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Abstract 

  In this thesis, three distinct studies were carried out to investigate various aspects 

pertaining to the properties and applicability of phylogenomic data used in a supertree 

context. While the availability of genomic scale data is rapidly diminishing as a problem 

in the field of phylogenomics, there is now a greater need for an appropriate means of 

analysing such data.  

 Supertrees have emerged as a useful approach in handling large data sets and have 

been shown to work extremely well in a phylogenomic context (e.g. Creevey et al., 2004, 

Fitzpatrick et al., 2006, Pisani et al., 2007). While supertree studies do generally sample 

significantly more genomic data than their supermatrix counterpart, much of the genome, 

which has evolved in the light of gene duplication, is not considered in this method. 

Further to this, typically, in the supertree approach complete genomic data is exclusively 

used, which can result in a very limited taxon sampling compared to alternative 

approaches that use expressed sequence tag (EST) data. Here, in attempt to address these 

shortcomings, the viability of integrating genes with a history of duplication in the 

supertree approach, as well as the extent to which a combined data set of complete and 

partial genomes (ESTs) can be used to increase taxon sampling in this context, is 

investigated. 

 Additionally, in this thesis, the effect of input tree shape biases is assessed. It has 

been shown previously that some commonly used supertree methods are biased with 

respect to the tree shape they produce (Wilkinson et al., 2005). However, since some 

supertree methods (e.g. matrix representation with parsimony; MRP) have an inherent 

phylogenetic component, the observed shape predispositions of these supertree methods 

may be attributed to such methodological elements. As such, here the effective shape bias 

of various phylogenetic methods is assessed using a phylogenomic data set. 
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Chapter 1: Introduction 

Lamarck is credited with the introduction of the first true evolutionary tree (see 

Figure 1.1; see also, for example, McInerney et al., 2008), however, it was Charles 

Darwin’s (1859) celebrated phylogenetic tree that captivated public interest. This 

drawing (Figure 1.2), which is the only figure in “On the Origin of Species”, perfectly 

captured the meaning of his theory of natural selection, and spurred others, like Haeckel, 

to investigate the evolutionary relationships among living organisms. This ultimately 

spawned an active area of research that has extended across the last two centuries: 

phylogenetics. The impact of this theory has not been confined to the classrooms of 

science and has, and continues, to fascinate and incite the readers of systematic journals 

and popular science alike. Since Darwin’s time, phylogenetics in itself has experienced a 

rather interesting evolutionary history. It has seen a transition from morphology to 

molecules and from genes to genomes (Eisen, 1998). In this chapter I will discuss the 

concepts that have delimited these transitions and outline the common methods employed 

by each era of molecular phylogenetics. 

 

1.1 “Molecules as documents of evolutionary history” 

 The above quotation is the title of the seminal 1965 publication of Zuckerkandl 

and Pauling, which was instrumental in highlighting an important avenue being explored 

by biologists at that time: the use of molecular data as a means of understanding 

historical biology. In their communication, they explore the use of alternative molecules 

(such as episemantic molecules, e.g. ATP, and asemantic molecules, e.g. vitamins), 

identifying semantides, a class of molecules that encompasses DNA, RNA and 
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 Figure 1.1 Lamarck’s evolutionary tree.   

This tree, which appears in book “Philosophie Zoologique” (Lamarck, 1809), depicts 

Lamarck’s understanding of how the animals evolved. This is considered the first 

example of an evolutionary tree. 
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Figure 1.2 Darwin’s Tree of Life.   

This tree appears in the book “On the Origin of Species” (Darwin, 1859) and is the only 

illustration to feature in the seminal publication. 
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polypeptides, to be the unequivocal molecular informant of evolutionary histories 

(Zuckerkandl and Pauling, 1965). This work was symbolic of a new era where 

homologous genetic sequences were used to trace evolutionary events. Many other 

important publications, including that of Fitch (1967) featuring one of the first molecular 

phylogenies, and that of Kimura (1969) focusing on variable mutation rate, as well as the 

methodologically important publication of Edwards and Cavalli-Sforza (1964), helped 

establish a framework for molecular evolution. Such studies provided a formative 

foundation, upon which modern molecular phylogenetics has been built. 

 

1.1.1 Homology to alignment 

 Homology can be defined as the “special” similarity between characters that have 

descended, typically with divergence, from a common ancestor (Fitch, 2000). A classic 

example from traditional morphological studies would be that of the humerus bone, 

which is present in the human arm, in the bird wing and in the anterior leg of, for 

example, the cat. Homology was introduced in pre-Darwinian times by Sir Richard Owen 

(1843), where he defined it as “[the] part or organ in one animal which has the same 

function as another part or organ in a different animal”. Upon this concept the basis of 

modern phylogenetics has been built. In order to infer a molecular phylogeny, a set of 

homologous proteins or nucleotides is required. As such, each molecular phylogenetic 

study commences with the identification of homologous genetic sequences, often referred 

to as gene (or protein) families.  

Currently, in the field of bioinformatics, the most popular method of determining 

homology between genetic sequences is through the use of the Basic Local Alignment 
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Search Tool (Altschul et al., 1997).  Using this method, a database of genetic sequences 

is constructed or utilised, with the potential homology of constituent sequences being 

evaluated by a measure of whether that sequence is expected to be returned in a search by 

chance, in a database of that particular size. This measure, known as an expect value or 

E-value, can be used as a proxy for homology, where by only sequences within the 

bounds of the given E-value are considered potentially homologous. The use of BLAST 

and E-values commonly features as a constituent stage in other homology assignment 

methodologies such as MCL (Enright et al., 2002), BLASTClust (Dondoshansky and 

Wolf, 2000) and reciprocal BLAST strategies.  

It is important to note that there are three distinct subtypes of homology defined; 

these are paralogy, orthology and xenology. Paralogy occurs when homology arises due 

to gene duplication; orthology, when homology arises due to a speciation event and 

xenology, when homology arises due to interspecies transfer of genetic material (Fitch, 

2000). Currently, BLAST does not distinguish between these classes of homology, 

leading to the requirement of downstream methods of detecting these events (see for 

example Cotton, 2005). 

In order to construct a sequence-based phylogeny, homologous (i.e. 

corresponding) sites in homologous sequences need to be compared. To achieve this, 

alignment of the homologous sequences is carried out, in a procedure that is commonly 

referred to as multiple sequence alignment. Available alignment software 

implementations include, for example, Clustal, Muscle, PRANK and FSA (Thompson et 

al., 1994, Edgar, 2004, Löytynoja and Goldman, 2008, Bradley et al., 2009 respectively, 

for a recent review see Kemena and Notredame, 2009), which are based on different 

algorithms and thus possess different strengths and weaknesses. 
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ClustalW (Thompson et al., 1994) persists as the most widely used multiple 

sequence alignment method due to its long established reputation and low computational 

cost. However, the accuracy of this method (Edgar and Batzoglou, 2006), particularly for 

longer sequences, and its handling of indels (Golubchik et al., 2007, Löytynoja and 

Goldman, 2008), have been criticised. Accordingly, many modern methods addressing 

these issues have been developed. A contemporary method of note, FSA, provides an 

improvement on speed and accuracy for larger sequences (Bradley et al., 2009). Another 

recent method, PRANK (Löytynoja and Goldman, 2008) represents a departure from 

traditional alignment approaches, in that it attempts to produce alignments that more 

accurately reflect the evolutionary history of the considered sequences. To do this, the 

algorithm treats insertions and deletions as discrete events and phylogenetic information 

is used to determine which of these events is responsible for observed gaps in the 

alignment. 

Alignment software accounts for positional homology, providing a configuration 

that best explains the biological likeness of the nucleotides or amino acids of each 

sequence, at each site. As part of this process, the software may determine it necessary to 

insert what is commonly known as a gap character (represented in the sequence by a ‘-’) 

at a given site, to uphold the parallel confirmation of sites downstream. Additionally, 

mutations and insertions in the sequence are accounted for by means of an inbuilt 

weighting scheme in the alignment algorithm, which can be defined by the user to tailor 

specifically to the demands of each study. Once the alignment is complete, curation of the 

resulting sequence configurations is often necessitated to resolve misaligned regions. 

Manual curation of alignments is commonplace, however, for larger genomic scales 

studies (such as those discussed in this thesis), an automated approach, for example, the 
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Gblocks software (Castresana, 2000) is generally used. When a suitably high standard of 

data quality is achieved, one of the numerous tree reconstruction methods is applied to 

the aligned sequences. In the following section I will introduce the main procedures and 

standards used for the inference of phylogenetic trees. The focus here is on methods that I 

have used during my PhD, therefore, outdated methods, such as UPGMA (Unweighted 

Pair Group Method with Arithmetic Mean; see Felsenstein 2004), will not be discussed. 

 

1.1.2 Phylogenetic tree reconstruction 

1.1.2.1 Maximum parsimony 

Philosophically, the concept of parsimony is derived from a principle introduced 

by the 14th century monk William of Ockham. This principle, known as Ockham’s razor, 

dictates: “Plurality should not be posited without necessity”. More plainly, this theory 

confers precedence to simplicity, where, of two competing theories, the simplest 

explanation should be the favoured one. Edwards and Cavalli-Sforza (1963) are attributed 

with the inception of parsimony in an evolutionary context (this is often mistakenly 

accredited to Willi Hennig and Walter Zimmerman, however, parsimony in this sense is 

more similar to compatibility or clique analyses; see Estabrook et al., 1977, Meacham 

and Estabrook, 1985), when they asserted that the tree that is arrived upon by the 

minimum amount of evolution is the most acceptable, however, application of their 

minimum evolution algorithm was limited to genetic frequency data.  

Use of parsimony in the context of character-based phylogenetics is ascribed to 

Camin and Sokal (1965), who first defined the term, in addition to algorithms to estimate 

the number of evolutionary changes and to perform tree search and construction. In a 
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phylogenetic context, the parsimony criterion is applied through the search for the tree 

that minimises the number of character transformations across all sites, i.e. the most 

parsimonious tree. In this way, the number of substitutions between character states 

implied by each tree is calculated over the sum of all characters. There are numerous 

variations of the parsimony algorithm defined, including the unidirectional Wagner 

parsimony (Kluge and Farris, 1969) and Fitch algorithm (Fitch, 1971), and the 

bidirectional Sankoff algorithm (Sankoff, 1975, Sankoff and Rousseau, 1975, see 

Felsenstein, 2004 for a more exhaustive list and discussion). 

 Although maximum parsimony (MP) was the method of choice in the 1970s and 

1980s, it has been shown to have several flaws. Felsenstein (1978), in a landmark paper 

showed that parsimony is statistically inconsistent, that is, under certain conditions, i.e. 

when rates of substitution are highly heterogeneous in neighbouring branches, with the 

accumulation of more data, the estimation arrives upon the wrong tree with increasingly 

high support. This concept is more commonly referred to as long branch attraction 

(LBA). LBA occurs because parsimony systematically minimises branch lengths and, as 

such, does not accurately reflect what is observed in real data (Zhang and Nei, 1997, 

Steel and Penny, 2000).  

The consequence of these shortcomings is that MP does not perform as well as 

other methods (Sourdis and Nei, 1988, Tateno et al., 1994). Despite this, parsimony 

maintains the support of ardent proponents (Farris et al., 1970, Sober, 1988, 

Kolaczkowski and Thornton, 2004) and even today, persists as a popular method of tree 

inference. Moreover, in the case of morphological data analysis, MP remains the 

methodological standard, despite the availability of a specific likelihood model (Lewis, 

2001) and accompanying software implementations (in MrBayes; Huelsenbeck and 
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Ronquist, 2001, and in RAxML; Stamatakis et al., 2005) to account for data of this 

nature. 

 

1.1.2.2 Distance matrix methods 

Distance matrix methods can trace their origin to the work of Sokal and Sneath 

(1963) who first introduced classic phenetic methods such as UPGMA. However, modern 

distance methods, for example, least squares, were introduced by Cavalli-Sforza and 

Edwards (1967), and Fitch and Margoliash (1967). All distance methods calculate the 

distance between each pair of sequences in an alignment, generate a matrix of pairwise 

distances and determine the tree that most accurately reflects the computed distances 

(Felsenstein, 2004). To allow for a more accurate representation of reality, models that 

incorporate various parameters are generally used to measure the distance between 

sequences. Indeed, these models of sequence evolution (see below; Section 1.1.2.3) are 

also employed in probabilistic tree inference methods, like maximum likelihood and 

Bayesian inference (see below).  

 

1.1.2.3 Models of sequence evolution 

The most basic model of DNA sequence evolution is the Jukes and Cantor model 

(1969). Under this model, the probability of change to any given character state (i.e. A, 

C, G, T), at any given site in the sequence, is equal. The formula for estimating distance 

is as follows: 
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where D is the distance between two sequences, ln (the natural logarithm) corrects for 

superimposed substitutions and DS is the amount of nucleotides that differ between the 

two sequences.  

  The simplicity of the Jukes and Cantor (1969) model  (JC69) means that it is a 

poor estimator of how DNA sequences actually evolve. Accordingly, many subsequent 

models have attempted to incorporate more realistic parameters to estimate change from 

one state to another, in a process that is known as transition probability in mathematics 

(Felsenstein, 2004). Kimura’s two-parameter (K2P) model (Kimura, 1980) represented 

the first improvement over JC69. This model takes the transition-transversion bias of a 

set of sequences into consideration when estimating distances by assigning a higher 

probability to the occurrence of transitions in comparison to transversions. Another 

important improvement was the introduction of general time reversible (GTR) model 

(Lanave et al., 1984, Rodriguez et al., 1990, see also Yang, 1994a), under which base 

frequencies are free to vary and all substitutions are assigned a different rate. The 

substitution matrix in this model is symmetric, allowing it to be time reversible. 

Consequently, there is no direction of evolution (substitutions) assumed between 

sequences.   

Equally, there are various models of protein evolution described. The majority of 

these models are based upon empirical data, and include the simple Dayhoff (Dayhoff et 

al., 1978) and BLOSUM (Henikoff and Henikoff, 1992) models. Other empirical models 

of protein evolution such as JTT (Jones et al., 1992), WAG (Whelan and Goldman, 2001) 

and the recently described LG model (Le and Gascuel, 2008), are time reversible and so 

are generally referred to as empirical GTR models. Recently, the use of mechanistic 

amino acid GTR models (i.e. GTR models in which the transition probabilities are 
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inferred directly from the data) has become possible in a Bayesian framework (e.g. using 

MrBayes 3.0; Ronquist and Huelsenbeck, 2003).  The emergence of Bayesian 

phylogenetics (see below, Section 1.1.2.6) has also allowed complex heterogeneous 

models, such as the CAT model (Lartillot and Philippe, 2004), to be widely used in 

analyses performed at the amino acid level. Under the CAT model, the dimensionality of 

the model in itself is a free parameter, therefore, allowing each site to be assigned to the 

category (of a number of distinct categories) that best describes its substitution rate. 

 

1.1.2.4 Neighbor joining 

 The neighbor joining (NJ) method, introduced by Saitou and Nei (1987), can be 

considered an approximation of Nei’s minimum evolution method (Kidd and Sgaramella-

Zonta, 1971, Rzhetsky and Nei, 1992, 1993), which is not to be confused with the 

minimum evolution method of Edwards and Cavalli-Sforza (1963). Under Nei’s 

minimum evolution method, alternative tree topologies are fit to the data and branch 

lengths are subsequently calculated using the ordinary least square method, with the 

selected tree being the one with the shortest total sum of lengths (Rzhetsky and Nei, 

1993, Felsenstein, 2004). 

 The mode of operation of NJ begins with a tree with a star like topology, which 

assumes that no taxa cluster together. Amongst all the possible pairs of taxa, the first pair 

of “neighbors”, i.e. the two taxa with the smallest summed branch lengths, are selected 

and joined. This pair of taxa is then considered by the algorithm to be one (i.e. 

composite) operational taxonomic unit (OTU). The branch length of the composite OTU 

is calculated as the average of the branch lengths of the initial two taxa. The new 
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composite OTU is then considered by the algorithm to be another taxa and the process of 

neighbor generation is then repeated. This procedure continues until all interior branches 

are identified (Saitou and Nei, 1987).  

Although NJ performs relatively well (Sourdis and Nei, 1988, Saitou and 

Imanishi, 1989), some methodological issues regarding pairs of OTUs with equal length 

(Backeljau et al., 1996) have been identified, including the problematic use of bootstrap 

with NJ where the random reconciliation of equivalent OTUs can lead to inflated support 

(Farris et al., 1996). However, NJ is widely used as a preliminary rapid tree building 

method that serves as starting point for other methods (for example PhyML, Guindon and 

Gascuel, 2003, uses a variant of NJ). Further to this, NJ is often selected over other 

methods when there are a large number of sequences in a considered data set as its 

performance is fundamentally sufficient, with moderate computation costs (Tamura et al., 

2004).  

 

1.1.2.5 Maximum likelihood 

 In the early part of the 20th century the statistician, and population geneticist, R.A. 

Fisher devised the maximum likelihood (ML) method (Fisher, 1912, 1921, 1922). 

However, it was Edwards and Cavalli-Sforza (1964), who in addition to parsimony, first 

applied likelihood methods in phylogeny, albeit for gene frequency data. Progression of 

the likelihood approach in phylogenetics included the work of Neyman (1971), who first 

applied likelihood to genetic sequences, with Kashyap and Subas (1974), in turn, 

providing improvement upon Neyman’s work. It was, however, Felsenstein (1981) that 
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was responsible for developing the groundbreaking “pruning algorithm” that allowed ML 

to be implemented on a realistic number of sequences. 

 ML can be considered a parametric approach to tree building, which estimates the 

probability of observing the data given a model of sequence evolution. Under the ML 

criterion the data is fixed, while the model (or part of it) is free to vary (Edwards, 1972). 

In phylogenetics, the data are aligned genetic sequences, while the model is comprised of 

both the model of DNA or protein evolution (which is generally fixed), and the tree 

(which is free to vary). For each site in the alignment (given a substitution model and a 

tree) an associated likelihood can be calculated, with the product of these site likelihoods 

yielding the total likelihood for the considered model (substitution model and tree). 

While a tree-search is performed, the fit of different trees to the data is investigated 

(fixing the substitution model), and the tree that gives the highest likelihood (under the 

fixed model) is the ML tree (Felsenstein, 1981).  

The appeal of this method can be attributed to its demonstrated robustness to 

systematic errors and model violation in comparison to other methods (see Hasegawa et 

al., 1991, Huelsenbeck, 1995, Whelan et al., 2001), particularly parsimony. Another clear 

advantage of this method is the ability to differentially select between models of 

evolution (Keane et al., 2006), so as to better account for the evolutionary process that 

generated the data. This is crucial to avoiding phylogenetic artifacts (Pisani, 2004, 

Sperling et al., 2009, Rota-Stabelli et al., 2010). Although it is important to select a 

model that acts as an appropriate reflection of the evolutionary process, it is equally 

imperative to avoid selecting a model that is too parameter rich. This is particularly 

relevant in the case of small (or relatively small) alignments (e.g. single gene analyses), 

where the use of parameter rich models like CAT (Lartillot and Philippe, 2004), or 
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mechanistic GTR, can on occasion lead to the problem known as the “infinitely many 

parameters trap” (Felsenstein, 2004) where the number of parameters increases as more 

sites are considered. However, for the modern superalignment approach this problem is 

probably less important (Philippe et al., 2005a) 

There are a number of statistical measures defined that facilitate the selection of 

the model that best fits the data, e.g. the Likelihood Ratio Test (LRT) and Bayesian cross-

validation.  In the LRT, multiple, pairwise tests of goodness of fit are conducted to 

determine the model that best fits the data. This test can more explicitly be considered a 

hierarchical likelihood ratio test (Posada and Crandall, 1998) because, with each iteration, 

an increasing number of parameters are added to the alternative model, until the present 

null model is not rejected (Pol, 2004). However, this approach is limited as it can only be 

used for models that are subtypes of each other (i.e. nested models) and consequently is 

generally unsuitable for models of protein evolution (Keane et al., 2006). 

The most widely used test for amino acid model selection is the Akaike 

information criterion (AIC; Akaike, 1973). The AIC is measured using the following 

formula: 

    AIC

! 

= "2L
m

+ 2m     [1.2] 

where m is the number of parameters of the model and Lm is the maximised log likelihood 

of the estimated model. An alternative measure is the Bayesian information criterion 

(BIC; Schwarz, 1978), which penalises more severely than the AIC for extra parameters. 

Both measures are featured in various model selection software, including Modeltest 

(Posada and Crandall, 1998) and Modelgenerator (Keane et al., 2006). Differently, and 

more conclusively, the Goldman-Cox test (Goldman, 1993, Whelan et al., 2001) can be 
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used to examine if the chosen model in fact fits the data. In this way, it provides a more 

absolute test than the AIC (Foster, 2004) or LRT, as such measures will always return a 

best fitting model, even in the case where every considered model is a poor fit to the data. 

Concluding, ML is now a well-established, hugely popular, method of 

phylogenetic inference, with many software implementations, including the relatively 

recent PhyML (Guindon and Gascuel, 2003) and RAxML (Stamatakis et al., 2005), with 

the latter being generally considered the better performing of all currently available ML 

software. 

 

1.1.2.6 Bayesian inference 

 Statistically, Bayesian methods are closely related to likelihood methods. The 

important difference between these probabilistic methods is that the Bayesian approach 

uses an informative prior distribution of the entity being estimated (Felsenstein, 2004). 

The implementation of Markov chain Monte Carlo (MCMC) algorithms has greatly 

helped popularise these methods (Li, 1996, Yang and Rannala, 1997, Mau and Newton, 

1997). The appeal of the Bayesian statistic is that it tries to mimic the human decision 

making process, in that decisions are altered by data (Huelsenbeck and Bollback, 2001, 

Huelsenbeck et al., 2001). 

Bayesian phylogenetics is based upon what is referred to as the posterior 

probability of a tree, which can be considered more simply as the probability that a tree is 

“true” (Huelsenbeck et al., 2001). The posterior probability is arrived upon using Bayes’ 

theorem: 
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Pr(H |D) =
Pr(H) "Pr(D |H)

Pr(D)
    [1.3] 

which calculates the posterior probability of a hypothesis H (i.e. a tree), given some data 

D (i.e. an alignment of n sequences), a substitution model, and a prior probability 

distribution for the set of all available alternative hypotheses (in our case all trees of the n 

taxa). Here, the denominator of the theorem is represented in its most simple form, 

however, in reality, this is extremely difficult to calculate, as it requires summing the 

likelihood of all possible hypotheses (i.e. trees; Yang and Rannala, 1997).  This problem 

is overcome by the use of MCMC methods, which only consider a random sample from 

the posterior distribution, thus providing an approximation for the true posterior 

probabilities (Huelsenbeck et al., 2001, Felsenstein, 2004). Key to the success of the 

MCMC methods is the exploitation of a mathematical trick, by means of which 

calculation of the denominator in the Bayes formula is no longer necessary (Huelsenbeck 

et al., 2001).  

The most widely used MCMC method is the Metropolis-Hastings algorithm 

(Metropolis et al., 1953, Hastings, 1970), which operates as follows: (1) a random 

starting tree is selected and its posterior probability is calculated. A new tree from the 

distribution is then selected. (2) The probability of the new tree is calculated and the 

Metropolis-Hastings algorithm is used to decide whether to accept or reject this new tree. 

If accepted, the new tree becomes the current tree, while if rejected another tree is 

selected. An important aspect of MCMC is that, on occasion, a new tree can be accepted 

even if its likelihood is lower than that of the current tree.  This is important for obtaining 

a fair representation of the posterior distribution, and to this end, trees of poor likelihood 

are accepted with a probability which is proportional to their likelihood: the worse the 
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likelihood of a tree, the less likely it is to be accepted.  The MCMC procedure will 

continue infinitely as the algorithm has no termination clause. In general, more than one 

independent “chain” for each data set is run, with cessation of the algorithm being 

determined by the convergence of these chains (i.e. when the chains find trees with a 

similar distribution). While most defined Bayesian MCMC methods employ the 

Metropolis algorithms, they do typically differ in the type of prior assumed, in the 

manner in which they move through tree space and in the way they summarise the 

posterior (Felsenstein, 2004). 

