
A Java Based Software Solution For
Efficient Pairing Cryptography

Yejun Zou

Department of Computer Science

National University of Ireland, Maynooth

Co. Kildare

Ireland

This thesis submitted in partial fulfilment of the requirements for the M.Sc

Degree in Software Engineering

Supervisor: Dr. Joe Timoney

October 2010

Declaration

I hereby certify that this material, which I now submit for assessment on

the program of study leading to the award of Master of Science in Computer

Science by Research, is entirely my own work and has not been taken from

the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed: Date:

Abstract

This thesis is concerned with applying software Engineering techniques to

pairing based cryptographic systems. In particular we evolve our exist-

ing cryptographic system to incorporate new cryptographic concepts that

strengthen the system. We discuss the design approach taken to allow an

advanced mathematically based cryptographic concept to be developed in a

maintainable manner. We present the integration process and evolutionary

impacts on the existing system. We provide some testing data on the result-

ing system and give an indication of its performance. The language chosen is

Java and the objective is that the Java developer can easily use the resulting

system with minimal knowledge of the underlying machinery. Specifically,

we present, implement, and evaluate alternative approaches to the use of a

standard implementation of Tate pairing in a Java-based biometric identity

verification tool.

Acknowledgement

With my deepest affections and appreciations I would like to thank my su-

pervisor, Dr. Joe Timoney, for his guidance, support and encouragement

throughout this project. I also would like to thank IRCSET, Claude Shan-

non Institute and the computer science in NUI Maynooth for their financial

and technical support in the past three years. Finally many thanks to my

family and my friends for their support and encouragement.

Contents

List of Figures 8

List of Tables 10

1 Introduction 11

1.1 Overview . 11

1.2 What is Cryptography . 12

1.2.1 Terminology in Cryptography [39] 13

1.2.2 Well known Ciphers 13

1.2.3 Cryptographic Attacks 14

1.3 Pairing Based Cryptography on Elliptic Curves 15

1.4 Security of Pairing Based Cryptography 18

1.5 Software & Cryptography . 19

1.6 Motivation of this project . 21

1.7 Outline of The Dissertation 21

2 Mathematical Background 23

2.1 Preliminaries . 23

2.1.1 Tate Pairing . 24

2.1.2 Miller’s algorithm for Tate Pairing 25

2.2 Elliptic Nets Theory . 26

4

2.2.1 Elliptic Divisibility Sequence 26

2.2.2 Stange’s Elliptic Net 27

2.2.3 Tate Pairing using Elliptic Net 30

2.2.4 Existing Approach . 32

2.3 Suitable Curves for Tate Pairing 33

2.3.1 Supersingular Curves 33

2.3.2 Barreto-Naehrig Curves 34

2.4 Summary . 37

3 Design 38

3.1 Current State of IBS . 38

3.2 Designing a New IBS . 40

3.3 Design for new curves . 41

3.4 Logical view of the Design . 41

3.4.1 Logical View of existing APIs 41

3.4.2 Logical View of New APIs 43

3.5 Software Development Strategy 45

3.5.1 Waterfall Model . 45

3.5.2 V-Model . 46

3.5.3 Iterative and Incremental Development Model 47

3.5.4 Our approach of Development process 49

3.6 Summary . 51

4 Development 52

4.1 Analysis of existing Elliptic Curve and Pairing libraries 52

4.2 Development of the Elliptic Net System 53

4.2.1 Class EDS . 56

4.2.2 Class Block . 56

4.2.3 Class EllipticNet . 56

4.2.4 Class TatePairingViaENet 58

4.3 Evolving the IBS system . 60

4.3.1 Class blitz.curve.EllipticCurve 60

4.3.2 Class blitz.Field.Extension.Fp2 61

4.3.3 nonResidue in class csi.crypto.EllipticNets.EllipticNet 63

4.4 Adding BN-Curves . 64

4.4.1 Field extension . 64

4.4.2 Curve Generation . 66

4.4.3 Tate Pairing over BN-Curves 76

4.5 Complete System . 80

4.6 Summary . 81

5 Testing and Results 82

5.1 Portability and Pre-settings 82

5.2 User Test Cases . 83

5.2.1 Test cases of EDS and EllipticNet 83

5.2.2 Test Cases of Tate Pairing Via Elliptic Nets algorithm 87

5.2.3 Test Cases with a Random Input Value 92

5.2.4 Condition Testing (White box testing) 96

5.3 Performance Test . 99

5.3.1 Comparison over supersingular curves 100

5.3.2 Comparison over BN-Curves 105

5.4 Summary . 106

6 Conclusion 107

6.1 Summary . 107

6.2 Future Work . 108

List of Figures

1.1 Diagram of Biometric Identity Based Signature Scheme [13] . 20

2.1 Example of Elliptic Net in [58] 29

2.2 Doubling and Double-adding a Block Centered on W (k, 0) . . 30

3.1 Tate Pairing inside IBS . 39

3.2 Desired New Tate Pairing inside IBS 40

3.3 Package View of Existing Blitz in [12] 42

3.4 Logical View of the Existing APIs 43

3.5 Logical View of New APIs . 44

3.6 Waterfall Model of Software Development in [56] 45

3.7 V-Model of Software Development in [56] 47

3.8 Iterative and Incremental Model of Software Development in

[24] . 48

3.9 Iterations of the Project . 49

4.1 Package Diagram of Elliptic Nets System 54

4.2 Class Diagram of EllipticNets package 55

4.3 Flow of Tate Pairing Computation 59

4.4 Class Diagram of Fp12 and Fp12Element 65

4.5 Class Diagram of CurveGen, BNCurve and TwistedCurve . . 67

8

4.6 Flow of Generation of Random Point R on E′ : y2 = x3 +B . 73

4.7 Comparison of the Two TatePairing Classes 77

4.8 System View . 80

5.1 Control Flow Graph of TatePairing(int bits, int curveType)

Generated by Visustin [1] . 98

5.2 Comparison of Computation Time for Miller’s Algorithm with

the Elliptic Nets Algorithm on Supersingular Curves as the

Length of p is increasing . 103

5.3 The Relationship between the Length of P and the Difference

of the Time Cost between the Two Algorithms 104

5.4 Comparison of Computation Time for Miller’s Algorithm with

the Elliptic Nets Algorithm on BN-Curves as the Length of p

is increasing . 105

List of Tables

1.1 Key-size Equivalence in [27] 17

1.2 Bit sizes of curve parameters and corresponding embdding

degree to obtain commonly desired levels of security [41] . . . 18

5.1 Test case of class EDS . 85

5.2 Test case of class EllipticNet 86

5.3 Test case of Elliptic Nets Algorithm 1 87

5.4 Test case of Elliptic Nets Algorithm 2 88

5.5 Test case of Elliptic Nets Algorithm 3 89

5.6 Test case of Elliptic Nets Algorithm 4 90

5.7 Test case of Elliptic Nets Algorithm 5 91

5.8 Test case of Random Value for Supersingular Curves 93

5.9 Test Result for TestCase ID: 08 94

5.10 Test case of Random Values for BN-Curves 95

5.11 Test Result for TestCase ID: 09 95

5.12 Test cases for TatePairing(int bitLength, int curveType) . . . 99

5.13 Test Result for Test Cases in Table 5.12 99

5.14 Raw Benchmark for Supersingular Curve 103

5.15 Raw Benchmark for BN-Curves 105

10

Chapter 1

Introduction

1.1 Overview

In 2007, Burnett, Byrne, Dowling and Duffy [13] introduced a Java based

IBS application with Tate pairing as the core encryption technique. They de-

scribed an identity based signature scheme that uses biometric information,

i.e. a user’s fingerprint, to construct the public key. Their scheme is benefi-

cial in many repudiation situations, for example a legal dispute over whether

a contract had been signed or not by a user. A biometric reading provided

by the alleged signer would be enough to verify the signature. Thus, their

schemes involves biometric data extractions and an identity based signature

scheme which employs the biometric data for user keys. The Tate pairing in

their system is calculated with Miller’s algorithm [38]. This is accepted to be

the primary algorithm for pairing computation. However, Stange introduced

Elliptic Net theory with its application in the Tate pairing computation [58].

Thus, Tate pairing can be obtained from either algorithm. Moreover, Barreto

and Naehrig introduced new pairing friendly curves, known as BN-Curves

([3]), that were intended to enhance the security of pairing based cryptogra-

11

phy.

Thus, the goal of this thesis is to apply a software engineering approach

to the design, implementation and testing of a practical paring based cryp-

tosystem that is founded on the theory of Elliptic nets. Its contribution is

to implement a Java Elliptic Nets API, to modify the existing BIO-IBS sys-

tem [13], to compute the Tate pairing through both Miller’s algorithm and

the Elliptic Nets algorithm, to implement a more secure type of curves, and

to compare the two Tate pairing computation algorithms for performance

at different security levels with the two types of curves. This is the first

Java structured implementation of Elliptic Nets and the first system to offer

developers a choice of algorithm in the Tate pairing calculation.

1.2 What is Cryptography

The wordCryptography comes from Greek "Krytó"(hidden) and "grápho"(to

write) [39]. It is the science of hiding the meaning of information. Generally

speaking, it can be synonymous with the conversion of information. It is usu-

ally applied to avoid unwanted people reading the information. Prior to the

early 20th century, cryptography was chiefly concerned with linguistic and

lexicographic patterns. Since then cryptography intersects the disciplines of

mathematics, computer science and engineering, derived using mathemati-

cal algorithms and implemented using software that runs on computers or

embedded processors. These new forms of cryptography are strongly driven

by rapid advances in computer communications technologies. Cryptography

is becoming necessary when sensitive data is being transacted over any un-

trusted medium. It provides the services such as keeping secrets from an

unexpected audience, authentication with a signature, verification of data

integrity, and security certificates for the communications.

12

1.2.1 Terminology in Cryptography [39]

• Cipher: procedure to render messages unintelligible except to an au-

thorized recipient;

• Encryption: process to convert original message to unintelligible mes-

sage;

• Decryption: process to recover the original message;

• Plaintext: original readable message;

• Ciphertext: encrypted message;

1.2.2 Well known Ciphers

Modern cryptography can be categorized into symmetric ciphers, asymmetric

ciphers and hash functions according to the number of keys. The symmetric

cipher only has one private key and this key is used for both encryption and

decryption. The examples of symmetric ciphers include DES(Data Encryp-

tion Standard), triple-DES, AES(Advanced Encryption Standard), CAST-

128, CAST-256, One-time Pad, RC4, DES-X, IDEA(International Data En-

cryption Algorithm) [39]. The asymmetric cipher, also known as public key

cryptography (PKC), involves two keys: a private key for decryption and a

public key for encryption. The well-known asymmetric ciphers are El Gamal,

RSA, Elliptic Curve Cryptography(ECC), McEliece and NTRUEncypt [39].

The cryptographic hash functions, also called message digests, are often used

to encrypt passwords and provide a measure of the data integrity. The hash

functions in common use today include MD5, SHA1, SHA-256, SHA-512 and

13

RIPEMD [39]. Applications in the real world could use all the three crypto-

graphic techniques for secure communication, or depending just one or two

together.

1.2.3 Cryptographic Attacks

Cryptography has been applied for secure communications through the vari-

ous techniques as mentioned in Section 1.2.2. However, there are some people

that try to extract the information by attacking the cryptographic system.

These cryptographic attacks circumvent the security of the cryptographic

systems by finding weaknesses of the ciphers or the cryptographic schemes.

Such a process is also called "cryptanalysis". In [39], cryptographic attacks

can be classified into six related types including three plaintext based attacks

and three ciphertext based attacks. They are: Known Plaintext Attacks,

Chosen Plaintext Attacks, Adaptive Chosen Plaintext Attacks, Ciphertext

Only Attack, Chosen Ciphertext Attacks, and Adaptive Chosen Ciphertext

Attacks. For example, a Brute Force Attack, which systematically attempts

every possible key to unlock the message, is used in a Known Plaintext

or Ciphertext Only attack; The Meet-In-The-Middle Attack [39] is also a

Known Plaintext attack. It is a passive attack in that the attacker can read

the message without authorization but cannot alter the message or replace

the message entirely. It can be used successfully against the DES, and this

is why Triple DES is sometimes used [14]. The Birthday Attack is a Chosen

Ciphertext Attack that can discover collisions in hashing algorithms such as

MD5 and SHA1 ([37, 44]). A 256-bit Hash is needed to give a 2128 resis-

tance to the Birthday attack [44]. Recently, the Side Channel Attack has

become popular as it leverages additional information based on the physical

implementation of a cryptographic algorithm, including the hardware used,

14

to encrypt or decrypt data([55, 33, 60]).

In the 1990’s, many cryptographic schemes were based on the Discrete Log-

arithm Problem (DLP)([62]) which is presumed to be a hard mathematical

problem, and thus it is the basis of new cryptography schemes such as El

Gama and ECC mentioned in Section 1.2.2. Pairing was shown to attack

such schemes successfully [36, 23]. In [36], Menezes, Vanstone, and Okamoto

proved and used the Weil pairing to reveal the weakness of supersingular

curves (see Section 2.3.1). Later on, Frey and Ruck published their attack

(FR attack) with Tate pairing in 1994 [23] to break the DLP-based cryp-

tography. This drove a new need for more complex cryptographic schemes.

However, for implementation purposes, they need to be efficient. Otherwise,

a trade-off between efficiency and security is required.

1.3 Pairing Based Cryptography on Elliptic Curves

In reverse to pairing based attacks, pairing is also useful for designing com-

plex cryptographic schemes, particularly in pairing-based elliptic curve cryp-

tography [34]. This is a new asymmetric cipher technique and it has exploded

over the past six years [20]. The central idea is the construction of a map-

ping between two useful cryptographic groups: G1 and G2 which allows for

cryptographic schemes based on the reduction of one problem in one group

to a different, usually easier problem in the other group. Such a mapping e

is described below:

e : G1 ×G1 → G2

15

where e is supposed to be a bilinear mapping, which means

∀P,Q ∈ G1 and ∀a, b ∈ Z∗q , e(aP, bQ) = e(P,Q)ab.

The bilinearity allows pairings such as the Weil Pairing and Tate Pairing

to be useful because it enables new identity-based cryptographic primitives.

Identity-based (also known as ID-based) crypto schemes have the advantage

that there is an explicit connection between a user’s unique identification,

such as an e-mail address or biometric measurement, and their private key.

This eliminates the need for a public key distribution infrastructure. The au-

thenticity of the public keys is guaranteed implicitly as soon as the transport

of the private keys to the corresponding user is kept secure. It also allows

extra embedding data, such as an expiration date for a message, coded as

part of a user ID in the system. Joux firstly introduced a pairing based one-

round three-party key exchange in 2000 [2]. In 2001, Boneh and Franklin

published the first ID-based encryption (IBE) scheme [7]. Since then there

have been many approaches to ID-based cryptography such as [9, 8, 63, 43].

Particularly in 2004, the Java based approaches of IBE and IBS were intro-

duced in [47, 19, 13].

The security of the pairing based cryptography is based on the assumption

that the Decision Diffie-Hellman (DDH) problem [10] is easily solved with

a pairing function but the Computational Diffie-Hellman (CDH) problem

remains infeasible.

In short, the DDH can be described as:

Given 〈P, aP, bP, cP 〉 with a, b, c ∈R Z∗q , and P is affine point on elliptic

curve, then determine whether c = ab. This can be solved easily by defining

pairing functions: e1 = (aP, bP), e2 = (P, cP) and if e1 = e2, then c = ab

16

due to the bilinearity.

The CDH can be expressed as:

Given 〈P, aP, bP 〉 with a, b ∈R Z∗q , and P is affine point on elliptic curve,

then find c ∈R Z∗q such that c = ab. This is hard to achieve as it is equivalent

to solving the DLP.

In the pairing-based cryptography, Tate pairing is particularly useful due to

its properties (see Section 2.1.1) and the efficient manner in which it can be

evaluated. This was mainly due to the algorithm by Miller [38] that rapidly

computes multiples of points on elliptic curves.

The rich mathematical structure of pairing also ensures strong security for

relatively small key sizes compared to more traditional systems like RSA

[50]. In [27], the ECRYPT II (European Network of Excellence in Cryptol-

ogy) provides the latest key size equivalences shown in Table 1.1. As the

pairing is defined with elliptic curves, the key size of pairing based cryptog-

raphy can be considered as the same as the key size of ECC. One of the

significant benefits of ECC is that ECC saves memory space as it can pro-

vide equivalent crypto strengths with smaller number of key sizes (in bits)

compared with other cryptographic techniques such as RSA.

