access for real-time traffic, but it is restricted to a fixed wireless network and

requires extra control overhead for every transmission. Ordered CSMA [40] uses a

centralized controller to allocate packet transmission slots. It ensures that each station

transmits immediately after the data frame transmission of previous station. Its

drawback is that the requirement of having a centralized controller with its associated

coordination overhead.

Recently, Barcelo et al. [19] proposed Learning-BEB, based on a modification

of the conventional 802.11 DCF. In a decentralized fashion, it ultimately achieves

collision-free TDMA-like operation for all stations which occupy different slots from

each other. The basic principle of its operation is that all stations choose a fixed,

rather than random, backoff value after a success. After a failure, they choose a slot

uniformly at random, as does DCF. We can think of this as each station randomly

choosing a slot in a schedule, until they all choose a distinct slot. Arriving at this

collision-free schedule can take a substantial period of time. In particular, when

the number of slots in a schedule is close to the number of stations, it will take an

extremely long time to converge to collision-free scenario. The authors of [41] propose

a scheme, SRB (Semi-Random Backoff), that is similar in spirit to L-BEB.

In hashing backoff [42] each station chooses its backoff value by using asymptot-

ically orthogonal hashing functions. Its aim is to converge to a collision-free state.

One structural difference from L-BEB [19] is that hashing backoff [42] introduces an
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algorithm to dynamically adapt the schedule length using a technique similar to Idle

Sense [43]. This length adaption scheme requires additional information such as the

estimation of idle rate. The broad principles of these MAC protocols are similar

and both have the drawbacks of slow convergence speed to a collision-free state and

relatively poor robustness to new entrants to the wireless network.

ZC is proposed in [20]. We can regard ZC as being similar to L-BEB in that on

success it effectively chooses a fixed backoff. On failure, however, a station looks at the

occupancy of slots in the previous schedule. The station chooses uniformly between

the slot it failed on previously and the slots that were idle in the last schedule. By

avoiding other busy slots, which other stations have ‘claimed’, ZC finds a collision-

free allocation more quickly than other schemes. Through the use of this additional

information, ZC converges more quickly than the schemes mentioned above.

3.3 Learning MAC and Learning ZC

3.3.1 The L-MAC protocol

Here we propose a decentralized Learning MAC (L-MAC), which can be regarded as

an evolution of the L-BEB [19] incorporating ideas from the self-managed decentral-

ized channel selection algorithm [21]. The primary difference between L-MAC and

L-BEB is in the latter collisions cause memory to be lost of the current schedule. In

contrast, L-MAC keeps some state: each station that has found a slot that previ-

ously did not have competition is likely to persist with that slot even after a small

number of collisions. A probability distribution is introduced as internal state for

each station. It determines the likelihood of choosing each slot in a periodic schedule

{1, · · · , C}. Note, that no agreement is required between the stations on the labeling

of the slots, only on their boundaries, just as in DCF. The advantage of learning is

that it introduces a stickiness that improves the speed of convergence to a collision-

free transmission schedule and facilitates quick re-convergence to a new schedule when

additional stations join an existing network.

L-MAC’s slot selection algorithm is parameterized by two numbers: the number

of slots in a schedule, C, and the learning strength, β ∈ (0, 1). All stations listen to

the medium when not transmitting so that busy slots can be of arbitrary length, but

idle slots are of fixed length σ. For each station, L-MAC is defined as follows for each

station.
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1. The probability distribution p(0) is initialized at time 0 to the uniform distri-

bution,

p(0) = [p1(0), . . . , pC(0)] =

[
1

C
, . . . ,

1

C

]
.

and a slot s(0) is selected in {1, . . . , C} according to p(0).

2. Let s(n) denote the slot selected for transmission in the n’th schedule. If the

station has a packet to send and is successful or if it has no packet to send and

observes the medium to be idle during slot s(n), then the probability distribution

is updated to p(n+ 1) defined by

ps(n)(n+ 1) = 1

pj(n+ 1) = 0

for all j ̸= s(n), j ∈ {1, . . . , C}. That is, after selecting a non-colliding slot in

the schedule, the station will persist with the same slot s(n) in the following

schedule.

If transmitting in slot s(n) result in a collision or if the station has no packet

to send and observes the medium to be busy during slot s(n), the probability

distribution is updated to p(n+ 1) defined by

ps(n)(n+ 1) = βps(n)(n)

pj(n+ 1) = βpj(n) +
1− β

C − 1

for all j ̸= s(n), j ∈ {1, . . . , C}. That is, after a failed transmission, a station

changes its probability distribution to make it less likely that it selects the same

slot again, but it does so in a way that reflects how confident the station was

that the previously selected slot would not result in a collision.

The station then selects a new slot s(n + 1) from the probability distribution

p(n+ 1) and will next transmit after C − s(n) + s(n+ 1) slots. That is, at slot

s(n+ 1) in the next schedule.

3. Return to step 2).

Before identifying good choices of L-MAC’s two parameters, C and β, we state
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the following theorem that proves that L-MAC converges to a collision-free schedule

if one exists.

Theorem 1. Suppose that all stations employ the decentralized L-MAC. Assuming

that the number of stations is not more than C, for any β ∈ (0, 1) the network

converges in finite time to a collision-free schedule with probability one.

Proof. By adapting ideas from [35], we will show that from any state in any two steps

of the algorithm, there is a probability of convergence that is bounded away from zero.

The probability of selecting a slot can become arbitrarily small if the station has been

colliding on the same slot for many schedules, so we must construct a sequence of

events that avoids this possibility.

Suppose the WLAN consists of N stations. Define p(i)(n) ∈ [0, 1]C to be station

i’s probability distribution in the n’th schedule and s(i)(n) ∈ {1, 2, · · · , C} to be its

slot chosen for transmission.