In Bayesian analyses, support for each node is represented by a posterior 

probability. Unlike other methods of estimating support (see Section 1.1.4.1), this has the 

advantage of being a measure of the probability of a particular node being true, given the 

data and the model (Erixon et al., 2003). However, some authors have contended that 

posterior probabilities overestimate the true support of a node (Rannala and Yang, 1996, 

Douady et al., 2003).  The Bayesian approach confers the additional advantage over other 

methods in that it allows for the use of models with higher dimensionality (Lartillot and 

Philippe, 2004).  In this sense, more realistic aspects about the evolutionary process can 

be incorporated into Bayesian inference (see above). Bayesian inference continues to see 

a steady uptake in phylogenetic studies and, currently, boasts several software 

implementations, including MrBayes (Huelsenbeck and Ronquist, 2001) and PhyloBayes 

(Lartillot and Philippe, 2004). 
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1.1.3 Detecting signal in phylogenetic data sets 

 While the use of robust methods of tree inference, coupled with the selection of 

an appropriate model of evolution, is imperative to the accurate reconstruction of a 

phylogeny, such measures are largely futile in the light of poor quality data. Accordingly, 

the quality of data is often assessed as part of the tree building process. A common 

method used to test for the presence of hierarchical structure in a data set is the 

permutation tail probability (PTP) test (Archie, 1989, Faith, 1991).  

Under the PTP test, each character at each site in the alignment is permuted, so 

that characters are allocated to a species at random. This has the effect of generating an 

alternative alignment that is not intended to represent a phylogeny, but rather a 

distribution of character states characteristic of the data (Archie, 1989, Felsenstein, 

2004). This procedure is repeated numerous times and the minimum tree length for the 

original data is compared to the distribution of tree lengths from the data perturbations. If 

a significant proportion of the permuted data tree lengths (i.e. more than 1% or 5% - 

depending on the significance threshold considered) are shorter or of the same length of 

the most parsimonious tree obtained using the unpermuted data, then the tested data set is 

considered to convey no phylogenetic signal. 

 Two general criticisms of the PTP test have been raised. The first issue brought 

up in relation to the PTP test is that it is too lenient a measure of phylogenetic signal. 

Felsenstein (2004) suggested that this could reasonably be the case when two species are 

practically identical sibling species. In this situation, the PTP test will detect the strong 

relationship between these species and thus may provide misleading signal, as more 

distant relationships may not necessarily be detected. A similar contention has been 
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shown experimentally, where alignments devoid of signal successfully attain significant 

scores (Slowinski and Crother, 1998). 

 A second criticism, broached by Swofford et al. (1996), is that a tree consisting 

entirely of a multifurcation can be shown to pass the PTP test if the branch lengths of the 

tree are sufficiently disproportionate. However, Felsenstein (2004) suggests that it could 

be argued that such a case does in fact have signal. Like Felsenstein, I contend that the 

case of Swofford et al. (1996) does not detract from the capability of the PTP test. The 

role of the PTP test is expressly to detect signal when present. However, this role does 

not extend to determining the nature of the detected signal, this can only be determined 

by phylogenetic analysis. For this reason, the PTP test should (as in the analyses 

described in this thesis) only be used to identify data sets with sufficient clustering signal 

suitable for further analysis.  In the case suggested by Swofford et al. (1996), the signal in 

the data is not phylogenetic in nature, but it still is signal (i.e. it represents a bias). 

While the merit of the PTP test has been the topic of much debate (see Trueman, 

1996, Carpenter et al., 1998), active research into the development of the PTP test has 

continued. Variations include the topology dependent PTP (T-PTP) test (Faith, 1991), the 

‘yet another permutation tail probability’ (YAPTP) test (Creevey et al., 2004) and the 

gene tree parsimony PTP (GTP-PTP) test (Holton and Pisani, 2010), which is a variant of 

the YAPTP test. A better approach to test the quality of a data set is likelihood mapping 

(Strimmer and Von Haeseler, 1997). Unfortunately, likelihood mapping is time 

consuming and was not suitable for the analyses discussed in this thesis.  
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1.1.4 Assessment of support 

It is extremely important to be able to have a means of evaluating a phylogenetic 

tree produced for a given data set of interest. This confers a level of confidence in the 

resulting tree and allows for comparison between different topologies and methodologies. 

There are various methods to determine the robustness of a tree, some of which are 

described below. 

1.1.4.1 Bootstrap and jackknife 

Two related approaches that can be used to estimate the level of support for a 

phylogeny are the bootstrap and the jackknife. Bootstrap is a statistical technique that was 

first applied in phylogenetics by Felsenstein (1985). When the bootstrap is applied to a 

phylogenetic data set, the original alignment is used to generate multiple 

(pseudoreplicate) alignments of the same dimensions. Each new alignment is created by 

sampling sites from the original alignment, with replacement (i.e. the same site can 

appear more than once in the considered pseudoreplicated data set, while some other sites 

might not appear in the same pseudoreplicate data set). This process is replicated a 

defined number of times, and each resultant alignment is individually used to build a 

phylogeny using a reconstruction method of choice. A majority rule consensus method 

(Margush and McMorris, 1981) is then used to coalesce the resulting sample of trees to 

give a single tree with support values at every node. Values at the nodes represent the 

proportion of times a given clade is found from the analysis of the pseudoreplicated data 

sets. 

 The jackknife, which is an older statistical method, was also first used in a 

phylogenetic context by Felsenstein (1985). The general concept of the jackknife is to 
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reduce the sample of characters by one, or more, iteratively and subsequently calculate 

the estimate for the remaining data. One variant of the jackknife used in phylogenetics is 

the delete-half jackknife, which exhibits many of the same properties as bootstrap, 

however, samples without replacement at a rate of 

! 

n

2
 for a data set of size n. Farris et al. 

(1996) proposed an alternative adaptation of the jackknife, called delete-1/e jackknife, 

however, Felsenstein (2004) demonstrates that this method can result in inflated support 

compared to the delete-half jackknife, and under some conditions becomes equivalent to 

bootstrap, therefore, negating its need.  

 

1.1.4.2 Bayes factors 

The Bayes factor (BF) is a Bayesian approach to hypothesis testing. The BF, in its 

simplest form, is a likelihood ratio and thus represents the part of Bayes formula (see 

Equation [1.3] above) through which the effect of the data, on the definition of the 

posterior probability, is expressed.  The BF can be considered the probability of the data 

given the null hypothesis, over the probability of the data given the alternative hypothesis 

(Goodman, 1999). Essentially, the BF is a measure of evidence for one hypothesis as 

opposed to another (Kass and Raftery, 1995). The difference between the BF and the 

likelihood ratio test is that BF values are calculated using likelihood values marginalised 

across all hypotheses, rather than on a fixed optimal topology.  In this way, the BF can 

take into consideration statistical uncertainty when comparing two hypotheses.  The BF 

returned when two hypotheses are compared is generally interpreted according to the 

table of Kass and Raftery (1995; see Appendix A1). In phylogenetics, BFs are proving to 
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be a useful tool for evaluating alternative topologies (Sperling et al., 2009, Holton and 

Pisani, 2010) and for model selection (Sperling et al., 2010).  

 

1.2 Sources of phylogenetic error 

 There are two classes of error that can occur in phylogenetics: systematic error 

and stochastic error. Stochastic error affects all tree reconstruction methods equally, 

however, this problem has largely been eliminated by the use of large genomic scale data 

sets. Differently, systematic error persists as the key problem faced by modern 

phylogenetics, although some methods are more adept at handling this type of error than 

others. Below, the two types of error are discussed, in addition to some measures 

employed to reduce and preclude systematic errors. 

 

1.2.1 Systematic errors 

Systematic errors, or inconsistencies, occur when a reconstruction method arrives 

upon an incorrect solution, with stronger support, as the amount of data considered 

increases. This situation occurs when certain characteristics of the data cause the method 

to be misled (Delsuc et al., 2005). More specifically to ML and Bayesian inference, 

systematic errors can occur when the model of sequence evolution does not fit the data 

(Rodriguez-Ezpeleta et al., 2007). Three of the most common causes of systematic error 

are compositional bias, long branch attraction and heterotachy. 
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1.2.1.1 Compositional bias 

Compositional bias causes sequences to be erroneously grouped together based 

upon their analogous nucleotide or amino acid composition. For some time, it was 

believed that this problem was confined to nucleotide-based phylogenies, with protein 

sequences being considered to be relatively robust to such compositional effects (Loomis 

and Smith, 1990, Hasegawa and Hashimoto, 1993). However, it was later shown that 

there was indeed an implicit compositional bias observed in phylogenies derived from 

amino acid sequences as well (Foster et al., 1997, Foster and Hickey, 1999). Nonetheless, 

compositional biases are significantly less likely to occur in the analysis of amino acid 

data sets (Rota-Stabelli et al., 2010). 

 Popular methods of overcoming compositional biases include the use of LogDet 

transformation (Lockhart et al., 1994, also known as paralinear distances, Lake, 1994). 

Another notable approach is to use RY coding (Woese et al., 1991), in which sequences 

are recoded as either purines or pyrimidines. At the amino acid level, Dayhoff recoding 

(i.e. recoding amino acids in their functional classes) has also been shown to significantly 

reduce compositional biases (see Hrdy et al., 2004). The use of heterogeneous models, 

accounting for varying composition throughout the tree (e.g. Foster, 2004), have also 

been proposed to limit compositional effects, however, these are computationally 

expensive and, as such, can be of limited utility (Rodríguez-Ezpeleta et al., 2007).   

 

1.2.1.2 Long branch attraction 

 Long branch attraction (LBA) is the most infamous and well documented 

systematic error. It occurs in the situation where species in a given data set, that are 
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rapidly evolving, are artifactually drawn together. Felsenstein (1978), first observed this 

phenomenon, where he identified conditions pertaining to unequal evolutionary rates, 

under which parsimony is inconsistent. Significant contributions followed from Hendy 

and Penny (1989), where they showed that disproportionate branch lengths also caused 

LBA, and from Kim (1996) who demonstrated that even when branch lengths are 

equivalent parsimony can become inconsistent, however, this is conditional on whether 

the tree is imbalanced (see Chapter 4). 

 Since the identification of parsimony as a method sensitive to LBA, all other 

methods of tree reconstruction have been thoroughly scrutinised. Various distance 

methods have been shown to be statistically consistent, including NJ (Saitou and Nei, 

1987), minimum evolution least squares (Rzhetsky and Nei, 1993). However, more 

recently it has been repeatedly shown that in cases of model misspecification, distance 

methods do invariably become inconsistent (Gascuel et al., 2001, Susko et al., 2004, 

Pisani, 2004)  

Tree reconstruction using ML was vehemently claimed to be impervious to 

becoming inconsistent by Felsenstein (1973), and more recently Yang (1994b). However, 

similar to what has been observed with distance-based methods, ML can become 

inconsistent when the model used is not sufficiently parameter rich (Gaut and Lewis, 

1995, Lockhart et al., 1996, Sullivan and Swofford, 1997). Despite this, ML is more 

robust to model misspecification than distance methods, and the conditions of 

inconsistency for this method are known (see Sperling et al. 2009 for an example). 

Bayesian inference, also being a probabilistic method, is thought to emulate ML, 

becoming inconsistent only when an ill-fitting model is used (but see Kolaczkowski and 

Thornton, 2009).  
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As such, ML and Bayesian inference subsist as the most robust tree reconstruction 

methods to LBA, and use of these adept methods is encouraged to avoid introducing such 

bias (Bergsten, 2005). Further to this, however, Bergsten (2005) does stress that these 

methods are more resistant, rather than immune, to LBA and simply implementing these 

methods will not suffice for the preclusion of LBA (for example Sperling et al., 2009). 

However, Bayesian inference may perhaps have a more promising future prospect with 

regard to LBA, as it better lends itself to the implementation of complex models (like 

CAT) that are key to avoiding LBA.  

The introduction of LBA into a phylogenetic reconstruction can be avoided in 

several ways. One of the most widely used of these approaches is to increase the 

taxonomic sampling. This was first shown to be a means of alleviating LBA by Hendy 

and Penny (1989) and has, subsequently, been repeatedly confirmed to be effective 

(Hillis, 1996, Rannala et al., 1998, Pollock et al., 2002, Poe, 2003). Increasing the taxon 

sampling essentially serves to break up the problematic long branches. The application of 

an improved taxonomic sampling in many data sets has resulted in more accurate 

phylogenies, calling for a revision of many preceding results (for example Halanych, 

1998, Philippe et al., 2005b, Holton and Pisani, 2010). Rosenburg and Kumar (2001) 

contend that insufficient taxon sampling plays a far less critical role in phylogenetic 

accuracy than the inclusion of more lengthy sequences. However, this assertion has met 

with much criticism (Zwickl and Hillis, 2002, Pollock et al., 2002) and has been shown to 

be incorrect with genomic scale data by Holton and Pisani (2010).  

Despite being a highly commendable approach, increasing taxon sampling is far 

from a panacea, as it has been known to aggravate the LBA problem in some cases (Kim, 

1996, Poe and Swofford, 1999, Poe, 2003). As such, the addition of new taxa may bring 
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the addition of other unanticipated problems. Further to this, supplementing the taxon 

sampling offers little utility in instances where LBA occurs when all defined members of 

a group are already sampled (Bergsten, 2005, Bergsten and Miller, 2006). 

 Another means of minimising LBA is the use of an optimal outgroup (Wheeler, 

1990). When an outgroup that is too divergent is selected, a fast evolving ingroup taxon 

may be artifactually attracted to the long branch of the outgroup (Philippe and Laurent, 

1998). The use of an extremely inappropriate outgroup becomes equivalent to using a 

random, highly saturated, sequence with regard to the ingroup taxa (Sanderson and 

Shaffer, 2002). Various strategies can be employed to ensure the selection of an 

appropriate outgroup (Sanderson and Shaffer, 2002), some of which benefit from success 

(Rota-Stabelli and Telford, 2008), however, often the simple availability of a suitable 

outgroup can be a limiting factor.  

 LBA can additionally be circumvented by the adoption of a selective sampling 

strategy. In this approach, the evolutionary rate of large clade members is assessed, with 

taxa exhibiting a particularly rapid rate being overlooked in preference for taxa with a 

more subdued evolutionary tempo. In this way, certain optimal species are used as 

representatives of these larger clades in phylogenetic studies. The most notable use of this 

method was by Aguinaldo et al. (1997), which saw the definition of the Ecdysozoa clade 

and as such the new animal phylogeny. 

Lastly, LBA can be avoided by the removal of fast evolving sites (e.g. Hirt et al., 

1999, Ruiz-Trillo et al., 1999, Brinkmann and Philippe, 1999). One method proposed for 

the identification of such sites is the use of a parsimony-based approach called slow fast 

(Brinkmann and Philippe, 1999), however, this method does have a limitation in that it 

requires the a priori definition of monophyletic groups. An alternative method is the 
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compatibility based approach of Pisani (2004), which allows for the identification of fast 

evolving sites in cases where no a priori information is available.  

One outstanding issue with the elimination of fast evolving sites to preclude LBA 

is the determination of when to stop removing sites. Pisani (2004) offers a series of 

guidelines that can be adopted in deciding a cut off (see also Sperling et al., 2009), 

however, it is additionally warned that even deleted characters can convey a considerable 

phylogenetic signal. Recent work of Cummins and McInerney (2011), however, provides 

a method of categorising and scoring sites according to their degree of similarity.  This 

approach represents a significant improvement in that it leads to a spectrum over which 

sites to be removed can be selected, rather than the binary approach offered by preceding 

methods. 

 

1.2.1.3 Heterotachy 

 Heterotachy is defined as variation in the evolutionary rate of a given site 

throughout time (Delsuc et al., 2005). This situation occurs due to functional constraints 

that are imposed on a given gene or protein, with phylogenetic inference being misled 

where the proportion of invariable sites in distantly related species has converged (Delsuc 

et al., 2005). Surprisingly, the true importance of the incidence of heterotachy was only 

recently realised (Lopez et al., 2002), although the covarion model, of Fitch and 

Markowitz (1970), does somewhat attempt to address a certain degree of variability. In 

this model, substitutions in the “c” or “concomitably variable codons” are accounted for, 

but since the proportion of these sites remains constant, this model is limited (Steel et al., 

2000).  
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 Heterotachy presents a particularly difficult problem to detect, as it does not leave 

any observable signatures in sequences (Kolaczkowski and Thornton, 2004).  However, 

recently, Whelan et al., (2011) have developed a likelihood ratio test based approach for 

detecting heterotachy, which allows substitution and switching rates to vary 

independently across branches of the tree. An older approach suggested for addressing 

heterotachy is based on the use of a mixture, or non-homogenous gamma, model to 

account for variability of site rates over time. Two general types of gamma models are 

used in this context: covarion-like models, similar to the model originally introduced by 

Fitch and Markowitz (1970), and the mixture of branch lengths model (Kolaczkowski 

and Thornton, 2004). Covarion-like models allow sites to interchange from being 

variable to invariable, while the mixture of branch lengths model assumes each site arises 

from one of a number of specified branch lengths on the same topology. A recent 

comparison of these two models shows that the covarian-like models perform better than 

the mixture of branch lengths models (Zhou et al., 2007), but there is reason to believe 

that the models introduced by Whelan et al. (2011) should outperform both (see Whelan 

et al., 2011 for more details).  

 

1.2.2 Stochastic error 

 In the situation where too small a number of positions are considered, stochastic 

or sampling error can be introduced into a phylogenetic analysis. Since there is a scant 

amount of data, random noise can be incorporated into certain aspects of the tree, 

resulting in poor resolution (Philippe et al., 2005a). Traditionally in phylogenetics, this 

posed a great problem as studies were largely based on a single gene. As sequences 

accumulate mutations at random, each mutation is subject to a certain amount of 
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stochastic error, therefore, to reduce the effect of such error, a large amount of sites must 

be included (Nei, 1986). It can be imagined that stochastic errors might result in incorrect 

trees with high support.  This could potentially happen in a situation where sequence 

sampling is very poor (i.e. the sequences are short) and a subset of the sites in the 

sequences, by chance, agrees on a specific set of relationships.  

With the incorporation of increasing numbers of sites, the influence of stochastic 

error should eventually be negated, allowing support for nodes to reach maximum 

bootstrap values consistently across a tree (Philippe et al., 2005a). The recent progression 

in phylogenetics from single gene studies to multiple genes alignments, and even 

genomic scale studies (e.g. Pisani et al., 2007, Holton and Pisani, 2010, Rota-Stabelli et 

al., 2011), has seen a diminishing influence for stochastic error. Indeed, the availability, 

and subsequent use, of genomic data, has been suggested to mark the end of stochastic 

error driven incongruence (Gee, 2003, Philippe et al., 2005a, Jeffroy et al., 2006). 

 

1.3 Phylogenomics 

The advent of genome sequencing, and the accompanying implications, marked 

an exciting paradigm shift in molecular phylogenetics. The sequencing of the first 

complete genome of a free-living organism was concluded in the mid nineties 

(Fleischmann et al., 1995). For the first time, the entire genetic landscape of an organism 

was available to researchers, and as more genomes came on stream meaningful 

comparisons could be made between organisms in a more comprehensive manner. 

Almost 16 years on, the number of complete genomes sequenced is in the order of 

thousands, with sequencing innovations and affordability progressing at an inexorable 
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rate, even still (Liolios et al., 2010). This, coupled with the perpetual improvement in 

computer hardware and software, means that molecular phylogeneticists have never been 

better equipped. With such compelling assets in their arsenal, many have turned their 

attention to constructing phylogenies that incorporate extensive proportions of an 

organisms genetic information (as indeed I have in the studies described in this thesis). In 

1998, on the brink of the genomic explosion, Eisen conferred the name “phylogenomics” 

on this new approach (Eisen, 1998). Two approaches generally employed for the 

construction of genomic scale phylogenies are data concatenation and super tree 

reconstruction (Delsuc et al., 2005). An alternative class of methods used are gene 

content methods (e.g. Rivera and Lake, 2004), however, to date these methods receive 

little utilisation and have been shown to perform poorly (McCann et al., 2008). The more 

widely used data concatenation and super tree methods are introduced and discussed in 

the ensuing sections as they represent the key tools used in the analyses presented in this 

thesis. 

 

1.3.1 Supermatrix 

The supermatrix approach is defined as “the direct, simultaneous use of all the 

character evidence from all included taxa” (de Queiroz and Gatesy, 2007). More 

specifically, it can be considered a total evidence (sensu Kluge, 1989) approach, where 

the alignments (matrices) of each individual data component of interest are combined to 

form one large composite matrix. In the event that a taxon is not present in a given source 

matrix, this taxon is represented in the supermatrix by a series of ‘?’, that extends the 

length of the other sequences present in the source matrix. Upon the integration of all 

source matrices, the supermatrix is then analysed by a tree reconstruction method (see 
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Figure 1.3). It is important to note that this method is limited to single gene families only 

and that paralogy can cause supermatrix analyses to return incorrect trees. In the 

supermatrix approach, by directly using character data in the estimation of a global 

phylogeny, stochastic error is diminished (or even eliminated). However, it has been 

recognised for some time, that in light of increasing data accumulation, this approach, at 

least in its current form, becomes unsustainable (Sanderson et al., 1998, but see Philippe 

et al., 2005a).  

The major advantage of the supermatrix approach lies in its ability to detect 

underlying signals that may not be apparent from the analysis of the individual data sets, 

a feature of the method that can even extend to relationships that are not supported by the 

individual analysis of the source matrices (Kluge, 1989, Pisani and Wilkinson, 2002, de 

Queiroz and Gatesy, 2007). This enhancement of weak and underlying signals confers the 

“total evidence” property to this approach (see Pisani and Wilkinson, 2002). A further 

benefit of the supermatrix approach lies in the ability to use probabilistic tree 

reconstruction methods that incorporate parameter rich mixture models (Delsuc et al., 

2005). This has been shown to have the effect of improving the support of genome scale 

analyses (e.g. Brinkmann et al., 2005), although increased support does not necessarily 

reflect phylogenetic accuracy (phylogenetic artifacts are generally well supported).  

One issue of concern in relation to the supermatrix approach is the effect of 

missing data, which has been shown to lead to a lack of resolution (Wiens, 2006). 

Although it has been claimed by Philippe et al. (2004) that a large amount of missing data 

can be tolerated without compromising accuracy (see also Driskell et al., 2004), 

Sanderson et al. (2010), in an investigation of the distribution pattern of missing data, 

show that specific distributions of missing data can lead to situations where the true tree  
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Figure 1.3 Supermatrix analysis.  

The individual gene matrices are combined to produce a supermatrix. A tree 

reconstruction method is then used to derive a single global species phylogeny. 
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cannot be found. Sanderson et al. (2010) define this property of a data set “decisiveness”, 

and point out that no matter how many genes are used, a specific combination of missing 

genes in taxa, can always result in a data set lacking decisiveness. Importantly, it should 

be pointed out that many non-trivial combinations of missing genes (i.e. combinations 

that cannot be readily identified by eyeballing a data set) could lead to a data set lacking 

decisiveness.   

 

1.3.2 Supertrees 

A supertree approach is one that combines several input tree topologies, rather 

than the character data upon which they are derived, to obtain a single tree that represents 

the information contained in each input tree (Bininda-Emonds, 2004a). This approach can 

be considered a generalisation of the consensus approach (e.g. strict consensus and 

majority rule consensus) but differs in that input trees may have a partially, rather than 

fully, overlapping leaf set (Cotton and Wilkinson, 2009). 