Security Level RSA DLP ECC Hash
(bits) (bits) key group (bits) (bits)
64 816 128 816 128 128
72 1008 144 1008 144 144
80 1248 160 1248 160 160
96 1776 192 1776 192 192
112 2432 224 2432 224 224
128 3248 256 3248 256 256
160 5312 320 5312 320 320
192 7936 384 7936 384 384
256 15424 512 15424 512 512

Table 1.1: Key-size Equivalence in [27]

17

1.4 Security of Pairing Based Cryptography

The security of a pairing based cryptosystem relies on two parameters: the

bit length, r and the bit size of the extension field k log2 n, where k is the

embedding degree and p is the number of elements in the finite field. The

embedding degree is the degree of the extension field that the pairing maps

into. The parameters need to be chosen high enough so that the discrete log-

arithm problem is hard in both the subgroup of the curve and the finite field

[41]. An Elliptic curve with a small embedding degree and a large prime-

order subgroup is said to be pairing friendly. According to [22], much work

has been done trying to match the bit sizes of curve parameters to obtain

commonly desired levels of security. Table 1.2 from [22] shows the size of bit

curve parameters and corresponding embedding degrees to obtain commonly

desired levels of security, noting that

ρ = log p/ log r

Security Level Subgroup size Extension field size Emgedding degree k
(in bits) r (in bits) qk (in bits) ρ ≈ 1 ρ ≈ 2

80 160 960-1280 6-8 2*,3-4
112 224 2200-3600 10-16 5-8
128 256 3000-5000 12-20 6-10
192 384 800-10000 20-26 10-13
256 512 14000-18000 28-36 14-18

Table 1.2: Bit sizes of curve parameters and corresponding embdding degree
to obtain commonly desired levels of security [41]

In general, for efficient pairing computation we need curves with embedding

degree rather small. However, to improve security it is more efficient to have

a greater value of k than p [41].

18

1.5 Software & Cryptography

Most cryptographic schemes are implemented as software programs. Well-

known examples include PGP[17] and NTRUEncrypt[25]. Biometrics cryp-

tography processing normally consists of a hardware interface but the pro-

cessing is either done on a computer or embedded processor. There are some

existing Java based software solutions to the cryptography. Sun provides

security services and utilities since J2SE 1.4.2, which includes the most com-

mon hash functions, symmetric and asymmetric ciphers. Up to their latest

JDK 1.6.21, the java.security package with its sub-packages and together

with the javax.security.* packages could provide most popular security ser-

vices including digital certificates, digital signatures, public key cryptogra-

phy, and authentication [46]. [26] is another well-known Java based security

provider. Their products are also free of charge for educational and research

purposes. They provide ECC including the Elliptic Curve Diffie-Hellman

protocol and Elliptic Curve Digital Signature protocol. These are not suit-

able for our system specification as they are not suitable for identity based

cryptographic scheme. We applied pairing to allow identity based crypto-

graphic scheme. Since the pairing computation is still very timing consuming

compared with other ciphers, there is no official or commercially released li-

brary in this area.

The cryptographic scheme in [13] was the first java approach for pairing

based cryptography as mentioned in Section 1.1. The following Figure 1.1

shows the system structure, which includes four main stages named Biomet-

ric Extraction, Fuzzy Extraction, Parameter Selection, and IBS system [13].

19

Figure 1.1: Diagram of Biometric Identity Based Signature Scheme [13]

The Biometric Extraction block provides the biometric measurement. It

reads the user’s biometric information, such as their fingerprint, and trans-

lates it to a byte array. However, it must take into account the facts that

either a biometric identity can vary over time or that the reading taken

may not be perfect [29]. Thus, checking for an exact match with a previ-

ous measurement may not always work, and to overcome this some further

processing is needed. The fuzzy extraction block is intended rectify this.

The fuzzy extractor is based on the Hamming distance metric. It is built

using Error Correcting Codes (ECC). The ECC chosen is a Bose-Chaudhuri-

Hocquenghem (BCH) code [13]. These can be designed to correct errors to

about half the code’s block length. Applying the fuzzy extractor means that

variable biometrics can still reproduce unique keys [28]. Following the fuzzy

extraction, the Parameter Selection and IBS stages takes place. Elliptic

curve cryptography with Tate pairing is used for the encoding. The Tate

pairing in this system is calculated using the original Miller’s algorithm [38].

There are two possible configurations here for these blocks: (1) Signing or

(2) Verification. In the case of signing two parameters are produced: ID

and PAR, where ID is the identity used for the key generation and PAR

is the publicly available reproduction parameter. This PAR will be used

in conjunction with another biometric input in the verification process to

recover ID [29]. In the case of verification, a combination of the new biomet-

20

ric measurement and the PAR is used to generate an identification value,

ID’. If this is equal to the stored ID, within some threshold, then the user is

verified, otherwise they are rejected [13].

1.6 Motivation of this project

It was noticed that Tate pairing was very valuable to the IBS system. Here

it was evaluated with Miller’s algorithm (see Section 2.1.2). However, since

Stange introduced the Elliptic Net theory in 2006 [58], Tate pairing can

now be evaluated with an alternative algorithm. This new technique brings

a fresh perspective to the java-based BIO-IBS system of Section 1.5. In

general, these advances have given rise to new requirements for the system.

The pertinent questions to ascertain these are:

1. How can the Elliptic Net algorithm be integrated with the BIO-IBS

system?

2. Can the performance of the whole system be at least maintained or

can it be improved?

1.7 Outline of The Dissertation

The structure of this dissertation is as follows: In Chapter 2 the mathe-

matical concepts involved in this thesis are outlined. It will cover the areas

of finite field and its extension fields, elliptic curve arithmetic, Tate pair-

ing, Elliptic Nets theory, and discuss two types of pairing friendly elliptic

curves. Chapter 3 provides the initial design of the project. Chapter 4 cov-

ers the development procedure of the Elliptic Nets algorithm, which includes

21

the issues involved in integrating the Elliptic Nets system with our existing

pairing based cryptosystem and adding BN-Curves for Tate Pairing in both

algorithms. Chapter 5 will address all the questions of the Section 1.6. It

will give some test cases with results and provides a comparison of the two

approaches to Tate calculation to assess performance. Finally, we discuss

conclusions and future work in Chapter 6.

22

Chapter 2

Mathematical Background

This chapter gives a flavour of the mathematical theory behind the system.

Section 2.1 explains the fundamental arithmetic of Elliptic curves and defines

Tate Pairing. Section 2.2 introduces Elliptic Divisibility Sequence(EDS),

Elliptic Net and Tate pairing calculation via Elliptic Nets. Section 2.3 in-

troduces two types of elliptic curves which can be candidates for pairing

computation. These two curves are chosen as they benefit from efficiency.

2.1 Preliminaries

We represent the finite field with p elements as

Fp = {0, 1, 2, 3, . . . , p− 2, p− 1}.

An integer r is called a quadratic residue modulo p if it is congruent to a

perfect square (mod p); i.e., if there exists an integer x such that: x2 ≡ r

(mod p). Otherwise, r is called a quadratic nonresidue (mod p). Then, the

extension field Fp2 is defined as {a+ bi} with a, b ∈ Fp and i2 is a quadratic

nonresidue modulo p([62]).

23

The basic units for elliptic curve arithmetic are points (x, y) on an elliptic

curve, E, over a finite field, Fp, denoted E(Fp), of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

with a1, a2, a3, a4, a6 ∈ Fp. The form above is general. It can be transformed

into a Weierstrass form as

y2 = x3 +Ax+B (2.2)

with x, y,A,B ∈ Fp by a suitable transformation. We can define the abstract

concepts of addition, P + Q, and scalar multiplication by an integer, [n]P ,

on the points of E(Fp).

We can also define a special point at infinity, ∞, which is not a solution to

the equation given above. These operations combine to make E(Fp) a finite

abelian group with∞ behaving as the identity element. Details of how these

concepts are implemented appear in [5, 31]. The order of a point P is defined

to be the smallest integer n such that [n]P = ∞. We let E(Fp)[n] be the

subgroup of E(Fp) consisting of points of order n. This is also called the

group of n-torsion points on E(Fp). Let #E be the order of the curve(i.e.

the number of points on the curve), then for any point P ∈ E, [#E]P =∞.

2.1.1 Tate Pairing

As mentioned in Section 1.2.3, the Tate Pairing was introduced to cryptog-

raphy by Frey and Ruck in [23].

Definition: Consider the elliptic curve E(Fp)[n], let k be a positive integer

such that n | pk − 1 with k minimal, if this is satisfied then k is called the

24

embedding degree. Let µ(n) = {a ∈ Fpk | an = 1} be the nth roots of unity.

Then according to Washington [62], the Tate pairing τ ′n can be defined as:

τ ′n : E(Fp)[n]× E(Fpk)/nE(Fpk)→ Fpk/(Fpk)n (2.3)

and the modified Tate pairing τn is:

τn : E(Fp)[n]× E(Fpk)/nE(Fpk)→ µ(n) (2.4)

Note that the τ ′n in Equation 2.3 is also known as a coset value which repre-

sents a quotient group rather than an element in that group.

Assume point P ∈ E(Fp)[n] and point Q ∈ E(Fpk) with P ! = 0, then Tate

pairing can be denoted as en(P,Q). In this dissertation, all P and Q sat-

isfy this assumption. We choose Tate pairing for cryptography due to the

following properties:

1. The Tate pairing is non-degenerated. This means for any given P ,

there always exists a Q such that en(P,Q)! = 1.

2. The Tate pairing is bilinear. This means for any given integers a, b and

any points P and Q,

en(aP, bQ) = en(P,Q)ab (2.5)

2.1.2 Miller’s algorithm for Tate Pairing

In 1986, Miller firstly found that pairings can be achieved through divisor

theory [38]. This algorithm focuses on finding the principle divisor of P with

some specific line functions. The algorithm is a computationally efficient

approach for Tate pairing. In the recent years, variant versions of Miller’s

25

algorithm were developed for the optimization and efficiency of Tate pairing

computation [4, 54, 21, 18]. Despite all these optimizations, however, the

time cost on pairing computation is still the most significant bottleneck of

pairing based cryptography ([35]). Up until late 2006 Miller’s algorithm

was the only way to compute these multiples and so almost all applications,

including the existing BIO-IBS [13, 19] system, were implemented with this

algorithm.

2.2 Elliptic Nets Theory

The Elliptic Nets theory was proposed in [58] by Stange. The study is based

on division polynomials of elliptic curves.

2.2.1 Elliptic Divisibility Sequence

Definition: A divisibility sequence, ψ, is an integer sequence that satisfies

the following two properties:

1. For all positive integers m > n,

ψm+nψm−n = ψm+1ψm−1ψ
2
n − ψn+1ψn−1ψ

2
m (2.6)

2. ψn divides ψm whenever n divides m.

Elliptic Divisibility Sequence(EDS) was firstly defined by Morgan Wards in

the 1940s [61]. More recently, R. Shipsey submitted her PhD thesis on EDS

[53]. In her thesis, she discovered a specific relationship between elliptic

divisibility sequences and elliptic curves. Consider a point P = (x, y) and

its multiples on an elliptic curve E : y2 = x3 +Ax+B over a finite field Fp

where p is prime. According to the division polynomial theory, [n]P can be

26

represented as [62]:

[n]P =
(
φn(x)
ψ2

n(x)
,
ωn(x, y)
ψn(x, y)3

)
(2.7)

Regardless of the other parts, the square roots of the denominator of the

x coordinates, ψn(x), are division polynomials and they form the elliptic

divisibility sequence. Shipsey illustrated initial formulas for calculating the

first four terms in the sequence and two recursion formulas for any other

remaining terms in the sequence. For example: define the Elliptic Curve as:

E : y2 + y = x3 + x2 − 2x over F5

and P = (0, 0) has order 9, then the EDS of the curve is:

0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, ...

Shipsey also found that EDS could be applied to cryptography, especially

to the elliptic curve discrete logarithm problem (ECDLP). Later on in [32],

Lauter and Stange defined hard problems with EDS terms which are equiv-

alent to ECDLP and related one of them to Tate pairing and the MOV[36],

Frey-Ruck[23] and Shipsey’s attacks[53].

2.2.2 Stange’s Elliptic Net

In late 2006 an alternative approach to computing fast multiples of points

was introduced by Stange [58]. This new algorithm is based on the theory

of division polynomials and is significantly different than Miller’s algorithm.

Basically Stange made the connection between terms in a sequence (called

Elliptic Net) and multiples of points on an elliptic curve. This meant that by

quickly moving up the sequence large multiples of points could be calculated.

27

Definition: The Elliptic Net is a generalization of the elliptic divisibility

sequence. It is a function W : A → R from a finite rank free abelian group

A to an integral domain R satisfying the properties:

1. W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0 ,

for all p, q, r, s ∈ A.

2. W (−z) = −W (z) for any z ∈ A.

For the rank 2 case, WE,P,Q, denotes an Elliptic Net associated with two

points, P and Q on the elliptic curve E : y2 = x3 + Ax + B over a finite

field Fp where p is prime and p > 3. The variable W (n,m) represents the

equivalent meaning of [n]P+[m]Q. Figure 2.1 gives an example of an Elliptic

Net.

28

Define Elliptic Curve as: E: y2 + y = x3 + x2 -2x over F5 with

P = (0, 0) and Q = (1, 0)

Then Elliptic Net WE,P,Q is shown below

4312110

1420211

0765431

4444130

1230234

0314444

4213440

Note that the bottom row and the most left row are general Elliptic
Divisibility Sequences.

P → [n]P + [0]Q

↑

Q

[0
]P

+
[n

]Q

Figure 2.1: Example of Elliptic Net in [58]

In the figure, P and Q are incremented by scalar multiplications with

the scalar in the range [0..6] and the values of the matrix are computed out-

ward from the bottom left hand corner according to W (n,m), where n and

m also represent the indices of row and column respectively. For instance,

W (2, 1) = 2 in this example.

Elliptic nets have two operations: doubling and double-adding. Figure 2.2

shows a block structure used for the computation and storage of an Elliptic

Net.

29

Figure 2.2: Doubling and Double-adding a Block Centered on W (k, 0)

The figure states that doubling a block centered on W (k, 0) returns the

block centered on W (2k, 0), and double-adding a block centered on W (k, 0)

yields the block centered on W (2k + 1, 0). The value of a W (k, 0)-centered

blocked can be computed through the Elliptic Net algorithm and its corre-

sponding doubling and double-adding strategy. They will be described in

Section 2.2.3

2.2.3 Tate Pairing using Elliptic Net

Let E be an elliptic curve defined over a finite field K, m a positive integer,

P ∈ E(K)[m] and Q ∈ E(K). If WP is the Elliptic Net associated to E and

P , then we can calculate the Tate Pairing as: [58]

τ ′(P, P) =
WP (m+ 2)WP (1)
WP (m+ 1)WP (2)

(2.8)

Further, if WP,Q is associated to E, P and Q, then we have

τ ′(P,Q) =
WP,Q(m+ 1, 1)WP,Q(1, 0)
WP,Q(m+ 1, 0)WP,Q(1, 1)

(2.9)

30

To summarize the connection between Elliptic Nets and the Tate pairing,

from the equations above, the Tate pairing is calculated by certain terms in

the Elliptic Net sequence. Note that the output of Elliptic Net algorithm is

a coset value. However, it is still necessary to perform a final exponentiation

as Miller’s algorithm does, which means, [58]

τm(P,Q) = em(P,Q) = τ ′(P,Q)
(pk−1)

m (2.10)

To compute terms in an Elliptic Net associated with the elliptic curve E :

y2 = x3 + Ax + B, we assume that the points P = (x1, y1) ∈ E[m] and

Q = (x2, y2) ∈ E(K), then we can initialize the following terms([58]):

W (1, 0) = W (0, 1) = W (1, 1) = 1 ,

W (2, 0) = 2y1 ,

W (3, 0) = 3x4
1 + 6Ax2

1 + 12Bx1 −A2 ,

W (4, 0) = 4y1(x6
1 + 5Ax4

1 + 20Bx3
1 − 5A2x2

1 − 4ABx1 − 8B2 −A3) ,

W (−1, 1) = x1 − x2 ,

W (2, 1) = 2x1 + x2 −
(

y2−y1

x2−x1

)2
,

W (2,−1) = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2 .