If we have s(i)(n) ̸= s(j)(n), ∀i ̸= j ∈ {1, . . . , N}, then the network has already

found a collision-free schedule and there is nothing to prove. If, at schedule n, there

was at least one collision, then as C ≥ N , there must be some slot i∗, which has been

selected by none of the stations. At schedule n+1, for any station k colliding at slot

i ̸= i∗ in schedule n, the probabilities of moving to i∗ is

p
(k)
i∗ (n+ 1) = βp

(k)
i∗ (n) +

1− β

C − 1
> 1− β

C − 1
.

Thus the probability that all the stations that collided in schedule n then, in schedule

n+ 1, choose i∗ is at least ((1− β)/(C − 1))N .

In schedule n+ 2, the probability a station k that collides in schedule n+ 1 now

picks any slot j is bounded by below by

p
(k)
j (n+ 2) = βp

(k)
j (n+ 1) +

1− β

C − 1
> β(1− β)

C − 1
.

Since there is at least one non-colliding configuration, the probability of jumping to

this is at least

(
β(1− β)

C − 1

)N

.

In summary, no matter what the slot-selection conditions for stations are in sched-
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ule n, the probability of schedule n+2 being collision-free, P (p⃗(n+2) ∈ A), is bounded

below by:

K :=

(
1− β

C − 1

)N (
β(1− β)

C − 1

)N

> 0

Let τ be the first time a collision-free schedule is found, we want to show P (τ < ∞) =

1. At time 2n, the probability of arriving at collision-free schedule for the first time

is:

P (τ > 2n) 6 (1−K)n. (3.1)

Thus, as n → ∞ for any (1−K) ∈ (0, 1), this equation implies:

lim
n→∞

P (τ > n) = lim
n→∞

(1−K)n = 0.

and so P (τ < ∞) = 1. Note that equation (3.1) upper bounds the stopping time τ by

a geometric distribution and, therefore, all of this stopping time’s moments (mean,

variance, etc.) are finite.

3.3.2 The L-ZC protocol

L-ZC is a modification of the ZC protocol proposed in [20]. In ZC, each station

initially chooses randomly and uniformly from the all virtual slots {1, 2, . . . , C}. If

it is successful, it chooses a backoff value of C to use the same slot in the next

schedule. Otherwise, it notes the ni idle slots from the previous schedule and the

slot that resulted in a collision, and chooses among these with a uniform probability

1/(ni + 1).

In L-ZC we introduce an additional parameter γ, that will control probability that

we choose the same slot after a collision. Instead of using the uniform probability

distribution, we will use (1 − γ)/ni+1 for idle slots and γ for the previously selected

slot. The rationale is that different numbers of stations see particular slots as available

for choice, depending on if a slot was idle, busy or chosen by a particular station in

the previous schedule. By controlling the weight assigned to collision slots, we are

able to improve convergence times.

L-ZC uses the same information that ZC does. It needs to know if its own trans-
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mission was successful and which of the previous schedule’s slots were idle. We have

a result analogous to Theorem 1.

Theorem 2. Suppose that all stations employ the decentralized L-ZC. Assuming that

the number of stations is not more than C, for any γ ∈ (0, 1) the network converges

with probability one in finite time to a collision-free schedule.

Proof. The number of colliding stations in next schedule only depends on current

number of colliding stations and the slots they collide on, hence we build a Markov

chain model to study this stochastic process. We have N stations in the same channel

without hidden nodes, and C > N per schedule to ensure a collision-free schedule

exists. We let N(C) be the number of stations experiencing schedule, nC be the

number of slots with collisions, and then nI = C − N + N(C) − nC is the number

of idle slots. We can immediately establish our result by noting that the probability

that N(C) > 0 decreases is lower bounded by (1−γ)γN−1/C, the probability that one

station jumps to an idle slot, but all others remain fixed.

3.4 Schedule Length Adaptation

L-MAC is a two-parameter algorithm: the learning strength β and the schedule length

C. Similarly, L-ZC is a two parameter scheme, γ and C. Learning strengths will

be discussed in Section 4.2. In this section we will show how the schedule length

can be adapted in a decentralized fashion while retaining throughput efficiency and

fairness. Adapting the schedule length in a decentralized way, while retaining fairness,

is particularly challenging. A decentralized scheme may stabilize at different schedule

lengths, either because of differences in environment or available history (say, because

the station is a new entrant to the network). This can result in unfairness or even

failure to converge to a collision-free state, because of schedules drifting out of phase.

As the challenges for L-MAC and L-ZC are similar, we will employ similar schemes

for both. We begin with an analysis of of how schedule length impacts on efficiency,

and then describe the schemes for L-MAC and L-ZC.

3.4.1 The Impact of Schedule Length on Efficiency

As C is the number of available slots for all stations to achieve the collision-free

schedule, naturally this is only feasible if the number of stations are not more than C.
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date rate= 11Mbps basic rate=11Mbps
PHY header= 24 bytes SIFS=10µs
MAC header= 32 bytes DIFS=50µs
payload=1020 bytes idle slot time= σ = 20µs

header=(MAC header)/(date rate)+(PHY header)/(basic rate)
ACK=(MAC header)/(date rate)+(14)(8)/(date rate)

Ep=(payload size)(8)/(date rate)
TS=DIFS+(slot time)+header+Ep+SIFS+ACK

TC=DIFS+(slot time)+header+Ep+DIFS

Table 3.1: MAC/PHY values mirroring 802.11b, Ep is the time spent transmitting
payload, TS is a successful transmission slot length and TC is a collision slot length

We will begin by comparing the long-run throughput when the number of stations is

less than or greater than C.

Assuming that the number of stations is N , all of which are saturated, we partition

C into Csuc, Ccol and Cidle, which denote the number of the successful slots, slots

with collisions and the idle slots respectively. For an 802.11-like protocol, Table 3.1

shows parameters such as the length of idles and busy slots (see papers such as [3][5]

to see how these are derived). Note that idle slots are an order of magnitude shorter

than successful or collision slots.