From a theoretical point of view, the concept of a supertree, or rather a 

“composite” tree, has existed since systematics originated. While strictly speaking Aho et 

al. (1981) defined the first supertree method (but in the context of merging databases in 

computer science), it was Gordon (1986) who provided a formal definition of a supertree 

method and introduced the term “supertree” in the study of classification. Gordon (1986) 

described a strict consensus supertree, which displays only the groups that are common to 

all source trees (Bininda-Emonds, 2004b). Although this marked a significant 

development, progression beyond the consensus approach proves methodologically 

difficult. This is because the familiar split substructure used in the consensus approach 
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becomes ineffective, as each input tree presents different splits (Cotton and Wilkinson, 

2009).  

As such, all currently implemented supertree approaches represent somewhat ad 

hoc methodologies, with the exclusion of Cotton and Wilkinson’s majority rule 

consensus supertree (2007), and the recently developed maximum likelihood supertree 

method (Steel and Rodrigo, 2008; of which the majority rule consensus supertree method 

is a special case). Unfortunately, software implementation of both these methods is still 

under development (Akanni and Pisani, personal communication), therefore, they could 

not be implemented in the analyses outlined in this thesis. 

The introduction of the matrix representation with parsimony (MRP) supertree 

approach (Baum, 1992, Ragan, 1992) marked an important milestone for supertree 

methodology. It offered a more applicable method than that of Gordon and, as such, the 

supertree approach saw a steady uptake by systematists. The appeal of supertrees is that 

they offer a divide and conquer approach, which confers two advantages. Firstly, the 

impact of missing data in standard phylogenetic reconstruction is reduced (although 

missing data can cause a problem in the subsequent supertree stage of analysis; see 

Chapter 3). This is because topologies are reconciled at a local level, using only the taxa 

available for that particular subdivision, and are then incorporated into a global solution 

(Wilkinson and Cotton, 2007; see Figure 1.4). Secondly, supertrees offer the ability to 

consider both a very large taxon and gene sampling (see for example Pisani et al., 2007, 

Holton and Pisani, 2010), which is something that cannot be achieved using the 

supermatrix approach. For example, the supermatrix based study of Dunn et al., 2008 

samples only 150 genes for 77 taxa, whereas the supertree study of Holton and Pisani, 

2010 samples 2,216 genes for 42 taxa. 
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Figure 1.4 Supertree construction.  

For each individual gene, a topology is derived using a tree reconstruction method. The 

resulting trees are then combined on the basis of their overlapping taxa by a supertree 

method, resulting in a single species based tree.  
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Although the supertree approach has met with some criticism, because of the 

indirect use of character data (Rodrigo, 1993, Slowinski and Page, 1999), development of 

the supertree approach has flourished in recent years, with approximately 11 alternative 

supertree methods currently available (see Table 1.1). In the following sections I will 

limit the discussion to the supertree methods I have used throughout the work presented 

in this thesis. 

1.3.2.1 Matrix representation with parsimony 

Traditionally, matrix representation with parsimony (MRP) was the most widely 

used supertree method, and indeed persists as such even today (Cotton and Wilkinson, 

2009). Under MRP, each input tree topology is recoded into a data matrix, with each 

node of the input trees being represented by either of the following characters: ‘0’, ‘1’ or 

‘?’. A variety of coding schemes have been proposed (e.g. Baum, 1992, Ragan, 1992, 

Purvis, 1995, Wilkinson et al., 2001), all of which use variations of the aforementioned 

characters. One scheme, defined by Baum (1992), and independently by Ragan (1992), is 

to assign a ‘1’ to each taxon present in a clade, a ‘0’ to taxa present but not in a clade, and 

‘?’ for a taxon that is not present in the current input tree. An alternative method, defined 

by Purvis (1995) to account for redundancy, scores ‘1’ for taxa in a node, ‘0’ for taxa in a 

sister clade, and ‘?’ for missing taxa. Wilkinson et al. (2001) introduced further coding 

strategies based on quartets and triplets (i.e. rooted quartets of taxa). The (coded) 

individual matrices are combined and the resulting data matrix is then analysed by 

maximum parsimony to produce one or more most parsimonious trees. 

The properties of MRP have attracted some discussion and it is generally known 

that MRP is a limited method, however, this assertion can be extended to supertrees in 

general. One criticism of MRP is that it does not act directly on the data itself, but rather  
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Table 1.1 Supertree methods. 

A list of some of the currently defined supertree methods, separated by category. 

 



!

38 

on topologies inferred from the data (Rodrigo, 1993). However, as Wilkinson et al. 

(2001) point out, this is the cost involved in achieving such a tractable and malleable 

method. In a practical sense, the direct inference from data becomes unfeasible, 

particularly in the case of whole genome datasets using a supermatrix approach, due to 

computational limitations (Baum and Ragan, 2004). Accordingly, this criticism is 

effectively nullified in practice. 

 A second shortcoming of MRP is that it is not based on a central model (Rodrigo, 

1993, Rodrigo, 1996). MRP is an ad hoc method, and like many supertree methods, has 

not been designed to include specific desirable characteristics (Cotton and Wilkinson, 

2009). Additional deficiencies with this method include the potential to return 

unsupported clades (Pisani and Wilkinson, 2002), along with input tree shape biases that 

seem to depend on the coding scheme used, producing trees that are generally more 

imbalanced (e.g. standard coding), or balanced (e.g. Purvis coding) than expected 

(Wilkinson et al., 2001, Wilkinson et al., 2005). While MRP represents a very feasible 

and flexible supertree method, Pisani and Wilkinson’s (2002) warning, that “applicability 

in practice should not be confused with acceptability in principle”, should be least 

considered, if not observed. Supertree analyses should thus be performed using a few 

different methods to provide for some sensitivity analysis. 

 While MRP is used in the studies presented in this thesis for reasons of 

practicability, I am conscious of this method’s limitations. As such, follow on work from 

this thesis will include reanalysis using the ML supertree method, which is currently 

being implemented in new software by Akanni and Pisani. In addition, in the study 

described in Chapter 2 (the animal phylogeny) results have been derived using two 

supertree methods (see Section 2.3.1.3). 
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1.3.2.2 Quartet joining 

The quartet joining supertree method, introduced by Wilkinson and Cotton (2007) is 

somewhat similar to the quartet puzzling method of Vinh and von Haeseler (2004). In 

this divide and conquer approach, the input trees are reduced to their composing quartets, 

and each quartet of relevance is then used to decide the position of a new leaf in the 

supertree. The core concept of this approach is to build a tree according to successive 

refinements to the decision of where to add leaves (Wilkinson and Cotton, 2006). This 

method confers the advantage of being a fast supertree method, which is expected to 

work well where there is no conflict. In Chapter 2 of this thesis, I have used this method 

as an alternative to MRP as it has been shown (Wilkinson and Cotton, 2006) that it does 

not have a shape related bias (unlike MRP; see Wilkinson et al., 2005). A potential shape-

related bias was the greatest concern in relation to the MRP supertree analyses I 

performed in Chapter 2, as it was clear from the inspection of the supertrees I generated 

that no unsupported clade was present in these trees (see Chapter 2). 

 

1.3.2.3 Gene Tree Parsimony 

 Gene tree parsimony (GTP; Slowinski and Page, 1999) is a supertree method that 

can be used to derive a species phylogeny when gene duplications are present in the input 

trees. More formally, GTP “takes a collection of rooted, binary gene trees and seeks a 

rooted, binary species tree with the minimum reconciliation cost for the corresponding 

taxa” (Wehe et al., 2008; see Figure 1.5). The aforementioned reconciliation cost can be 

obtained by counting the number of duplication and loss events, or can be restricted to 

consider duplications only, or additionally by other events, including horizontal transfer.  



!

40 

 
 

Figure 1.5 Gene Tree Parsimony. 

An example of multi gene family reconciliation using GTP. Here, the 36-taxon gene tree 

is reconciled to a 4-taxon species tree, most parsimoniously explained by 32 gene 

duplications. 
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However, since the absence of a species in the taxon sample can, in some cases, be 

interpreted as gene loss, in general, calculation of the reconciliation is generally limited 

only to duplications (Cotton and Page, 2004). 

Although bounded by the limitations of parsimony, the performance of GTP is 

expected to be in line with other supertree methods, and indeed, has been shown to 

outperform other methods at incorporating paralogous genes into phylogenies (Cotton 

and Page, 2003). In terms of speed, GTP can be considered sluggish compared to 

polynomial time methods (for example Hallett and Lagergren, 2000; Cotton and Page, 

2004), however, recent algorithmic improvements (see Wehe et al., 2008) have alleviated 

this problem, making the use of GTP on genomic-scale data sets more feasible (see, for 

example, Holton and Pisani, 2010). The ability to incorporate genes with a history of 

gene duplication into phylogenetic analyses marks an extremely important progression, 

as it facilitates the execution of truly genomic scale analyses. 

 

1.4 Aims of this thesis 

 With increased availability of genomic-scale data, coupled with major advances 

in computational power, it is now feasible to analyse truly genomic-scale data sets. In this 

thesis, it is my aim to conduct a comprehensive investigation of various types, and 

aspects, of the data used as input for phylogenomic supertrees. By exploiting the 

flexibility of the supertree approach, I have endeavoured to reconstruct phylogenies that 

survey the most expansive sample, in terms of depth (genes) and breadth (taxa), of the 

genome possible. To do this, the use of two atypical data types was investigated (i.e. 

firstly complete genomes, including paralogous gene families and secondly complete 
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genomes, including paralogous gene families, plus partial genomes, in the form of 

expressed sequence tags; ESTs).  

A further aim of this thesis is to obtain a better understanding of the gene trees 

that are combined to derive supertrees. As such, I have undertaken an assessment of the 

existence of shape-related biases associated with standard methods of phylogenetic 

reconstruction used to infer input trees (MP, ML, Bayesian inference and NJ). The 

manner in which I addressed these aims is outlined below. 

 In Chapter 2, phylogenomic supertrees are used to address the Bilaterian 

phylogeny, but more explicitly the contention between the Coelomata and Ecdysozoa 

hypotheses. Through the use of data sets that contain the minimum (taxonomic) sampling 

of complete genomes, the effect of outgroup choice in recovering each hypothesis is 

tested. In an experimental approach, the gene sampling of these data sets is extended to 

include families that have undergone a history of duplication. Finally, three data sets with 

a taxonomic sampling designed to contain the broadest range of Bilaterian genomes 

available are used to investigate on a more realistic scale the effect of outgroup selection 

in supertree-based phylogenomics.  

 In Chapter 3, a phylogenomic analysis of the eukaryote phylogeny is performed. 

In this study, both taxonomic and gene sampling is maximised. Using an experimental 

approach, I have created a data set that samples all available eukaryotic genomes, to 

which I have augmented taxon sampling by incorporating a large EST database. As such, 

genes from approximately 550 species are sampled, spanning all of eukaryotic diversity. 

By scaling up the approach used in Chapter 2, duplicated genes are additionally included, 

essentially leading to a gene sampling of over 20,000 protein families. This is arguably 

the largest phylogenomic data set ever analysed, with a gene sampling that is 
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(approximately) 4 times larger than that used by Pisani et al. (2007); 10 times larger than 

that of Holton and Pisani (2010; see Chapter 2), and 13 times larger than that of Hejnol et 

al. (2009).   

 In Chapter 4, the problem of input tree quality for supertree reconstruction is 

addressed. This is done by studying shape-related biases in the input trees used in the 

supertree analyses of Chapter 2.  Aside from being fundamental to understanding the 

problem of data quality in supertree reconstruction, the study of potential biases in input 

tree topologies is important in a more general sense, as the balance of a phylogenetic tree 

can disclose certain aspects of macroevolutionary processes. However, such aspects can 

be masked if the phylogenetic method used to derive the tree, upon which 

macroevolutionary analyses are based, is influenced by a shape bias, as the shape of a 

tree is the general criterion used to identify adaptive radiations. I thus used alignments 

derived in Chapter 2 to examine the four most commonly utilised tree reconstruction 

methods in modern phylogenetics (and subsequently the most common type of trees used 

in supertree-based phylogenomics). I then evaluated their relative balance using tree 

balance specific metrics. In this way, I was able to identify if there is a tree shape bias 

associated with a given tree reconstruction method. 

 The findings of these studies and their overall implications are discussed in 

Chapter 5. 
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Chapter 2: The animal phylogeny: a comprehensive phylogenomic 

investigation of alternative hypotheses for the origin of the bilatera 

2.1 Introduction 

 In this chapter, the phylogeny of the Bilateria is investigated in the context of 

phylogenomics. Two main, alternative, hypotheses for the origin of animals with bilateral 

symmetry have been proposed: the Coelomata (Hyman, 1940) and Ecdysozoa hypotheses 

(Aguinaldo et al., 1997). The emergence of molecular phylogenetics has marked a 

movement away from the long-standing, morphologically supported, Coelomata 

hypothesis. The new animal phylogeny, or the Ecdysozoa hypothesis has repeatedly, and 

definitively, been supported by various single and multiple gene studies. Conversely, 

genomic-scale studies, including supertree studies, have recurrently endorsed the 

traditional Coelomata topology. Here, by using a suitable outgroup, coupled with a broad 

taxonomic sampling, I evaluate the last missing piece of evidence in favour of the new 

animal phylogeny, i.e. the extent to which complete genomic analyses support it. 

Results presented in this chapter have been published in Genome Biology and 

Evolution (see Holton and Pisani, 2010; see also the Publication section of this thesis). 

 

2.1.1 The Bilateria: a morphological context  

The Bilateria are metazoans that are typically characterised by bilateral symmetry, 

a pronounced anteroposterior axis, and a head with a nervous concentration: i.e. a brain 

(Nielsen, 2001). This group consists of all extant animals, with the exclusion of the 

sponges, the Placozoa, the Cnidaria and the Ctenophora (see, for example, Nielsen, 2001, 
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Dunn et al., 2008, Philippe et al., 2009, Sperling et al., 2009). Uncertainty still persists 

pertaining to the origin and early evolution of this important metazoan group. Central to 

this disparity are the phylogenetic relationships of the “pseudocoelomates” (sensu 

Hyman, 1940, Hyman, 1951), and particularly that of the Nematoda (i.e. the round 

worms), which were still subject to debate when this study began (Telford et al., 2008).  

Hyman (1940) proposed that bilaterian evolution could be explained through a 

process in which morphological complexity was achieved via a series of incremental 

steps (see also, for example, Adoutte et al., 2000, Halanych, 2004, Philippe et al., 2005b, 

Telford et al., 2008).  The presence or absence of a hydrostatic skeleton (i.e. the coelom), 

and the nature of this skeleton when observed, was the main feature over which Hyman’s 

hypothesis was derived.  Consequently, Hyman (1940) proposed that the Bilateria should 

be partitioned into three groups: the Acoelomata (Platyhelminthes, Nemertea and 

Acoela), the Pseudocoelomata (Nematoda, Nematomorpha, Rotifera, Priapulida, 

Kinorhyncha, and Gastrotricha; see also Hyman, 1951) and the Coelomata (all other 

bilaterian phyla, e.g. Arthropoda, Mollusca, Annelida and Vertebrata).   

Under this scheme, the less complex Acoelomata, lacking a hydrostatic skeleton, 

upheld the ancestral organisational condition of the Bilateria (see Hyman, 1940), and 

were considered the “ancestral stock”1 from which all other Bilaterians originated. The 

Pseudocoelomata, which possess a hydrostatic skeleton of blastocoelic origin, but not a 

“true” body cavity (i.e. a coelom of mesodermal origin), were considered of intermediate 

complexity and the sister group of the more complex Coelomata.  Finally, the Coelomata, 

possessing a mesodermally derived coelom, were considered the most advanced group of 

the Bilateria (which are the ancestral stock of the Pseudocoelomata).   

                                                
)(At the time of Hyman, phylogenetics was concerned with ancestors. These types of schemes are not used 
anymore and the search for ancestors has been replaced with the search for sister groups.((
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Hyman’s (1940) Coelomata hypothesis is generally regarded as the “classic 

textbook phylogeny” of the Bilateria. However, a variety of morphology-based bilaterian 

phylogenies have been proposed since Darwin’s time, with little consensus ever reached 

among morphologists as to which should be adopted (Jenner and Schram, 1999). 

Amongst the alternative schemes proposed, that of Grobben (1908) has long been 

considered an obvious and valid alternative to that of Hyman (1940).  According to 

Grobben (1908), Bilateria were to be split (depending on the fate of their blastopore 

during development) into two, rather than three, groups: the Protostomia and the 

Deuterostomia, positioning both Hyman’s Pseudocoelomata and Acoelomata within 

Protostomia.  

It is interesting to note that Hyman (1940) explicitly refers to her classification 

scheme as defining three organisational grades, not clades, and in discussing Grobben’s 

(1908) phylogenetic scheme she overtly states that it “… proved more acceptable and 

may attain wide adoption”. Indeed, in line with this, Figure 5 of Hyman (1940; see Figure 

2.1) adheres to the scheme of Grobben (1908). Despite her theoretical acceptance of 

Grobben’s scheme, Hyman viewed invertebrate phylogenetics as a volatile science: 

“Anything said on these questions lies in the realm of fantasy…” (see Hyman, 1959, see 

also Valentine, 2004). However, she did consider her organisational grades to stand 

“firmly on realistic anatomical basis” (1940). 

Accordingly, in outlining the organisation of her encyclopaedic discussion of the 

Metazoa (Hyman, 1940, Hyman, 1967), she pointed out that in her work she would 

“attempt to arrange the phyla in general according to their grade of construction while at 

the same time avoiding the separation of allied phyla”, displaying her ambivalent 

position with reference to the grades and clades she describes in Figure 5
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 Figure 2.1 Figure 5 of The Invertebrates (Hyman, 1940).  

The above scheme depicts Hyman’s opinion as to the organisation of the Bilaterian phyla. 

A clear Deuterostome-Protostome split is observed, which is in line with the scheme 

proposed by Grobben (1908). 
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(Hyman, 1940).   

When Hyman (1940) proposed her Coelomata hypothesis, it thus seems that she 

did not necessarily intend it to be “a phylogeny”, but rather a robust and convenient 

classification scheme, i.e. essentially a phenetic classification.  Taking this into 

consideration, it is somewhat surprising that Coelomata has transmuted into the standard 

“textbook” view of bilaterian evolution.  This transformation might well be attributed to 

the intrinsic (but misleading, see Gould, 1989) appeal of schemes based on incremental 

evolution (i.e. evolutionary ladders).  This is clearly exemplified by Zheng et al. (2007) 

who stated:  

“The
 

Coelomata topology appears ‘natural’ from the viewpoint of the
 

straightforward and intuitive concept of the hierarchy of morphological
 

and 

physiological complexity among animals, which is the main
 
reason why this phylogeny 

had been accepted since the work of
 
Haeckel (1866)”.  

This statement, which corresponds to the understanding of animal evolution held 

by most biology graduates, is incorrect in many ways. Coelomata, or rather Coelomera 

(in Haeckel’s words), was not introduced in Haeckel (1866), but rather in Haeckel 

(1872).  Further to this, Haeckel’s Coelomera did not equate to Coelomata as we now 

understand it. Haeckel (1872) merely suggested Coelomera to be all animals with a true 

body cavity, which in any event, was not defined as being mesodermally derived. Indeed, 

Haeckel (1872) does not feature the Pseudocoelomata, an integral facet of Hyman’s 

(1940, 1967) Coelomata hypothesis. In addition, as pointed out by Nielsen (2001), the 

coelom of the protostomes and the deuterostomes cannot be considered homologous 

structures, as the mesoderm of these groups have disparate origins. The coelom evolved 

independently, and cannot be regarded as an apomorphy for Coelomata, regardless of 
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whether Coelomata represents the correct hypothesis of Bilaterian evolution or not.  It is 

thus clear that the “natural progressiveness” of the Coelomata hypothesis lies only in the 

eye of the beholder, and so it is not surprising that several morphological phylogenies of 

the Bilateria do not support it, e.g. Eernisse et al. (1992) and Schmidt-Rhaesa (2003). 

 

2.1.2 Molecular contention 

Morphologists have yet to reach a definitive consensus on the high-level 

relationships of the Metazoa (see Jenner and Schram, 1999). However, it was not until 

the completion of the first analyses of taxon-rich 18S rRNA data sets (Halanych et al., 

1995, Aguinaldo et al., 1997) that the need for a reassessment of Hyman’s “textbook 

phylogeny” became apparent.  The new molecular phylogeny of animals, which soon 

became known as the “new animal phylogeny” or the “Ecdysozoa” hypothesis, supported 

a division of the Bilateria in two groups that were fundamentally consistent with the 

Protostomia and Deuterostomia scheme of Grobben (1908) (excluding the problematic 

phylum Acoela: Ruiz-Trillo et al., 1999, Littlewood et al., 2001, but see Philippe et al., 

2007, Philippe et al., 2011).  The 18S rRNA data also proposed a major rearrangement of 

the protostomes, partitioning them into two new monophyletic groups: the 

Lophotrocozoa (Halanych et al., 1995) and the Ecdysozoa (Aguinaldo et al., 1997).  

Surprisingly, some of the principal emendations supported by the new animal 

phylogeny had previously been suggested on morphological grounds (Eernisse et al., 

1992). These include the dissolution of the Articulata (i.e. the Panarthropoda-Annelida 

grouping) in favour of a Mollusca-Annelida clade (i.e. Eutrochozoa), and the discovery 

of a potential relationship between the Arthropoda and several pseudocoelomates (i.e. 
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Nematoda and Kinorhyncha). The results of Aguinaldo et al. (1997) and Halanych et al. 

(1995) were thus not totally unforeseen (see Eernisse et al., 1992), yet, many scholars 

(e.g. Nielsen, 2001) remained reluctant to embrace the possibility that the Arthropoda 

may be closely related to several of Hyman’s (1951) pseudocoelomates (i.e. the 

Nematoda, the Nematomorpha, the Priapulida and the Kinorhyncha; see, for example, 

Dunn et al., 2008).  Even today, it is widely agreed that Ecdysozoa still lacks robust, 

unequivocal morphological support. Presently, the only obvious non-molecular character 

considered to potentially represent an apomorphy for this clade is that they moult, i.e. 

they undergo the process of ecdysis (Eernisse and Peterson, 2004, Telford et al., 2008).  

 

2.1.3 Phylogenomics and the Bilateria 

Great expectations of resolving difficult phylogenetic problems arose from the 

availability of complete genomes (Gee, 2003) and the consequent emergence of 

phylogenomics (Eisen, 1998, Delsuc et al., 2005, Philippe et al., 2005a). The genomes of 

several model organisms, including the arthropod Drosophila melanogaster (a coelomate 

protostome), the vertebrate Homo sapiens (a coelomate deuterostome), the nematode 

Caenorhabditis elegans (a pseudoceolomate protostome), and the fungus Saccharomyces 

cerevisiae (a non-metazoan outgroup) have been available for almost a decade. In theory, 

these genomes should be sufficient to test, at a minimal level, the Ecdysozoa hypothesis 

within a phylogenomic framework.  

To this end, many authors have attempted to assess the new animal phylogeny 

using genomic-scale data sets, or in any case data sets deemed to be of genomic-scale at 

the time of their assembly (Blair et al., 2002, Dopazo et al., 2004, Copley et al., 2004, 
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Wolf et al., 2004, Dopazo and Dopazo, 2005, Philip et al., 2005, Zheng et al., 2007, 

Rogozin et al., 2008, Rogozin et al., 2007). The majority of published deep genomic-

scale analyses have failed repeatedly to endorse Ecdysozoa (e.g. Blair et al., 2002, Wolf 

et al., 2004, Dopazo et al., 2004, Philip et al., 2005, Zheng et al., 2007), supporting 

Coelomata instead. The only exceptions to this are the studies of Copley et al. (2004) and 

Dopazo & Dopazo (2005), in which, however, the authors only find moderate, and 

somewhat unconvincing, support for Ecdysozoa.  