The rest of the terms in the Elliptic Net can be computed through the

recursion shown below:

W (2k − 1, 0) = W (k + 1, 0)W (k − 1, 0)3 −W (k − 2, 0)W (k, 0)3 ,

W (2k, 0) = (W (k, 0)W (k + 2, 0)W (k − 1, 0)2

−W (k, 0)W (k − 2, 0)W (k + 1, 0)2)/W (2, 0) ,

W (2k − 1, 1) = (W (k − 1, 1)W (k + 1, 1)W (k − 1, 0)2

−W (k, 0)W (k − 2, 0)W (k, 1)2)/W (1, 1) ,

W (2k, 1) = W (k − 1, 1)W (k + 1, 0)W (k, 0)2

−W (k − 1, 0)W (k + 1, 0)W (k, 1)2 ,

31

W (2k + 1, 1) = (W (k − 1, 1)W (k + 1, 1)W (k + 1, 0)2

−W (k, 0)W (k + 2, 0)W (k, 1)2)/W (−1, 1) ,

W (2k + 2, 1) = (W (k + 1, 0)W (k + 3, 0)W (k, 1)2

−W (k − 1, 1)W (k + 1, 1)W (k + 2, 0)2)/W (2,−1) ,

Then the Tate pairing τ ′m is given asW (m+1, 1)/W (m+1, 0) wherem is the

order of P . This is a limited case of Equation 2.9 as W (1, 0) = W (1, 1) = 1.

For the entire algorithm see Algorithm 1.

Algorithm 1 Tate Pairing via Elliptic Net Algorithm
Input: Initial terms a = W (2, 0), b = W (3, 0), c = W (4, 0), d = W (2, 1),
e = W (−1, 1), f = W (2,−1), and integer m = (dkdk−1 . . . d1)2 with
dk = 1.
Output: Tate pairing τ(P,Q)

1: V ← [[1, 1, d]; [−a,−1, 0, 1, a, b, c, a3c− b3]]
2: for i = k − 1 to 1 do
3: if di == 0 then
4: V ← doubling (V)
5: else
6: V ← doubleAdding (V)
7: end if
8: end for
9: return V [0, 2]/V [1, 4]

2.2.4 Existing Approach

There are several existing implementations of the Elliptic Nets algorithm

in a variety of computer languages. Stange implemented the original algo-

rithm in PARI/GP [57]. Her implementation was initially used for testing

and proving her Elliptic Nets algorithm. Stange also mentions that Michael

Scott and Augusto Jun Devegili implemented a C++ version for a pairing-

friendly curve of degree 2. She said that "Ben Lynn’s C++ approach [34] is

applicable to curves of various size and embedding degrees" in her paper as

well. Graeme Taylor provided a SAGE version of the Elliptic Nets algorithm

32

[59]. He reduced the size of block structure (see Section 2.2.2) as a possible

optimization. SAGE is a free open-source mathematics software and it can

be directly used on a Unix platform . However, it requires an extra software

tool, named VirtualBox ([11]), to be run under the Microsoft Windows-based

environment([16]).

2.3 Suitable Curves for Tate Pairing

By the definition of Tate pairing τ(P,Q), it requires the first point P ∈

E(Fp[n]) and second point Q ∈ E(Fpk)/E(Fp). However, a randomly-chosen

elliptic curve will normally have a large embedding degree (which means large

k), which intensifies its resistance to the MOV([36]) and Frey-Ruck([23]) at-

tacks, but also renders it useless for pairing-based cryptography due to a

low-speed and huge-cost computation. For practical purposes, we are look-

ing for curves with small embedding degrees (i.e. small k) such that they

guarantee the trade-off between efficiency and security. This leads to the use

of supersingular curves to attain the balance.

2.3.1 Supersingular Curves

Supersingular curves have been proven to be the most efficient curves for

pairing [35]. The curves we chose have the form y2 = x3 + x over Fp where

p = 3(mod 4). These curves also have the following properties:

1. #E = p+ 1.

2. For any odd r|p+ 1 the group E(Fp)[r] has embedding degree k = 2.

3. There exists the distortion map:

Ψ(x, y) 7→ (−x, iy) (2.11)

33

where i2 = −1. (Note −1 is quadratic nonresidue in Fp.) It maps

points of E(Fp) to points of E(Fp2)/E(Fp).

Thus, the point Q can be easily obtained by getting a point in E(Fp) and

then applying the distortion map. Based on the above advantages of super-

singular curves, Tate pairing over these curves was studied in [4],[54] and

several optimizations were discovered that could improve the efficiency of

the pairing computation.

However, the small number of the order and the embedding degree of the su-

persingular curves result a small number of possible group structures, which

enables many algorithms designed for attacking such curves. The result is a

reduction in complexity to subexponential, and even polynomial time when

they exploit this fact. Therefore, supersingular curves are considered to be

’weak’ for cryptography [30].

2.3.2 Barreto-Naehrig Curves

Although supersingular curves have the benefit of speeding up of the com-

putation of pairing, the weakness of theses curves is also obvious as in

[52, 51, 30]. Therefore finding more secure curves becomes critical for pairing

based cryptography. Generally a non-supersingular elliptic curve over Fp is

called pairing-friendly if it contains a subgroup of order r with embedding

degree k not too large. In 2005 Barreto and Naehrig [3] defined a new type

of pairing-friendly curves which are known as BN-Curves. The BN-Curves

are optimal elliptic curves of prime order and embedding degree k = 12.

Parameters of BN-Curves

BN-Curves have the form y2 = x3 + b over Fp where b ∈ Fp and p = 1(

mod 6). The order of the curve is denoted as n. Let point g = (1, y) be the

34

generator of the curve. Then, a BN-Curve can be specified by the parameters

of p, n, b, y. The Algorithm 2 gives an efficient construction of BN-Curves

with a desired size([3]).

Algorithm 2 Constructing BN-Curves
Input: The approximate desired size m of the curve order (int bits)
Output: parameters p, n, b, y such that the curve y2 = x3 + b has order
n over Fp with point g = (1, y) as the generator of the curve.

1: Let P (x) ≡ 36x4 + 36x3 + 24x2 + 6x+ 1
2: Computer she smallest x ≈ 2m/4 such that dlog2P (−x)e = m.
3: loop
4: t← 6x2

5: p← P (−x)
6: n← p+ 1− t
7: if p and n are prime then
8: exit loop
9: end if

10: p← P (x)
11: n← p+ 1− t
12: if p and n are prime then
13: exit loop
14: end if
15: x← x+ 1
16: end loop
17: b← 0
18: repeat
19: repeat
20: b← b+ 1
21: until b+ 1 is a quadratic residue mod p
22: Compute y such that y2 = b+ 1(mod p)
23: g ← (1, y) on the curve E : y2 = x3 + b
24: until [n]g =∞
25: return p, n, b, y

35

Sextic Twisted Curves

As BN-Curves has k = 12, sextic twisted curves were also introduced to

reduce the computations with BN-Curves. In [3], it was proven that when

p = 1(mod 6) there exists ζ ∈ F∗p2 such that X6−ζ is irreducible over Fp2 [X]

and Fp12 can be represented as Fp2 [X]/[X6 − ζ]. Therefore, a sextic twisted

curve can be defined as E′(Fp2) : y′2 = x′3 + b/ζ with suitable ζ. This sextic

twisted curve must satisfy:

1. n|#E′(Fp2)

2. #E′(Fp2) = n(2p− n)

Let z ∈ Fp12 be a root of X6 − ζ. There exists a homomorphism Ψ for

mapping points and it can be defined as:

Ψ : E′(Fp2) → E(Fp12)

(x′, y′) 7→ (z2x′, z3y′) (2.12)

Since that any element in Fp12 can be represented in the form

a0 + a1z
1 + a2z

2 + a3z
3 + a4z

4 + a5z
5 (2.13)

where ai ∈ Fp2 with z6 = ζ.

The sextic twisted curve (in [3]) is useful because of two efficient improve-

ments on BN-Curves. They are point compression and pairing compression.

Basically, both compressions can be used to save memory space by about

one third and in some cases even by one sixth. For a memory-limited device,

these compressions are significant. However, such compressions require ex-

tra computations for implicit exponentiation, which directly slow down the

36

speed and increase the burden on the computing engine. The detail of the

compressions were described in [3]. From a practical implementation point

of view, using a sextic twisted curve can be an efficient technique to generate

a random Q ∈ Fp12 for pairing computation.

2.4 Summary

In this chapter, we have described all the mathematic theory required in

this project. We started at elliptic curves over finite field, the definition

of the Tate pairing and Miller’s algorithm. Then, we described Stange’s

elliptic net theory, especially its application with the Tate pairing. Finally we

introduced two popular pairing friendly curves, named supersingular curves

and BN-Curves, which will be used in this thesis. We represented how these

tow types of curves be generated and how Tate pairing be yield for these

curves. We pointed out both the benefits and the weakness of supersingular

curves and we assumed that the complexity of the BN-Curves is supposed

to enhance the security of the system but the efficiency would be worse than

the one of supersingular curves.

37

Chapter 3

Design

This chapter discusses the initial design of the new IBS system with Elliptic

Nets algorithm and the design of the BN-Curve. Then it describes three

software development strategies, which is followed by a suitable choice for

this thesis.

3.1 Current State of IBS

As we mentioned in Section 1.5, the IBS part of the product provides user

validation checking, which is achieved through digital signature schemes with

Tate pairing. Figure 3.1 expresses how Tate pairing is used in this system.

38

Miller

Tate

IBS System

BIO-IBS System

Key Generation Sign Verify

Figure 3.1: Tate Pairing inside IBS

As shown in Figure 3.1, Tate pairing is only employed for verification

but not for either key generation or signing in this IBS protocol. For verify-

ing, there exists public system parameters: (G1,G2, ê, P, Ppub, H1, H2) where

H1, H2 : {0, 1}∗ → G∗1 and ê is the Tate pairing. The signing service can pro-

vide signatures with the form σ = 〈U, V, PAR〉 and to verify such a signature

σ on message M , the protocol will take three steps:

1. Get a biometric reading and input the variable PAR to produce the

ID′, where ID′ is the identification the user wishes to identify;

2. Calculate Q′ID = H1(ID′) ∈ G1 and H = H2(ID′,M,U) ∈ G1;

3. The signature σ is verified if ê(P, V) = ê(Ppub, Q
′
ID)ê(U,H) and re-

jected otherwise.

In Step 3 where this verifier requires three Tate pairing computations. Only

Miller’s algorithm is currently provided for Tate pairing computation.

39

3.2 Designing a New IBS

As there are two Tate pairing approaches available now, we desired that the

new Tate pairing computation to be implemented for the IBS as shown in

the following Figure 3.2.

In this design, we embedded the Elliptic Nets algorithm into the Tate pairing

Miller

Tate

Designed IBS System

BIO-IBS System

Key Generation Sign Verify

Elliptic

Nets

Figure 3.2: Desired New Tate Pairing inside IBS

procedure. This embedding should not conflict with the configuration for the

Miller’s algorithm and the Tate. This embedding should obey the system

settings from its previous parts as well. We should make a decision on which

algorithm is to be the default one as such a decision depends on the timing

cost of the two algorithms. Moreover, when the verifier detects an inequality

in Step 3 with the default algorithm, it should automatically switch to the

second one for an alternative equality check rather than rejecting directly.

Only when both Tate pairing algorithms result in the inequality status, the

40

signature will be rejected as an invalid user. If the two approaches yield

different results, this means the IBS part has failed and needs to be re-

built and meanwhile a notification should be sent to the system to stop the

verification service. When a successful build is reached, the IBS should be

re-deployed and the system should resume the verification service.

3.3 Design for new curves

As the supersingular curves are considered weak (see Section 2.3.1), we will

add Barreto-Naehrig Curves (BN-Curves) for pairing friendly curves. As the

BN-Curves have more complex math properties, we should implement an

adequate extension field to hold both BN-Curves and their corresponding

sextic twisted curves, including points on the curves and arithmetic over

the extension field. We will also implement an optimized version of Miller’s

algorithm to be associated with the Tate computation over BN-Curves.

3.4 Logical view of the Design

In [12], Burnett, Byrne, Dowling and Duffy provide some of the basic finite

field and elliptic curve arithmetic mentioned in Section 2.1. It is wrapped

into the package called Blitz. Our project will be developed using this Blitz

package as a starting point.

3.4.1 Logical View of existing APIs

A brief package view of the Blitz package is shown in Figure 3.3.

41

Figure 3.3: Package View of Existing Blitz in [12]

This figures shows four significant subpackages: Curve, Point, Field and

Extension, which are all relevant and will be employed in this project. These

subpackages cover the implementation of elliptic curves with points on the

curves and associated elliptic group laws over finite fields. Note that Blitz

also has other subpackages which we do not show because they are not

necessary to this project. The logical view of the existing libraries are shown

in Figure 3.4.

The dependencies of the APIs are represented from the bottom to top. The

Finite Field API is the most basic one because we only need elliptic curves

over integer groups. This API covers arithmetic over Fp and F2
p. Based on

that the Elliptic Curve API is defined within the field. Then the top layer is

the Bilinear Map API, which relies on the Finite Field API and the Elliptic

Curve API. This API provides Weil pairing and Tate pairing computations

through Miller’s algorithm. However, we are only interested in Tate pairing

here. The curve used in this API is the supersingular curve only.

42

Figure 3.4: Logical View of the Existing APIs

3.4.2 Logical View of New APIs

Our new Elliptic Nets algorithm and the BN-Curve are intended to be im-

plemented based on the existing APIs. Figure 3.5 gives a logical view of

the new system. It is called a logical view because the new APIs may be

physically packaged independently.

We designed four API’s for our project. From the bottom to the top, firstly

the Fp12 API is on the bottom. It is within the Finite Field API because it

is supposed to be an inherited API as it represents the particular extension

field Fp12 . We keep the Elliptic Curve API as before and then on the third

layer, we put the BN-Curves API and the Elliptic Net API. A BN-Curve

is a special type of elliptic curve and it can use the Elliptic Curve API for

common arithmetic operations. In Section 2.2.2, it was shown that an El-

liptic Net can be defined and initialized from an elliptic curve, so there is

some dependency on the Elliptic Net and thus its API is designed to rely

on the Elliptic Curve API. Note that the supersingular curve API is put on

43

Finite Field API

For Fp, Fp2

Elliptic Curve API

supersingular curve API Elliptic Net

APIBN Curve API

Fp12

API

Bilinear Map API

Including Tate pairing via Miller’s algorithm
Tate Pairing via

Elliptic Nets

API

Figure 3.5: Logical View of New APIs

the third layer as well because it is logically parallel to BN-Curves, which

means they are all pairing friendly curves without any dependency between

them. Finally the top layer still represents the Bilinear map of Tate pairing.

Again it depends on pairing friendly curves from the third layer. We add

Tate Pairing Via the Elliptic Net API within the Bilinear map API as the

new API also provides bilinear Tate pairing computation. It relies on the

Elliptic Net API directly. In the actual development, these two APIs may

be packaged together.

44

3.5 Software Development Strategy

In this section we will discuss some common software development mod-

els and determine the most suitable one for our project. There are three

frequently used development models([56]): Waterfall model, V-model and

Iterative and Incremental model. These models are well-structured software

development life cycles for planning and organizing software products.

3.5.1 Waterfall Model

The waterfall model is visualized as a linear sequence of phases which begins

with software requirements analysis then followed by system design, imple-

mentation, testing or verification, and maintenance [56]. Such a sequence

is displayed in Figure 3.6. This model allows for departmentalization and

Figure 3.6: Waterfall Model of Software Development in [56]

45

managerial control. A schedule can be set with deadlines for each stage of

development and a product can proceed through the development process

and theoretically, be delivered on time. However, the disadvantage of the

waterfall model is that it does not allow for much reflection or revision. All

the planning should be completed at very beginning and there is no over-

lap between any phases. The system requirements and specifications should

be absolutely correct otherwise the subsequent phases will overrun due to

inadequate analysis([56]).

3.5.2 V-Model

The V-Model ([56]) can be presumed as a variation or extension of the wa-

terfall model. Instead of moving down in a linear way as waterfall model, the

process steps are bent upwards after the coding phase, to form the typical V

shape. Figure 3.7 demonstrates the relationships between each phase of the

development life cycle and its associated phase of testing.