When the number of stations N ≤ C, then, once we have achieved a collision-free

schedule, Ccol equals zero and Csuc equals N . Hence, we get Cidle = C − N . Then

we get a theoretical normalized throughput of

S =
NEp

NTS + (C −N)σ
. (3.2)

When N > C, it is infeasible to achieve a collision-free state. We carry out an

approximate analysis of throughput under an assumption of strong stickiness (i.e., big

β or full L-ZC schedule) and a moderate number of excess stations. We assume that

that each slot will have a single station ‘stuck’ to it and that the remaining N − C

stations are allocated to slots randomly with probability 1/C. The number of slots

occupied by the N −C stations will be the number slots experiencing collisions, Ccol.

The problem becomes a balls-in-bins problem, where we are assigning N −C balls to

C bins, and so the mean number of occupied bins will be

E(Ccol) = C

(
1−

(
1− 1

C

)N−C
)
. (3.3)

With this estimate of Ccol and Csuc = C−Ccol, we obtain the normalized throughput
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as

S =
CsucEp

CsucTS + CcolTC
.

For example, consider the throughput as N changes and C is fixed at 16, as

shown in Figure 3.2, where we set β = 0.95 for reasons that will be described in

Chapter 4. For comparison DCF’s throughput is also shown (the theoretical results

for DCF are produced using well-known model from [3]). We note that a good match

exists between the values predicted by theory and simulation results. Observe that

L-MAC’s throughput gradually increases as we increase the number of stations N to

be the same as the number of slots. This is because we are eliminating short idle

slots. A further increase results in a rapid decrease in throughput. This is because we

now replace successful slots with long collision slots. Despite this, L-MAC continues

to outperform DCF until N = 20 stations. In conclusion, the maximum throughput

is achieved when N equals C, and a slightly smaller throughput is maintained when

N is smaller than C as busy slots are of considerably longer duration than idle slots.

3.4.2 Choice of schedule length for L-MAC

When choosing a value for C it is better to overestimate the number of required

slots in a schedule. Indeed, Figure 3.2 shows that even with too many stations (i.e.
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N = 17), there can be a greater loss in throughput than having half the slots idle

(i.e. N = 8). We use this to suggest two simple schemes to choose the value of C.

One option is to use a static value of C that is larger than the largest number of

simultaneously contending stations expected in the network. For example, a value of

C = 16 would be reasonable for many small networks, and this is the scheme adopted

by L-BEB.

A second option adapts the value of C. If stations operate with different values of

C, two problems may arise. First, stations are trying to learn a good periodic schedule

and so stations’ schedules must not drift with respect to one another. Second, a station

transmits once in every 1/C slots when a collision-free schedule is found, so fairness

issues can arise.

We address the first problem by by using schedules of length 2nB, where B is a

base schedule length. Thus, if two stations have different schedule lengths then the

shorter divides evenly into the longer one. Consequently, the station with the longer

schedule length sees a schedule where the other station seems to have claimed several

slots.

To address the second fairness-related problem, we can choose to transmit multiple

packets in a single slot using a technique such as 802.11e’s TXOP mechanism [10].

Here, a station transmits multiple packet/ACK pairs separated by a short interframe

space (SIFS). This time is short enough that other stations observing the medium will

not consider it to have been idle and so backoff processes remain suspended. Thus

we can avoid (long-term) fairness issues by allowing a station operating at C = 2nB

to transmit 2n packets. Short-term fairness issues will be over a time-scale of shorter

than Cmax/B schedules.

This suggests using an MIMD scheme where if a station finds that the schedule

length is too short to accommodate all N stations it doubles the value of C being

used. If the schedule length is much too large then C is halved. It remains to specify a

mechanism that will trigger increases and decreases. As our scheme has been designed

so that it does not require the values of C to be the same at all stations to provide

fairness, this gives us increased flexibility in our choices, as we will not require the

MIMD scheme to arrive at a consensus value of C, or even the same mean value. The

trigger we use for doubling C is based on f(C), the number of schedules we need

for C − 1 stations starting in a random configuration to have converged with 0.95

probability. After arriving at a schedule length of C, the station checks every f(C)
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schedules, checks to see if there collisions in that schedule. If it sees collisions C is

doubled, otherwise C is unchanged.

As we’ve noted above, throughput can be quite satisfactory, even when C is larger

than necessary, so we expect that reducing C will mainly contribute to improving

short-term fairness. Conversely, having too small a C value can result in significantly

reduced throughput. For this reason, we aim to probe smaller C values with a fre-

quency that ensures we achieve 90% throughput possible at the current C value. To

achieve this, we wait for 0.9f(C/2)(1− 0.9) successful schedules at schedule length C

before probing a schedule length of C/2. This ensures that if even all transmissions at

the shorter schedule length fail, we will still see the desired throughput. In practice,

we expect to see even higher throughput.

3.4.3 Choice of schedule length C for L-ZC

We being by noting that while L-ZC uses more information than L-MAC, once con-

verged it behaves in a similar way to L-MAC. Thus, our analysis for L-MAC of the

N ≤ C case above applies directly to L-ZC. While the exact details of what happens

when N > C are different, the broad principles are similar: as collision slots are longer

than idle slots, it will be more desirable to have idle slots than collision slots.

This suggests that we can reuse the schemes suggested for L-MAC. Again, a fixed

value of C = 16 may work well in small networks. An adaptive MIMD scheme can

use the same principles as L-MAC, however L-ZC takes advantage of the of positions

idle slots in the previous schedule, which allows us to use a more sophisticated trigger

for MIMD. We suggest that an adaptive MIMD scheme that doubles C when there

are no idle slots remaining. We decrease half C when the number of idle slots is at

least half the schedule. In order to avoid decreasing C while L-ZC is converging and

collisions are still ongoing, we wait until the the number of busy slots has stabilized

and we see two consecutive schedules with the same number of busy slots before we

consider a possible decrease.