Phylogenomic analyses supporting Coelomata present a compelling argument on 

the basis of the volume of genomic data they consider (Telford et al., 2008).  However, 

studies supporting Coelomata characteristically suffer from a sparse taxonomic sampling 

(see also Halanych, 2004), which can exacerbate phylogenetic artifacts, particularly long 

branch attraction (LBA) (Philippe and Laurent, 1998, Pisani, 2004, Delsuc et al., 2005, 

Philippe et al., 2005b, Jeffroy et al., 2006, Sperling et al., 2009). Interestingly, improved 

taxon sampling has recurrently been suggested to have a marked effect on accuracy 

(Hendy and Penny, 1989, Graybeal, 1998, Zwickl and Hillis, 2002, Pollock et al., 2002, 

Sperling et al., 2009) and indeed has been shown to be successful at resolving 

controversial groupings (Murphy et al., 2001, Baurain et al., 2007).    

Recent studies of bilaterian evolution, conducted using the expressed sequence 

tag (EST) method (Philippe et al., 2005b, Dunn et al., 2008, Lartillot and Philippe, 2008, 

Philippe et al., 2009, Hejnol et al., 2009), are characterised by a denser taxon sampling 

and the use of more appropriate (animal) outgroups and, therefore, should be less prone 

to LBA. Interestingly, such studies have consistently supported Ecdysozoa, giving further 

substantiation to the possibility that Coelomata, as recovered by genomic-scale analyses, 

may be the result of a LBA artifact. However, with the exception of Hejnol et al. (2009), 
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who considered 1487 genes (but only for a very small subset of the taxa they sampled), 

EST studies represent a shallow genomic sampling (Zilversmit et al., 2002), with 

Philippe et al. (2005b) considering only 146 genes, Dunn et al. (2008) 150 genes and 

Philippe et al. (2009) 128 genes. Additionally, EST libraries generated for phylogenetic 

purposes are generally not normalised (e.g. Dunn et al., 2008, Hejnol et al., 2009), and 

the protein coding genes sampled in these studies do not represent a random sample of 

the genes in the considered genomes.  Rather, they correspond to a sample of the most 

highly expressed genes. This non-random sampling is not a problem per se, nevertheless, 

it does pose the question: what will the outstanding proportion of the animal proteome 

disclose? To date, the answer has often been that standard sequence analyses of deeply 

sampled genomic data sets favour Coelomata. 

EST studies, whilst undoubtedly are of considerable merit, are far from ideal and 

do not represent an exhaustive coverage of the proteins in the average animal proteome 

(each study representing ~ 0.1%).  Given that such “trees of 0.1%” (sensu Dagan and 

Martin, 2006) of animal genomes seem to support Ecdysozoa, once genomic coverage is 

extended across a large number of taxa, one wonders what will the remaining 99.9% of 

the genes disclose.  

The strongest test of a phylogenetic hypothesis is one considering all the relevant 

information (e.g. Kluge, 1989).  In phylogenomics, EST studies can maximise taxonomic 

sampling, whilst studies using complete genomes can maximise gene sampling. 

Accordingly, I deduce that a reasonable solution to the Coelomata versus Ecdysozoa 

controversy can only be achieved through the congruence of taxonomically well-sampled 

EST studies and deep genomic-scale analyses. 
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2.1.4 Phylogenomics: methodological approaches 

From a methodological point of view, two principal approaches are generally 

employed in phylogenomics: the supertree and the supermatrix approach (Delsuc et al., 

2005; see Section 1.3), with both approaches having different strengths and weaknesses.   

In the supertree approach, gene trees are recovered for each individual protein 

family using the most appropriate phylogenetic method. Gene trees are then combined 

using one of a number of existing supertree methods (for a brief introduction see 

McInerney et al., 2008). Advantages of the supertree approach include: (1) the ability to 

analyse each gene individually under the best fitting substitution model. (2) The capacity 

to amalgamate trees derived from the analysis of both single and multi protein families. 

(3) A significant decrease in the computational time necessary to build large phylogenies 

(facilitating the handling of data sets scoring thousands of genes) for hundreds of taxa 

(e.g. Pisani et al., 2007).   

As protein families are first analysed in isolation, the major limitation of the 

supertree approach is that the combined trees can be based on relatively small alignments. 

This can result in significant stochastic errors (see Section 1.2.2), which may translate 

into poorly supported phylogenomic supertrees. Filtering strategies, i.e. eliminating genes 

that do not pass the Permutation Tail Probability (PTP) test (Archie, 1989; see Section 

1.1.3) or that do not support the monophyly of universally accepted clades (Pisani et al., 

2007), which also serve to alleviate the negative impact of hidden paralogy when 

analysing sets of single protein families, can be used to improve resolution significantly.  

 In the supermatrix approach, single gene alignments are merged into a multiple 

gene alignment, which is then analysed using the most appropriate phylogenetic method. 
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The principal merit of this approach is that gene concatenation allows for the 

minimisation of statistical errors, often resulting in well-supported trees (Delsuc et al., 

2005). The main shortcomings of this approach are: (1) whilst it minimises stochastic 

errors, it tends to exacerbate systematic ones (e.g. Delsuc et al., 2005, Jeffroy et al., 

2006). While the use of well-performing, parameter-rich models, like CAT (Lartillot and 

Philippe, 2004, Philippe et al., 2007), alleviates this problem, it does not fully eliminate it 

(e.g. Jeffroy et al., 2006, Sperling et al., 2009). (2) The supermatrix approach does not 

lend itself to the integration of multi protein families and, as such, limits the information 

that can be analysed to that of single protein families, or in some rare cases (i.e. when the 

gene phylogeny is well understood) to single paralogy groups within a multi gene family 

(e.g. Dunn et al., 2008, Philippe et al., 2009, Hejnol et al., 2009). (3) If the number of 

considered genes, or species, or both is considerably large, supermatrix analyses become 

very difficult to perform due to computer memory and time constraints (see, for example, 

Hejnol et al., 2009). Technological advances should ameliorate this problem, but this 

limit of the supermatrix approach can be expected to persist for the foreseeable future. 

 

2.1.5 Circumventing long-branch attraction  

LBA (Felsenstein, 1978) is a common phylogenetic artifact (Brinkmann and 

Philippe, 1999, Pisani, 2004, Delsuc et al., 2005, Jeffroy et al., 2006), which can affect 

every phylogenetic method (Pisani, 2004, Delsuc et al., 2005, Jeffroy et al., 2006).  Since 

time and rate are confounded in branch length estimation (e.g. Yang, 2006), LBA results 

in trees in which fast-evolving species are artifactually grouped together, or with distantly 

related taxa (e.g. with the outgroups). Two straightforward approaches employed to 
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reduce LBA are optimal outgroup selection (to minimise root to tip distances in a 

phylogeny), and increased taxon sampling (to break long branches; see Pisani, 2004).  

Early, deep genomic-scale analyses used fungal outgroups, or on occasion even 

more distantly related outgroups. For example, Blair et al. (2002) use the plant 

Arabidopsis thaliana, a selection that is counterintuitive, especially given that elsewhere 

these authors find strong support for the idea that animals and fungi are sister taxa 

(Hedges et al., 2004). Fungi and plants clearly represent poor choices to investigate the 

phylogenetic relationships of the Bilateria as they may serve to exacerbate LBA.   

Dopazo and Dopazo (2005) performed standard sequence analyses of a deeply 

sampled genomic data set using a distant (fungal) outgroup. Realising that a fungal 

outgroup might not have been adequate for their analyses, and in the absence of a closer 

outgroup, these authors used a relative rate test (for an overview see Robinson et al., 

1998) based approach to identify clock-like genes. Analysis of these genes found support 

for Ecdysozoa. Although their results are interesting, their approach is not without 

problems.  Firstly, the relative rate test is not particularly sensitive; a more discriminating 

approach (i.e. the likelihood ratio test) should have been used instead.  In addition, their 

relative rate tests were implemented under the simplistic Kimura’s distance in 

PROTDIST (Felsenstein, 2005), which is unlikely to be a good fit to their data.  Finally, 

these authors considered only homologues of protein coding genes found in 18 human 

chromosomes, unnecessarily discarding potentially informative genes not found in this 

subset of human chromosomes.  

The number of complete animal genomes has now increased significantly making 

the improvement of taxonomic sampling in genomic-scale phylogenetic analyses 

possible. Recent genome sequencing projects have included that of the cnidarian 
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Nematostella vectensis and the placozoan Trichoplax adherans. While there is ongoing 

debate over the relative phylogenetic relationships of these two organisms, there is 

general agreement that both are non-bilaterian Metazoans (see Nielsen, 2001, Dunn et al., 

2008, Philippe et al., 2009, Sperling et al., 2009, Hejnol et al., 2009, Pick et al., 2010). 

Accordingly, N. vectensis and T. adherans represent more appropriate outgroups for 

testing hypotheses of bilaterian evolution than fungal outgroups (see also Philippe et al., 

2005b). Therefore, here I have avoided such gene selection strategies (e.g. Dopazo and 

Dopazo, 2005, Copley et al., 2004), focusing instead on taxonomic sampling and 

outgroup selection to test hypotheses of bilaterian evolution, using the largest possible 

number of protein families. 

 

2.1.6 Experimental phylogenomics and data set assembly 

Rather than simply collecting all available animal genomes and reconstructing yet 

another metazoan phylogeny, I took an experimental approach.  I made the following ad 

hoc (working) assumption: Coelomata is the true tree and not the result of LBA (my null 

hypothesis). I then predicted what the consequences of this null hypothesis would be, 

selected a suitable set of complete genomes, and tested whether the predictions derived 

from my assumption could be met.  If my predictions were to be upheld by the data, the 

null hypothesis was not to be rejected, whilst if overturned, the data would reject the null 

hypothesis. I finally used the data to test whether my results provided support for the 

most obvious alternative hypothesis (i.e. Ecdysozoa). 

Based upon my working assumption, I predicted that, under the null hypothesis, 

in a sparsely sampled (four taxon) data set, Coelomata should invariably be recovered, 
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irrespective of whether a distant (fungal) or closer (animal) outgroup was used. 

Therefore, if Coelomata was, indeed, the result of a LBA artifact, it would be recovered 

only when using a divergent outgroup. I further predicted (again based on the postulation 

that Coelomata is the bona fide tree), that the Coelomata topology should also be 

recovered in the presence of an extensive taxonomic sampling, irrespective of the 

outgroup used.  Thus, if Coelomata is a LBA artifact, it should not be recovered if a 

targeted sampling strategy is adopted in order to break the long-branch connecting the 

fungal outgroup with the Bilateria (this can be done by including N. vectensis and T. 

adherans in the analyses), or when animal outgroups (i.e. N. vectensis and T. adherans) 

are used instead of the fungal outgroup. 

I assembled 2 sparsely sampled data sets (scoring four taxa) to investigate, at the 

most fundamental level, the effect of outgroup choice and taxon sampling on genome 

scale phylogenies. In the four-taxon case, I show, using genomic data, that Coelomata is 

only recovered when the fungal outgroup Saccharomyces cerevisiae is used.  Use of a 

less divergent animal outgroup (i.e. N. vectensis), in an analogous data set, results in the 

recovery of Ecdysozoa. Furthermore, I assembled three extensively sampled and more 

convincing data sets, and show that Coelomata is only recovered if the branch connecting 

the fungal outgroup with the Bilateria is not broken (i.e. when no non-bilaterian 

Metazoans are included in the analyses and a fungus is used as an outgroup) 2. Upon 

inclusion of a non-bilaterian Metazoan in the analyses, support is lost for Coelomata and 

is garnered for Ecdysozoa. These results hold true for data sets that incorporate up to 

2,216 genes, in addition to data sets that consider both single and multi protein families 

                                                
6(For each of the two types of data set, sparsely sampled and densely sampled, materials and methods, and 
results are split accordingly. These are followed by a general discussion encompassing the results of both 
data set types.(
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(i.e. these results are upheld when 100% of the phylogenetically informative proteins in 

the considered proteomes are used). 

 

2.2 Sparsely sampled data sets 

2.2.1 Materials and Methods 

2.2.1.1 Data collection and data set assembly 

Complete genomic data for Caenorhabditis elegans, Drosophila melanogaster 

and Homo sapiens were downloaded from COGENT 

(http://maine.ebi.ac.uk:8000/services/cogent/). Additionally, the complete genomes of the 

fungus Saccharomyces cerevisiae (sourced from COGENT) and the cnidarian 

Nematostella vectensis (sourced from DOE Joint Genome Institute) were collected for 

use as alternative outgroups. Two sparsely sampled data sets, containing the following 

core species: H. sapiens, D. melanogaster and C. elegans, were assembled. In addition to 

the three core species, the first data set included S. cerevisiae, as an outgroup.  As fungi 

are evolutionarily distant from the Bilateria, S. cerevisiae was selected as an outgroup to 

investigate the combined effect of sparse taxon sampling and poor outgroup choice.  To 

properly test the effect of outgroup choice on the results of our analyses, N. vectensis was 

used as outgroup for the second data set. Cnidarians are the most likely sister group of 

Bilateria (see, for example, Philippe et al., 2009, Sperling et al., 2009, but see also Pick et 

al., 2010), and thus represent an optimal outgroup to be used to study the phylogeny of 

Bilateria. 
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2.2.1.2 Protein family identification 

Due to their small dimensions, the two sparsely sampled data sets were amenable 

to the comparison of two alternative protein family identification strategies. Firstly, the 

BLASTP based, all-versus-all approach of Creevey et al. (2004), Fitzpatrick et al. (2006) 

and Pisani et al. (2007) was implemented to cluster homologous protein families. Under 

the strategy of Creevey et al. (2004), protein families are isolated by sequentially 

selecting a random seed sequence from a database, scoring all considered genomes, and 

identifying all the homologs of that sequence. Once the homologs of a seed sequence are 

identified, they are removed (together with the seed) from the database.  This process is 

repeated until all sequences are assigned to a putative protein family, at which stage the 

database will be empty. This protein family identification strategy is heuristic in nature, 

but has the advantage of having fast implementation, as the size of the searchable 

database decreases with each BLASTP-iteration.  Its heuristic nature notwithstanding, it 

has been shown previously (see Pisani et al., 2007) that this approach performs better 

than, for example, the single-linkage clustering algorithm implemented in BLASTClust 

(Dondoshansky and Wolf, 2000).  

To validate my results, and further assess the performance of the Creevey et al. 

(2004) strategy, I additionally tested this strategy against the approach of Enright et al. 

(2002) based upon the Markov clustering algorithm (MCL). The MCL procedure 

identifies protein families using a method that was originally developed for graph 

clustering using flow simulation. Under the MCL approach, an all-versus-all BLAST is 

first carried out to establish sequence similarity relationships, which are then represented 

in a graph. Clusters (of sequence similarity) are then identified by the occurrence of a 

large number of shared connections between sequences. This is computed by a series of 
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random walks (connections) through the graph. A large number of random walks through 

an area is indicative of the presence of a protein family. This is because a random walk 

through a member of a protein family is more likely to continue within the same family, 

rather than move to an entirely different protein family. BLASTP searches required by 

both the Creevey et al. (2004) and MCL approaches were performed using an E-value 

cut-off of 10-8. 

Following each type of homology search, each data set was partitioned into two 

groups. Families scoring only one member for any given genome (i.e. putative single 

protein families) were separated from those containing multiple members per genome 

(i.e. the multi protein families). Since phylogenetic analyses can only be performed on 

protein families that score four or more sequences, only single and multi protein families 

consisting of a minimum of four sequences were retained for further analysis. Typically, 

only single protein families are used for phylogenetic reconstruction (e.g. Pisani et al., 

2007, Hejnol et al., 2009).  This is to minimise the complexity associated with the 

analysis of multi gene data sets and the inclusion of signals representing the relationships 

of paralogous genes.   

However, this approach has the disadvantage of considering only a minority of 

the genes in the genomes, whilst the strongest test of a phylogenetic hypothesis is one 

considering all relevant information (e.g. Kluge, 1989). Only upon the integration of 

multi protein families can such a test be performed. Here, by exploiting the flexibility of 

the supertree approach, I have combined both single and multi protein families to 

generate trees based on the deepest possible sample of genomic data. Owing to the 

dimensions of the sparsely sampled datasets, these were once again selected as exemplar 

cases to examine the feasibility of this approach. However, following on from this 
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analysis I have extended the integration of multi protein families into data sets with a 

larger taxonomic sampling (see Chapter 3). 

 

2.2.1.3 Alignment, curation and phylogenetic analysis 

All considered single and multi protein families were aligned using ClustalW 

(Thompson et al., 1994). As the accuracy of this traditional multiple sequence alignment 

algorithm has been questioned (e.g. Löytynoja and Goldman, 2008), single and multi 

protein families in the 4-taxon data sets were also aligned using PRANK (Löytynoja and 

Goldman, 2008).  This was done to investigate whether alignment dependent biases 

(Löytynoja and Goldman, 2008) influenced the results. As aligning sequences using 

PRANK is computationally expensive, the tractability of the 4-taxon data was once again 

utilised.   

Due to the number of protein families obtained from the data sets, manual 

curation of alignments was unfeasible. Accordingly, Gblocks (Castresana, 2000) was 

used to eliminate highly variable, and potentially misaligned regions. Gblocks parameters 

were set as follows: gapped positions were not eliminated, the minimum block length was 

set to 8 amino acid positions, while the maximum number of permitted consecutive non-

conserved positions was set to 15 (see also Pisani et al., 2007).  Curated alignments were 

then subjected to the PTP test (Archie, 1989).  This allowed the identification of families 

conveying significant hierarchical signal (see also Pisani et al., 2007).  Such families 

were considered to contain sufficient hierarchical structure to be deemed potentially 

phylogenetically informative (obviously this signal could represent a bias, but the PTP 

test cannot be used to determine this; see Section 1.1.3). The PTP test was implemented 
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in PAUP4.0b10 (Swofford, 1998). Settings were as follows: 2,000 permutations with 

heuristic search, with one random addition sequence and the MulTrees option set to off.  

For the PTP test, a probability value P ! 0.05 was considered significant.  Alignments not 

passing the PTP test (P " 0.05) were disregarded, as they would not contribute anything 

except noise to the analyses.  

PHYML (Guindon and Gascuel, 2003) was used to perform Maximum 

Likelihood (ML) phylogenetic analyses of each alignment passing the PTP test. ML 

analyses were performed under the best fitting substitution model, as inferred using the 

Akaike Information Criterion in Modelgenerator (Keane et al., 2006). For each single and 

multi gene family tree, support was evaluated using bootstrap (100) replicates.  

 

2.2.1.4 Deriving phylogenomic supertrees for the 4-taxon data sets 

Consensus tree methods allow the combination of fully overlapping input trees 

(i.e. trees on the same leaf set). Examples include the majority rule consensus tree 

method of Margush and McMorris (1981) which, given a set of input trees, includes all 

the splits that are present in a minimal (a priori defined) number of input trees (e.g. 

50%). For each of the final, 4-taxon data sets (eight in total arising from alternative 

homology assessment and alignment procedures), phylogenomic consensus trees were 

derived.  These were built using (1) the set of all single protein families, (2) the set of all 

multi protein families and (3) the combined set of all single and multi protein families. 

Accordingly, a total of twenty-four, 4-taxon, phylogenomic trees were derived. Table 2.1 

and Figure 2.2 report the number of genes used to build each of these trees.  
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Table 2.1 Progression of protein family numbers at each stage of  the analysis.  

All data sets and protein families were subjected to the same protocol. GTP-PTP = Gene 

Tree Parsimony Permutation Tail Probability Test  

 
 

 

 

 
 

Figure 2.2 Comparison of protein family numbers at each stage.  

Graphical representation of Table 2.1. The graph on the left represents single protein 

families, whilst the one on the right represents multi protein families. 
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Each of the eight, single protein family based, 4-taxon phylogenomic trees (see 

below) were built as follows: (1) the 100 bootstrap ML trees generated for each single 

protein family in that data set were pooled to generate a single bootstrap tree file. (2) The 

trees in the pooled, bootstrap tree file were summarised using the majority rule consensus 

tree method (Margush and McMorris, 1981), as implemented in the software Consense 

(Felsenstein, 2005). This was possible as all considered bootstrap trees were on the same 

taxon set (i.e. they were fully overlapping). As these phylogenomic trees were derived 

from pooling trees obtained from the individual bootstrap replicates, assessment of the 

support for the clades in these trees was straightforward because the 4-taxon 

phylogenomic trees were also bootstrap consensus trees. 

Each of the 8 multi protein family based phylogenomic trees were derived as 

follows: (1) for each considered multi protein family, 100 bootstrap ML trees were used 

to generate reconciled species trees. This was done using the duplication only, Gene Tree 

Parsimony (GTP) method (e.g. Cotton and Page, 2004) as implemented in the software 

DupTree (Wehe et al., 2008), with the nogenetree option turned on, using a partial queue 

based heuristic search (see Figure 1.3 for an exemplar multi protein family and the 

corresponding GTP derived species tree).  (2) The resulting species trees (one per 

bootstrap ML tree) were pooled into a single file. (3) The pooled, bootstrap (species)-

trees were summarised using the majority rule consensus method (as implemented in the 

software Consense; Felsenstein, 2005), thus generating a bootstrap consensus 

phylogenomic tree.  Also in this case, the use of the majority rule consensus method 

could be implemented, as all the bootstrap species trees were on the same taxa set. 

Each of the 8 combined multi and single protein family phylogenomic trees were 

derived as follows: (1) the corresponding sets of individual bootstrap trees (obtained from 
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the ML analyses of the single protein families), and the species trees derived from the 

DupTree analysis of the bootstrap trees from the multi protein families (see above) were 

pooled into a single file.  Trees in the pooled file were summarised using the majority 

rule consensus method, to derive a bootstrap consensus phylogenomic tree.  

 

2.2.1.5 Gene tree parsimony permutation tail probability test 

Not all of the multi protein families were used for phylogenetic reconstruction 

(i.e. some families, despite passing the PTP test, were not deemed viable).  An additional 

Permutation Tail Probability (PTP) test was developed, to evaluate whether the 

duplication history of each considered multi protein family was phylogenetically 

informative. To implement the Gene Tree Parsimony PTP test (GTP-PTP), for each 

optimal multi protein family tree derived using PHYML, 100 permuted trees were 

generated. This was done by randomly swapping the labels associated with the terminal 

nodes of the optimal multi protein family tree, whilst maintaining the unlabelled 

phylogenetic history as fixed. This is effectively a variant of the YAPTP test of Creevey 

et al. (2004). 

 Each permuted tree was used to infer a species phylogeny using the GTP method 

(as implemented in DupTree).  The score of each GTP reconstruction was recorded, and 

these values were compared against the GTP score of the species history derived from the 

original (unpermuted) multi protein family tree. Families were retained for phylogenetic 

analysis when the species history derived from the unpermuted tree was significantly 

more parsimonious than those obtained from the GTP analysis of the permuted trees.  For 

these analyses, the significance level was set to P ! 0.01. To facilitate the implementation 

of the GTP-PTP a number of PERL scripts were written (see Electronic Appendix). It is 
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clear that the species phylogeny embedded in multi protein families failing to pass the 

PTP-GTP test has essentially been erased due to a complex gene deletion/duplication 

history. These multi protein families can only contribute noise to the analyses and were 

thus not used for phylogenetic reconstruction. 

 

2.2.2 Results 

2.2.2.1 Methodological examinations 

The four species data sets afforded the opportunity to test various methodological 

aspects of phylogenomic studies. Firstly, they provided for a direct comparison between 

two alternative homology assignment procedures. From Figure 2.1, it can be seen that 

there is little difference between the Creevey et al. (2004) and MCL based approaches 

with respect to the ultimate number of protein families deemed viable for phylogenetic 

reconstruction. This trend is upheld throughout each preceding stage of the analysis (see 

Figure 2.2 and Table 2.1). There is, however, a distinct difference between the total 

number of protein families identified by each approach, with the Creevey et al. (2004) 

approach consistently isolating far more protein families (almost 3 times as many as 

MCL in the case of the data set containing N. vectensis; see Figure 2.2 and Table 2.1). 

This can be attributed to the “seed” sampling strategy of the Creevey et al. (2004) 

approach, which results in a more modular approach to finding clusters of homologous 

protein families, unlike that of MCL which results in an exhaustive search of clusters. 