46

Figure 3.7: V-Model of Software Development in [56]

The advantage of V-Model is that it emphasizes verifications and valida-

tions for each phase. It is more test centered than the waterfall model. On

the other hand a disadvantage is that this model needs lot of resources. It

is thus costly and only suitable for implementation on big projects.

3.5.3 Iterative and Incremental Development Model

The iterative and incremental development model is at the heart of a cyclic

software development process developed in response to the weaknesses of the

waterfall model. It starts with an initial planning and ends with deployment

with the cyclic interactions in between. Figure 3.8 demonstrates the iterative

cycle of the model.

47

Figure 3.8: Iterative and Incremental Model of Software Development in [24]

Cycles are divided up into smaller, more easily managed iterations. Each

iteration passes through the requirements, design, implementation and test-

ing phases. With this model, a project can begin with a simple implementa-

tion of a part of the software system and then with each iteration the product

evolves with enhancements being added every time until the final version is

reached. The major advantages of the incremental model is:

• generating working software quickly and early during the software life

cycle;

• more flexible due to being less costly to change the scope or the re-

quirements;

• easier to test and debug during a smaller iteration;

• easier to manage risk because risky pieces are identified and handled

during its iteration;

• each iteration is an easily managed milestone.

48

3.5.4 Our approach of Development process

Comparing and considering all the three general development models, we

choose the iterative and incremental model for our project. First of all, this

is an individual research orientated project and because the requirements are

not fully fixed at the outset, the waterfall model and the V-Model are not

suitable. Secondly, this model allows easy testing at each smaller iteration

such that errors can be detected and fixed quickly at each stage. Thirdly,

it is flexible to update the requirements at each iteration with a less costly

implementation and it associated testing. Our project was partitioned into

five iterations as shown in Figure 3.9.

Figure 3.9: Iterations of the Project

In each iteration, it consists of a linear ’Requirement -Design - Implementation

49

-Testing’ sequence and completed with a corresponding version or milestone.

All the subsequent iterations are dependent on the success of their previous

ones. In brief,

1. Version 1 will provide a temporary Elliptic Net system with data type

of java.math.BigInteger. We start the project at this point to achieve

a mathematically correct Elliptic Net system.

2. Version 2 takes the temporary result and upgrades to the data type

of ’element’, which is a rich type defined by [12]. This version should

allow the Elliptic Net system to operate over the field Fp and and keep

consistency with [12].

3. Version 3 is another enhancement of the Elliptic Net system as it

makes the system work over the extension field Fp2 . This is also an

important milestone as the comparison of Elliptic Net algorithm with

Miller’s algorithm over supersingular curves is firstly obtained at this

stage and the result of the comparison will dominate the selection of

the default algorithm for Tate pairing at a later time.

4. Version 4 is the implementation of BN-Curves as we described in Sec-

tion 2.3.2. This version introduces new pairing friendly curves to the

system which extends the software to deal with the mathematical con-

cepts of the extension field Fp12 , BN-Curves, and twisted curves with

corresponding functionalities. It provides a more complex mathemat-

ical platform for the Elliptic Net system. Note that this iteration is

independent from the previous versions and can be started in parallel

with the testing phase of version 3.

5. Version 5 applies the Elliptic Net system to the BN-curves. It is

strongly dependent on all the previous versions. As a result the sys-

50

tem can accept BN-Curves as well as the supersingular curves for Tate

pairing. This version will also allow a comparison of the two algo-

rithms.

3.6 Summary

In this chapter, we reviewed the existing IBS product and its related API’s.

We provided our ideal design of the new system with the Elliptic Net Al-

gorithm. We discussed and chose a suitable software development process

to organize the project development. We provided a detailed development

plan as the project was partitioned into five smaller sub-projects and each

of them will achieve a significant milestone in the project

51

Chapter 4

Development

In this chapter, we discuss the complete software application that was de-

veloped. We firstly analyzed the two existing Java resources [12], [19] in

our lab environment, then designed, implemented and integrated the Ellip-

tic Nets system for Tate pairing computation. We then implemented new

fields for BN-Curves, implemented BN-Curves and applied the Elliptic Nets

algorithm to BN-Curves for Tate computation. We will provide details on

the implementations including requirements, issues and solutions.

4.1 Analysis of existing Elliptic Curve and Pairing

libraries

We used Java as the programming language as Java supports multi-platforms

and once a program is compiled it can be executed by any Java Virtual Ma-

chine [45]. There is no need to re-configure the environment settings in

contrast to C/C++ applications. In Section 3.4, the package Blitz in [12]

provides operations over the finite field Fp and limited calculations over Fp2 .

It provides the functionalities of the elliptic curve group laws in different

52

coordinates with their corresponding point representation as well. The later

development by Owens, Duffy and Dowling’s IBE API [19] was dependent

on [12]. Both APIs use the java.math.BigInteger class to represent and store

large numbers. The benefit is because since real large numbers (i.e. a 256-bit

number) can be defined easily and basic operations on these numbers are also

provided by JAVA itself. The speed of the system is somewhat dependent on

the running environment of the JVM. However, taking a closer look at the

whole system: although it provides a Java oriented approach for an Identity

Based Encryption system [7], the pairing computation part of the system is

very limited on the supersingular curve (see Section 2.3.1). Furthermore, the

algorithm for Tate pairing uses the standard Miller’s algorithm. These char-

acteristics were implemented to improve the efficiency of the whole system at

that time but now have become drawbacks to the system, particularly since

the weakness of supersingular curves were revealed in [36]. Additionally, now

an optimized version of Miller’s algorithm has been included. As a result,

the libraries need to be evolved to include the extension field, to accept more

types of curves, and to support the Elliptic Net algorithm.

4.2 Development of the Elliptic Net System

In this section, we discuss the implementation issues involved in the Elliptic

Net system. It includes the Version 1 and Version 2 we mentioned in Section

3.5.4. This Elliptic Net system should meet the following requirements:

1. It implements the mathematical model EDS and Elliptic Net;

2. It can handle large numbers;

3. It is compatible with the existing Blitz package;

53

4. Tate pairing can be computed through the Elliptic Nets algorithm.

The idea is to provide a new Elliptic Net system based on the existing Blitz

package and make the Blitz package more useful. We keep the java.math.BigInteger

class to hold the large numbers such that we can reuse the Blitz package. By

design, the package view of the Elliptic Net system is shown in Figure 4.1.

Figure 4.1: Package Diagram of Elliptic Nets System

We create a new package csi.crypto.EllipticNets to contain all classes of

the Elliptic Net system. It depends on the Blitz.curve package and the

Blitz.Field package. The former is used to define the elliptic curves and their

related operations and the latter, with its subpackage, defines the arithmetic

of the finite field associated with them. The csi.crypto.EllipticNets package

will wrap all the essential components including:

54

• A component to represent an elliptic divisibility sequence;

• A component to represent an Elliptic Net;

• A component to represent the data structure of an Elliptic Net;

• A component to perform Tate pairing calculation through the Elliptic

Nets algorithm;

The whole classes view of the package is depicted in Figure 4.2. The Block

class is considered as a composite of the EllipticNet class. The TatePair-

ingViaENet class may have at most one either EDS class or EllipticNet class

depending on the content. Sections 4.2.1, 4.2.2, 4.2.3 and 4.2.4 give more

information about each class in detail.

Block
<<utility>>

#V: <Element>

+Block()
+Block(up: Element[], down: Element[])
+equal(b: Block): boolean
+toString(): String

EDS

#curve: EllipticCurve
#p: AffinePoint
#eds: < Element>

+EDS(ec: EllipticCurve, p: AffinePoint)
+elementAt(n: BigInteger): Element
+edsblockships(n: BigInteger): <Element>
+toString(): String

EllipticNet

#curve: EllipticCurve
#p: AffinePoint
#q: AffinePoint
#v: Block
-a: Element
-b: Element
-c: Element
-e: Element
-f: Element
-g: Element
-nonResidue: BigInteger

+EllipticNet(ec: EllipticCurve, p: affinePoint, q: AffinePoint)
-initial(): void
+netLoop(m: BigInteger): Block
-doubleOrAdd(v: Block, add: boolean): Block
+getNonResidue(): void
-vaildNonResidue(): boolean
+setNonResidue(value: BigInteger): void

TatePairingViaENet

#curve: EllipticCurve
-net: EllipticNet
-eds: EDS
#order: BigInteger

+TatePairingViaENet(ec: EllipticiCurve)
#getPair(p: AffinePoint): Element
#getPair(p: AffinePoint, q: AffinePoint): Element
+TatePairing(e: Element): Element
+TatePairing(p: AffinePoint): Element
+TatePairing(p: AffinePoint, q: AffinePoint): Element
#setOrderOfPoint(order: BigInteger): void
#getOrderOfPoint(p: AffinePoint, order: BigInteger): BigInteger
#gerOrderOfPoint(p: AffinePoint): BigInteger
+getEDS(): EDS
+getNet(): EllipticNet

1

0..1

10..1

Figure 4.2: Class Diagram of EllipticNets package

55

4.2.1 Class EDS

This class represents an elliptic divisibility sequence object. It implements

Shipsey’s double-and-add algorithm to calculate terms in the elliptic divisi-

bility sequence. It takes an elliptic curve and a point on the curve as parame-

ters in its constructor to generate the first five elements in the corresponding

elliptic divisibility sequence. An 8-element array is used for computation and

storage of elliptic divisibility sequence, where the fourth element is called the

center of this representation. It has the elementAt() function to take speci-

fied BigInteger n as parameter and calculate the nth term (i.e. W (n)) in the

sequence. The edsblockships() function will take BigInteger n and return the

8-element array which is centered at W (n).

4.2.2 Class Block

This class represents the data structure defined in Figure 2.2. It uses a 2D

array to hold the elements in a block. It is restricted to have exactly three

elements in the upper row and eight in the lower row. It also has the equal()

function to compare whether two blocks contain exactly the same values in

the same order and then returns a corresponding boolean value.

4.2.3 Class EllipticNet

This class represents the Elliptic Net object. It takes an elliptic curve and

two different points on the curve as parameters in its constructor to create

an EllipticNet object. The private initial() function will be called from the

constructor to initialize all necessary settings for the Elliptic Net, which

includes all the private attributes of the class and the initial block (i.e. the

block centered at W (1, 0)) in the net. The netLoop() function will take the

input BigIntegerm, compute and then return a block centered atW (m, 0) in

56

the net. The doubleOrAdd() function takes the first block argument V and

performs doubling or double-adding operations on the block V depending

on the second boolean parameter. This function is set to be private as it

could only be internally called by the netLoop() function in this class. In

order to speed up the recursive part of the Elliptic Net algorithm (i.e. the

performance of doubling and double-adding operations), we use the following

Algorithm 3 as detailed in [58].

Algorithm 3 Doubling and Double-adding Algorithm
Input: Block V centered at k of an Elliptic Net. A = W (2, 0)−1,
E = W (−1, 1)−1, F = W (2,−1)−1, and boolean add
Output: Block centered at 2k if add == 0 and centered at 2k + 1 if
add == 1

1: S ← [0, 0, 0, 0, 0, 0]
2: P ← [0, 0, 0, 0, 0, 0]
3: S0 ← V [0, 1]2

4: P0 ← V [0, 0]V [0, 2]
5: for i = 0 to 5 do
6: Si ← V [1, i+ 1]2

7: Pi ← V [1, i]V [1, i+ 2]
8: end for
9: if add == 0 then

10: for i = 0 to 4 do
11: V [1, 2i− 2] = S[i− 1]P [i]− S[i]P [i− 1]
12: V [1, 2i− 1] = A(S[i− 1]P [i+ 1]− S[i+ 1]P [i− 1])
13: end for
14: V [0, 0] = S[1]P0 − S0P [1]
15: V [0, 1] = S[2]P0 − S0P [2]
16: V [0, 2] = E(S[3]P0 − S0P [3])
17: else
18: for i = 0 to 4 do
19: V [1, 2i− 2] = A(S[i− 1]P [i+ 1]− S[i+ 1]P [i− 1])
20: V [1, 2i− 1] = S[i]P [i+ 1]− S[i+ 1]P [i]
21: end for
22: V [0, 0] = S[2]P0 − S0P [2]
23: V [0, 1] = E(S[3]P0 − S0P [3])
24: V [0, 2] = F (S0P [4]− S[4]P0)
25: end if
26: return V

57

4.2.4 Class TatePairingViaENet

This is the most important class in the package as the other classes are de-

fined to support this class. It performs the Tate pairing computation from

the Elliptic Nets algorithm. It requires an elliptic curve object in its con-

structor. The functions getPair() and getTatePairing() are overloaded with

different numbers or types of parameters. The getPair() functions perform

the Elliptic Net algorithm and returns a corset value τ ′ (in Section 2.1.1).

If there is only one AffinePoint parameter passed to it, an EDS object will

be created to calculate the Tate corset according to Equation 2.8. If there

are two different AffinePoints passed to it, it will call for an Elliptic Net

object and perform the Tate computation with Equation 2.9. Similarly the

getTatePairing() can accept one or two AffinePoints as input and call the

corresponding getPair() for a coset value and then perform Equation 2.10.

The getTatePairing() can directly take a corset value and apply Equation

2.10 as well. Actually the getPairing() functions can be merged to get-

TatePairing() functions, but to facilitate testing we separated them. The

functions getEDS() and getNet() are defined to return a corresponding EDS

object or EllipticNet object that are used during the Tate calculation. The

working procedure of this class is shown in Figure 4.3. The various options

for invoking the Tate computation are illustrated in the figure with three

possible outcomes depending on the decision that produce the Tate pairing.

58

START

Construction

Input:

Elliptic Curve
Ready for pairing

Set n

(i.e. order of P)

Decision

Compute Tate

Create EDS Create EllipticNet

Input: P Input: P, Q

(corset value)

)(′ PP,τ
(Corset value)

),(QPτ ′

Proceeding… Proceeding…

Final exponentiation

Input:

corset value

Tate Pairing

END

Output

Function getPair()

Using Elliptic Net Alg.

Function getTatePairing()

Return Tate τ

Figure 4.3: Flow of Tate Pairing Computation

By the definition of Tate calculation, the order of AffinePoint P is sig-

nificant as it directly determines how many iterations are needed to give the

Tate computation. Before applying the Equations 2.8 or 2.9, it is necessary

to figure out the order of the point. Thus, the attribute order is introduced to

contain the correct order of a point on the curve. The function setOrderOf-

Point() can be called if the order of the point is known. However, if the

order of point is unknown, the overloaded getOrderOfPoint() functions will

be more useful. They can check whether the current order or a user-inputted

order is correct for some particular point, and if not, calculate the exact or-

der of the point using techniques in [62]. The order of P can be computed as

a precondition offline at a time before the Elliptic Net algorithm is invoked.

In fact, it can be considered as a known system parameter. In [19], it is fixed

59

during the generation of the system parameters. Even for the BN-Curves, it

is fixed during the constructions of the curve.

4.3 Evolving the IBS system

This section describes the implementation of Version 3. As we mentioned

the EllipticNet package relies on the Blitz, so there are some impacts on

Blitz. In order to make the two systems compatible with each other, some

classes in Blitz needed adjustment. Additionally, as the existing IBS system

[19] also depends on the Blitz, any adjustment should not conflict with the

current IBS. There are two main issues here:

1. The Elliptic Net system takes a curve in Weierstrass form, how can a

general form of Elliptic curve be accepted by the system?

2. For a cryptographic application, the system should work over Fp2 . How

to achieve this requirement?

The following parts of this section will discuss and fix these issues.

4.3.1 Class blitz.curve.EllipticCurve

The Blitz.curve.EllipticCurve class defines the elliptic curve object. Origi-

nally, the class defines a curve in a general form. In the Elliptic Net system,

all the elliptic curves we used are in Weierstrass form (see Equation 2.2).

Thus, we need to add a new function, toWeierstrassEqn(), to the Ellip-

ticCurve class for transforming a curve from a general form (see Equation

2.1) to its Weierstrass form. Also, new attributes A and B are needed and

some corresponding ’get’ functions are essential to return their values. The

toWeierstrassEqn() is even called as the very last step of all the constructors

to guarantee that A and B always exist and are available after an elliptic

60

curve is defined. A function toWEView() that returns a string that repre-

sents the Weierstrass curve was added. A constructor that directly creates

a curve in Weierstrass form is added as well. In that case, A = a4, B = a6,

and a1, a2, a3 = 0.