3.5 Summary

Here we have proposed two techniques to improve MACs that discover collision-free

schedules. By applying learning, we aim to reduce convergence times compared to

L-BEB’s. Crucially, we have also made these MACs scalable beyond a fixed number of
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stations by showing how schedule length adaptation can be achieved, while retaining

fair decentralized operation. Of our two proposed MACs, L-MAC uses the same

information as DCF, making it amenable to implementation on existing platforms.

L-ZC uses additional information to obtain improved performance, at the cost of

restricting its implementation to more future hardware.
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Chapter 4

Performance Evaluation of

Decentralized Learning MAC

Schemes for Collision-free

Access in WLANs

4.1 Introduction

In Chapter 3, we discussed the design of Learning Multiple Access Control (L-MAC)

and learning zero collision (L-ZC). L-MAC is a two-parameter algorithm: the learning

strength β and the schedule length C. Similarly, L-ZC is a two parameter scheme,

γ and C. The adaptive schedule length schemes have been proposed in Section 3.4.

In the following sections we will identify reasonable values for β and γ. For L-MAC

we will use simulations to consider factors such as transient fairness and achievable

throughput, as well as convergence time, ultimately choosing β = 0.95. For L-ZC

convergence times are much shorter and we will use mathematical analysis to show

convergence times are minimized by selecting γ = 1/(C − N + 2). We then carry

out various simulations to compare the performance of learning MACs and existing

MACs in terms of speed of convergence, long term throughput, robustness to new

entrants, transmitted power and coexistence with 802.11 Distribution Coordination

Function (DCF).
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4.2 Parameter Choice

4.2.1 Choosing the learning strength β in L-MAC

The learning parameter β has an important impact on the convergence speed, the

pre-convergence access fairness, achievable throughput when the network is oversub-

scribed and reconvergence after a change in network conditions. We will see that

while large β offer fastest convergence, there is a value for β where convergence is

fast while almost optimal fairness, oversubscribed throughput and reconvergence are

achieved.

Speed of Convergence

First, consider the case where there are N = 16 stations that, in the terminology of

[3], are saturated so that they always have packets to send. The schedule length, C,

is also set to 16, allowing 16 idle, successful and collision slots. As N = C, this is

the most challenging situation where a collision-free schedule exists. Other network

parameters are as in Table 3.1.

Figure 4.1 shows the number of schedules required for convergence for a range of

different β, with 95% confidence interval shown based on a Gaussian approximation.

Note the larger graph is on a log scale, while the inset graph is on a linear scale. It can

be seen that larger values of β give smaller number of schedules (i.e., faster convergence

times). The value of β that gives the fastest convergence time is approximately 1.0.

For β > 0.4 the time to converge to a collision free schedule is substantially shorter

than that of L-BEB (learning binary exponential backoff).

Pre-convergence short-term fairness

A second factor that influences the choice of β is its impact on short-term fairness

prior to converging to a collision-free schedule. This is a consideration, as convergence

may require tens of schedules. As we aim for a symmetric sharing of throughput, we

employ Jain’s fairness index [44][45][46] to evaluate fairness.

Fairness is solely a function of the sequence of successful transmissions. Consider

a network of stations labeled {1, . . . , N}. For each simulation we generate the sub-

sequence of K successful slots prior to convergence to a collision-free schedule. We

record the the sequence of stations that have successful transmissions, X1, . . . , XK ,

where Xj ∈ {1, . . . , N}. For each m ∈ {1, 2, . . . , ⌊K/N⌋}, where ⌊x⌋ denotes the
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Figure 4.1: L-MAC’s convergence time for a range of learning strengths, β, and L-BEB
on log scale. C = 16, 16 stations. The inset graph shows the detail for β ∈ (0.8, 1)
on a linear scale. ns-2 simulations

greatest integer less than x, we consider fairness over windows of w = mN successful

transmissions. For each station i and window k of length w, we look at the ratio of

the actual number of successes to the number in a perfectly fair allocation:

νi(w, k) =
N

w

kw∑
j=(k−1)w+1

1{Xj=i}.

Then, for each window, Jain’s index is given by

F (w, k) =
(
∑N

i=1 νi(w, k))
2

N
∑N

i=1 νi(w, k)
2
.

Finally we evaluate the empirical average fairness over all windows in the successful

transmission sequence:

F (w) =
1

⌊K/w⌋

⌊K/w⌋−1∑
k=0

F (w, k).

When F (w) = 1/N this corresponds to the worst unfairness. Perfect fairness is

obtained when F (w) = 1. Note that perfect fairness is achieved by a collision-free

schedule and that is why we concentrate on fairness prior to convergence.

In the same scenario as the comparison of the convergence time, a comparison of

Jain’s fairness index is shown in Figure 4.2. In general, we see that smaller values

of β, lead to better fairness, though the relationship is not monotone, as 0.95 and 1
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Figure 4.2: Jain’s index vs normalized window size, m, L-MAC with different learning
strengths β, C = 16, 16 stations. ns-2 simulations

both offer better fairness than 0.99. We have seen similar trends in other network

configurations, including oversubscribed network whereN > C as shown in Figure 4.3.

Rate region of oversubscribed network

We also wish to have reasonable performance when there are more stations than slots.

This can allow the network to have reasonable performance while a schedule length

adaptation is in progress. We will look at how β effects the achievable throughput

during this period. In MACs where there can be a trade off between idle slots and col-

lision slots that the maximum throughput may not be when all stations are saturated.

Thus, we consider an unsaturated network with Poisson arrivals at each station and

estimate each station’s traffic intensity,

ρ =
expected service time

expected inter-arrival time
.

Note, both arrival times and service times are stochastic. We vary the arrival rate

λ and look for the largest λ that gives ρ < 1 for all stations [30]. This identifies

the stability region when the network is symmetrically loaded. Figure 4.4 shows this

upper value of λ as β is varied. This suggests that for an unsaturated network, the

largest achievable throughput is available around β = 0.95.
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Figure 4.5: Re-convergence number of schedules between L-MAC for a range of learn-
ing strengths, β. C=16.