The performance of two alternative multiple sequence alignment strategies, 

namely, ClustalW and PRANK, were also evaluated. The proficiency of each method 

was measured based upon the support values their alignments attained from supertree 
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construction. From Table 2.1, it can be seen that PRANK seems to perform slightly 

better, which is similar to what is observed in the comparison of homology assessment 

protocols. While these differences are irrelevant (support values for each combination of 

approaches are consistent) for the data sets considered here, for larger datasets this 

difference may prove to have a greater bearing. 

 

2.2.2.2 Phylogenetic analysis 

The four species data sets were analysed to assess, at a very basic level, the effect 

of outgroup selection in phylogenomics. The first interesting result obtained from these 

analyses was that only a somewhat diminutive number of single protein families, 

conveying a significant amount of phylogenetic information, could be identified (see 

Table 2.1).  This was not fully unforeseen, as the stringency of the PTP test increases as 

the number of considered species decreases.  More families were found when N. 

vectensis was used as an outgroup instead of S. cerevisiae, however, the difference was 

negligible (from 31 to 48).  The number of single protein families passing the PTP test in 

the 4-taxon data sets did not change significantly when either an alternative homology 

assignment strategy or alignment software were used (see Table 2.1), suggesting that the 

small number of single protein families arising from these analyses does not stem from 

methodological biases.  It merely implies, that when only 4 taxa are considered, there are 

very few, universally distributed single protein families conveying significant 

phylogenetic information pertinent to testing hypotheses of bilaterian relationships.   

The number of multi protein families (see Table 2.1) passing all the quality 

checks is also quite low, but significantly higher than the equivalent number of single 
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protein families.  This was to be expected, as there are far more multi protein families 

than single protein families in the average animal genome.  However, interestingly, it is 

noted that while the number of phylogenetically informative multi protein families 

identified if S. cerevisiae is used as outgroup is 258 (using the homology assessment 

strategy of Creevey et al., 2004) or 392 (using MCL), the number of phylogenetically 

informative multi protein families identified when N. vectensis is the outgroup is 516 

(using the Creevey et al., 2004 homology assessment strategy) or 682 (using MCL), i.e. 

approximately twice as many.  This strongly implies that using a closer outgroups is key 

to maximising the amount of phylogenetic information and increasing the signal to noise 

ratio in phylogenomic data sets. 

Phylogenomic trees derived from single protein families, passing the PTP test, 

showed that when S. cerevisiae was used as an outgroup, support was found for 

Coelomata (see Figure 2.3). This result holds true irrespective of the protein family 

identification method used, and of the alignment software used (see Figure 2.3 and Table 

2.2).  When only multi protein families are used, similar results are found, although there 

is a significant decrease in the level of support observed (Figure 2.3 and Table 2.2). 

Finally, in the phylogenomic trees obtained when both the single and the multi protein 

families were considered concurrently, the support for Coelomata ranges between 55% 

and 61% depending on the clustering method and alignment software used (Figure 2.3 

and Table 2.2). This represents a marked decrease in the support for Coelomata. Similar 

results were obtained in the study of Philippe, Lartillot and Brinkmann (2005b), although 

based solely on single protein families. 

When the cnidarian N. vectensis is used as an outgroup, Coelomata is no longer 

recovered. Instead, a nematode-arthropod clade emerges, supported most strongly in the  
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Figure 2.3 Testing outgroup choice in minimally sampled data sets.  

Majority rule consensus trees derived from ML input trees. Bootstrap support from both 

multi and single protein families is shown for each node. The following core ingroup 

species are common to all: Homo sapiens, Drosophila melanogaster and Caenorhabditis 

elegans. Outgroups used are (A) the yeast Saccharomyces cerevisiae (B) the cnidarian 

Nematostella vectensis. Bootstrap support values are shown for each combination of 

protein family identification and alignment method. Bootstrap support is displayed for 

single protein families, multi protein families and combined single and multi protein 

families respectively. 
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Table 2.2 Support for alternative hypotheses 

The percentage bootstrap support for each hypothesis (Coelomata, Ecdysozoa or the 

alternative topology) arising from the analysis of the sparsely sampled data sets. 
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analysis of the single protein families (BS=90%; Figure 2.3 and Table 2.2). Support for 

Ecdysozoa arising from the analysis of single and multi protein families, both in isolation 

and when combined, ranges from 60% to 90% (Figure 2.3 and Table 2.2). In the analysis 

of the single protein families, the support for this clade increases, as more efficient and 

accurate clustering techniques and alignment software are used (see Figure 2.3).  It is 

interesting to note that, this trend is antithetic to what is observed when S. cerevisiae is 

used as outgroup (see Figure 2.3). Support for Coelomata decreases when less heuristic 

protein family recognition and alignment methods are used, whilst under the same 

conditions support increases for Ecdysozoa. It is thus probable that misalignment and 

incorrect protein family identification may have also contributed to the support found for 

Coelomata in previous studies. 

It is important to note that, when multi protein families are used, a general 

decrease in support is observed for the nodes in the recovered trees, irrespective of 

whether a fungal or animal outgroup is used. This suggests that multi protein families 

contain more noise than single protein families. Or more likely, that the approach used to 

infer species trees from the multi protein family trees (i.e. duplication only GTP) is not 

ideal and cannot completely eliminate the paralogy signal. It is to be expected that the 

development of more refined methods (for example probabilistic methods such as 

Arvestad et al., 2003) for inferring species trees from multi protein family trees will 

alleviate this problem in the future.    

Analyses of the 4-taxon data sets illustrate that when a closer outgroup is used, 

sequence analyses with a deep genomic sampling support Ecdysozoa. Conversely, 

Coelomata is found only when a distant outgroup is used, thus failing to uphold the 

predictions made at the beginning of this analysis. The recovery of Coelomata can be 
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better viewed as inconsistent (i.e. “strongly supported but erroneous”; Philippe et al., 

2005b), arising from the selection of a distant outgroup.  In the presence of a distantly 

related outgroup like S. cerevisiae (which probably shared a last common ancestor with 

the Bilateria one billion years ago; see Peterson et al., 2008, Sperling et al., 2010), the 

rapidly evolving nematode C. elegans is placed at the base of the tree, close to the 

outgroup. When in its stead, a closer outgroup (N. vectensis), which probably shared a 

last common ancestor with the Bilateria only # 670 million years ago (Peterson et al., 

2008, Sperling et al., 2010) is used, C. elegans emerges as the sister group of the 

arthropod D. melanogaster, and thus as an ecdysozoan. This strongly implies that the 

recovery of Coelomata is the result of a tree reconstruction artifact. 

 

2.3 Densely sampled data sets 

2.3.1 Materials and Methods 

2.3.1.1 Data Collection and data set assembly 

Genomic data for 43 eukaryotic species were downloaded from COGENT 

(http://maine.ebi.ac.uk:8000/services/cogent/), DOE Joint Genome Institute 

(http://genome.jgi-psf.org/), EMBL-EBI IPI (http://www.ebi.ac.uk/IPI/IPIhelp.html), 

Ensembl (http://www.ensembl.org/info/data/ftp/index.html), and NCBI  

(ftp://ftp.ncbi.nih.gov/genomes/). Using this data, 3 intersecting data sets were compiled. 

These data sets scored between 41 and 43 species, a full list of which can be seen in 

Table 2.3. 
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Table 2.3 Taxonomic Sampling 

A list of the 43 genomes used in this study and where they were sourced. 
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 Each data set shared a common set of 40 species; corresponding to all the 

complete bilaterian genomes available at the time this study was undertaken. To each 

data set alternate outgroups were added. Outgroups used were as follows: for data set (1) 

Saccharomyces cerevisiae, data set (2) Trichoplax adherans and Nematostella vectensis 

and data set (3) S. cerevisiae, T. adherans and N. vectensis.  

 

2.3.1.2 Protein family selection and phylogenetic analysis 

Homologous protein families for each of the three data sets were identified using 

the Creevey et al. (2004) approach discussed above (see 2.2.1.2), under the same 

parameters. From the resultant homologous protein families, like in many standard 

phylogenomic studies (e.g. Pisani et al., 2007, Hejnol et al., 2009), only single protein 

families were selected for further analysis (see Table 2.4 for the number of families in 

each of the considered data sets at each stage of the analysis). As with the sparsely 

sampled data sets, only families that contained at least four species were suitable for 

phylogenetic construction.  All considered single protein families were subject to the 

same protocol as used for the single protein families of the 4-taxon data sets (see Section 

2.2.1). Multiple sequence alignment was carried out using ClustalW (Thompson et al., 

1994) and the subsequent alignments were curated using Gblocks (Castresana, 2000). 

The PTP test was then carried out on the alignments, followed by model selection for 

those that passed, both as above. Finally, PHYML (Guindon and Gascuel, 2003) was 

used to perform Maximum Likelihood (ML) phylogenetic analyses on the remaining 

alignments, with support evaluated using bootstrap (100) replicates. Single protein trees 

were manually inspected to evaluate possible instances of hidden paralogy; trees that 

failed to recover the monophyly of uncontroversial, universally accepted groups (e.g. 
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Table 2.4 Progression of protein family numbers at each stage of analysis.  

All data sets and protein families were subjected to the same protocol. 

 

 

 

 

 

 

 



!

77 

Vertebrata or Arthropoda) were excluded from further analyses (see also Pisani et al., 

2007). 

 

2.3.1.3 Supertree reconstruction 

Supertrees represent a generalisation of the consensus tree problem, in the case of 

partially, rather than fully overlapping trees (Semple and Steel, 2003). Since genes do not 

have a universal distribution, in the case of the 41, 42 and 43 species data sets, single-

protein families could score in the range of 4 to 41, 4 to 42, or 4 to 43 sequences 

respectively.  That is, unlike the 4-taxon data sets, single protein family trees in these data 

sets are partially, rather than fully, overlapping.  Accordingly, gene trees derived from 

protein families identified in these larger data sets could not be summarised using a 

standard consensus method. Instead, a supertree approach was used to derive 

phylogenomic trees.  

For each of the three densely sampled data sets, consensus supertrees were 

generated as follows:  (1) the bootstrap trees obtained from the ML analysis of each 

considered single protein family were pooled into one single data set.  (2) Input tree 

bootstrapping (Creevey et al., 2004, Burleigh et al., 2006, Moore et al., 2006, Pisani et 

al., 2007) of the pooled trees was used to generate 100 pseudoreplicate data sets.  (3) For 

each pseudoreplicate data set, supertrees were derived using the matrix representation 

with parsimony (MRP) method (Baum, 1992, Ragan, 1992).  To do so, for each 

pseudoreplicate data set, a standard MRP matrix was generated using CLANN (Creevey 

and McInerney, 2005). This matrix was then analysed using maximum parsimony in 

PAUP (Swofford, 1998) to generate the MRP supertrees.  For the parsimony analysis 100 
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heuristic searches were performed with random sequence addition and TBR branch 

swapping.  (4) The supertrees derived from the analysis of each pseudoreplicate data set 

were summarised using the majority rule consensus method, generating a majority rule 

consensus genomic supertree, in which support for the clades recovered was expressed as 

their percentage bootstrap support. 

 Due to the known limitations of MRP (see Section 1.3.2.1), an additional 

supertree method was implemented. The quartet joining method of Wilkinson and Cotton 

(2006) was selected (see Section 1.3.2.2). This method is expected to perform well where 

there is no conflict. However, results from the analysis of two (of the three) densely 

sampled data sets indicate that this method (at the least in its current implementation) is 

unable to cope with the varying signals in the Bilateria (see Figure 2.4), therefore, use of 

this method was discontinued. 

 

2.3.1.4 Supermatrix analysis 

In addition to the supertree analysis for each of the 41, 42, and 43 taxa data sets, a 

superalignment of the single protein families that passed the PTP test was generated, 

using a PERL script (see Electronic Appendix).  However, only families that contained at 

least one nematode sequence were concatenated.  This was done to reduce the dimensions 

of the superalignment (thus making it more manageable), whilst retaining all the 

information that could possibly bear on the phylogenetic position of the Nematoda. As 

pointed out in Section 1.3.1, the supermatrix approach becomes impracticable for 

complete genome scale studies, as such, it was necessary to adopt this reduction strategy.  

The three concatenated data sets, generated in this way, were thus subsamples of the 



!

79 

 

Figure 2.4 Quartet Joining supertrees.  

(A) A tree based on 2,216 genes from 42 species, where only non-bilaterian animal 

outgroups were used. (B) A tree derived using only the fungal outgroup. This tree is 

based on 2,164 from 41 species. It is evident from both trees that there is low resolution, 

even within the mammals. 
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complete data sets and scored: 43392 amino acid positions (41-taxon data set), 38701 

amino acid positions (42-taxon data set), and 25857 amino acid positions (43-taxon data 

set).  As the considered genes were not universally distributed, there was a significant 

amount of missing data in each alignment. 

Phylogenetic analyses of the three data sets were performed in PhyloBayes, 

(Lartillot and Philippe, 2004) under the CAT + G model. CAT was selected as it has been 

shown (e.g. Philippe et al., 2007, Sperling et al., 2009) that this model provides a better 

fit to data in comparison to ordinary general time reversible models (e.g. WAG or 

mechanistic GTR). The use of CAT-GTR was also tested, but under this model 

convergence could not be reached (the data set was too large for effective computation 

under this very parameter rich model). For each data set, two independent runs were 

performed. Convergence was tested using the bpcomp program (which is part of the 

PhyloBayes software). Two runs were considered to have converged when the max 

difference in observed bipartitions dropped below 0.2 (see PhyloBayes manual). 

  

2.3.1.5 Bayes factors: testing Coelomata and Ecdysozoa in a Bayesian framework 

Bayes factors (BF) are general statistical tools that can be used, within a Bayesian 

framework, to compare alternative models, e.g. the trees representing the relationships for 

a group of taxa, and evaluate the weight of evidence in favour of one of the compared 

models (and hence against the alternative one; Sperling et al., 2009). To calculate BFs for 

each considered data set, two constrained Bayesian analyses were run using MrBayes 

(Ronquist and Huelsenbeck, 2003).  Each of these analyses could only visit trees 

compatible with one of the two compared hypotheses (i.e. Ecdysozoa or Coelomata).  For 

each of the two constrained analyses, two runs of one chain were run for 1,000,000 



!

81 

generations (sampling every 100 generations).  A burn in of 500,000 generations was 

considered for all analyses. Due to the dimensions of the data set, it was not feasible to 

implement the approximately unbiased test (see Shimodaira, 2002). All analyses were 

performed under WAG + G.  This is not ideal, but BF analyses could not be run under 

CAT, as the current PhyloBayes output is not suitable for estimating BFs (see also 

Sperling et al., 2009), whilst running the analyses under GTR in MrBayes was not 

feasible because of time limitations. 

BFs were calculated in Tracer 1.4.1 (Rambaut and Drummond, 2007) using, for 

each constrained analysis, the trace files from the run of highest harmonic mean. 

Standard errors, around the estimated BF, were calculated using bootstrap (1000 

replicates). BFs were interpreted according to the table of Kass and Raftery (1995; see 

Appendix A1). 

 

2.3.2 Results 

While the small data sets demonstrate at the most fundamental level the effects of 

outgroup selection, they still consider a very scant taxonomic sampling. These analyses 

allow rejection of the null hypothesis (i.e. Coelomata is the true tree), but only relative to 

small data sets.  To test the validity of these results in a more practicable context, 

attention was turned to data sets with a broader taxonomic sampling.   

Three experiments were performed. In the first, a data set in which taxon 

sampling was incremented from four to forty one species was used. S. cerevisiae was 

selected as the outgroup, whilst all supplementary taxa included were bilaterian.  That is, 

no attempt at breaking the putative long branch between the fungi and the Bilateria was 
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made.  In the second experiment, a data set sampling 43 taxa was used.  This data set was 

designed to contain the full complement of taxa from the first data set, but additionally 

included T. adherans and N. vectensis.  Here, S. cerevisiae, T. adherans and N. vectensis 

were simultaneously used as outgroups for the Bilateria. The branch joining the fungi and 

the Bilateria was still present, but now it was split into three shorter branches, allowing 

the effect of targeted taxon sampling to be investigated.  Finally, the third data set 

sampled 42 genomes.  All metazoan genomes used to generate the first two data sets were 

retained, whilst S. cerevisiae was removed.  Excluding S. cerevisiae eliminated the long-

branch joining the fungi and the Bilateria, thus enabling investigation of the effect of 

using only non-bilaterian metazoans (T. adherans and N. vectensis) as outgroups.  

The analysis of the data set generated for experiment one resulted in 2,164 single protein 

families passing the PTP test. Results of an input tree bootstrapping supertree analysis, of 

the ML bootstrap trees generated for these families, is reported in Figure 2.5(A), and 

shows the placement of the Nematoda as the sister group of all the other Bilateria, i.e. 

100% support for Coelomata. This tree also displays monophyletic Deuterostomia, 

Arthropoda and, interestingly, Eutrochozoa. (BS= 98%, 100%, and 100% respectively).  

The BF analysis shows that the data fit the Coelomata tree better than the Ecdysozoa tree, 

decisively discriminating against Ecdysozoa: Log10-BF=10.792 (± 0.29).  

When S. cerevisiae, T. adhaerens and the Cnidarian N. vectensis were 

concurrently used as outgroups, a total of 1,949 single protein families conveying 

significant phylogenetic signal (see Table 2.4) were found.  When these protein families 

were used for supertree reconstruction, Ecdysozoa was recovered, but with very low  

support (BS= 43%; See Figure 2.5 B). Bilateria finds significant support in this analysis 

(BS= 99%), and is partitioned into Protostomia and Deuterostomia.
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Figure 2.5 Phylogenomic supertrees of the Bilateria.  

(A) A tree derived using only the fungal outgroup. This tree is based on 2,164 from 41 

species. (B) A tree derived using fungal and animal (non-bilaterian) outgroups. This tree 

is based on 1,949 genes from 43 species. The monophyly of Ecdysozoa, Lophotrochozoa 

and Protostomia is recovered in (B), while (A) supports Coelomata. Numbers at the 

nodes represent bootstrap support. Full circles indicate 100% bootstrap support for a 

node.  
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Monophyly of the Eumetazoa is also supported (BS= 84%; in agreement with Sperling et 

al., 2009, but see Pick et al., 2010), whilst support for Protostomia is not very high 

(BS=60%).  Inspection of the partition table for this bootstrap analysis shows that 

Coelomata is still recovered, albeit with minimal support (BS=13%).  This is suggestive 

of an enduring LBA effect.   

LBA is obviously reduced when the additional animal outgroups are included in 

the analyses, to the point where the Ecdysozoa tree is the most commonly recovered in 

the individual bootstrap replicates.  However, the reduction of the LBA effect is not 

significant enough to completely exclude Coelomata from the set of possible solutions. 

Interestingly, BFs still favour Coelomata with respect to Ecdysozoa (at the least under 

WAG + G): Log10-BF = 6.67 (± 0.59).  However, in agreement with the results of the 

bootstrap analysis, which suggest that the LBA effect was indeed reduced when non-

bilaterian animals were in the sample, the weight of the evidence in favour of Coelomata 

is now greatly decreased (by 4.122 points in a log10 scale). That is, when the fungi-

Bilateria branch is broken, Coelomata is still favoured but the data fits the tree ~ 13,243 

times less well than they did when the branch was not interrupted. 

In the third experiment, S. cerevisiae was interchanged with two animal outgroups 

(T. adhaerens and N. vectensis). With this specific taxonomic sampling, 2,216 single 

protein families conveying significant phylogenetic signal are recovered. Their analysis 

resulted in a phylogenomic supertree supporting all major, recognised groups 

(Protostomia, Deuterostomia, Eutrochozoa, and Arthropoda). Additionally, this analysis 

found significant support for Ecdysozoa (BS= 90%) within Protostomia (See Figure 2.6), 

with the BF now decisively discriminating against Coelomata: Log10-BF=90.811 (± 

0.977).  If one compares the fit of the Ecdysozoa tree to the data set where S. cerevisiae is  
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Figure 2.6 Phylogenomic supertree of the Bilateria recovered using only animal 

(non-bilaterian) outgroups.  

This tree is based on 2,216 genes from 42 species. High support for the monophyly of 

Ecdysozoa, Lophotrochozoa and Protostomia can be observed. Numbers at the nodes 

represent bootstrap support. Full circles indicate 100% bootstrap support for a node.
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the only outgroup, with the fit of the same tree to the data set where only the animal 

outgroups were used, a dramatic change (~10100) in the BF in favour of Ecdysozoa is 

observed. This clearly highlights the major role played by outgroup selection in 

phylogenomics.  

These results are finally confirmed by the supermatrix analyses.  In these 

analyses, when S. cerevisiae was used as the only outgroup, convergence could not be 

reached and the resulting phylogeny (not shown) was nonsensical. When all outgroups 

were included (Figure 2.7 A), Ecdysozoa was recovered, but the effect of LBA was still 

evident. If one were to root the tree using N.vectensis, to better pinpoint the LBA effect, a 

tree essentially consistent with the new animal phylogeny is recovered. However, in this 

rooted tree, S.cerevisiae is incorrectly clustered within Protostomia. If the tree is correctly 

rooted using S.cerevisiae (not shown), the Lophotrochozoa are incorrectly attracted 

toward the root.  This result, which was somewhat unexpected (as lophotrocozoans 

generally do not seem to show serious attraction problems in other supermatrix analyses), 

is probably a partial consequence of the gene sub sampling strategy, in which I 

maximised information bearing on the relationships of the Nematoda, whilst ignoring the 

Lophotrochozoa and the Deuterostomia (see 2.3.1.4). However, it is also clearly telling of 

an enduring LBA effect. 

Finally, when only the animal outgroups are used (Figure 2.7 B) the Ecdysozoa 

tree is recovered. In Figure 2.7 (B) support for the Urochordata as members of the 

Deuterostomia is not significant, and this group is thus collapsed into a polytomy, which 

again can most likely be attributed to the gene sub sampling strategy (see above). This is 

confirmed by the supertree analysis of our full data sets in which support for 

monophyletic Deuterostomia varies between 94% to 100% depending on the outgroup 
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Figure 2.7 Results of the supermatrix analyses.   

(A) The effect of long branch attraction is obvious if one roots the tree using N.vectensis, 

as a tree essentially consistent with the new animal phylogeny is recovered, but 

S.cerevisiae is incorrectly nested within the Protostomia.  (B) A tree illustrating that 

Ecdysozoa is easily recovered when analyses are performed using only non-bilaterian 

animals as outgroups. Numbers at the nodes represent posterior probabilities. Full circles 

indicate a posterior probability of 1. Posterior probabilities lower than 1 have only been 

reported for nodes that are relevant to the Ecdysozoa Vs. Coelomata problem. 

Urochordata is collapsed in a basal polytomy because the posterior probability of 

Deuterisomia is less than 0.5. 
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used (see Figures 2.5 and 2.6).  Notably, a similar effect was observed in the EST study 

of Hejnol et al. (2009), in which Urochordata became unstable when gene sampling was 

reduced (see Figure S1 Hejnol et al., 2009). 

 

2.4 Discussion 

2.4.1 Phylogenomics in a pluralist context 

ESTs provide an excellent means of increasing taxon sampling, and have been 

shown to produce highly resolved, well-supported phylogenies (e.g. Philippe et al., 

2005b, Dunn et al., 2008). However, as pointed out by Sperling et al. (2009), the 

incongruence of different EST studies implies that EST data does not assure accuracy.  

For example, the studies of Dunn et al. (2008) and Philippe et al. (2009) conflict on the 

relationships amongst the non-bilaterian Metazoa, offering two alternative, and well 

supported, positions for the ctenophores (but see Pick et al., 2010).  Similarly, Dunn et al. 

(2008) and Rota-Stabelli et al. (2011) differ on the placement of the Myriapoda. 