4.3.2 Class blitz.Field.Extension.Fp2

Point P must be an n-torsion point on an elliptic curve over a finite field

Fp. Point Q can be any point on the curve over Fp. However, in crypto-

graphic applications of the Tate pairing, Q is usually in Fpk . In our Blitz

package there is a particular class, Blitz.Field.Extension.Fp2, that defines

the arithmetic of Fp2 . As mentioned before, all the functions were defined

for the supersingular curves described in Section 2.3.1 in such a way that

the software cost at run time could be minimized. However, this limits the

reuse of the class.

To make this class more general, a new attribute, nonResidue, was added to

this class to store the specified quadratic non-residue value. It is by default

equal to−1, but can be changed when necessary. All related functions includ-

ing the constructors in the class are redefined. The new Blitz.Field.Extension.Fp2

class can now:

• specify a customized nonResidue when creating a new Fp2 object with

the following:

public Fp2 (BigInteger characteristic,

BigInteger nonResidue){

super(characteristic, new BigInteger("2"));

this.nonResidue = nonResidue;

}

61

• change existing Fp2 objects’ nonResidue:

public void setNonResidue(BigInteger value){

nonResidue = value;

}

• assign nonResidue to a specified Fp2Element by calling setNonResidue(BigInteger

value) first and then calling the existing element(Element e) to accept

the same settings.

• perform corrected multiplication, division, and power-mod operations.

Take multiplication for example, the following code will take firstly

convert the two non-null input arguments, a and b, into Fp2Element

type, known as s and t, then perform multiplication function with t

and s, and return the result. Note that the nonResidue attribute is

applied within the calculation.

private Element mult(Element a, Element b) {

if(a == null) {

throw new NullPointerException(

"a cannot be null");

}

if(b == null) {

throw new NullPointerException(

"b cannot be null");

}

Fp2Element s = null;

Fp2Element t = null;

if(a instanceof Fp2Element) {

62

s = (Fp2Element) a;

}

else {

s = new Fp2Element(a);

}

if(b instanceof Fp2Element) {

t = (Fp2Element) b;

}

else {

t = new Fp2Element(b);

}

// nonResidue is applied below...

BigInteger r = s.real().multiply(t.real()).

add(s.imag().multiply(t.imag().multiply

(nonResidue)).mod(characteristic);

BigInteger i = s.real().multiply(t.imag()).

add(s.imag().multiply(t.real()).

mod(characteristic);

return(new Fp2Element(r, i, this));

}

All these adjustments allow point Q to exist over any Fp(i) where i2 equals

to any quadratic nonresidue of the curve.

4.3.3 nonResidue in class csi.crypto.EllipticNets.EllipticNet

For the consistency of the system, the nonResidue attribute is also added

to the EllipticNet class so that when the initial() function is called by the

constructor, a corrected nonResidue for any Fp2 environment in the net can

63

be obtained if it detects that Q ∈ Fp2 . This can be done by repeatedly

selecting a quadratic nonresidue and detecting whether it is valid until a

correct one obtained. It also allows the nonResidue to be specified by the

user if it is known.

4.4 Adding BN-Curves

The previous Sections 4.2 and 4.3 implemented the Elliptic Nets algorithm

and applied this algorithm to existing supersingular curves. This section

will switch to the new pairing friendly curves, BN-curves. It will cover and

complete Version 4 and 5 of the application.

Again, the Elliptic Nets system can accept general curves with embedding

degree k = 2 and perform this exact pairing computation. A new question

arose as whether this algorithm works for higher embedded degree curves. To

obtain the answer the next stage adds BN-Curves to the system to enhance

the security of Tate pairing as the BN-Curves are more secure than the

supersingular curves. We created a new package csi.crypto.pairing to obtain

all the components of the BN-Curves and pairing over BN-Curves. There

are two steps to achieve this implementation:

1. Field extension

2. Curve Generation

4.4.1 Field extension

The BN-Curves have embedding degree k = 12 and so we need objects to

define the extension field Fp12 with corresponding arithmetic and to represent

elements in that field. In [12], there exists the classes blitz.field.Element,

blitz.field.Fp and blitz.field.extension.Fp2Element. We need two new classes

64

named Fp12 and Fp12Element to fulfill the requirements. The new classes

are described in Figure 4.4.

blitz.field

Fp Element

blitz.field.extension

Fp2Element

Existed package

csi.crypo.pairing
New package

Fp12

#zeta: Fp2Element

+Fp12(p: BigInteger)
+Fp12(p: BigInteger, e: Fp2Element)
+Fp12(f: Fp2)
+Fp12(w: Fp2Element)
+setZeta(e: Element): void
+getZeta(): Fp2Element
+element(element: Element): Fp12Element
+element(a0: Element, a1: Element, a2: Element, a3: Element, a4: Element, a5: Element): Fp12Element
+toString(): String
+mod(a: Element): Element
+add(a: Element, b: Element): Element
+subtract(a: Element, b: Element): Element
+multiply(a: Element, b: Element): Element
+divide(a: Element, b: Element): Element
+modPow(a: Element, exp: BigInteger): Element
+negate(a: Element): Element
+clone(): Fp12

Fp12Element

#x0: Fp2Element
#x1: Fp2Element
#x2: Fp2Element
#x3: Fp2Element
#x4: Fp2Element
#x5: Fp2Element

+Fp12Element(a0: Element, a1: Element, a2: Element, a3: Element, a4: Element, a5: Element)
+Fp12Element(a0: Element, a1: Element, a2: Element, a3: Element, a4: Element, a5: Element, Fp12 f)
+Fp12Element(element: Element)
+Fp12Element(element: Element, Fp12 f)
+x0(): Fp2Element
+x1(): Fp2Element
+x2(): Fp2Element
+x3(): Fp2Element
+x4(): Fp2Element
+x5(): Fp2Element
+clone(): Element
+equals(b: BigInteger): boolean
+equals(obj: Element): boolean
+compareTo(obj: Object): int
+toString(): String
+getField(): Fp12

Figure 4.4: Class Diagram of Fp12 and Fp12Element

65

The arrows in the figure show the inheritance relationships between old

classes and the new components. The class Fp12 represents Fp12 and it is

inherited from class Fp such that it obeys the properties and rules defined

by Fp. All functions besides constructors are overridden such that the sys-

tem can automatically determine which version of functions to be actually

invoked at run time. Considering the JAVA polymorphism technique, the

Fp12Element class is also inherited from the Element class. Moreover,

• Fp12 has an extra attribute zeta of type Fp2Element. This zeta repre-

sents ζ mentioned in Section 2.3.2. The related setZeta() and getZeta()

are provided for customized setting and reviewing.

• Fp12Element refers to element in Fp12 . It is composited of six Fp2Element

objects to define an element in Fp12 which satisfy the representation in

Equation 2.13 as well.

• Both classes contain various constructions such that users can create

instances with a preferred one to facilitate the testing.

4.4.2 Curve Generation

Since we have provided a suitable Fp12 environment, the next step is to

obtain BN-curves. It includes three parts: generating curve parameters,

representing BN-Curves and getting the corresponding twisted curves. To

achieve this we add three new classes in the package pairing as shown in

Figure 4.5.

66

bilinear

Exixted package

PairingEllipticCurve

csi.crypto.pairing
New package

BNCurve

#p: BigInteger
#n: BigInteger
#y: BigInteger
#tc: TwistedCurve

+BNCurve(b: BigInteger, fp: Fp, n: BigInteger, y: BigInteger)
+randomPoint(): AffinePoint
+getPoint(x: BigInteger): AffinePoint
+randomQ(): AffinePoint
+getPoint(x: BigInteger, y: BigInteger): AffinePoint
+isValidPoint(p: AffinePoint): boolean
+setTwistedCurve(t: TwistedCurve): void

CurveGen

#p: BigInteger
#b: BigInteger
#n: BigInteger
-t: BigInteger
#y: BigInteger
-x: BigInteger
-size: int

+CurveGen()
+BNCurvePara(bits: int): void
-getPara()
+n(): BigInteger
+t(): BigInteger
+p(): BigInteger
+y(): BigInteger
+b(): BigInteger
+reGenerate(bits: int): void
-Px(x: BigInteger)

TwistedCurve

#B: Fp2Element
#fp2: Fp2
-p: BigInteger
#si: Fp2Element

+TwistedCurve(a: BigInteger, b: Fp2Element)
+getB(): Fp2Element
+getSi(): Fp2Element
+setSi(value: Fp2Element): void
+genSextecTwisted(curve: EllipitcCurve, n: BigInteger): TwistedCurve
+isValidPoint(p: AffinePoint): boolean
+randomPoint(): AffinePoint
+toString(): String

blitz.curve
Exixted package

EllpticCurve

Figure 4.5: Class Diagram of CurveGen, BNCurve and TwistedCurve

These new classes are CurveGen, BNCurve and TwistedCurve. Basi-

cally, CurveGen class will generate suitable parameters for constructing BN-

Curves; then the BNCurve class takes these parameters to create and rep-

resent BN-Curves; TwistedCurve class will take a BN-Curve and generate

a corresponding sextic twisted curve to facilitate the generation of point Q

which is the second argument for the Tate pairing.

67

class csi.crypto.pairing.CurveGen

This class can take a specified length as input and perform Algorithm 2 in

Section 2.3.2 to generate suitable parameters for this specified-length BN-

Curves (e.g. a 160-bits BNCurve). Algorithm 2 guarantees that the output

p = 1 (mod 6). However in order to simplify the calculations of the square

root and cubic root for further use, we put two more conditions on p such

that p = 3 (mod 4) and p = 4 (mod 9). The simplifications are based on the

following properties: ([3])

• Let p = 3 (mod 4) and x is a square modulo p, then there exists a

square root r = x
p+1
4 (mod p) such that r2 = x (mod p).

• Let p = 4 (mod 9) and x ∈ F∗p2 is a cube, then one cube root r ∈ F∗p2

can be obtained by r = x
p2+2

9 .

Another issue is about the smallest value of x in step 2 of Algorithm 2.

This is the initial value of x and it is proposed to be as small as possible

such that the final length of p will not exceed the expected length when the

loop completes as in step 16 of Algorithm 2. In practice, it is hard and time-

consuming to detect whether x is the smallest or not when the value of input

bits is large (e.g. bits ≥ 160). A suitable initial value or guess for x can also

speed up the process of parameter generation. During implementation we

picked an approximate value for the initial value of x. It is not the actual

smallest one but small enough to complete the whole generation of the curve

parameters within a sensible amount of time.

class csi.crypto.pairing.BNCurve

The BNCurve class represents the BN-Curve. It inherits the PairingElliptic-

Curve class as it is pairing-friendly. Some methods in this class are overridden

68

to increase the speed of computation. There are three special methods in

the class named randomPoint(), setTwistedCurve() and randomQ(). Firstly

the method randomPoint() is specified to get a random point on E(Fp). The

strategy is not unique. The one in pairingEllipticCurve class works as fol-

lowing:

1. Choose an x randomly;

2. Check whether there exists y for the x;

3. Calculate y and return point (x, y) if y exists by step 2 or update a

new x and repeat steps 2 and 3 until a suitable point is found.

This strategy also works for the BN-Curves. However, we have a more ef-

ficient approach. The CurveGen class generates the parameter y for each

curve and this parameter guarantees the point g = (1, y) is a generator of

the curve which means for any positive integer s, [s]g ∈ E(Fp). Thus, the

following strategy works for random point generation:

1. Choose a random s;

2. Return point P = [s]g if [s]g 6= ∞, otherwise choose another random

s until a suitable point is found.

In the BNCurve class we use the second strategy because it is fast. The

first strategy includes a random value generation for x, calculations for the

check in step 2, and a normal (non-simplified) square root computation in

step 3. The second one only relies on a random value generation for s and

the multiplication of elliptic curves.

The setTwistedCurve() method is used to find a suitable sextic twisted curve

for the current BN-Curve. This method can be called to customize a known

twisted curve by passing a specified twisted curve argument. It is also allowed

69

to be invoked with a null value argument and in this case it will automatically

call a method in TwistedCurve to get a corresponding twisted curve. Hence,

once this method is called there always exists a twisted curve which will be

used for the generation of random point Q ∈ Fp12 as the second argument

for the Tate pairing computation.

The method randomQ() is important as it provides the second argument Q

for Tate pairing. This is not as simple as the previous random point function

in randomPoint(). It is hard and not practical to generate Q ∈ Fp12 directly.

Instead the twisted curve provides an efficient manner to achieve Q through

the following procedure:

1. Find a suitable twisted curve E′(Fp2);

2. Fine a random point Q′(x′, y′) ∈ E′(Fp2);

3. Let Q′ be n-torsion on E′(Fp2);

4. Map Q = Ψ(Q′) via the homomorphism Ψ in the Section 2.3.2;

5. Return Q.

Steps 1 and 2 will be done with the class csi.crypto.pairing.TwistedCurve.

They produce a suitable twisted curve E′ with proper point Q′ ∈ E′(Fp2).

This is the primary reason we use a twisted curve for pairing. Step 3 makes

Q′ more special and as a result Q ∈ Fp12 [n]. Recall from the definition of

Tate pairing τn(P,Q) that the second argument Q is not necessary to be an

n-torsion point. Considering the pairing compression technique, it is better

to have Q be n-torsion over Fp12 . It is obvious that the generation of a

point over Fp2 is much easier than over Fp12 . This method depends on the

functionality of class csi.crypto.pairing.TwistedCurve and it can be applied

to the pairing compression technique.

70

class csi.crypto.pairing.TwistedCurve

This is an essential class of the system as it represents the object of Twist-

edCurve and provides the services of twisted curve generation and point

generation on the twisted curve such that it supports the functions in class

csi.crypto.pairing.BNCurve. The core functions of this class are defined in

methods genSexticTwisted() and randomPoint().

The method genSexticTwisted() takes a BNCurve and its order n as input

and output a corresponding sextic twisted curve. The hardest part of the

procedure is to find a corrected ζ ∈ Fp2 . As mentioned in Section 2.3.2, a

suitable ζ will satisfy the two conditions(in [3]):

1. X6 − ζ is irreducible over Fp2 [X].

2. #E′(Fp2) = n(2p− n) where E′ : y2 = x3 + b/ζ.

Considering the mathematical property, one strategy to get a possible ζ is:

1. Find a non-cube λ ∈ Fp.

2. Find a non-square µ ∈ Fp2 .

3. Calculate 1/ζ = λ2µ3.

4. calculate the order of E′ : y2 = x3 + b/ζ.

5. Return E′ if the equality #E′ = n(2p − n) holds. Otherwise repeat

the whole procedure until a twisted curve is obtained.

In practical implementation, the first two steps are difficult to achieve and a

smaller value of ζ may be preferred to reduce the computation cost. Another

issue that may cost time is the calculation of the order of E′ directly. Hence,

the strategy of a linear search is quicker as follows:

71

1. Set ζ = 1 + i.

2. Define E′ with ζ.

3. Randomly choose a non-infinity point R ∈ E′.

4. Return E′ if [n(2p − n)]R = 0. Otherwise, update ζ with minimal

increment and repeat steps 2-4 until a twisted curve is obtained.

Within this strategy, step 3 is the most time consuming part and it can

be achieved by invoking the method randomPoint() which is the other core

function of this class. As the required twisted curve always has the order

#E′ = n(2p − n), we skipped the calculation of #E′ and instead we used

this particular value of n(2p−n) to detect whether a random R ∈ E′ satisfies

the property [n(2p− n)]R = 0. If it holds then we get the correct ζ and E′.

The randomPoint() method is used to generate a random point R ∈ E′(Fp2).

It is significant because it is invoked during both the generation of the twisted

curve for order checking and the generation of Q′ for the second argument

Q in Tate pairing. Assume the twisted curve E′ : y2 = x3 + B is generated

by genSexticTwisted() and then the basic idea of finding a point is given by

the following steps:

1. Randomly choose a non-zero x ∈ Fp2 ;

2. Let rhs := x3 +B;

3. If rhs is a quadratic residue then compute the corresponding square

root r. Otherwise go back to step 1.

4. Return the point R(x, r).

The most difficult part of the above procedure is step 3. It involves a

quadratic residue test and square root computation over Fp2 . Smart’s al-

gorithm [6] can be applied and adjusted to achieve this efficiently. The

72

pseudocode in Algorithm 4 merges the above 4 steps and shows a completed

procedure of random point generation in the class TwistedCurve. The work

flow of this algorithm is briefly shown in Figure 4.6.