Speed of Reconvergence

Finally, we assess the re-convergence properties as a function of β. An obvious problem

with β = 1 is that if a station ever has a success in a slot, it will stay in the same

place in the schedule indefinitely. If two stations believe they have had a success in

the same slot in the schedule, which is possible if they are not fully loaded, then they

may both try to share a slot, even though free slots may be available. To assess this,

we allow a group of stations to converge to a collision-free state. They we add two

additional stations at the same moment, which choose the same free slot. We then

look at the length of time for the whole network to re-converge to being collision-free.

Though this situation is somewhat unlikely, it represents a challenging scenarios for

L-MAC. Figure 4.5 shows the results of these simulations as β is varied. No value

is shown for β = 1, because the network will never converge to being collision free.

Smaller re-convergence times are possible for a range of β from about 0.75 to 0.95.

We also show the results if we introduce two pairs of two stations, and see broadly

similar behaviour.

To summarize, convergence time is optimized when β = 1, but there is only a small

reduction for choosing a value in (0.9, 0.99). In contrast, lower β values generally lead

to better fairness before convergence, with values at 0.95 and 1 being comparable.

When we look at the value of β that maximizes the throughput region when the

network is oversubscribed, we find a value around 0.95 is best, though performance
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is relatively flat between 0.9 and 1. When we look at the time to reconverge when

colliding stations are introduced to an otherwise converge network, we find that rapid

convergence is given for β = 0.85, but again there is a flat region from 0.75 to 0.95.

Consequently, we suggest that L-MAC use β = 0.95. This offers a good compro-

mize between convergence time, fairness and achievable throughput. We have checked

a range of schedule lengths with these metrics, and find that β = 0.95 remains an

appropriate compromize.

4.2.2 Choosing the collision weight γ in L-ZC

We give a more refined analysis that enables us to determine the optimal learning

parameter. For each N(C) different configurations of collisions are possible, so we

label these by a sequence S(N(C),i) = (I1, I2, · · · , InC
) where i indexes the different

states and Ij is the number of stations transmitting in slot j. By relabeling the slots,

we only need to consider the case where Ij−1 6 Ij and we omit slots which have no

collision (i.e. Ij < 2). For example, for two colliding stations, the only possible state is

S(2,1) = (2). When N(C) = 5, there are two possible states S(5,1) = (5), S(5,2) = (2, 3).

We denote SN(C)
:= {S(N(C),i) : i} and S :=

∪N
N(C)=2 SN(C)

. These sets can be

identified by combinatorial search.

These sequences, S(N(C),i), are the states of our Markov chain as depicted in Fig-

ure 4.6. We add an initial state IS (N stations start to transmit) and an absorbing

state 0 representing collision-free schedules. Note that in this discrete-time Markov

chain S(N(C),i) has non-zero probability to transition to state S(k,j) if k 6 N(C) and

the state IS has positive probability to transfer to all states except itself.

Note that the transition probability from S(N(C),i) to S(k,i) is zero if k > N(C),

because N(C) is non-increasing in the next schedule by design. Assume that GN(C)
is

a |SN(C)
| × |SN(C)

| matrix of transition probabilities among states in SN(C)
with the

same number of colliding stations. Considering the state IS and the absorbing state,

we obtain the (|S|+ 2)× (|S|+ 2) full transition matrix Π in upper-triangular block

form,
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Figure 4.6: Markov chain for L-ZC

Π =



0 P12 · · · · P1(2+|S|)

0 GN · · · · ·

· 0 · · · · ·

· · · GN(C)
· · ·

· · · · · · ·

· · · · · G2 ·

0 · · · · 0 1



. (4.1)

The initial probability measure for all states Φ(0) := [1, 0, · · · , 0], at the n’th

schedule Φ(n) = ΠnΦ(0), and stationary measure is [0, · · · , 0, 1] due to the absorbing

state 0. The convergence speed depends on the second largest eigenvalue λ∗ of the

transition matrix: the smaller λ∗, the quicker convergence speed. As Π is a upper

triangular matrix, the determinant of λI − Π is the product of determinants of its

diagonal entries, (4.2).

|λI −Π| = λ
N∏

N(C)=2

|λI −GN(C)
|(λ− 1). (4.2)

It is evident that λ0 = 0 and λ2+|S| = 1. In order to get the rest eigenvalues λ, we

will evaluate the transition matrix GNC , and obtain the largest eigenvalue of those

matrices which is second largest eigenvalue λ∗ of Π.
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Let π
N(C)

kl be the entry of GN(C)
corresponding to the probability of moving from

the state S(N(C),k) = (K1, · · · ) to state S(N(C),l) = (L1, · · · ). Let nk
C and nl

C be the

the number of slots experiencing a collision in these states respectively. Consider

colliding stations that choose to remain fixed in the same slot. Since other stations

will have seen that slot as busy, no additional stations will be able to move into this

slot. This if some of the Kj stations remain fixed, they must correspond to a slot j′

with Lj′ ≤ Kj . Let Ω ⊂ {1, . . . nk
C} represent slots that will have some fixed station

and let

M(Ω) :=
{
σ : Ω → {1, . . . nl

C} : Lσ(j) ≤ Kj ,∀j ∈ Ω and σ is one-to-one.
}

Note that M(Ω) may be empty. Let {j1, j2, . . .} := {1, . . . nl
C}\σ(Ω) be the indices

of collision slots not arising from fixed stations. The number of stations moving to

previously idle slots to produce these collision slots will be

m(Ω, σ) :=
∑

j∈{j1,j2,...}

Lj ,

and the number of ways we can choose the idle slots will be

P (nk
I , n

L
C − |Ω|) := nk

I !

(nk
I − nL

C + |Ω|)!
.

So, we may write the transition probability as

π
N(C)

kl =
∑

Ω⊂{1,...nk
C}

∑
σ∈M(Ω)

∏
j∈Ω

(
Kj

Lσ(j)

)
γLσ(j)


[(

m(Ω, σ)

j1 j2 . . .