Additionally, EST studies consider only a shallow sampling of genomic content, 

and include a large amount of missing data, the effect of which, until recently, had not 

been thoroughly investigated. However, Sanderson et al. (2010; see Section 1.3.1) 

provide some tentative, but important, results. For Coelomata to be robustly rejected, 

EST data, although obviously important, cannot be considered sufficient: accord between 

taxonomically rich EST studies, and gene rich deep-scale analyses must be reached. With 

the wealth of genomic data that is currently available, coupled with advances in 

sequencing technologies, taxon sampling is becoming less of a limitation for deep 



!

89 

genomic-scale phylogenetic analyses. In short, we now have at our disposal the data to 

conduct extensive, experimental phylogenomic studies of metazoan evolution. 

Supertree methods offer an ideal solution for the reconstruction of large-scale 

phylogenies based upon complete genomes, as they provide a means of overcoming the 

limits of gene concatenation based approaches.  Gene concatenation methods, at present, 

do not allow for the easy amalgamation of thousands of genes. Supertrees (and in the four 

taxon case, consensus methods), implementing a divide and conquer strategy, facilitate 

the analysis of entire genomes, for many taxa, by coalescing the results of multiple sub-

analyses to attain a global solution (Wilkinson and Cotton, 2006).   

However, supermatrix approaches also have important advantages, particularly as 

they overcome the most important limitation of supertrees; that is, supertrees do not allow 

hidden sub-signals to interact and thus lack total-evidence like properties (Pisani and 

Wilkinson, 2002). In addition, supermatrix approaches allow for the use of statistical 

tools (like BFs) to test alternative phylogenetic hypotheses.  However, the 

implementation of maximum likelihood supertrees should allow the development of 

statistical testing within a supertree framework as well. Bearing in mind that both 

approaches have highly desirable, and significantly different properties, I therefore opted 

for a pluralist, supertree/consensus tree and supermatrix approach in this study.  

The four-taxon analyses show that multi protein families can be appropriately 

treated to derive species phylogenies, and suitably included in a consensus tree (if all 

considered protein families are universally distributed) or supertree (if the protein 

families are not universally distributed) analyses.  In particular, I show that all consensus 

supertrees (including those that sample multi protein families) continue to support 

Ecdysozoa, a result that is further confirmed by the supermatrix analyses. 
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Supertrees have previously been employed to address the phylogenetic position of 

the nematodes (Philip et al., 2005). While carefully conducted, using the best methods 

and data available at that time, this analysis did contain (by the authors’ own admission) a 

very limited sampling of just 10 genomes. In particular, a noticeable problem that Philip 

et al. (2005) faced was the absence of an adequate outgroup (i.e. non-bilaterian metazoan 

genomes).  As postulated by these authors, in time, an increased sampling could well 

serve to alter their results. In line with that prediction, supertree analyses performed here, 

using appropriate outgroups and a significantly increased taxon (and gene in the case of 

the four taxon data sets) sampling, have revealed an alternative topology (see Figure 2.3, 

2.6 and 2.7). My results suggest that the study of Philip et al. (2005), and indeed other 

genomic scale analyses (e.g. Blair et al., 2002, Wolf et al., 2004) may have been 

influenced by systematic errors arising from poor outgroup availability, sparse taxon 

sampling, and hidden paralogy.   

 

 

2.4.2 Circumventing systematic errors 

The study described here illustrates the importance of outgroup choice in 

phylogenomic scale studies. It shows that the use of a distant outgroup has a marked 

effect, irrespective of whether ingroup sampling is sparse or dense. I found, like in other 

studies (Philippe et al., 2005b, Rota-Stabelli and Telford, 2008), that outgroup choice 

completely alters the resulting topology, consequently lending analogous support to 

competing hypotheses. The recovery of the Coelomata topology can be considered a 

LBA artifact, brought about by the use of a divergent outgroup. Comparison of BF values 
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gives an indication of the strength of the bias and of how difficult it is to limit its effects.  

These results also reject the contention of Rosenberg and Kumar (2001) and Rokas and 

Carrol (2005), that poor taxon sampling is irrelevant as long as enough genes are 

considered.  

The densely sampled data sets illustrate that optimal outgroup selection is more 

important than targeted taxon sampling in avoiding LBA artifacts. If a distant outgroup 

(S. cerevisiae) is included in the analysis, targeted taxon sampling (i.e. breaking the long 

Bilateria-Fungi branch) does not completely eradicate LBA (as shown most powerfully 

by the BF analyses).  Only upon the exclusion of S. cerevisiae do the BFs show a radical 

decrease in the fit of the Coelomata tree. Optimal outgroup selection is a rarely addressed 

topic in phylogenetics and phylogenomics, and one has to bear in mind that the optimal 

outgroup for a given data set, is not necessarily the closest one (for an interesting 

example see Rota-Stabelli and Telford, 2008).  Aside from LBA, compositional bias is 

another source of phylogenetic artifact, thus an outgroup (which may not be the closest 

one available) that simultaneously minimises the likelihood of both artifacts occurring 

should be selected.  

 

2.4.3 Stringency and the selection of families for phylogenetic reconstruction 

When analysing a small selection of genomes, I could not identify a number of 

single protein families comparable to those identified by, for example, Blair et al. (2002). 

Disparity between this study and that of Blair et al. (2002) is particularly striking when 

comparing their 4-taxon data set to the sparsely sampled data set including S. cerevisiae 

used in this study. Although the ultimate results of both data sets are congruent, i.e. both 
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data sets support Coelomata; my analysis considers 70% less single protein families than 

Blair et al. (2002). Failure of these data sets to have correlating numbers of single protein 

families merits discussion.  

I suggest that the observed difference can partially be explained by the use of 

different outgroups. Blair et al. (2002), somewhat illogically (see also above), primarily 

used a plant outgroup and only in cases where plant genes were not available was a 

fungal outgroup used. However, this difference can also be accounted for by the 

implementation of measures to assess data quality in this study. Under my protocol, a 

protein family was only considered for phylogenetic analysis if it demonstrated 

significant clustering signal. The approach I implemented here, thus ensured that noisy 

families, or families devoid of clustering signal, were eliminated from the analysis. It is 

interesting to note that prior to this filtering stage the number of single (4-taxon) protein 

families identified in my study was twice the number identified by Blair et al. (2002).  

 

2.5 Conclusions 

The Ecdysozoa hypothesis has accumulated significant support in recent years 

(Philippe et al., 2005b, Irimia et al., 2007, Lartillot and Philippe, 2008), particularly from 

the analyses of EST data sets.  To supplement this amassment of evidence, here I present 

support for Ecdysozoa from genomic-scale data sets. From these, overall, Ecdysozoa 

represents the most cogent hypothesis. It is supported from the analyses of both single 

and multi protein families, and once suitable outgroups are considered. Coelomata, on the 

other hand, is only supported upon the inclusion of a distantly related outgroup, which 

suggests that this topology is systematically generated by a long branch attraction artifact.  
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My results, based on arguably the deepest gene sampling of the Bilateria to date, 

present overwhelming support for Ecdysozoa, and clearly illustrate that it is the use of a 

distant outgroup that mislead previous analyses. Taken in combination with results from 

the aforementioned EST studies, it now appears that all aspects of molecular based 

phylogenetics support the rejection of Coelomata. While lack of unambiguous 

morphological support for Ecdysozoa persists as a moot point (but see Eernisse et al., 

1992), in the light of overwhelming molecular evidence and lack of morphological 

evidence conclusively discrediting Ecdysozoa, I think that it is now finally time to shed 

the notion of Coelomata. 
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Chapter 3: Towards the reconstruction of eukaryotic tree of life using 

complete and partial genomes 

3.1 Introduction 

The application of supertree reconstruction to molecular data has prompted some 

of the most expansive and comprehensive phylogenies of the past decade. While robust, 

this approach is almost exclusively applied to data derived from complete genomes, or to 

trees obtained from published sources (e.g. Pisani et al., 2002, Lloyd et al., 2008; 

however this type of analysis is not the subject of discussion here). Typically, genomic 

scale analyses use only single gene (or protein) families, to limit the confounding effect 

of paralogy.  A data pool of this kind is extremely limiting, as many groups are severely 

under represented by genome sequencing projects. Furthermore, much pertinent 

information is omitted simply because genes have undergone duplication. 

 The study discussed in this chapter attempts to overcome limitations in sampling, 

both in terms of genomic breadth and depth, to recover a phylogenomic supertree of the 

eukaryotes. In an effort to increase taxon sampling across this domain, ESTs (referred to 

here as partial genomes) are used to supplement the relatively limited amount of 

complete eukaryote genomes. Additionally, to increase gene sampling, gene families with 

a history of duplication are included, in what can be considered an expansion of the 

approach used for the sparsely sampled data sets of Chapter 2. As such, a data set 

spanning over 20,000 genes, for approximately 550 species is analysed. 
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3.1.1 The eukaryotes and their origin 

 Members of the eukaryote domain are set apart from prokaryotes by distinct 

features that are indicative of a more complex form and structure. Eukaryotes are 

characterised by membrane-delimited compartmentalisation, that is supported by a 

cytoskeleton (Parfrey et al., 2006).3 Cellular subunits, or organelles, that exclusively 

feature in all eukaryotes are the nucleus, which is the repository of genetic material, and 

the mitochondrion (or its associates; see Embley and Martin, 2006, Hjort et al., 2010), 

which, amongst other roles, is responsible for the production of energy. The ubiquity of 

the mitochondrion across the domain has, for the most part, conserved metabolism in 

eukaryotes, unlike bacteria who have a broad metabolic variation (Baldauf, 2008). 

Despite these unifying features, the eukaryotes are hugely diverse, with their span 

extending from unicellular organisms right up to complex plant, fungal and animal forms 

(Parfrey et al., 2006). 

Although there is a general agreement that living eukaryotes are symbiotic 

organisms (as first proposed by Margulis, 1970), and that the mitochondrion and the 

chloroplast were once free-living eubacteria (Pisani et al., 2007), the specific means as to 

how the eukaryotes emerged still remains largely unknown. There are two general 

schools of thought as to their origin, which differ about the timing of the mitochondrion 

acquisition from a bacterial endosymbiont. The most traditional view is based on a literal 

interpretation of the Carl Woese tree of life (Fox et al., 1977), which postulated that the 

eukaryotes are the sister group of the Archaebacteria (Poole and Penny, 2007, De Duve, 

2007, Cavalier-Smith, 2010, Gribaldo et al., 2010).  According to this perspective, the 

                                                
3 It must be noted that prokaryotic counterparts have been identified for numerous such 
features that were once thought to be distinctly eukaryotic. 
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eukaryotic lineage is very ancient and evolved its specific features (e.g. phagocytosis) 

before the acquirement of the mitochondria. Proponents of this theory maintain that the 

eukaryotes (together with the Eubacteria and the Archaebacteria) are a distinct, “primary” 

domain of life. This three-domain based hypothesis is often referred to as the 3D 

hypothesis (see Gribaldo et al., 2010).   

The second hypothesis proposes that the eukaryotes originated through a process 

of symbiosis, that lead to a genomic fusion (Rivera and Lake, 2004) between an 

archaebacterium (the host cell) and an alpha-proteobacterium (which subsequently 

became the mitochondrion). According to this hypothesis, the eukaryotes are not a 

“primary” domain of life, and are paraphyletic with respect to both Eubacteria and 

Archaebacteria (Embley and Martin, 2006, Pisani et al., 2007, Cox et al., 2008, Foster et 

al., 2009, Cotton and McInerney, 2010). Consequently, the relationships among Woese’s 

three domains of life are seen to be more ring like than tree like. 

Irrespective of which hypothesis is correct, eukaryotes are undoubtedly chimeric, 

and their genomes feature a mosaic of archaebacterial and eubacterial genes (e.g. Pisani 

et al., 2007, Esser et al., 2004, Cotton and McInerney, 2010, Lane and Martin, 2010). 

Additionally, consistent with both hypotheses, Eukaryota are indubitably monophyletic.  

As the molecular era progresses, the weight of evidence suggests that the ring like origin 

of the eukaryotes might be the most plausible (see for example Pisani et al., 2007, Cox et 

al., 2008, Foster et al., 2009, Cotton and McInerney, 2010, but see Logsdon, 2010), 

however, elucidating the “leap in complexity at the origin of eukaryotes is one of the 

principal challenges of evolutionary biology” (Koonin, 2010). Some possible steps 

towards achieving this goal have recently been explicated by Lane and Martin (2010), 
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who suggest that possessing mitochondria allowed for a dramatic increase in the 

eukaryotic energy availability. 

 

3.1.2 The eukaryote phylogeny 

An equally challenging problem facing evolutionary biologists is resolving the 

relationships within the eukaryotes. Currently, the consensus view of the eukaryotes, 

arrived upon by a combination of molecular and morphological evidence, is that they are 

distributed across five or six (if the Amoebozoa and Opisthokonts are not unified as the 

Unikonts) supergroups (Keeling et al., 2005, Keeling, 2007, Lane and Archibald, 2008, 

Rogozin et al., 2009, Roger and Simpson, 2009, but see Baldauf, 2008). These 

supergroups are, namely, Plantae, Excavata, Rhizaria, Chromalveolata and the Unikonts, 

which encompasses the Amoebozoa and the Opisthokonts (See Figure 3.1).  

Although this represents the common view, these assemblages are still subject to 

dispute, along with their relationships and branching order (Lane and Archibald, 2008). 

In considering the six-supergroup scheme, the monophyly of two such supergroups has 

traditionally attained poor support. The first of these, the Excavata, consists of eight 

groups of protists (i.e. Kinetoplastids, Euglenids, Heterolobosea, Jakobids, Oxymonads, 

Parabasalia, including Trichomonas, Retortamonads and Diplomonads, including 

Giardia; Keeling, 2007) that are weakly grouped together using combined aspects of 

molecular and morphological evidence (Keeling et al., 2005; Simpson, 2003). Recently, 

convergence of two independent phylogenomic analyses, recovered monophyletic 

Excavata with high support  (Burki et al., 2008, Hampl et al., 2009; based on 135 and 143 

genes respectively), bolstering confidence in this supergroup. Yet, whether Exacavata 
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Figure 3.1 The consensus view of the eukaryote phylogeny. 

(redrawn from Keeling, 2007).  

The five eukaryote supergroups that attain support from a mixture of morphological and 

molecular data. There is no consensus on the branching order of these groups or the 

rooting position for the tree. In some schemes, the members of the Unikonts are 

considered independent groups, namely the Opisthokonts and the Amoebozoa. 
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represents a real group, still requires further confirmation. 

The second supergroup with uncertain monophyly is Chromalveolata, a 

unicellular group that contains several algae and protists (i.e. Apicomplexa, 

Dinoflagellates, Ciliates, Heterokonts, Haptophytes and Cryptomonads; Keeling, 2007), 

connected by plastid based features (Lane and Archibald, 2008). To date, no phylogenetic 

reconstruction or single character has been found to unify all the members of this 

assemblage (Lane and Archibald, 2008), and, further to this, Chromalveolata fails to be 

recovered in several phylogenomic studies (Rodriguez-Ezpelata et al., 2007; Burki et al., 

2007; Hackett et al., 2007; Hampl et al., 2009). Indeed, current phylogenomic data (EST 

and multi gene data sets) are instead converging on a group uniting Alveolata, 

Stramenopiles and Rhizaria (Rodríguez-Ezpeleta et al., 2007, Burki et al., 2007, Hackett 

et al., 2007), known as the SAR or RAS group. It is interesting to note that although the 

monophyly of Rhizaria is less contentious than the groups just discussed, evidence for 

this grouping is based solely upon molecular data (Keeling et al., 2005).  

The particular difficultly in resolving relationships amongst these supergroups lies 

in the fact that many eukaryote groups may have rapidly radiated in a “Big Bang” 

manner, resulting in very short internal branches (Philippe, 2000, Koonin, 2007, Rogozin 

et al., 2009). Obviously, the chimeric nature of their genomes, due to the impression of 

both endosymbiotic and later gene transfer (LGT) events, especially between unicellular 

eukaryotes (see Keeling and Palmer, 2008 for a review), further confounds the 

elucidation of such internal relationships (see for example Pisani et al., 2007, Cotton and 

McInerney, 2010).  

Additionally, one can postulate that given the chimeric nature of eukaryote 

genomes, substantial phylogenetic artifacts are to be expected. As seen in Chapter 2, 
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outgroup choice is key in phylogenetics. In the case of the eukaryotes, different genes 

will have different, optimal (and possibly very distantly related), outgroups to reflect their 

varied origin. For example, the optimal outgroup for genes of archaebacterial origin 

would be an archaebacterium, while for genes of mitochondrial origin, the ideal outgroup 

would be an alpha-proteobacterium. If, in a supermatrix approach (e.g. Burki et al., 2007, 

Hampl et al., 2009), genes of archaebacterial, chloroplastic and alpha-proteobacterial 

origin are merged, and subsequently analysed using an archaebacterial outgroup (as is to 

be expected if adhering to the 3D hypothesis), a situation arises where a significant 

proportion of the data is analysed using a highly suboptimal outgroup, which may 

introduce LBA.  Nevertheless, two recent phylogenomic analyses of over 130 proteins 

claim to have achieved success in establishing some order within the eukaryotes, both 

arriving upon a phylogeny that features three lineages: Excavata, Unikonts and a 

“megagroup” consisting of Rhizaria, Chromalveolata and Plantae (Burki et al., 2008, 

Hampl et al., 2009).  The validity of these groups, however, remains a matter of opinion, 

particularly since use of a prokaryotic outgroup is not a feature of either study. It is thus 

clear that these groups may in truth be paraphyletic. 

A final problem posed by the eukaryotes is the rooting position for the phylogeny. 

Postulated placements include a rooting point that would create a unikont-bikont split 

(Stechmann and Cavalier-Smith, 2003), or a position within the excavates, either at the 

branch leading to the diplomonads and parabasalids (Arisue et al., 2005), or basal to the 

jakobids (Rodríguez-Ezpeleta et al., 2007). Although the aforementioned phylogenomic 

studies (i.e. Burki et al., 2008, Hampl et al., 2009) claim to have come some way in 

resolving internal eukaryote relationships, both notably report unrooted trees. Clearly, 

these studies can only suggest potential sets of relationships, while, ultimately, only 



!

101 

positioning the root of the eukaryotic tree will identify which groups are genuine and 

which are not. As such, it appears that in attempting to determine the rooting position of 

the eukaryotes, there is a general sense that the data currently available are insufficient to 

deal with such a demanding task (Baldauf, 2008). Indeed, the abovementioned outgroup 

selection problems are additionally likely to impact on the recovery of the root of the tree 

(Jeffroy et al., 2006, Sperling et al., 2009), and it is somewhat surprising that Baldauf 

(2008), for example, seems to overlook this problem. Given the chimeric nature of 

eukaryotic genomes it not surprising that rooting the eukaryotic tree, for the time being, 

has not been possible. 

 

3.1.3 Increasing the breadth and depth of sampling 

 The previous section has painted a rather uncertain perspective for the eukaryote 

tree; however, this uncertainty must be put into context. Many aspects of the eukaryote 

supergroups have only recently been described and, as such, reflect the rapid pace at 

which our understanding of this domain is changing (Keeling et al., 2005). Indeed, for a 

very stark example of this one only has to compare the trees in the figures of Baldauf 

(2003) and Baldauf (2008), where eight major groups are detailed in the former and only 

six in the latter. Further to this, molecular data, and in particular genomic data, has until 

recently been quite concentrated on a limited number of eukaryotic groups, generally 

those including model organisms (or important parasites). With reference to the 

eukaryotic tree of life, Sanderson (2008) asserts that “a stronger sampling effort aimed at 

genomic depth, in addition to taxonomic breadth, will be required to build high-resolution 

phylogenetic trees at this scale”.  
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In conducting this analysis, I aimed to address both of these issues, in an attempt 

to build a phylogeny for the eukaryotes based upon the broadest and deepest genomic 

sampling to date. At the commencement of this study there were approximately 120 

complete eukaryote genomes publicly available, however, as most of the eukaryote 

supergroups were severely underrepresented by the sampling included, this was 

insufficient. Therefore, in order to augment the taxonomic sampling of this study, an 

experimental approach was adopted, where an EST database (kindly provided by Dr John 

Parkinson, Hospital for Sick Children / University of Toronto) was additionally used. In 

this way, it was possible to increase taxon sampling by almost fourfold, significantly 

improving the coverage of the majority of the eukaryote supergroups. It is important to 

note, however, that the taxonomic sampling of EST projects reflects what is observed in 

genome sequencing projects, where there is a bias towards major groups, therefore, an 

overrepresentation of some groups (i.e. plants, fungi, nematodes and more broadly 

animals) in the taxon sampling is observed.  

Typically, for data sets with a taxonomic sampling of this magnitude, 

phylogenomic reconstruction is limited to single gene (or protein) families (e.g. 

Fitzpatrick et al., 2006, Pisani et al., 2007, Holton and Pisani, 2010). However, here, in 

an effort to consider the maximal gene sampling possible, multi gene families were 

additionally considered. Increasing gene sampling, as pointed out by Sanderson (2008), is 

important for recovering the eukaryotic tree of life. In line with this, Dagan and Martin 

(2006) put forward an equally compelling appeal for increased genomic depth when they 

introduced the term “tree of one percent”.  

This thought-provoking concept was broached in the context of a criticism of 

Ciccarelli et al. (2006), who presented a tree of life based on only 31 proteins. These 31 
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proteins, representing ~ 1% of the average prokaryotic proteome, were selected by 

Ciccarelli et al. (2006) because they corresponded to the few genes in the considered 

genomes that did not appear to have undergone lateral gene transfer. Dagan and Martin 

(2006) aptly defined the phylogeny of Ciccarelli et al. (2006) “a tree of one percent”, 

and suggested that if the other 99% of the protein families disagreed with their 

proposed tree of life, then their tree was unlikely to be an accurate descriptor of the 

evolutionary history of life. Here, by incorporating multi gene families not only is the 

depth of sampling improved, but also important phylogenetic signals specific to 

eukaryotic genes, that have evolved under conditions of duplication and loss, are 

considered.  The approach implemented in this study can be considered a scaling-up of 

the protocol used in Chapter 2, where multi protein families were integrated into a 

phylogenomic approach, but only in the case of the 4-taxon data sets.  

Typically, a supermatrix approach is applied to EST data, however, given the 

particular dimensions of this data set, this simply was not feasible (see Section 2.3.1.4 

where a reduction strategy had to be employed for datasets sampling only approx. 40 

species). Additionally, as discussed in Chapter 2 (see Section 2.1.4), the supermatrix 

approach currently does not allow for the inclusion of multi gene (protein) families. 

Therefore, a supertree approach is adopted here. In using a supertree approach, the extent 

to which ESTs, as well as multi protein families, could be integrated into supertree 

analyses was investigated. 
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3.2 Materials and methods 

3.2.1 Data assembly 

 For this analysis, a data set scoring both complete and partial genomes was used. 

Firstly, in a similar fashion to the data sets discussed in Chapter 2, genomic depositories 

were searched to attain all available genomes for the eukaryotic domain, amassing to 121 

species. To augment taxon sampling, so as to include a broader range of eukaryotic 

diversity, a database of EST sequences, for a further 448 species, was additionally 

included. The sequences from both these genomic sources were combined to create a data 

set featuring 569 eukaryotic species. See Electronic Appendix for a full list of species, 

their associated data type (i.e. EST or complete genome) and their source. 

 Further to the above, the genomes of 8 non-eukaryote species (i.e. bacterial and 

archaeal) were chosen for use as outgroups. Outgroups selected for this analysis can be 

broadly classified into two groups, namely, the proteobacterial alpha-proteobacteria and 

cyanobacteria, and the archaeal halobacteria, crenarchaeota and thermoplasmatales. 