Figure 4.6: Flow of Generation of Random Point R on E′ : y2 = x3 +B

It firstly calculate integers s and T through a factorization such that

(p2 − 1)/2 = 2T s (4.1)

where T ≥ 0 and s is odd. It then lets the system randomly generate x ∈ Fp2

and calculate the corresponding rhs := x3 +B and this rhs is passed to the

quadratic residue test. If rhs is quadratic residue, then the x-coordinates

of R can be set as Rx := x and we let the variable qr := rhs(= R3
x + B)

to keep this quadratic residue for square root computation later on. If rhs

is quadratic non-residue, we still keep the value in another variable qnr for

further use. We repeat the random generation of x until we get value for

both qr and qnr. Next we gather all four variables s, T , qr and qnr to

73

compute the square root of qr which is also the y-coordinates of R (i.e.

Ry =
√
qr ⇔ R2

y = qr = R3
x +B). Finally we return R := (Rx, Ry).

74

Algorithm 4 Random Point on E′(Fp2)

Assume: Assume twisted curve E′ : y2 = x3 +B
Output: Affine point R = (Rx, Ry) ∈ E′(Fp2)

1: getQR← false, getQNR← false,T ← 0, t← 0, b← 0
2: x← 0, check ← 0, rhs← 0, temp← 0, qnr ← 0, qr ← 0, tk ← 0
3: s← p2−1

2
4: while s is even do
5: s← s/2
6: T ← T + 1
7: end while
8: while !getQR || !getQNR do
9: x← Random value over Fp2

10: rhs← x3 +B
11: t← 0
12: temp← rhss

13: if temp = ±1 then
14: check ← 1
15: else
16: repeat
17: temp← temp2

18: t← t+ 1
19: until temp = −1
20: if t < T then
21: check ← 1
22: else
23: check ← 2
24: end if
25: end if
26: if check = 1 && !getQR then
27: getQR← true
28: Rx ← x
29: qr ← rhs
30: end if
31: if check = 2 && !getQNR then
32: getQNR← true
33: qnr ← rhs
34: end if
35: end while
36: b← qr

s−1
2

37: t0 ← 0
38: for k := 0 to T − 1 do
39: if ((qnrtkb)2 · qr)2T−1−k

== −1 then
40: tk+1 ← tk + 2k

41: end if
42: end for
43: Ry ← atkb · qr
44: return R(Rx, Ry)

75

4.4.3 Tate Pairing over BN-Curves

In the previous Sections 4.4.1 and 4.4.2, we implemented suitable fields for

BN-Curves and their corresponding twisted curves. We also have supported

math components to hold new curves thus completing Version 4. Based on

that we can use these resources to build a new protocol for Tate pairing com-

putation over BN-Curves to achieve Version 5. It should meet the following

requirements:

1. The system can recognize BN-Curves as pairing friendly curves;

2. The system can figure out which type of curves are passed in for pairing;

3. The system can still calculate Tate pairing through Miller’s algorithm

or the Elliptic Nets algorithm for supersingular curves;

4. The system can now calculate Tate pairing over BN-curves for both

Miller’s algorithm and Elliptic Nets algorithm;

5. The performance of the system should be enhanced by exploiting an op-

timized version of Miller’s algorithm designed specially for BN-Curves.

In order to achieve this, we decided to put the Elliptic Net algorithm and

the optimized Miller’s approach separately into two classes. Each class can

accept both types of pairing friendly curves and perform just one particular

algorithm for Tate computation.

Tate Pairing through Miller’s Algorithm

As mentioned in Section 4.1, the drawback of the IBE system [19] is that it

can only accept supersingular curves and perform the standard (non-optimal)

Miller’s algorithm for Tate pairing. Considering the maintenance of [19] with

its related applications, it is better to create a new class of Tate pairing

76

computation for our purpose. Figure 4.7 compares the existing TatePairing

class in [19] and the new TatePairing class in our csi.crypto.pairing package.

TatePairing in IBE
TatePairing.java

+ TatePairing()

+ TatePairing(bitLength: int)

+ TatePairing(p: BigInteger, q: BigInteger, l: BigInteger)

+ Init(p : BigInteger, q: BigInteger, l: BigInteger) : void

+ setCurve(curve: PairingEllipticCurve) : void

+ getPair(P: AffinePoint, Q: AffinePoint) : Element

- getPair(P: AffinePoint, Q: AffinePoint, R: AffinePoint) : Element

- millersAlgorithm(P: AffinePoint, Phat: AffinePoint,

Qhat: AffinePoint, R1: AffinePoint, R2: AffinePoint) : Element

g1(P: AffinePoint, R: AffinePoint) : Function

g2(P : AffinePoint) : Function

+ randomPoint() : AffinePoint

+ morphPoint(P : AffinePoint) : AffinePoint

+ mapToPoint(x: BigInteger) : AffinePoint

+ getCurve() : PairingEllipticCurve

+ getQ() : BigInteger

+ getL() : BigInteger

curve : PairingEllipticCurve

q : BigInteger

l : BigInteger

- random : Random

TatePairing in pairing package

+ TatePairing() // Amended

+ TatePairing(p: BigInteger, q: BigInteger, l: BigInteger) // Amended

+ TatePairing(bitLength: int, curveType: int)

+ TatePairing(p: BigInteger, n: BigInteger, b: BigInteger, y: BigInteger)

+ setCurve(curve: PairingEllipticCurve) : void

+ getPair(P: AffinePoint, Q: AffinePoint) : Element // Amended

- getPair(P: AffinePoint, Q: AffinePoint, R: AffinePoint) : Element

+ getTatePairing(P: AffinePoint, Q: AffinePoint) : Element

+ getTatePairing(e : Element) : Element

- private Element getmiller(P: AffinePoint, Q: AffinePoint) : Element

- private Element lfunction(A: AffinePoint, B: AffinePoint,

Q: AffinePoint) : Element

- millersAlgorithm(P: AffinePoint, Phat: AffinePoint, Qhat: AffinePoint,

R1: AffinePoint, R2: AffinePoint) : Element

- g1(P: AffinePoint, R: AffinePoint) : Function

- g2(P : AffinePoint) : Function

+ randomPoint() : AffinePoint // Amended

+ morphPoint(P : AffinePoint) : AffinePoint // ONLY for Supersingular curves

+ mapToPoint(x: BigInteger) : AffinePoint

+ getCurve() : PairingEllipticCurve

+ getQ() : BigInteger

+ getL() : BigInteger

curve : PairingEllipticCurve

q : BigInteger

l : BigInteger

-random : Random

p: BigInteger

+ curveType: int

- k: int

csi.crypto.pairing.TatePairing.java

NEW

NEW

NEW

Figure 4.7: Comparison of the Two TatePairing Classes

In the new class, we kept the original settings and pairing computations

for supersingular curves much the same as they existed previously. We added

several new attributes and methods and we modified some existing functions

for consistency. The attribute p represents the prime for field. An integer

variable curveType is used to mark the type of curves. It is set to 0 for

supersingular curves and 1 for BN-Curves. Although we have only two types

of curves, we chose curveType as an integer rather than boolean such that

we may add a third or more types of pairing friendly curves into this class

77

with minimal amendment in the future. The private integer k represents the

embedded degree of the curves and cannot be accessed outside the class. The

initial() method is removed in the new class and its functionality is merged

into the two existing constructors. Since these two constructors were de-

signed for the setup of supersingular curves, they are also affected by the

new attributes. The proper settings of p, curveType and k need to be con-

figured inside the constructors as well. Additionally, we inserted two more

constructors: one allows the class to generate a specified type of curves with

specified length and the other is used to directly set a customized BN-Curve.

The existing two getPair() methods calculate and return a coset value of the

Tate (i.e. τ ′). In order to obtain the exact Tate value τ , we added two new

public methods getTatePairing(): one can accept two affine points P,Q as

input and output τ(P,Q), and the other accepts a corset value τ ′ as input

and outputs the corresponding τ . There are two more extra private meth-

ods called getmiller() and lfunction(). The former implements the optimal

Miller’s algorithm for BN-Curves in [18] and the latter is the line function

used inside this optimized Miller’s algorithm. Both the methods are declared

as private since they are only internally invoked during Tate computation for

BN-Curves. The public getPair() and randomPoint() methods were adapted

as well such that they can automatically detect the current type of curves and

execute the correct program. Note that the private getPair() does not affect

by the new system as it only invoked by supersingular curves. Moreover, the

methods g1() and g2() also change their access modifiers from protected to

private since there is no need to call them outside the class. The method

morphPoint() implements Equation 2.11 and therefore it only works for su-

persingular curves. If a BN-Curve is detected, then this method will throw

an exception at run time.

78

Tate Pairing through Elliptic Nets Algorithm

Up to now we have the Elliptic Nets algorithm in csi.crypto.EllipticNets

package and BNCurve implementation in csi.crypto.pairing package; We can

get Tate pairing on a BN-Curve via Miller’s algorithm. The next step is to

apply the Elliptic Nets algorithm to BN-Curves. We should check that:

1. BN-Curves can be passed to create an Elliptic Net;

2. Tate pairing over BN-Curves can be calculated with the Elliptic Net

algorithm.

By reviewing the TatePairingViaENet class in Section 4.2.4, we noticed that

firstly this class is designed to accept any kind of EllipticCurve object. In

fact, the BNCurve class is defined as a sub sub class of the EllipticCurve

class. In Figure 4.5, it is clear that the BNCurve class is inherited from

the PairingEllipticCurve class and the PairingEllipticCurve class is directly

inherited from the EllipticCurve class. Secondly, this class also calculates

the embedded degree k within the getTatePairing() method. To avoid this

duplicated calculation we can add a conditional statement into the method

itself as following:

public Element getTatePairing(Element e){

int k;

// New if-else-statement here for BNCurve:

if(curve instanceof BNCurve) k=6;

else{

// calculate the embedded degree k as before

...

}

....

79

}

Note that the TatePairingViaNet class and the BNCurve class are in different

packages so we need to import the BNCurve at the beginning of this class to

allow the class recognize the BNCurve object. There is no other amendment

in this class.

4.5 Complete System

By achieving Version 5, the whole system has two choices for Tate pairing

computation. It is capable to configure a preferred algorithm before com-

puting Tate pairing as shown in Figure 4.8.

Figure 4.8: System View

80

4.6 Summary

In this chapter, we have provided all the detail of the implementation of this

project. We discussed how each version of the project is achieved. We gave

the complete descriptions of two new packages and their classes including

their properties and their behaviors. The csi.crypto.EllipticNets package

implements the Elliptic Nets theory with its application to the Tate pairing

with both pairing friendly types of curves. The csi.crypto.pairing package

provides Tate pairing computation from Miller’s algorithm with both pairing

friendly types of curves.

81

Chapter 5

Testing and Results

This chapter will display the testing results of the whole system and also car-

rying out experiments that will assess it performance. Section 5.1 provides

the testing environment configurations to support the application. The set

of test cases picking will benchmark against previous implementation. Also,

they will use random values to ensure correctness for arbitrary input and

verify them in a statistical sense. Section 5.2 describes functional testing

procedures that illustrate that the Elliptic Nets algorithm can be used as an

alternative way of Tate pairing computation. Section 5.3 provides a bench-

mark of the system performance.

5.1 Portability and Pre-settings

The main testing tool we use is Artima Suite Runner [49], which is a free

open source of testing toolkit for Java applications. Before each test case,

we kick off a build of the latest version of source code through Apache Ant

[48]. Apache Ant is an XML-based build scripting language for building

software projects. We use the Apache Ant to include the source code com-

piling, javadoc, test suite running and packaging as a completed build pro-

82

cedure. Besides the latest JRE library, some external libraries are loaded as

pre-settings for our whole system: blitz.jar, eyebee.jar [19], tender-dev.jar

[13], suiterunner-1.0beta7.jar [49], asrat.jar, and versioner.jar. Note that the

blitz.jar that was used for testing is not the original Blitz of [12] as it has

added functionality as described in Section 4.3. We have rebuilt the latest

version of blitz package as well to support our system. The versioner.jar is

our other internal software tool to provide a version service on a successful

project build. Our product can be tested and run on the following operating

systems: Ubuntu, Window XP and Window Vista. It is supported by the

Java SDK 1.5, and JDK 1.6.21 [46].

5.2 User Test Cases

The point of this section is to give some sample test cases to check and verify

the correct implementation of Elliptic Nets algorithm with Tate pairing over

different curves. For each test case we have specific settings and expected

outputs, we pass these to the system and verify whether the run-time out-

put equals to our expected one. The testing results also indicate that the

functionality of the system meets our initial requirements at the beginning

of Section 4.2 and Section 4.4.3. All the test cases described in this section

are wrapped in the class csi.crypto.EllipticNets.NetsTestSuite.java.

5.2.1 Test cases of EDS and EllipticNet

The test cases in this sections were initially developed for Version 1 and have

been updated to support Version 2 during the development cycle. The final

version also supports these test cases. These two test cases(i.e. test case 01

and 02) were drawn from tests that were published in Stang’s paper [58],

and they were chosen to verify that the software system can

83

1. produce a Elliptic Divisibility Sequence;

2. create and populate an Elliptic Net.

84

TestCase ID: 01
TestCase Name: Unit Test of Elliptic Divisibility Sequence
Description: This is Stange’s example in ECC’07 [58]
Steps: Define Elliptic Curve as: y2 + y = x3 + x2 − 2x over F5

Define Affine point P = (0, 0) on the curve
Create Elliptic Divisibility Sequence with

EDS myeds = new EDS(curve, p);

Print the first two blocks on the screen
Print the first 30 elements on the screen

Actual Input: Fp fp = new Fp(5);
(Pseudo Code) curve = new EllipticCurve(0, 1, 1, -2, 0, fp);

P = new AffinePoint(0, 0)
Verifications: Expected Output: Actual Output:

The printed results should equal to Yes,
the example in Section 2.2.1 they are equal.

Table 5.1: Test case of class EDS

85

TestCase ID: 02
TestCase Name: Unit Test of Elliptic Net
Description: This is Stange’s example in ECC’07 [58]
Steps: Define Elliptic Curve as: y2 + y = x3 + x2 − 2x over F5

Transform the curve to Weierstrass Form
Define Affine point P = (2, 3), Q = (3, 3)
Create Elliptic Net with

EllipticNet en = new EllipticNet(curve, p, q);

Print the first 5 blocks on the screen

Actual Input: Fp fp = new Fp(5);
(Pseudo Code) curve = new EllipticCurve(0, 1, 1, -2, 0, fp);

P = new AffinePoint(2, 3); Q = new AffinePoint(3, 3)
Verifications: Expected Output: Actual Output:

The printed results should equal to Yes,
the example in Figure 2.1 they are equal.

Table 5.2: Test case of class EllipticNet

86

5.2.2 Test Cases of Tate Pairing Via Elliptic Nets algorithm

In this section, we test the Elliptic Net algorithm for Tate pairing.

Test Case 03 checks to see if the software can correctly compute a value for

the Tate pairing given a finite field, Elliptic curve derived from this and an

affine point P. Again, an example of a correct affine point value is taken from

Stange’s paper [58].

TestCase ID: 03
TestCase Name: Tate Pairing TestCase 1
Description: This is Stange’s example in ECC’07 [58]
Steps: Define Elliptic Curve as: y2 + y = x3 + x2 − 2x over F73

Transform the curve to Weierstrass Form
Define Affine point P = (2, 3)
Create TatePairingViaENet object as:

TatePairingViaENet tp = new
TatePairingViaENet(testCurve);

Calculate order of P...

BigInteger order = tp.getOrderOfPoint(P);

Call for pairing...

Element t = tp.getPair(P);

Actual Input: Fp fp = new Fp(73);
(Pseudo Code) curve = new EllipticCurve(0, 1, 1, -2, 0, fp);

P = new AffinePoint(2, 3);
Verifications: Expected Output: Actual Output:

Order of P = 9 order = 9
τ ′(P, P) = 24 t = 24

Table 5.3: Test case of Elliptic Nets Algorithm 1

87

Test case 04, uses a result published in Washington’s book [62] to verify

that the software can compute a Tate pairing and modified Tate pairing us-

ing similar input parameters to the previous test case.