)(
1− γ

nk
I

)m(Ω,σ)
]
P (nk

I , n
l
C − |Ω|)
R

, (4.3)

where R is the number of permutations of the sequence S(N(C),l) that result in the

same state. For particular N(C) ∈ [2, N ] and γ ∈ (0, 1), we can obtain the full set of

states SN(C)
, obtain the transition matrix GN(C)

based on equation (4.3), and then

calculate the largest eigenvalue λ∗
(N(C))

of GN(C)
. Then the second largest eigenvalue

will be

λ∗ = max
NC∈[2,N ]

[λ∗
(NC)]. (4.4)
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Figure 4.7: Largest eigenvalue vs N(C) for L-ZC, various γ values, numerical results

Based on this analysis, Figure 4.7(a) and Figure 4.7(b) show the largest eigenvalue

of matrix at different N(C) when N 6 C. We observe that largest eigenvalue λ∗ is

achieved at N(C) = 2 at the same γ. Hence we obtain:

λ∗ = γ2 +
(1− γ)2

C −N + 1
. (4.5)

The minimum λ∗ is obtained by setting γ = 1
C−N+2 . When N = C, γ is set at

0.5 for the faster convergence speed for L-ZC.

Using this Markov chain, we can also predict the number of schedules until

collision-free schedule is obtained, assuming that all stations start to transmit at

the same time. Let ΠT be the transition matrix between all transient states. We have

already obtained the diagonal, GN(C)
in equation (4.3).

Considering the transition probability from S(Nm,im) with nm
I idle slots to S(Nn,in)

when Nm > Nn, Nm − Nn stations choose successfully their own slots, and rest Nn

stations maintain the same collision cases as S(Nn,in) in next schedule. Let µ ⊂

{1, · · · , Nm} represent stations that will be successful with size |µ| = Nm −Nn. Let
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nm
C is the number of slots experiencing a collision for S(Nm,im). We define A(µ) :=

{ni
c : j ∈ ni

c,∀j ∈ µ} as slots where at least one station will be successful. Let

µs ⊂ A(µ) be collided slots that will be occupied successfully by stations in µ. Note

that stations in µs can only choose idle slots because previous collided slots will be

successfully occupied. As a complement to µs, µ
c
s is available collided slots which can

be chosen to achieve collision case as S(Nn,in), and the number of their stations is

Iµc
s
=
∑

j∈µc
s
Imj . Then the transition probability πmn is the probability πrest

Nn
that

Nn stations achieving the same collision cases as S(Nn,in), on condition that Nm−Nn

stations choose successful slots. πrest
Nn

can be obtained by equation [8] by setting the

starting state as {Ij : Ij ∈ µc
s} with rest Nm − Iµc

s
stations only choosing idle slots.

πmn =
∑

µ⊂{1,··· ,Nm}

∑
µs⊂A(µ)

γ|µs|(
1− γ

nm
I

)
Nm−Nn−|µs|

P (nm
I , Nm −Nn − |µs|) πrest

Nn

(4.6)

We do have to calculate the first row of ΠT , representing transition probabilities

from IS into other states S(N(C),i). If N −N(C) stations choose their own successful

N(C) slots, and nC slots are chosen from rest C −N +N(C) slots to obtain the same

collision case as S(N(C),i) and the probability of choosing each slot is initially 1
C . Thus

we get the transition probability from IS to S(N(C),i) is

πIS,S(N(C),i)
=

(
C

N −N(C)

)
P(N,N−N(C))

(
C −N +N(C)

nC

)
/R

(
N(C)

I1 I2 . . .

)(
1

C

)N

(4.7)

where again, R is number of permutations of S(N(C),i) that result in the same collision

state.

Let κ(S(N(C)),i
) denote the number of schedules elapsed before the network reaching

collision-free schedule given the initial state S(N(C),i), and κ(IS) denote the number

of schedules elapsed from state IS. Using standard Markov chain results, the mean

number of convergence schedules from initial state IS is obtained as

E(κ(IS)) = [1, 0 . . . 0](I −ΠT )
−1[1, 1 . . . 1]T . (4.8)

This mathematical analysis of L-ZC allows us to predict the convergence times
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Figure 4.8: Comparison between L-ZC’s convergence rate, for a range of γ values,
and ZC’s convergence rate. C = 16, 16 stations, ns-2 simulations and theory

for different values of γ. Figure 4.8 shows how mean convergence times vary as a

function of γ. Note that this analysis predicts simulated times accurately, and that

the confidence intervals are tight. The optimal value of γ can be explicitly calculated,

which is γ∗ = 1/(C − N + 2); note that when N = C the graph confirms that the

shortest convergence time is when γ = 1/2.

We base our choice of γ purely on optimizing convergence time, because it is so

short. Reconvergence of of L-ZC and ZC (Zero Collision) amounts to convergence

starting with a smaller number of stations. Thus reconvergence is optimized by op-

timizing convergence. There will be a period of unfairness during any convergence,

but because of the fast convergence, this period will be of no concern.

For a station to choose the optimal γ, it must know C − N , which corresponds

to the number of idle slots when the scheme converges. This number may be known

from above the MAC layer, in which case the exact value can be used. Alternatively,

the station might try to estimate this value. It must already know C. If it can sense

the difference between collision and successful slots then it could estimate N as the

number of successful slots plus twice the number of collision slots. If the station only

knows about its own collision slot and estimates N as the number of busy slots plus

one, then the L-ZC scheme reverts to the original ZC. For the remainder of the paper,

we assume L-ZC knows the value of C −N and use γ = 1/(C −N + 2).
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4.3 Performance Evaluation

We have implemented these MAC protocols in ns-2, as described in Section 3.3. Unless

otherwise noted, all stations are transmitting saturated UDP traffic (with payload

1000 bytes) and a PHY rate of 11Mbps. All stations share the same physical channel,

where each station can hear each other and there are no hidden nodes. A static

routing (NOAH) is employed. When simulating DCF parameters are as for 802.11b.