These classes of outgroup were specifically selected to discern varying ancient signals 

that have punctuated the origin of the eukaryotes (see Pisani et al., 2007). It is expected 

that the use of a selection of outgroups should better account for the diverse origins of 

different genes, rather than the use of a single outgroup (e.g. an archaebacterium), which 

is unlikely to collectively account for all genes and might result in the generation of tree 

reconstruction artifacts. Note that, as single protein families are analysed in the supertree 

approach, it is expected that for each protein family, the most adequate outgroup will be 

used. This is because the closest prokaryotic homolog of each eukaryotic gene is the one 
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with the highest likelihood of being included in its gene family by the homology 

assignment strategy (i.e. MCL; see below). 

 

3.2.2 Homology assignment to tree reconstruction 

 The fundamental protocol of this study follows the experiments conducted on the 

two sparsely sampled data sets in Chapter 2. In that study, these small data sets were used 

to test alternative homologous protein family identification strategies and multiple 

sequence alignment algorithms (see Sections 2.2.1.2 and 2.2.1.3). As such, here, in 

implementing certain steps of the same protocol (as Chapter 2), some technical aspects 

were modified in line with the findings of Section 2.2.2.2. These are outlined below. 

Firstly, in this current experiment homologous protein families were identified 

using the MCL-based approach (Enright et al., 2002). Although in the comparison of 

homology assignment strategies little difference was found between the resulting 

phylogenies of MCL and the approach of Creevey et al. (2004), MCL was selected for 

use here as it is becoming the current standard for homology assignment (see for example 

Wu et al., 2009, Brown et al., 2010, Dagan et al., 2010; however some technical aspects 

do appear worrying; Cummins and McInerney, personal communication). The precursory 

BLASTP search, required before MCL implementation, was carried out using an E-value 

cut off 10-8. MCL was then implemented with an inflation parameter value of 5.0, which 

returns more finely grained clusters (i.e. a broader range of smaller protein families; that 

is, a proportion of multi protein families will be split into single protein families, each of 

which will only include the members of one of the paralogous groups in that family).  
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From the resulting homologous (both single and multi protein) families, those that 

contained at least four species were retained for further analysis.  Once again, using the 

4-taxon data sets as a reference point, the integration of multi protein families into 

phylogenetic analyses was extended to a more practicable scale. As such, unlike the 

densely sampled data sets in Chapter 2, it was not necessary to partition the protein 

families into single and multi protein families at this point. All protein families deemed 

viable were then put forward for multiple sequence alignment. 

Alignment was carried out using the PRANK software implementation 

(Löytynoja and Goldman, 2008). As determined by the analysis of the sparsely sampled 

data sets in Chapter 2, alignments produced by PRANK attained higher support values in 

supertree reconstructions (see Section 2.2.2.2 and Table 2.1). Accordingly, for this 

experiment the more computationally intensive PRANK software was selected over 

ClustalW (Thompson et al., 1994), in an effort to maximise phylogenetic accuracy. 

Gblocks (Castresana, 2000) was then used to curate the ensuing alignments, phylogenetic 

signal was assessed by means of the PTP test (Archie, 1989) and the amino acid 

substitution model for each protein family was determined using Modelgenerator (Keane 

et al., 2006), all as per Section 2.2.1.3.    

Alignments of each family deemed to convey significant hierarchical signal were 

then subjected to phylogenetic reconstruction. Differently from the protocol used in 

Chapter 2, here, maximum likelihood (ML) trees, for each protein family, were derived 

using the RAxML software (Stamatakis et al., 2005). RAxML represents a technological 

improvement over the PhyML (Guindon and Gascuel, 2003) software employed in 

Chapter 2 and, as such, it was selected for implementation in this experiment. Due to the 

dimensions of this data set, it was not feasible to use bootstrapped ML trees for each 
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protein family in downstream supertrees analyses (deviating from the approach used for 

all data sets in Chapter 2), therefore, in this experiment supertree analysis was limited to 

the optimal RAxML tree for each family. 

 

3.2.3 Supertree reconstruction 

3.2.3.1 Single protein family supertree reconstruction 

 The aim of this study is to build an extensive phylogeny for the eukaryotes that 

incorporates both single and multi protein families, in a practicable context. However, 

due to the computational and time costs incurred by the analysis of expansive multi 

protein families, in such abundance, the single protein families were considered on their 

own in the interim waiting period. This provided for a useful means of comparing the 

results obtained from the composite multi and single protein family approach to the 

standard supertree approach generally adopted (see for example Fitzpatrick et al., 2006, 

Pisani et al., 2007, Holton and Pisani, 2010). 

 The optimal ML trees derived for each single protein family were coalesced into a 

single data set, upon which the input tree bootstrapping approach, discussed in Section 

2.3.1.3, was implemented. One hundred pseudoreplicates were generated, and for each a 

MRP matrix was derived using the software package CLANN (Creevey and McInerney, 

2005). Parsimony analysis of these matrices was carried out in PAUP (Swofford, 1998) 

as follows: 10 heuristic searches with random sequence addition and TBR branch 

swapping. The resultant supertrees were then summarised, resulting in a majority rule 

consensus genomic supertree (see Section 2.3.1.3). Table 3.1 reports the number of genes 

used to obtain this supertree. 
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Table 3.1 Progression of protein family numbers at each stage of analysis.  

Unlike the data sets in Chapter 2, to reduce computational time, protein families with 

more than 4 species were identified first. It must be noted that a small number of families 

were unable to undergo the sequence alignment or model selection stages due to software 

specific issues with the families in question. 
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3.2.3.2 Integration of multi protein families into supertree reconstruction 

          Gene duplications present in the optimal ML tree of each multi protein family were 

reconciled according to the GTP method (see Section 1.3.2.3), as implemented in the 

DupTree software (Wehe et al., 2008) using the same settings outlined in Section 2.2.1.4. 

The resulting species trees were subject to the GTP-PTP test (see Section 2.2.1.5), and 

those that passed were deemed viable for supertree reconstruction. For the purpose of 

subsequent analyses, these species trees were considered analogous to a typical single 

protein family and were combined with the optimal single protein family trees to create a 

single comprehensive data set. 

 Again, due to restrictions imposed by the sheer size of this data set, input tree 

bootstrapping, as outlined for the supertree analyses in Section 2.3.1.3, could not be 

performed. Therefore, this analysis was limited to a single MRP matrix derived using the 

CLANN software. Subsequent parsimony analysis was carried out in PAUP under the 

aforementioned parameters (10 heuristic searches with random sequence addition and 

TBR branch swapping), with ensuing supertrees being summarised as before using the 

majority rule consensus method. See Table 3.1 for the number of genes (both single and 

multi) used to derive this supertree. Support for resultant supertrees was measured using 

the stsupport software of James Cotton, which implements the support measures defined 

by Wilkinson et al. (2005). 
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3.3 Results and Discussion 

3.3.1 Eukaryote phylogeny based upon single protein families 

 From the analysis of the single protein families, a total of 7,398 viable single 

protein families were identified for phylogenetic reconstruction (this spanned only 553 

species, as some were eliminated through filtering strategies). This number is strikingly 

small, however, it reflects the complex history of gene duplication that has featured in the 

evolution of eukaryotes.  Use of other strategies, such as that implemented in the 

Inparanoid software (O'Brien et al., 2005), may have proved better at accounting for such 

duplication events, than the approach used here. However, this is beyond the scope of this 

current study.  The resulting phylogeny can be seen in Figure 3.2. From this tree, it is 

apparent that single protein families alone are incapable of resolving the relationships 

among the eukaryotes.  

There is significant misplacement of the plants throughout the tree. Similarly, the 

chromalveolates, excavates and Amoebozoa are considerably dispersed; however, there 

does appear to be a localised concentration of taxa from each of these groups at various 

points (e.g. the bulk of the chromalveolates appear at the top left of the tree, the excavates 

towards the bottom right, as does the Amoebozoa). The opisthokonts form two distinct 

clusters (one extending across the majority of the top of the tree and one towards the 

centre right), which is indicative of poor resolution, with the extensive interspersal of 

several other groups contributing further to this problem. 

While this tree is clearly far from ideal, it does serve as an important stepping-

stone. Despite extensive misplacement of taxa throughout, the tree is not entirely devoid  



!

111 

 

 

 

Figure 3.2 Phylogenomic supertree of the eukaryotes using single protein families.  

This tree is based on 7,398 genes from 553 species. Although this tree does not recover 

the monophyly of any of the eukaryote supergroups, it is evident that some phylogenetic 

signal exists. This is an unrooted tree; with outgroup taxa being recovered at various 

positions within the tree. See Electronic Appendix for a nexus file of this tree.  
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of phylogenetic signal. Indeed, there seems to be a level of resolution, albeit minimal, 

suggesting that the addition of the multi protein families may help improve the resolution. 

 

3.3.2 A comprehensive eukaryote phylogeny 

To the 7,398 single protein families, a further 16,353 multi protein families were 

added, resulting in a gene sampling almost three times the size of that featured in the tree 

of Figure 3.2. The comprehensive phylogeny of all protein families can be seen in Figure 

3.3. In this tree, it can be seen that, overall, the resolution of the phylogeny has 

significantly improved, with all major groups manifesting more distinctly. Further to this, 

there is a notable improvement in the internal relationships within each group, as well as 

a marked reduction in spurious taxon placement. 

Importantly, the outgroup taxa appear together, providing directionality and a 

possible rooting position for the eukaryotes. An interesting aspect of the outgroup 

analysis is that, if the tree is rooted in its traditional position (i.e. between archaeabacteria 

and eubacteria) the eukaryotes do not emerge as the sister group of the archaebacteria, as 

one would expect under the 3D hypothesis. Instead, the eukaryotes appear as the sister 

group of the alpha-proteobacteria.  This is in accordance with what observed by Pisani et 

al. (2007) and Cotton and McInerney (2010), and reflects the fact that the majority of 

eukaryotic genes are of alpha-proteobacterial origin, as predicted by the ring of life 

hypothesis (e.g. Rivera and Lake, 2004, Pisani et al., 2007, McInerney et al., 2008, 

Cotton and McInerney, 2010).  

  The tree (see Figure 3.3) still shows a certain number of taxa with an unexpected 

phylogenetic assignment. For example, the microsporidian Antonospora locustae is 
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Figure 3.3 Phylogenomic supertree of the eukaryotes using single and multi protein 

families.  

A tree based on 23,758 genes from 550 species. Due to poor resolution, support values 

are not shown, but are provided in Electronic Appendix. 
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nested among the lophotrocozoans, rather than among the fungi.  Inspection of the visibly 

misplaced taxa shows that, in most cases (such as that of Antonospora), the misplaced 

taxon is represented in the data set by an EST collection, for which very few genes are 

available (see Table 3.2).  In some cases, even species represented by complete genomes, 

such as Giardia lamblia, are seen to be misplaced.  However, similar to what was 

observed with misplaced EST-based species, very few genes from these genomes were 

deemed viable for phylogenetic analyses. 

Other groups of species, such as the oomycetes (represented here by members of 

the genera Phytophthora and Aphanomyces), which are found in Figure 3.3 to nest among 

the plants, are also noticeably misplaced. However, it is interesting to note that these 

species are represented by relatively large EST collections, and therefore, their unusual 

placement cannot be imputed to lack of information.  Instead, as oomycetes (water 

moulds) are parasites of plants, it seems likely that such a placement might have 

biological significance, possibly reflecting LGT events between the plants and the 

oomycete species. Notably, it seems unlikely that this placement of the oomycetes could 

be the result of contamination, as multiple oomycete species are present in the data set, 

falling in two different parts of the plant tree (see Figure 3.3), depending on the genus to 

which they belong.   

All major groups (for example fungi, animals, plants, red algae, jakobids, 

Apicomplexa plus Dinophyceae) are seen to be monophyletic, suggesting that there is a 

significant amount of information in this data set. This result confirms the viability of the 

experimental procedure of amalgamating two, somewhat disparate, data types (complete 

and partial genomic data). Although the study of Hejnol et al. (2009) goes some way to 

employing a similar approach, their study is concerned with the improvement of gene  
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Table 3.2 Species with low coverage. 

Species removed to improve resolution and the number of trees (and gene/protein 

families) in which they were represented. 
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sampling. Here, it is shown that this protocol is a practical means of concurrently 

increasing taxon and gene sampling.  

However, overall the resolution of the final tree remains unsatisfactory for a 

number of reasons. For example, the relationships among the unicellular eukaryotes are 

not resolved according to the current understanding of high-level eukaryotic 

relationships. Although conformity to previous phylogenies should not be considered a 

measure of accuracy of the present result, it seems that the level of disagreement with 

previous studies is too high across the unicellular eukaryotic groups to confidently 

conclude that the results of this analysis are reliable. 

Therefore, to evaluate the extent to which the relationships in Figure 3.3 might be 

considered to be true, an additional analysis was performed in which all potentially 

misplaced taxa with limited genomic information were excluded. Unfortunately, this 

resulted in the loss of the only (three) Rhizarian representatives included in the taxon 

sampling. Further to the poorly represented taxa, species like the oomycetes, despite 

having sufficient genomic coverage, were excluded, as the biological implication of their 

misplacement, albeit of possible importance (to investigate a potential role of HGT in the 

evolution of their parasitism), is not the focus of this study. Finally, to reduce the 

dimensions of the data set, the Nematoda and the Platyhelminthes were also excluded. 

The decision to exclude representatives of these two animal phyla was made because: (1) 

they are fast evolving and could confound analyses if they are incorrectly resolved in the 

input trees, (2) the internal relationships within these groups are not of interest here, and 

(3) other, better behaving, ecdysozoans and lophotrochozoans are present in the data set. 

Results of this analysis are reported in Figure 3.4, where a further, significant, 

improvement in the resolution of the tree is observed. As before, the monophyly of major
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Figure 3.4 Phylogeny of the eukaryotes with problem taxa removed. 

A phylogenomic supertree for 474 eukaryote species, based on 20,737 gene families. 

Some poorly represented species that were visibly misplaced in Figure 3.3 have been 

removed, in addition to the Nematoda, the Platyhelminthes and the oomycetes. Here, a 

better overall resolution for the eukaryotes is observed, however, the five supergroup 

scheme is not upheld. See the Electronic Appendix for the support values for each node. 
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groups, such as the animals and fungi, continue to be upheld here, therefore, for ease of 

discussion the phylogeny is redrawn in Figure 3.5 with such groups collapsed.  In this 

reduced data set, some interesting differences in the global phylogeny are observed (in 

comparison with what is observed in Figure 3.3). Firstly, the Amoebozoa are now seen to 

bemonophyletic (see Figure 3.5), and are found basal to the animals, however, the even 

more basal placement of the Monosiga species suggests that this region of the tree 

persists as somewhat problematic. Although the traditional position of the Amoebozoa, 

basal to fungi + animals (i.e. the opisthokonts), is not recovered, the placement of the 

Amoeboza observed here (Figure 3.5) does support the union of Amoebozoa and 

Opisthokonta (i.e. the monophyly of the unikonts). 

Plantae and Chromoalveolata are not recovered as monophyletic groups (Figure 

3.5), with Rhodophyta emerging as the sister group to Haptophyta plus the stramenopiles. 

It is interesting to note that the non-monophyly of both these groups is also supported in 

all the analyses presented in the study of Hampl et al. (2009). Here (Figure 3.5), 

differently to Hampl et al. (2009), the arrangement of the chromoalveolates is not 

consistent with the SAR supergroup, as Alveolata (dinoflagellates and apicomplexans) 

emerges more basal than the stramenopiles. Although SAR is supported in a number of 

studies (Burki et al., 2007, Burki et al., 2008, Hampl et al., 2009, Burki et al., 2010), it 

must be noted that all report unrooted trees, therefore, SAR which can be defined more 

correctly as a clan, rather than a clade, might well turn out to be nothing more than a 

paraphyletic assemblage. As the validity of the SAR group is still to be tested, it can be 

suggested that the topology recovered here (Figure 3.5) may well be indicative of the true 

relationships.  
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Figure 3.5 General view of the eukaryote phylogeny. 

A simplified view of the tree in Figure 3.4. Here, the monophyly of the animals, 

Amoebozoa, fungi and plants can be seen. Excavata is not monophyletic, with the 

Kinetoplastida nesting within the outgroups. Chromoalveolata is also non-monophyletic, 

and is split into the Alveloata, towards the base of the tree, and the stramenopiles plus the 

Haptophyta, grouping with the Rhodophyta (red algae). Support at the nodes is 

determined by the V measure of Wilkinson et al. (2005), where V can range from 1 to -1. 

V=1 indicates that all input trees support the supertree clade, while V=-1 indicates that all 

input trees conflict with the supertree clade. 
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Irrespective of the monophyly of SAR, it is clear from this tree (Figure 3.5) that 

the problematic group here is not Rhodophyta, but the Haptophyta plus the stramenopiles, 

which nest inside Plantae.  Indeed, I suggest that the observed monophyly of Haptophyta 

plus the stramenopiles, is likely to be correct, however, the accuracy of their emergence 

as sister group to Rhodophyta is questionable. It is generally accepted that the chloroplast 

of Haptophyta + stramenopiles is secondary (Yoon et al., 2004), and is most likely a 

symbiont that used to be a free-living rhodophyte. It can thus be suggested that the 

grouping of Rhodophyta, Haptophyta and the stramenopiles is evidence of this symbiotic 

event, which, most likely, was followed by the transfer of genes from the symbiont to the 

nucleus host (as in the case of the origin of the Eukaryota).   

Monophyletic Excavata is not recovered in this tree (Figure 3.5), instead the 

excavates are found to be split into three groups, with the euglenids emerging as an 

independent lineage. In Figure 3.3, Euglena is found in a group with the Apicomplexa, 

with its position in Figure 3.5 suggesting a persistent attraction between these two 

groups. As Apicomplexa have a chloroplast (or a chloroplast derived organ, the 

apicoplast), it can be suggested that this attraction may reflect a complex history of 

secondary and tertiary endosymbioses.  Finally, the Kinetoplastida (Leishmania and 

Trypanosoma) are found nested amongst the outgroup taxa. This may be indicative of 

massive HGT from the prokaryotes, however, as this was not the case in Figure 3.3, this 

placement could also imply that the tree search is stuck in a suboptimal island of trees, 

thus necessitating the execution of a more extensive search.  

The emergence of the excavates basal to a Chromoalveolata-Plantae grouping (see 

Figure 3.5) is in keeping with the results of Hampl et al. (2009). Indeed, in general, the 

topology in Figure 3.5 is consistent with what is currently known of the chromalveolate 
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assemblage. Accordingly, it may be concluded the monophyly of Chromalveolata can be 

rejected. If Chromoalveolata is monophyletic, attraction with the rhodophytes 

notwithstanding, one would expect this group to be recovered. The question thus is, if 

Rhodophyta plus the stramenopiles + haptophytes represents one of the branches of a 

further endosymbiotic ring, where do the stramenopiles plus haptophytes nest in the 

eukaryotic tree?  This problem, as well as problems concerning the relationships of the 

excavates, may well be resolved using the phylogenetic signal stripping approach of 

Pisani et al. (2007).  

 Localised relationships aside, this phylogeny does provide a robust framework 

for the eukaryotes. It is interesting that, in general, Figure 3.5 is in keeping with the 

phylogeny presented by Hampl et al. (2009), and it is possible that disparity between 

these two schemes (i.e. the specific relationships of the chromalveolates and the recovery 

of the SAR group) can be attributed to the use of outgroup species in the analyses 

discussed here. Although far from complete, the phylogeny of the eukaryotes presented 

here can be considered a more than defensible starting point. 

 

3.4 Conclusion 

 While the integration of multi protein families into a data set of this size proved 

quite demanding, both on time and computational resources, it is shown here (with 

admittedly, an extreme case) to be feasible for large-scale phylogenomic studies. I feel 

that, where possible, this protocol should be adopted as standard. An obvious merit of 

such an approach is that genomic sampling will be significantly increased (in this study it 

triples), thus avoiding ‘trees of one percent’. This is important, as inferences on 
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phylogenetic relationships are more robust if they are made based upon all the evidence 

available (sensu Kluge, 1989). 

A second advantage to the use of multi protein families, as clearly exemplified by 

this analysis, is that they can significantly improve phylogenetic resolution. This will 

prove particularly pertinent to studies, such as the one discussed here, which are 

concerned with species that have experienced a complex history of gene transfer. 

Although the method of resolving gene duplications used in this analysis represents the 

current state of the art, as mentioned in Chapter 2, it is not ideal. As more and more 

studies opt for a comprehensive genomic approach, such as the one discussed here, it is 

expected that more sophisticated methods to account for gene duplication will be devised. 

 The eukaryote phylogeny is one of the greatest outstanding problems in 

evolutionary biology. Here, I have examined both the most extensive taxonomic and gene 

sampling of this group to date. My findings suggest that a more significant amount of 

phylogenetic information lies within genes that have experienced duplication, suggesting 

that phylogenomic studies to date have only begun to scratch the surface in relation to 

this domain. The phylogeny presented here, although rich in sampling, is a long way off 

addressing a significant portion of eukaryote diversity, particularly the unicellular 

eukaryotes. With increased genomic sequencing, and the consideration of genes with a 

history of duplication, it is certain that our view of the eukaryotes will continue to alter at 

the same pace as it has in the last number of years. 

 The phylogeny of the eukaryotes presented here is far from complete as there are 

still many technical aspects that need to be addressed (outlined in Section 3.5), and it is 

hoped that the implementation of these methodological improvements will contribute to 

the further improvement of the resolution of the tree. However, it must be acknowledged 
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that even in the light of such remedies, the incongruence observed may be a reflection of 

reality, due to the high level of lateral gene transfer and endosymbiont transfer in the 

genomes of the eukaryotes.  I thus suggest that current phylogenies proposed for the 

eukaryotes should be considered with caution. 

 

3.5 Future work 

 The major draw back in conducting a study of this scale is the huge time cost 

involved. Each step of the protocol was carried out for almost 24,000 protein families, 

however, this number was even greater for stages of the protocol that preceded the 

filtering strategies. Additionally, a study of this magnitude has tested the limits of 

computational resources currently available, both in terms of hardware and software. As 

such, a number of procedures relating to this study are ongoing. 

 In particular, the phylogenetic signal stripping analysis (Pisani et al., 2007) has 

not yet been completed, and it is expected that this approach will clarify the relationships 

of the stramenopiles, the Haptophyta, and potentially of the water moulds.  Similarly, it is 

anticipated that adoption of this approach will clarify the relationships within the 

Excavata (particularly Euglena), and amongst the Excavata and the Apicomplexa.  

Further studies in which I shall attempt to reintroduce the Rhizaria are still ongoing, as 

are studies in which all animal species will be reintroduced.  These will ultimately 

provide a much better picture of the evolutionary relationships within the Eukaryota. 

 Another issue that needs to be addressed here is the use of alternative strategies to 

eliminate LBA. While two of the approaches described in Section 2.1.5 have been 

employed thus far (namely, a large taxon sampling and appropriate outgroup selection), it 
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is clear that LBA persists as a major problem in this data set (e.g. with regard to the 

nematodes and flatworms). A similar approach to that used by Aguinaldo et al. (1997), 

where slow evolving, representative taxa, are used instead of an entire group, may prove 

useful in reducing LBA (as well as concurrently reducing, the taxon sampling and thus 

computational time). 
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Chapter 4: Shape related biases in phylogenetic reconstruction and 

their impact on our understanding of evolution 

4.1 Introduction 

  The explicit function of a phylogenetic method is to infer a phylogenetic tree; 

therefore, given appropriate data, any such algorithm will invariably recover a tree. 

However, despite the inevitable recovery of a tree by any phylogenetic method, it is 

widely known that the accuracy of the recovered phylogeny is not guaranteed (see 

Chapters 1 and 2). There are many potential biases that can hinder the recovery of an 

accurate phylogeny (see Section 1.2), some of which are encountered in the study 

described in Chapter 2 (e.g. long branch attraction). These biases are well known and 

many strategies exist to alleviate their impact, some of which are implemented, with 

success, in Chapter 2 (e.g. targeted taxon sampling). 