TestCase ID: 04
TestCase Name: Tate Pairing TestCase 2
Description: Example in [62], Chapter 11, page 345
Steps: Define Elliptic Curve as: y2 = x3 − x+ 1 over F11

Define Affine point P = (3, 6)
Create TatePairingViaENet object as:

TatePairingViaENet tp = new
TatePairingViaENet(testCurve);

Calculate order of P...

BigInteger order = tp.getOrderOfPoint(P);

Call for pairing...

get τ ′(P, P)...
Element t = tp.getPair(P);

get τ ′(P, P)...
Element e = tp.getTatePairing(P);

Actual Input: Fp fp = new Fp(11);
(Pseudo Code) curve = new EllipticCurve(-1, 1, fp);

P = new AffinePoint(3, 6);
Verifications: Expected Output: Actual Output:

Order of P = 5 order = 5
τ ′(P, P) = 5 t = 5
τ(P, P) = 3 e = 3

Table 5.4: Test case of Elliptic Nets Algorithm 2

Test case 05 checks that software can applied with supersingular curves.

The input parameters are taken from [19].

88

TestCase ID: 05
TestCase Name: Tate Pairing TestCase 3
Description: test Supersingular curves in [19]
Steps: Define Elliptic Curve as: curve : y2 = x3 + x over F43

Set up the parameters in IBE...
ModifiedTatePairing pair = new ModifiedTatePairing();
pair.init(43, 11, 4);

Define Affine point P = (23, 8) and Q = (23, 8)
Calculate Tate pairing with Miller’s algorithm in [19] ...:

Element e = pair.getPair(P, Q);

Calculate Tate Pairing with Elliptic Nets Algorithm...

EllipticCurve curve = pair.getCurve();
TatePairingViaENet tp = new TatePairingViaENet(curve);
Element wp = tp.getTatePairing(P, Q);

Adjust Q...

Q = pair.morphPoint(P);

Call Tate Pairing with Elliptic Nets Algorithm again...

Element te = tp.getTatePairing(P, Q);

Actual Input: Fp fp = new Fp(43);
(Pseudo Code) pair.intial(fp, 11, 4); //using IBE parameters settings in [19]

P = Q = new AffinePoint(23, 8);
Verifications: Expected Output: Actual Output:

e = τ(P,Q) = 11 + 3i e = 11 + 3i
wp is wrong value. wp 6= e
After adjustment, Q = (20 + 0i, 0 + 8i) Yes, it is.
te = τ(P,Q) = e te = 11 + 3i = e

Table 5.5: Test case of Elliptic Nets Algorithm 3

89

Test case 06 tests the customized quadratic non residue settings of the

software. It is derived from Version 3 of the software in Section 4.3. It is the

example in [15].

TestCase ID: 06
TestCase Name: Tate Pairing TestCase 4
Description: Example in [15], Chapter 16

Test the evolution of customized nonResidue setting in Section 4.3.2
Steps: Define Elliptic Curve as: curve : y2 = x3 + 6 over F13

Define Affine point P = (2, 1) and Q = (10 + 3i, 11 + 2i)
Set the specified nonResidue...:

// We have prime = 13;
Fp2 fp2 = new Fp2(prime);
fp2.setNonResidue(Constant.TWO);

Set up for Tate Pairing with Elliptic Nets Algorithm...

TatePairingViaENet tp = new TatePairingViaENet(curve);

Calculate order of P...

BigInteger order = tp.getOrderOfPoint(P);

Call for pairing...

Element e = tp.getTatePairing(P, Q);

Verifications: Expected Output: Actual Output:
order of P = 7 order = 7
τ(P,Q) = 4 + i e = 4 + 1i

Table 5.6: Test case of Elliptic Nets Algorithm 4

Test case 07 tests that the software can apply to BN-Curves. This test

case sets up the system parameters from the example in [3]. generates ran-

dom affine points pt and Q, and passes the two points for Tate pairing

computation through both algorithms.

90

TestCase ID: 07
TestCase Name: Tate Pairing TestCase 5
Description: Tate Pairing over BN-Curves

The curve settings came from the appendix of [3]
Assume: The points pt and qhat used in the test are valid points
Steps: Define BN-Curve as...

BigInteger p = new BigInteger
("1461501624496790265145448589920785493717258890819");

BigInteger n = new BigInteger
("1461501624496790265145447380994971188499300027613");

Fp fp = new Fp(p);
BigInteger b = Constant.THREE;
BigInteger y = Constant.TWO;
BNCurve bc = new BNCurve(b, fp, n, y);

Define corresponding Twisted curve as...

Fp2 fp2 = new Fp2(p);
Fp2Element temp = fp2.element(

Constant.EIGHT.negate(), Constant.EIGHT);
Element si = temp.modInverse();
TwistedCurve c = new TwistedCurve(BigInteger.ZERO,

(Fp2Element)(temp.multiply(b)));
c.setSi((Fp2Element)si);
bc.setTwistedCurve(c);

Define Affine point pt ∈ bc and qhat ∈ c
Morphmap qhat→ Q...
Calculate Tate pair via Miller’s Algorithm...

TatePairing tp1 = new TatePairing(p, n, b, y);
tp1.setCurve(bc);
Element em = tp1.getTatePairing(pt, Q);

Calculate Tate pairing via Elliptic Nets Algorithm...

TatePairingViaENet tp2 = new TatePairingViaENet(bc);
tp2.setOrderOfPoint(n);
Element ee = tp2.getTatePairing(pt, Q);

Verifications: Expected Output: Actual Output:
pt has order n YES
qhat has order n YES
Q ∈ bc YES
em == ee em == ee

Table 5.7: Test case of Elliptic Nets Algorithm 5

91

5.2.3 Test Cases with a Random Input Value

The previous testing results show that for a particular input to the system,

the Elliptic Net algorithm can be used as a second approach to Tate pairing.

In this section, we test random inputs to the system. The test cases will

simulate arbitrary input from a user and check whether the algorithm works

with such unknown input parameters. The random numbers are derived

using Java.Math.BigInteger class. With a specified length of the integer (i.e.

number of bits), the chosen number is from a uniform distribution over the

range [0, 2length − 1]. However, the length of the integer is defined as type

of Java primitive int, which has the maximum value of 2, 147, 483, 647. So,

the range of the valid numbers is actually [0, 2214748364 − 1]. The BigInteger

class also guarantees a non-negative result for modular operations in Java

[46]. This is acceptable as only positive integers are used for cryptography

[37].

92

TestCase ID: 08
TestCase Name: Tate Pairing TestCase 6
Description: Tate Pairing over Random Supersingular Curves

curve length (i.e. bit-length of p) is chosen from 150 - 260 bits
p value is randomly generated by the system at run time

Steps: Set up for the test case...

int n=25;
int bits[] = new int[n];
Element e1=null; // store Tate from Miller’s algorithm
Element e2=null; // store Tate from Elliptic Nets algorithm
String check[] = new String[bits.length]; // store comparison result

Calculate and compare Tate Pairing via both algorithm...

for(int i=14; i<n; i++){
bits[i] = 10*(i+1);
TatePairing tp = new TatePairing(bits[i],0);
EllipticCurve curve = tp.getCurve();
AffinePoint P = tp.mapToPoint(BigInteger.ONE);
curve.toWeierstrassEqn();
e1 = tp.getPair(P, P);
TatePairingViaENet tpe = new TatePairingViaENet(curve);
tpe.setOrderOfPoint(tp.getQ());
AffinePoint Q = tp.morphPoint(P);
e2 = tpe.getTatePairing(P, Q);
verify(e1.equals(e2));
if(e1.equals(e2)) check[i] = "PASS";
else check[i] = "FAILED";

}

Display the content of array check on screen
Verifications: Expected Output: Actual Output:

The screen should show the message "PASS" All "PASS" printed.
for each length setting. see Table 5.9

Table 5.8: Test case of Random Value for Supersingular Curves

93

The Table 5.9 displays the real run-time result of test case in Table 5.8.

The first column is the bit length of p passed to the system and the second

column is the associated information of PASS/FAILED stored in the array

check.

bits Result
150 PASS
160 PASS
170 PASS
180 PASS
190 PASS
200 PASS
210 PASS
220 PASS
230 PASS
240 PASS
250 PASS
260 PASS

Table 5.9: Test Result for TestCase ID: 08

Similarly, Table 5.11 displays the real run-time result of test case in Table

5.10.

94

TestCase ID: 09
TestCase Name: Tate pairing TestCase 7
Description: Tate Pairing over BN-Curves with random points

curve length (i.e. bit-length of p) is chosen with 160, 192, and 256 bits
BN-Curve settings are generated by the system at run time
The points P and Q are randomly generated by the system at run time

Steps: Set up for the test case...

int bits[] = 160, 192, 256;
Element e1=null; // store Tate from Miller’s algorithm
Element e2=null; // store Tate from Elliptic Nets algorithm
String check[] = new String[bits.length]; // store comparison result

Calculate and compare Tate Pairing via both algorithm...

for(int i=0; i<bits.length; i++){
TatePairing tp = new TatePairing(bits[i],1);
BNCurve curve = (BNCurve)tp.getCurve();
curve.toWeierstrassEqn();
AffinePoint P = curve.randomPoint();
AffinePoint Q = curve.randomQ();
e1 = tp.getPair(P, P);
TatePairingViaENet tpe = new TatePairingViaENet(curve);
tpe.setOrderOfPoint(tp.getQ());
e2 = tpe.getTatePairing(P, Q);
verify(e1.equals(e2));
if(e1.equals(e2)) check[i] = "PASS";
else check[i] = "FAILED";

}

Display the result on screen
Verifications: Expected Output: Actual Output:

The screen should show the message "PASS" All "PASS" printed.
for each length setting. See Table 5.11

Table 5.10: Test case of Random Values for BN-Curves

bits Result
160 PASS
192 PASS
256 PASS

Table 5.11: Test Result for TestCase ID: 09

95

5.2.4 Condition Testing (White box testing)

All the previous test cases provide functional testings of the Elliptic Net

algorithm and implicate that the Elliptic Net algorithm can provide Tate

pairing computation once the system parameters are appropriately set. The

csi.crypto.pairing.TatePairing class is developed to set up and compute Tate

pairing with Miller’s algorithm over both the pairing friendly curves (see

Section 4.4.3). The condition testing here is to test whether this class can

automatically determine and configure the curve settings for Miller’s algo-

rithm. This class has 4 constructors depends on the number and type of

inputs. In short the specification of them are:

1. TatePairing()

This is the default constructor and it will set up a random 250-bit

length supersingular curve environment.

2. TatePairing(BigInteger p, BigInteger q, BigInteger l)

This is designed for a customized setting of the supersingular curve

environment.

3. TatePairing(BigInteger p, BigInteger n, BigInteger b, BigInteger y)

This is designed for the customized setting of the BN-Curve environ-

ment.

4. TatePairing(int bitLength, int curveType)

This is designed for random curves with the length specified by the

first argument bitLength and type of curve specified by the second ar-

gument curveType. This curveType must be either 0 or 1 but nothing

else.

96

This condition testing is focused on the 4th constructor. Figure 5.1 shows

a control flow graph for these constructor. It hides the information of the

detailed setting up for supersingular curves and BN-Curves as we are only

interested in the condition and decision part of the method.

97

Figure 5.1: Control Flow Graph of TatePairing(int bits, int curveType) Gen-
erated by Visustin [1]

98

According to the program show in Figure 5.1, we can partition the inputs

and design the test cases depending on the partitions as follows:

TestCase Inputs: Expected Output:
ID: bitLength curveType (Exception / Set up)
10 0 0 Exception due to bitLength = 0
11 -1 0 Exception due to negative bitLength
12 40 0 Set up a 40-bit supersingular curve
13 40 1 Set up a 40-bit BN-Curve
14 60 2 Exception due to invalid curveType
15 80 -1 Exception due to invalid curveType

Table 5.12: Test cases for TatePairing(int bitLength, int curveType)

With the above input partitions, we have the following corresponding run-

time results in Table 5.13 and all the results meet our expected outputs in

Table 5.12.

TestCase ID Actual Output on Screen
10 Error: java.lang.IllegalArgumentException:

bitLength must be greater than zero.
11 Error: java.lang.IllegalArgumentException:

bitLength must be greater than zero.
12 Succeed. Ready for Tate pairing...
13 Succeed. Ready for Tate pairing...
14 Error: java.lang.IllegalArgumentException:

Invalid curveType! curveType must be 0 or 1
15 Error: java.lang.IllegalArgumentException:

Invalid curveType! curveType must be 0 or 1

Table 5.13: Test Result for Test Cases in Table 5.12

5.3 Performance Test

The efficiency of the system are also important. According to the theory [58],

the Elliptic Nets algorithm is a polynomial time consuming algorithm like

Miller’s algorithm. It is based on an efficient method for calculating terms

in the Elliptic Net. It requires no inversions, while Miller’s algorithm in

99

affine coordinates requires one or two Fp inversions per step. The inversions

can be costly depending on the implementation.To benchmark the Elliptic

Nets algorithm and compare with Miller’s algorithm, we need some efficiency

testing to measure the real timing cost of both algorithms. The inputs used

for measurement should be randomly generated by the system itself. As the

program is developed in Java, the speed somewhat depends on the actual

JVM. A specified Java method, System.currentTimeMillis(), can be used to

evaluate the timing costs of there algorithms. This method is available in

the current JDK [46].

5.3.1 Comparison over supersingular curves

We compared the speed of two algorithms over supersingular curves with the

following tests.

TestCase ID: 16 Benchmark for Elliptic Nets Algorithm for Supersin-

gular curves

Requirement:

1. Calculate average time for Miller’s algorithm in [13].

2. Calculate average time for Elliptic Nets algorithm with the same set-

tings.

3. Output the results to obtain a chart of comparison.

Environment:

• CPU: Intel Core(TM)2 Duo CPU T7300 2.00Ghz

• RAM: 2.00GB

• Operating System: 32-bit Window Vista Service Package 2

100

• Java Runtime Environment: jre1.6.0_21

• Others: The computer is disconnected from the network without

any other applications running

• Single Threaded Application

Critical Program Code: The following code will calculate an average

time cost for both algorithms over random supersingular curves with length

p from 150 to 250 bits and the resulted time costs will be printed on the

screen.

public static void benchmark1() {

int bits[] = new int[n];

long timingM; // time for Miller

long timingN; // time for Elliptic Nets

Element e1=null;

Element e2=null;

System.out.println("bitsOfP\t\tMiller\t\tEllipticNet");

System.out.println("___");

for(int i=14; i<n; i++){

bits[i] = 10*(i+1);

System.out.print(bits[i]+"\t\t");

// Setup for Miller’s algorithm...

ModifiedTatePairing mtp = new ModifiedTatePairing(bits[i]);

PairingEllipticCurve curve = mtp.getCurve();

AffinePoint P = mtp.mapToPoint(BigInteger.ONE);

curve.toWeierstrassEqn();

101

// Timing for Miller’s algorithm...

long before = System.currentTimeMillis();

for(int j=0; j<10; j++)

e1 = mtp.getPair(P, P);

timingM = (System.currentTimeMillis()-before)/10;

System.out.print(" "+timingM+"\t\t");

// Setup for Elliptic Nets algorithm...

TatePairingViaENet tpe = new TatePairingViaENet(curve);

tpe.setOrderOfPoint(mtp.getQ());

AffinePoint Q = mtp.morphPoint(P);

// Timing for Elliptic Nets algorithm...

before = System.currentTimeMillis();

for(int j=0; j<10; j++)

e2 = tpe.getTatePairing(P, Q);

timingN = (System.currentTimeMillis()-before)/10;

System.out.println(" "+timingN);

}

}

Statistical Steps:

1. Run the critical program code above 20 times to obtain 20 records of

the time costs;

2. Calculate the mean and the standard deviation over the 20 records;

Output result: Translate the statistical results to Table 5.14, Figures 5.2

and 5.3.