We know from Bianchi’s model [3] that for lower collision rates the transmission

probability will be approximately 2/(CW + 1) close to 1/16. Thus, when working

with a fixed schedule length, we work with C = 16, to allow comparisons with DCF.

All simulation results are obtained as mean values over repeated simulations with

different seeds. Error bars based on the central limit theorem are not shown on the

graphs as they are on a similar scale to the symbols used for plotting points.

We expect results from DCF, L-BEB and L-MAC to be comparable, as they work

with the same information. Likewise, we also expect ZC and L-ZC to be comparable,

because they both leverage extra information not available to the other MACs. When

applying the adaptive schedule length schemes, we will refer to the MACs as A-L-

MAC, A-ZC and A-L-ZC.

4.3.1 Speed of Convergence

In a static network we record the elapsed time before the collision-free schemes reach a

collision-free state (no results are shown for DCF, as it does not converge). Figure 4.9

shows this as the ratio N/C is varied. We see that for small numbers of stations,

all the algorithms converge in a fraction of a second. However, when the number of

stations becomes close to C, we can see the advantages of the L-MAC over L-BEB. In

particularly, observe that using learning has reduced the convergence time of hundreds

of seconds for L-BEB to under a second for L-MAC. We can see advantage of the ZC-

based schemes over both L-BEB and L-MAC. In fact, on the log scale shown, the

performance of L-ZC and ZC are comparable. L-MAC, in particular, is performing

well for an algorithm working with less information.

4.3.2 Long Term Throughput

For the non-adaptive schemes, when N > C collisions are unavoidable. In Figure 4.10

we compare the collision rates of conventional DCF and the learning schemes. Note
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Figure 4.9: Convergence Time vs ratio number of stations to C, Comparison between
learning MACs, from 5 stations to 16 stations. ns-2 simulations, error bars too small
to be shown

that L-BEB has twice the collision rate as DCF in a comparable. In contrast, L-

MAC degrades gradually with a lower collision rate than DCF’s while the number of

stations is from 17 to 19. ZC and L-ZC offer a slightly lower collision rate again Fig-

ure 3.1 shows the corresponding results for throughput. This demonstrates that our

learning MACs can achieve good channel utilization with lower collision probability

than CSMA, even if collisions persist.

We also investigate the performance of the adaptive schemes for more than 16

stations. As expected A-ZC and A-L-ZC, they all achieve a long-term collision rate

of zero. Figure 4.11 shows that A-ZC and A-L-ZC have essentially the same perfor-

mance, and A-L-MAC lags only slightly behind. Both adaptive learning schemes offer

substantially higher than that of DCF. Comparing Figure 3.1 and Figure 4.11, we see

how adapting the schedule length allows the performance of the schemes to scale be-

yond a fixed schedule length. While A-L-MAC shows a slight decline in throughput

for N > 16, it outperforms all the non-adaptive schemes. A-L-ZC’s performance

continues to increase as the relative proportion of idle slot decreases.

4.3.3 Transmitted power

This section considers the total transmitted power of those MAC schemes and DCF

as depicted in Figure 4.12 and Figure 4.13. For fixed schedule length, by avoiding

collisions, the learning MACs’ transmitted power is less than DCF’s counterpart when

59



13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of stations

co
lli

si
on

 r
at

e

 

 

L−MAC
L−BEB
ZC
L−ZC
DCF

Figure 4.10: Collision Rate vs. number of stations, comparison of MACs, ns-2 simu-
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Figure 4.11: Network throughput vs. number of stations, comparison of learning
MACs with adaptive schedule length, ns-2 simulations
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Figure 4.12: Transmitted power vs. number of stations, comparison of MACs, ns-2
simulations

N 6 19, and increase substantially when N > C. We also investigate the power of

the adaptive schemes for more than 16 stations. As A-ZC and A-L-ZC achieve a

collision-free schedule, the transmitted power of them is similar and slightly lower

than the power output of A-L-MAC which could not avoid collisions completely. All

adaptive learning schemes offer lower power output than DCF.

4.3.4 Performance in presence of errors

In previous graphs we have considered the case of a clean channel where no packets are

lost to noise or interference, and all losses are due to collisions. A more realistic setting

is considered by introducing errors caused by a fading channel [47]. We consider a

simple model where errors are introduced at a particular rate (1% and 10%). Errors

present an interesting challenge to the learning schemes, because they use transmission

failure as an indication of a slot being occupied.

Figure 4.14 shows the achieved throughputs for the fixed schedule length learning

MACs. We note that DCF’s performance is only slightly degraded by the presence of

errors. As all of L-BEB’s state is related to the success of the current transmission, if

suffers quite badly in the presence of errors and its performance can fall below that of

DCF. L-MAC, ZC and L-ZC are more robust to the presence of errors because their

memory is not limited to the success of a single slot. L-MAC’s learning memory will

tend to restore the correct schedule after an error, whereas ZC and L-ZC can see that
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Figure 4.13: Transmitted power vs. number of stations, comparison of MACs with
adaptive schedule length, ns-2 simulations

other slots have been allocated and do not move to other slots. Indeed, we can see

that N = 15 is one of the most challenging cases for L-ZC and ZC, because there will

typically be one slot available, which several stations will be drawn to in the case of

multiple errors in the same schedule.

We have also investigated the performance of the adaptive schedule length schemes

as depicted in Figure 4.15. As expected, the adaptive schemes offer comparable

performance to their non-adaptive equivalents, with a small increase in performance

after 16 stations, where the extra slots help accommodate churn caused by random

losses.