102

Length Miller Miller Elliptic Nets Elliptic Nets Difference Ratio

of p Mean(mS) StdDev(mS) Mean(mS) StdDev(mS) (mS) (EllipticNets/Miller)

150 1565.25 27.39 1020.25 8.10 545 0.6518
160 1803.25 73.99 1172.05 12.69 631.2 0.6500
170 2099.3 36.09 1375.95 9.20 723.35 0.6554
180 2367.75 51.85 1553.3 9.44 814.45 0.6560
190 2634.25 56.91 1723.5 12.58 910.75 0.6543
200 3032.45 55.85 2000.85 20.16 1031.6 0.6598
210 3377.2 85.37 2229.4 13.47 1147.8 0.6601
220 3711.8 77.63 2437.4 19.26 1274.4 0.6567
230 4233.85 88.83 2790.15 20.00 1443.7 0.6590
240 4612.95 64.70 3052.9 87.46 1560.05 0.6618
250 5210.05 578.97 3352.3 93.04 1857.75 0.6434

Table 5.14: Raw Benchmark for Supersingular Curve

Figure 5.2: Comparison of Computation Time for Miller’s Algorithm with
the Elliptic Nets Algorithm on Supersingular Curves as the Length of p is
increasing

103

Figure 5.3: The Relationship between the Length of P and the Difference of
the Time Cost between the Two Algorithms

Table 5.14 displays the result of the test case 16, where the first column

is for the bit length of p passed to the system, the second and third columns

hold the mean and the standard deviation of the real time costs of Miller’s al-

gorithms, the fourth and the fifth hold the mean and the standard deviation

of the time costs of the Elliptic Nets algorithm, the next column shows the

difference between the mean time costs of the two algorithms and the final

column is the ratio between the mean time costs of the two algorithms. It

shows that the Elliptic Nets algorithm is always more efficient than Miller’s

algorithm in [13]. It nearly saves about 1/3 time cost on average. Thus,

as an alternative algorithm for Tate pairing, the Elliptic Nets algorithm can

speed up the IBE application in [13]. Figure 5.2 is a graphical representation

of Table 5.14. Note that there was some unavoidable noise in the testing en-

vironment due to the testing platform itself from sources such as memory

and proccess scheduling by the operating system. Figure 5.3 expresses the

sixth column of Table 5.14. By taking the difference, it decreased the noise

and approximately shows that as the length p grows, or equivalently to say

104

that as the cryptographic key size is increasing, the speed gap between the

two algorithms becomes wider and the Elliptic Net algorithm has obvious

benefits of the efficiency.

5.3.2 Comparison over BN-Curves

The test case (Id:17) for the BN-Curves benchmark is similarly to the pre-

vious one for supersingular curves. Table 5.15 and Figure 5.4 give the raw

timing cost of the two algorithms for Tate pairing over random BN-Curves

and random points on the curves.

Length Miller Miller Elliptic Nets Elliptic Nets Difference Ratio

of p Mean(mS) StdDev(mS) Mean(mS) StdDev(mS) (mS) (EllipticNets/Miller)

160 21149.2 349.67 25312.5 291.39 -4163.3 1.1969
192 34343.5 370.22 41048 160.13 -6704.5 1.1952
256 64197.3 247.75 76844.5 334.69 -12647.2 1.1970

Table 5.15: Raw Benchmark for BN-Curves

Figure 5.4: Comparison of Computation Time for Miller’s Algorithm with
the Elliptic Nets Algorithm on BN-Curves as the Length of p is increasing

Notice that there are negative values in the sixth column (i.e. Difference)

105

in Table 5.15 which means that the Elliptic Nets algorithm is slower than

the optimized Miller’s algorithm for BN-Curves. In practice, it takes nearly

20% more time than Miller’s algorithm on average. This situation means

that BN-Curves is only suitable for deployment in an environment that of-

fers very significant computational resources. However, they would currently

be unsuitable for performing a cryptographic encoding on a computational-

power limited device. To get an idea of the relationship between execution

time and a user’s expectations, Nielson [42] notes that an execution time of

about 1 second for a typical software process that does not supply feedback

while it is executing is acceptable, otherwise some form of feedback is rec-

ommended if the completion time reaches up to 10 seconds. If the process

was actually taking of the order of minutes or even hours to execute it would

be totally unsuitable in practice.

5.4 Summary

The chapter illustrated the testing process of the software system, which

covered unit testing, functional testing, white box testing and performance

testing. The testing results proved that the Elliptic Net algorithm is more

efficient that the standard Miller’s algorithm on Supersingular curves and

thus it can be a suitable alternative choice of the Tate pairing computation.

However, both algorithms suffer a heavy timing cost for BN-Curves, which

limit the application of BN-Curves for cryptographic protocols.

106

Chapter 6

Conclusion

6.1 Summary

Recall the initial motivation of the project in Section 1.6, in this thesis we

have attempted to find answers to these question through our development of

the system. We have considered alternative approaches to the Tate pairing

computation currently used in the BIO-IBS system. It was proposed to offer

both an optimized version of Miller’s algorithm for the Tate pairing and to

allow for the use of Elliptic Nets. The design of the existing system was thus

evolved to incorporate our new Elliptic Nets API. A software engineering

approach was adopted for this system development and the integration of

the new functionality was planned to be carried out in separate stages. As

part of the Elliptic nets API, BN-Curves were added as a second type of

pairing friendly curves available in the cryptosystem. The initial idea of

adding BN-Curve is to enhance the security of the cryptosystem. Black and

white box testing was carried out to validate the correct operation of the

new system. Performance comparisons were then made between the two

pairing approaches over both type of curves. These showed that the new

107

Elliptic Nets approach compares favorably with the existing Miller based

system particularly for supersingular curves. A time speedup of the order

of 20% on average was obtained. Therefore, the Elliptic Net algorithm can

improve the efficiency of the original BIO-IBS system in [13]. However, this

was shown not to be the case when using BN-Curves as there was an increase

in the time taken which indicates that they are not suitable for the current

system.

6.2 Future Work

In the short term there are some aspects of the application that could be

completed in the future. Firstly, a switch function between two algorithms

is missing. The system would benefit from some extra functions that could

detect the current algorithm and decide whether should the second one being

invoked at run time. Such a switch should be automatically performed in

the background without having to notify the front-end user but with some

notification to the sever side. Secondly, the system should provide some user-

friendly information to the front-end when the service is stopped. Thirdly,

we need to include some capacity or stability testing for the system before it

employed into some J2EE services. Moreover, we used java.math.BigInteger

as the core base of data type. This data type is not supported by J2ME,

which means a new data structure (e.g. byte-based type) should be consid-

ered for real applications on mobile devices.

On the other hand, from the cryptographic side, as we mentioned before,

the heavy computation associated with pairings is the main issue in pairing-

based cryptography. Although we now have two algorithms for Tate com-

putation but since they both have a polynomial time cost, the efficiency of

pairing computation is still an open problem in pairing based cryptography.

108

Secondly, Section 5.3 also indicated that as a new approach, the Elliptic

Nets algorithm with BN-Curves is slower than optimized Miller’s algorithm.

There may be some techniques behind or beyond which can be used to op-

timize the new algorithm to make it a more efficient alternative choice for

Tate pairing computation. Moreover, with the development of division poly-

nomial theory with twisted Edwards curves [40], the hypothesis that whether

Elliptic Nets algorithm can be refined for twisted Edwards curves as well is

another open question. All these ideas should be addressed in a future long-

term research study.

109

Bibliography

[1] Aivosto. Visustin v6 Flow chart generator. http://www.aivosto.com/

visustin.html.

[2] A.Joux. A one round protocol for tripartite diffie-hellman. In ANTS-IV:

Proceedings of the 4th International Symposium on Algorithmic Number

Theory, pages 385–394, London, UK, 2000. Springer-Verlag.

[3] Paulo S.L.M. Barreto and Michael Naehrig. Pairing-friendly elliptic

curves of prime order. Proceedings of SAC 2005, volume 3897 of LNCS,

pages 319–331, 2005.

[4] P.S.L.M. Barreto, Hae Yong Kim, L. Ben, and M. Scott. Efficient algo-

rithms for pairing-based cryptosystems. In CRYPTO ’02: Proceedings

of the 22nd Annual International Cryptology Conference on Advances

in Cryptology, pages 354–368, London, UK, 2002. Springer-Verlag.

[5] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography.

Cambridge University Press, 1st edition, 1999.

[6] I.F. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptog-

raphy. LMS lecture note; 265. Cambridge ; New York : Cambridge

University Press, 1999.

110

[7] D. Boneh and M. Franklin. Identity Based Encryption from the Weil

Pairing. SIAM Journal of Computing, Vol. 32, No. 3, pages 586–615,

2001.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Veri-

fiably Encrypted Signature from Bilinear Maps. Proceedings from Ad-

vances in Cryptology - EuroCrypt, 2003.

[9] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil

Pairing. Proceedings from Advances in Cryptology - Asiacrypt, 2001.

[10] Dan Boneh. The decision diffie-hellman problem. LNCS, 1432:48–63,

1998.

[11] Virtual Box. Virtual Box. http://www.virtualbox.org.

[12] A. Burnett, F. Byrne, T. Dowling, and A. Duffy. Elliptic Curve Arith-

metic API. http://www.crypto.cs.nuim.ie/software/.

[13] A. Burnett, F. Byrne, T. Dowling, and A. Duffy. A Biometric Identity

Based Signature Scheme. International Journal of Network Security,

5:317–326, 2007.

[14] Jaemin Choi, Jongsung Kim, Jaechul Sung, Sangjin Lee, and Jongin

Lim. Related-key and meet-in-the-middle attacks on triple-des and des-

exe. In Computational Science and Its Applications - ICCSA 2005,

volume 3481 of Lecture Notes in Computer Science, pages 567–576.

Springer Berlin / Heidelberg, 2005.

[15] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja

Lange, Kim Nguyen, and Frederik Vercauteren. Handbook of Elliptic

and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2005.

111

[16] Microsoft Corporation. Windows. http://www.microsoft.com/en/us/

default.aspx.

[17] PGP Corporation. Pgp products. http://www.pgp.com/.

[18] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. Imple-

menting cryptographic pairings over barreto-naehrig curves. LNCS,

4575:197–207, 2007.

[19] A. Duffy and T. Dowling. An Object Oriented Approach to an Iden-

tity Based Encryption Cryptosystem. The 8th IASTED International

Conference on Software Engineering and Applications, 2004.

[20] R. Dutta, R. Barua, and P. Sarkar. Pairing-Based Cryptographic Pro-

tocol: A Survey. Cryptology ePrint Archive, 2004.

[21] Kirsten Eisentrager, Kristin Lauter, and Peter L. Montgomery. Fast

elliptic curve arithmetic and improved weil pairing evaluation. In Topics

in Cryptology ¨C CT-RSA 2003, pages 343–354. Springer-Verlag, 2003.

[22] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of

pairing-friendly elliptic curves, 2006.

[23] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility

and the discrete logarithm in the divisor class group of curves. Math.

Comput., 62(206):865–874, 1994.

[24] D. R. Graham. Incremental development: review of nonmonolithic life-

cycle development models. Inf. Softw. Technol., 31(1):7–20, 1989.

[25] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-

based public key cryptosystem. Lecture Notes in Computer Science,

1423:267–288, 1998.

112

[26] IAIK. Iaik-jce, crypto toolkit, 2010.

[27] ECRYPT II. BlueCrypt Crypographic Key Length Recommendation,

2010. http://www.keylength.com/en/3/.

[28] A. Juels and M. Wattenberg. A Fuzzy Commitment Scheme. Pro-

ceedings of the 6th ACM conference on Computer and Communications

Security, pages 28–36, 1999.

[29] N. Keller. A biometric identity based signature scheme, Jan 2010. Sem-

inar report, Biometric and security seminar, Bonn-Aachen international

center for information technology,.

[30] Sarah Knoop. Math 842: Final project 12/15/04 project: Supersingular

curves and the weil pairing in elliptic curve cryptography, 2004.

[31] N. Koblitz. A Course in Number Theory and Cryptography. Springer,

2nd edition, 1994.

[32] K. Lauter and K. Stange. The elliptic curve discrete logarithm problem

and equivalent hard problems for elliptic divisibility sequences. LNCS,

5381, 2009.

[33] Isaac Liu and David McGrogan. Elimination of side channel attacks on

a precision timed architecture, Jan 2009.

[34] Ben Lynn. Pairing-Based Cryptography library. http://crypto.

stanford.edu/pbc/.

[35] Ben Lynn. On the Implementation of Pairing-Based Cryptosystems.

PhD thesis, Department of Computer Science, Stanford University,

2007.

113

[36] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. Reducing el-

liptic curve logarithms to logarithms in a finite field. In STOC ’91:

Proceedings of the twenty-third annual ACM symposium on Theory of

computing, pages 80–89, New York, NY, USA, 1991. ACM.

[37] Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, and R. L.

Rivest. Handbook of applied cryptography, 1997.

[38] V. S. Miller. The Weil Pairing, and Its Efficient Calculation. Journal

of Cryptology, 17, 2004.

[39] Richard A Mollin. An Introduction to Cryptography. Discrete mathe-

matics and its applications. Boca Raton : Chapman & Hall/CRC, 2007.

[40] Richard Moloney and Gary McGuire. Division Polynomials for Twisted

Edwards Curves, July 2009.

[41] N. El Mrabet and S. Ionica. Pairing computation for elliptic curves

with embedding degree 15. http://nelmrabe.perso.info.unicaen.

fr/recherche.htm.

[42] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1993.

[43] Leonardo B. Oliveira, Diego Aranha, Eduardo Morais, Felipe Daguano,

Julio L¨ R©pez, and Ricardo Dahab. Identity-based encryption for sensor

networks. In In 5th IEEE Int¡¯l Conference on Pervasive Computing and

Communications Workshops (PERCOMW ¡¯07, pages 290–294, 2007.

[44] Paul C. Van Oorschot and Michael J. Wiener. Parallel collision search

with cryptanalytic applications. Journal of Cryptology, 12:1–28, 1996.

114

[45] Oracle. Java Strategy and Directions. http://www.oracle.com/us/

technologies/java/index.html.

[46] Oracle. Java, 2010.

[47] L. Owens, A. Duffy, and T. Dowling. An Identity Based Encryption

System. Proceedings of the 3rd International Conference on Principles

and Practice of Programming in Java, 2004.

[48] Apache Ant Project. Apache ant 1.8.1, May 2010. http://ant.apache.

org/.

[49] Artima SuiteRunner Project. Artima SuiteRunner, 2004. http://www.

artima.com/suiterunner/index.html.

[50] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method

for Obtaining Digital Signatures and Public-Key Cryptosystems. Com-

munications of the ACM, pages 120–126, 1978.

[51] Michael Scott. Scaling security in pairing-based protocols, 2005.

[52] Michael Scott and Paulo S. Barreto. Generating more mnt elliptic

curves. Des. Codes Cryptography, 38(2):209–217, 2006.

[53] R. Shipsey. Elliptic Divisibility Sequences. PhD thesis, Goldensmiths,

University of London, 2000.

[54] S.D. Galbraithand K. Harrisonand D. Soldera. Implementing the tate

pairing. In ANTS-V: Proceedings of the 5th International Symposium

on Algorithmic Number Theory, pages 324–337, London, UK, 2002.

Springer-Verlag.

115

[55] Ljiljana Spadavecchia. A Network-based Asynchronous Architecture for

Cryptographic Devices. PhD thesis, Institute for Computing Systems

Architecture, School of Informatics, University of Edinburgh, 2005.

[56] Thomas Stahl and Markus Völter. Model-Driven Software Development:

Technology, Engineering, Management. Wiley, Chichester, UK, 2006.

[57] Katherine E. Stange. Pari/gp scripts for tate pairing via elliptic net.

http://www.math.brown.edu/~stange/scripts.html.

[58] Katherine E. Stange. The Tate Pairing via Elliptic Nets. Pairing-Based

Crytography - Pairing 2007, 4575/2007, 2007.

[59] Graeme Taylor. Tate pairing computation in SAGE III, 2008. http:

//maths.straylight.co.uk/archives/category/sage.

[60] Peng Wang, Dengguo Feng, Wenling Wu, and Liting Zhang. On the

correctness of an approach against side-channel attacks. In ISPEC ’09:

Proceedings of the 5th International Conference on Information Secu-

rity Practice and Experience, pages 336–344, Berlin, Heidelberg, 2009.

Springer-Verlag.

[61] Morgan Ward. Memoir on elliptic divisibility sequences, 1948.

[62] L. Washington. Elliptic Curves: Number Theory and Cryptography.

Chapman and Hall, CRC, 1st edition, 2003.

[63] F. Zhang and K. Kim. ID-Based Blind Signature and Ring Signature

from Pairings. Proceedings from Advances in Cryptology - Asiacrypt,

2002.

116