4.3.5 Robustness to New Entrants

In this section, we briefly consider what happens when the network has converged, and

then more stations are added. We naturally expect that the improved convergence will

extend to quick convergence when more stations are added to the network. Figure 4.16

shows the time to reconverge to a collision-free schedule after new stations are added

to a collision-free schedule with 8 stations. As expected, we see rapid convergence, of

around one second, even when 8 stations are added to the network at the same time.
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Figure 4.14: Network throughput vs number of stations with errors, comparison be-
tween DCF and MACs with fixed schedule length, ns-2 simulations
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Figure 4.16: Reconvergence time when eight stations are in the network and a variable
number of stations are added. ns-2 simulations

4.3.6 Coexistence with 802.11 DCF

This section considers the performance of multiple MAC protocols employed simulta-

neously by the stations which share the same wireless channel. In particular, we note

that as all these MACs are based on the basic channel-sensing techniques of DCF,

any of our MACs should be able to coexist with DCF. Coexistence is a significant

feature of the MACs, because it allows incremental deployment.

We consider a scenario where we have 2K stations in the network. Of these stations

K use the DCF protocol and K use another protocol. All the stations are saturated.

Figure 4.17 shows the aggregate network throughput achieved as K is varied. The

line for DCF+DCF is our baseline, where all stations use the DCF protocol. We see

that the mixed networks outperform DCF alone for small numbers of stations. The

mix of L-BEB+DCF’s performance decreases below that of DCF alone when K > 8,

when there will be 16 stations in the network. The other schemes, as they have more

learning state, retain their performance until K = 16. Here, the schedule will be full

for the non-adaptive schemes. We can also see that the adaptive schemes offer slightly

lower throughput compared to the adaptive ones just below K = 16, because they

begin to increase their schedule length.

The question of how this throughput is shared is also important. The through-

put achieved by the DCF stations is shown in Figure 4.18, compared to the second

MAC stations’ counterparts depicted in Figure 4.19. We see that DCF throughput is

substantially reduced by the presence of large numbers of stations using a different
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Figure 4.17: Network throughput for a mixed network of mixed MACs. Half the
stations use DCF, and the other half a second MAC. ns-2 simulations

MAC, compared to other stations running DCF. Their only respite is when the adap-

tive schemes begin to increase schedule length, making space for the DCF stations to

transmit. A-L-MAC responds to the persistent collisions similarly to a DCF backoff,

and so shares more evenly with DCF.

These results suggest that incremental deployment of these new MAC protocols

would be possible, at the cost of reduced performance for legacy DCF equipment.

4.4 Summary

In this Chapter we have proposed the choice of learning parameter β for L-MAC

and γ for L-ZC in order to optimize their performance. For L-MAC we will use

simulations to consider factors such as transient fairness and achievable throughput,

as well as convergence time, ultimately choosing β = 0.95. For L-ZC convergence

times are much shorter and we will use mathematical analysis to show convergence

times are minimized by selecting γ = 1/(C − N + 2). We also show a wide variety

of simulation results to compare the performance of learning MACs and existing

MACs. Improvements achieved by L-MAC and L-ZC over DCF and even L-BEB are

substantial, with reduced convergence times, graceful degradation in the presence of

too many stations, reduced transmitted power and improved robustness to channel

errors.
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Figure 4.18: Achieved throughput of DCF stations in a mixed network of mixed
MACs. Half the stations use DCF, and the other half a second MAC. ns-2 simulations

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

number of stations

th
ro

ug
hp

ut
 (

M
bp

s)

 

 

L−MAC+DCF
ZC+DCF
L−ZC+DCF
A−ZC+DCF
A−L−ZC+DCF
A−L−MAC+DCF
DCF+DCF
L−BEB+DCF
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Chapter 5

Conclusions

The objective of this thesis is to investigate two issues related to the Carrier Sense Mul-

tiple Access/Collision Avoidance (CSMA/CA) based Wireless Local Area Networks

(WLANs): evaluation of transmitted power in IEEE 802.11 WLANs, and performance

enhancement of CSMA/CA based WLANs. Our contributions are twofold:

1. Considering the public concern regarding health and safety issues related to ex-

posure to radio frequency (RF) energy by IEEE 802.11 WLANs, in Chapter 2

we introduced models for predicting the power output of WLANs in unsaturated

conditions by extending the existing power model in [17] and carried out exper-

imental measurements to verify the theoretical models. Experimental results

demonstrate that there is a good match between the theoretical predictions and

the experimental results. Moreover, we give a simple technique to quickly pre-

dict power output based on traffic levels. Most importantly, the results confirm

that the estimated maximum power is substantially lower than the acceptable

international limit given by International Commission on Non-Ionizing Radia-

tion Protection (ICNIRP). This work was performed in collaboration with D.

Malone (NUIM) and is published, in part, in Fang and malone [18].

2. As the most commonly employed Multiple Access Control (MAC) in the prac-

tical hardware of WLANs, the IEEE 802.11 Distributed Coordination Function

(DCF) regulates the random backoff process to decrease the likelihood that the

stations collide again. Its disadvantage is a persistent non-zero chance of colli-

sion. In particular, when a large number of stations are accessing the medium,

the network throughput is substantially degraded [3]. In order to overcome this
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disadvantage, in Chapter 3 we proposed totally decentralized learning MAC

schemes by adopting the self-managed decentralized channel selection algorithm

[21] based on recently introduced L-BEB (Learning Binary Exponential Back-

off) [19] and ZC (Zero collision) [20]. We proved the convergence of new access

methods to the collision-free operation, if one exists. By eliminating collisions,

the network throughput is substantially higher than DCF. By applying learning,

we have been able to reduce convergence times by several orders of magnitude.

Finally, a schedule length adaption scheme is introduced in a decentralized man-

ner, but achieving long-run fairness and scalability of these new MACs beyond

a fixed number of stations. This work was performed in collaboration with K.

Duffy, D. Malone and D. Leith (NUIM). It is being prepared for submission for

publication.

There are interesting issues yet to be resolved in the future. Firstly, rate control

methodologies are currently available in 802.11 network cards. The impact of rate

control on the transmitted power has not yet been considered; Secondly, we choose β

for Learning MAC (L-MAC) using simulations. An analytical study of convergence

times of L-MAC is not given but could add interesting insight. The analysis of

adaptive schemes are not considered as well; Finally, it would be interesting to see

the experimental performance of learning MAC schemes in our IEEE 802.11 testbed.
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