Such data-driven biases are problematic; however, it can be expected that with 

more robust methods of analysis, they will, to a large extent, become solvable.  A more 

fundamental (and often underestimated) problem is that phylogenetic methods may be 

biased toward returning a topology with a certain “shape” (see below), irrespective of the 

signals in the data.  This presents a problem, as methodological biases of this nature are 

effectively undetectable because they are not a property of the data, but rather of the 

method used to analyse it. Accordingly, such biases will equally apply to every data set 

and can result in the accumulation of substantial volumes of misleading results.  This is a 

particularly serious problem for supertree reconstruction, as biased input trees will result 

in the inference of a biased supertree. 
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Aside from being used to understand the genealogical relationships of a set of 

taxa, phylogenetic trees are often used as the fundamental basis for understanding large-

scale evolutionary trends (i.e. macroevolutionary patterns; Mooers and Heard, 1997, 

2002).  A classic use of phylogenies in this context is to identify adaptive radiations (see 

Harvey and Purvis, 1991), which, it is alleged, should leave strong signatures in 

phylogenetic trees. Although numerous alternative approaches have been devised to 

identify adaptive radiations (e.g. species through time plots), many of these methods have 

a disadvantage in that they require historical knowledge (in the form of fossils), which is 

not always available for a given group (see Mooers and Heard, 1997). To address this 

potential problem, methods have been developed that use tree shape (i.e. the level of 

balance of phylogenetic trees) to identify nodes in a tree that are representative of 

underlying adaptive radiations (see Guyer and Slowinski, 1993). The rationale behind 

tree shape based approaches is that lineages that undergo an adaptive radiation will 

contain more taxa because they have had a greater potential to speciate (Kirkpatrick and 

Slatkin, 1993). Consequently, this will be reflected in the phylogenetic tree as a more 

asymmetrical topology.  

The shape, and in particular the observed balance or symmetry (i.e. the degree to 

which nodes divide into subgroups of equal size; see Figure 4.1) of a phylogenetic tree 

could feasibly be ascribed to the tree reconstruction method (TRM) used to derive the 

phylogeny (Heard, 1992). Accordingly, approaches that use the shape of a tree to make 

inferences about evolutionary processes will return fallacious results, if such a bias exists. 

A number of studies have attempted to ascertain if a particular TRM is responsible for 

causing a bias with respect to tree balance. 
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Figure 4.1 The two extremes of tree balance. 

Tree (a) is a completely unbalanced, or pectinate, 8 taxon phylogenetic tree, while 

conversely tree (b) is the fully balanced topology for the same number of taxa.  
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Colless (1982) was the first to theoretically propose that trees of a cladistic origin 

were comparably more imbalanced than their phenetic counterparts, a contention that 

later gained experimental verification (Colless, 1995). However, because trees derived 

using classic phenetic approaches (e.g. UPGMA) were of poor quality and often 

misrepresented evolutionary relationships, the findings of these authors were quite 

correctly deemed to be of little biological significance. Additionally, in the case of 

UPGMA, midpoint-rooted trees are returned by default leading to the further implication 

of bias.  Later, a study by Huelsenbeck and Kirkpatrick (1996) rather surprisingly found 

that maximum likelihood produced trees that are more asymmetrical than those derived 

using any other method (including parsimony), while an earlier study by Heard (1992) 

found there to be no disagreement between alternative TRMs in terms of balance.  

Wilkinson et al. (2005), in the context of studying shape related biases in 

supertree reconstruction, pointed out that the MRP methods have the potential to generate 

biased supertrees. More precisely, they show that under the classic Baum and Ragan 

(1992) coding scheme (used in the supertree analyses of Chapter 2) there is the potential 

for resulting supertrees to be more asymmetrical than expected given the set of input trees 

(see Figure 4.2).  The authors proposed that this bias could be explained by the fact that 

parsimony distances are asymmetrical and, by definition, the recoding of an asymmetrical 

tree of n taxa will tend to have a smaller parsimony score than the recoding of a 

symmetrical tree with the same number of taxa (see Wilkinson et al., 2005). Although 

Wilkinson et al. (2005) confined the scope of this suggestion to supertree reconstruction, 

it could logically be extended to the analysis of standard character data under parsimony 

due to the equivalence between trees and characters (Estabrook et al., 1976). Therefore, it 

is possible that the observed shape bias of MRP may not be an inherent feature of this 
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Figure 4.2 Shape bias in the MRP supertree method. 

In this example (re-drawn from Wilkinson et al., 2005), when the MRP method is applied 

to a perfectly imbalanced input tree (1) and a perfectly balanced input tree (2) the 

resulting tree topology (3) is seen to be more imbalanced. 
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supertree method, but rather of parsimony more generally.  

If it is shown conclusively that parsimony has a shape bias, the impact on 

phylogenetics will be significant. For example, parsimony is still the method of choice in 

the analysis of morphological and paleontological data. This persists as the case despite 

the availability of a model of evolution for morphological characters (Lewis, 2001) and 

the concomitant ability to implement ML and Bayesian methods for such data. 

Phylogenies are also used to study the evolution of single morphological or life history 

characters. This is carried out by tests such as Felsenstein’s Independent Constrasts 

(Felsenstein, 1985), which, like the study of adaptive radiations, would be strongly 

influenced by the shape of the phylogeny used to study their evolution.  

Finally, as pointed out before, phylogenies are used to study large-scale adaptive 

radiations. If parsimony is biased towards the recovery of asymmetrical trees, using 

parsimony derived trees, say for a set of fossil species, would be ill advised, as the 

observed tree shape can no longer be considered a correct reflection of the underlying 

macroevolutionary process (e.g. speciation). A bias of this kind, which increases the 

probability of type I error (i.e. a false positive)4, will at best result in an overestimation of 

radiation in a lineage.  However, and more worryingly, it could result in the erroneous 

identification of adaptive radiations.  

It is thus clear that knowing whether parsimony (or indeed any phylogenetic 

method) is fundamentally biased with respect to tree shape is of the utmost importance. 

Surprisingly, since the study of Huelsenbeck and Kirkpatrick (1996), and despite the 

                                                
<(Note that a shape bias favouring symmetrical topologies, although problematic, in the 
context of studying large adaptive radiation, is less worrying as it simply implies that the 
null hypothesis will be more difficult to reject (i.e. the test will be more stringent) – as 
type II errors will be artificially increased.(
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discovery of similar biases in supertree methods (Wilkinson et al. 2005), investigation 

into the inherent tree shape biases of alternative phylogenetic methods has subsided. 

Instead, recent studies of tree shape, through the use of null models of tree balance, have 

focused on whether some biological forces are causing trees to be more imbalanced than 

expected in the absence of adaptive radiation (e.g. Harcourt-Brown et al., 2001, Blum and 

Francois, 2006). 

Here, in a return to earlier studies such as Huelsenbeck and Kirkpatrick (1996), I 

wish to determine if the TRMs most frequently used in modern phylogenetics produce 

topologies that are biased with respect to tree symmetry. Using the same genomic-scale 

data set of single protein families (from Chapter 2), trees were inferred under a variety of 

phylogenetic methods. Subsequently, the observed balance of the trees was measured, 

and compared under various statistical tests to determine which (if any) methods have a 

bias towards producing more asymmetrical (or symmetrical) trees. 

 

4.1.1 Tree balance metrics 

Various statistical measures of tree balance have been defined in the literature. 

However, many of these can be considered variants, measuring marginally differing 

characteristics of tree shape. Accordingly, only a cursory introduction for many tree 

balance metrics (TBMs) is afforded here. The study of Agapow and Purvis (2002) 

comparing alternative TBMs features an extensive list of tree balance metrics, which are 

(following the nomenclature of Agapow and Purvis, 2002):  (the Sackin index; Sackin, 

1972),  (unnamed variant of the Sackin index; Shao and Sokal, 1990, Sackin, 1972), 

(the Colless index; Colless, 1982, but see Heard, 1992),  (Shao and Sokal, 1990),  
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(Shao and Sokal, 1990),  (unnamed method of Fusco and Cronk, 1995; amended by 

Purvis et al., 2002),  (unnamed method of Agapow and Purvis, 2002) and Mean  (a 

further unnamed method of Agapow and Purvis, 2002). An earlier study of Kirkpatrick 

and Slatkin (1993), comparing six TBMs, considers a subset of the above, and 

additionally includes the R statistic (Furnas, 1984); a metric not strictly defined as a TBM 

but deemed a naturally appropriate measure of tree balance (see Kirkpatrick and Slatkin, 

1993). Finally, McKenzie and Steel (2000) relatively recently defined a simple measure 

known as the cherry count, . Of the above, the most widely used and useful TBMs are 

,  and , which are the specific focus of the remainder of this section.  

The Sackin index, , can more precisely be defined as a measure of tree 

imbalance, and for a given rooted tree, is calculated by summing the number of internal 

nodes between each terminal node and the root. More formally, if t is the number of 

terminal nodes, i is a given terminal node and  the number of nodes between i and the 

root, then the Sackin index is defined as: 

     [4.1] 

This definition is attributed to Shao and Sokal (1990) who introduced summing over all 

, while Sackin (1972) is credited with defining the b (branching) vector for 

phenograms (Shao and Sokal, 1990, Rogers, 1996), where a given b vector element, , 

can be considered analogous to  above. Simulation studies have found that the Sackin 

index is amongst the best performing measures of tree balance (Agapow and Purvis, 

2002, Kirkpatrick and Slatkin, 1993, Shao and Sokal, 1990), particularly for trees with a 

moderately large taxon sampling (Kirkpatrick and Slatkin, 1993). 
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 Like the Sackin index,  or the Colless index (Colless, 1982), can be more 

strictly classified as a measure of tree imbalance, where the higher the value, the greater 

the degree of imbalance. This metric is computed by summing up, over all interior nodes 

of a tree, the absolute difference ( ), between the number of terminal nodes that descend 

from each branch of the interior node j. As such the Colless index can be defined as: 

 j=1,…,k(3),    [4.2] 

where  is the number of internal bifurcations (which have a degree5 equal to 3 by 

definition) in a rooted, fully resolved tree (Shao and Sokal, 1990).  

 Along with proposing this metric, Colless (1982) additionally provided a 

normalising denominator to adjust for varying tree sizes. Heard (1992), however, 

provides an amended normalising denominator to account for errors in the original 

denominator of Colless (1982). Heard’s denominator, which was later confirmed by 

Colless (1995) to be correct, is as follows: 

               [4.3] 

where n is equal to the number of taxa in a tree. The Colless index can range from 0 to 1, 

with progression towards 1 representing increased imbalance. 

 Similar to the Sackin index, it has been shown that the Colless index ranks 

amongst the most powerful TBMs (Agapow and Purvis, 2002, Kirkpatrick and Slatkin, 

1993). Indeed, it is well known that there is a strong association between the Colless and 

Sackin indices, with the study of Shao and Sokal (1990) reporting them as “highly 

                                                
=(The degree of a node is the number of branches connected to that node. 
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correlated”. However, unlike the Sackin index, the Colless index frequently features as 

the TBM of choice for many studies. The Colless index has the advantage of being 

simple and transparent (Heard, 1992, Harcourt-Brown et al., 2001), and has the added 

benefit of being mathematically tractable (Rogers, 1996). 

The cherry count, , of McKenzie and Steel (2000), is calculated by counting 

the number of paired terminal nodes or leaves that are subtended from the same node. A 

single terminal node pairing of this kind is known as a cherry (See Figure 4.3); hence the 

cherry count of a tree is simply the number of cherries present in that tree. Unlike the 

Colless and Sackin indices, the cherry count behaves as a measure of tree balance and, as 

such, increases in value with respect to increased balance. Obviously, every TBM, 

irrespective of whether it was originally defined as a measure of balance or imbalance, 

can be designed as a measure of either.  For example, in the case of the normalised 

Colless index, by taking 1- of a given tree, this index can be transformed to a measure 

of tree balance. 

With the exception of , TBMs are usually not defined with a prescribed 

normalising denominator.  However, for the TBMs included in their study, Shao and 

Sokal (1990) proposed independent, general normalising corrections for both measures of 

tree balance and tree imbalance (including the Colless and Sackin indices). These 

normalising factors, however, failed to gain widespread adoption. With particular 

reference to the Colless index (the most commonly used TBM), this failure could be 

attributed to the subsequent amendment by Heard (1992) to the original normalising 

denominator of Colless (1982), and his finding that the normalising factors of Shao and 

Sokal (1990) are in fact size dependent (Heard, 1992). As such, TBMs are typically 

normalised with respect to a selected model of tree balance (see below). 
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Figure 4.3 Cherries on a phylogenetic tree.  

An unrooted phylogenetic tree with five leaves and . Cherries are seen at the 

leaves in shaded ovals (Redrawn from McKenzie and Steel, 2000). 

 

 



!

136 

4.1.2 Models of tree balance 

 Null models of tree balance are useful tools in the study of tree balance. By using 

such models as reference points, extrapolations regarding the distribution of tree balance 

in a data set, or evaluations of inferred tree topologies, are made possible (Mooers and 

Heard, 1997, Matsen, 2006). Use of these models as a benchmark for real data has 

become the most active line of research into phylogenetic tree shape (Matsen, 2006). 

There are three distinct, conventional models of tree balance defined; namely the Yule 

model, the proportion to distinguishable arrangements (PDA) model and the equiprobable 

types (EPT) model. However, the latter is generally not used in practice.  

 The Yule model (Yule, 1924), as well as being the first model of tree shape to be 

described, persists as the most widely used model of speciation (Blum and Francois, 

2006). This stochastic model, often referred to as the equal rate Markov (ERM) model, is 

one of the simplest representations of speciation. This model dictates that each of the 

branches, or extant species, has the same probability of bifurcating, or giving rise to a 

novel species (Steel and McKenzie, 2001). As such under this model, from an initial seed 

species, trees are constructed by selecting equivalently from species the next to speciate. 

The equal rates element of this model pertains to the fact that although the speciation rate 

may vary with time, this variation occurs throughout all lineages. Similar to the 

equiprobability of the speciation of any species occurring, in the occurrence of an 

extinction event, any of the extant species is equally likely to be eliminated. Note that the 

model does not strictly incorporate extinction, however, this can be resolved by 

considering the computed speciation rate to be equal to subtracting the extinction rate 

from the true rate of speciation, otherwise known as the net rate of diversification 

(Mooers and Heard, 1997). 
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 The PDA model (Rosen, 1978; see Figure 4.4), sometimes referred to as the 

uniform model, operates according to the underlying assumption that all tree topologies 

of n taxa are equally likely. That is, a species can be added to any point of a tree with 

equal probability. As such, this procedure is not strictly a model of evolution (McKenzie 

and Steel, 2000) as there is no process of growing trees. It has been suggested that this 

model is biologically driven, as Steel and McKenzie (2001) have shown that the PDA 

model can be achieved under conditions of explosive radiation (see Blum and Francois, 

2006). 

 The final null model of evolution, EPT (Simberloff et al., 1981) attracts little 

utilisation. This model dictates that, for a given tree, each different topology is equally 

likely (Mooers and Heard, 1997). As such under the EPT model, all unlabeled topologies 

are equiprobable, as opposed to the PDA model where all labelled topologies are 

equiprobable (Harcourt-Brown et al., 2001). While this model is known to produce the 

most balanced trees of all the models, it does not realistically reflect the evolutionary 

process, and is, therefore, safely overlooked by many researchers (Mooers and Heard, 

1997). 

 While the models discussed represent the most frequently used in investigations 

of tree shape and balance, they are considered far from ideal. Trees produced under the 

ERM model have been shown to be less balanced than those observed from real data sets 

(Purvis and Agapow, 2002, Pinelis, 2003; however, this may well be attributed to the fact 

that the method of inference cannot produce trees that fit this model due to intrinsic 

method-borne biases i.e. the subject of this chapter). Further to this, trees produced under 

the PDA model are even more imbalanced than those derived under the ERM model 

(Mooers and Heard, 1997, Matsen, 2006). Many more contemporary and promising  
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Figure 4.4 Schematic for the Proportion to Distinguishable Arrangements (PDA) 

model. 

Under this model, for an unrooted tree with 4 leaves, there are 5 possible edges where the 

next edge (blue line) can attach. (Redrawn from McKenzie and Steel, 2000). 
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models have been proposed (e.g. Losos and Adler, 1995, Heard, 1996, Harcourt-Brown et 

al., 2001, Steel and McKenzie, 2001), with several focusing on a variation (e.g. Harcourt-

Brown et al., 2001) or combination of the two models (Steel and McKenzie, 2001, 

Pinelis, 2003). These models, however, will not be discussed further, as the focus of this 

chapter is the methods themselves, not the extent to which trees derived under a 

particular method fit the expectations of a given model. 

 

4.2 Materials and Methods 

4.2.1 Tree reconstruction 

For this study, the large-scale genomic data set termed (2) as per section 2.3.1.1 

was selected for analysis.  This data set was chosen specifically as it has a proven and 

definite phylogenetic signal (i.e. all protein families have in a previous analysis passed 

the PTP test; see section 2.2.1.3), which resulted in a robust supertree topology (see 

Figure 2.6). Single protein families emerging from the protocol described in section 

2.3.1.2 were used to test four tree reconstruction methods, namely maximum likelihood 

(ML), maximum parsimony (MP), neighbour joining (NJ) and Bayesian inference. Since 

supertree analysis of the aforementioned 2.3.1.1 data set (see Figure 2.6) required the 

phylogenetic analysis of each protein family under ML, trees constructed using PhyML 

(Guindon and Gascuel, 2003), as per section 2.3.1.2, could be used directly in this 

analysis. 

 PAUP (Swofford, 1998) was used to generate trees for these protein families (i.e. 

from section 2.3.1.2) under both the MP and NJ criteria. For the MP analysis, each 

individual protein family data set was allowed to run for 6 hours, with each resulting tree 
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being retained. Settings were as follows: 100 repetitions with heuristic search with the 

MulTrees option set to on. MP analyses resulted in multiple trees for several of the 

protein families. For the NJ method, similar to the ML reconstruction, analysis of each 

protein family resulted in a single tree. Distances were calculated using observed 

distances (P-distances) and no gamma correction.  These conditions are obviously 

artificial and model selection might influence the topology of the recovered tree (see 

below for details).  However, the use of P-distances should be sufficient here, as the 

scope of the study is not to recover true trees, but rather a global pattern in the data in 

terms of tree shape. 

Finally, to carry out a Bayesian-based phylogenetic reconstruction of the protein 

families, the software PhyloBayes (Lartillot and Philippe, 2004) was used. For each data 

set two independent runs were performed, all of which were carried out under the LG 

model (Le and Gascuel, 2008). Convergence of the two runs was determined using the 

automatic stopping rule of PhyloBayes. From each independent run a burn-in of 100 trees 

was disregarded. A sample of inferred trees for each protein family was then collected 

(using a PERL script) by extracting one tree in every 100 from each of the independent 

runs. In addition to this approach, a consensus tree was derived for each protein family 

using the bpcomp program, as per a typical PhyloBayes analysis. These two sets of 

Bayesian trees (those directly sampled from the chains, and the majority rule consensus 

trees derived from the trees in these chains) were used interchangeably as representatives 

of the Bayesian tree reconstruction method in subsequent analyses. 

To ensure as much homogeneity as possible in the study design, for each protein 

family a corresponding rooting position was imposed on the resultant trees of each TRM. 

That is, for example, the ML tree derived for a particular protein family was rooted 
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according to the same taxon as the NJ derived tree for the same protein family. The most 

divergent species in the data set is Nematostella vectensis, and where present in a protein 

family, this taxon was used as the outgroup. If this taxon did not feature in a protein 

family the next most divergent species, Trichoplax adherans was selected instead. Finally 

if neither of the aforementioned species were present in a protein family, the first species 

found when reading the sequence alignment of that family was set as the default 

outgroup.  This selection strategy is arbitrary; however, as the aim of this study is to 

identify global trends in the data, and not the correct relationships among the ingroup 

species, this rooting scheme should not incur bias (as long as the same outgroup is used 

for all the trees derived for a given gene family). 

 Although all gene families were subjected to a robust assessment of phylogenetic 

signal, some additional selection criteria to preclude additional sources of error were 

implemented. Firstly, only trees with more than four taxa were selected for further 

analysis. Four taxon trees are uninformative for this experiment as a rooting strategy 

based on the use of one outgroup species will, by default, make any such tree fully 

imbalanced.  Further to this, it has been suggested that only trees with 7 or more taxa 

should be considered when using the Colless TBM. This is because with lower numbers 

of taxa, the standard deviation of the index becomes so high, that any value for a given 

tree, under various kinds of models of tree balance, is to be expected (Rogers, 1994, 

Rogers, 1996, Harcourt-Brown et al., 2001). Indeed, it appears that this effect is not just 

limited to the Colless index, with Kirkpatrick and Slatkin (1993) suggesting it to be the 

case in a more general context, citing an even stricter cut off limit of 8 taxa. This 

problem, however, is somewhat extraneous here, as speciation or extinction events are 

not the concern of this study, but rather the propensity of tree reconstruction methods to 
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produce trees with an observed degree of balance or imbalance. Accordingly, the use of 

models of tree balance to normalise the Colless index is avoided.  However, the large 

sample size of protein families did afford the opportunity to err on the side of caution, 

therefore only trees with 7 or more taxa were considered for analysis. 

 A further filtering condition was implemented: families were eliminated from the 

study if their MP analysis resulted in more than 100 trees. This was done in accordance 

with the study of Harcourt-Brown et al. (2001), where it was suggested that in instances 

where data sets produced high numbers of most parsimonious trees (MPTs), it might be 

expected that each topology put forward becomes essentially arbitrary. While these 

authors do stress that there is inherently no inverse relationship between the amount of 

MPTs and phylogenetic accuracy, to observe prudence, their approach was adopted here. 

As such, families that under parsimony attained more than 100 MPTs were not 

considered. After these precautionary measures were taken into account, a sample of 

1,008 protein families was deemed suitable for further analysis. 

 

4.2.2 Calculation of tree balance metrics 

Trees passing the above stringency measures were then assessed for their relative 

degree of balance. To do this two balance metrics were selected: the Colless index and 

the cherry count. As Shao and Sokal (1990) find a strong correlation between the Sackin 

and Colless indices, it was deemed sufficient to implement only one measure of 

imbalance here, selecting the Colless index due to its intuitiveness and model 

independent normalising denominator.  
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The cherry count was additionally selected in order to conduct a more 

comprehensive study. The use of the cherry count allows for a comparison of results 

obtained using two independent methods, thus controlling for biases that may have been 

introduced by the use of a specific TBM. However, it must be noted that as a TBM the 

cherry count is less sensitive than the Colless index (Mark Wilkinson, personal 

communication). This is important, as it could serve to explain differences between 

results obtained using these measures. Currently, no method of normalising the cherry 

count that precludes the use a model of tree balance has been defined. However, for this 

study the use of non-normalised cherry counts should be irrelevant as comparisons are 

always made between the same protein families under different TRMs, thus the number 

of taxa remains invariable.  

For the ML and NJ trees the cherry count was calculated using the APE package 

(Paradis et al., 2004) as implemented in the R program suite. While theoretically the 

cherry count statistic can be calculated for both binary and non-binary trees, currently the 

APE package only supports its computation for binary trees. Accordingly, if necessary, 

trees were firstly resolved using the APE function “multi2di”. It has been suggested that 

polytomies are more likely to be representative of insufficient knowledge rather than a 

genuine multifurcation and, as such, polytomous trees should not be considered in studies 

of tree balance (Heard, 1992). However, for the purposes of our comparison, which only 

considers tree reconstruction methods when applied to the same molecular data set, the 

resolved trees provided by the multi2di function were deemed acceptable. This is because 

it is expected that random resolution of polytomies on a data set of 1,008 trees should not 

introduce any directional bias in the result. By default the APE function “cherry” reports 

the number of cherries on a given phylogenetic tree, as well as the probability of that 



!

144 

cherry count being observed under two null models of tree balance. As the use of such 

models is avoided in this study, only the raw cherry count was extracted for each 

considered tree. 

 To calculate the Colless index for the ML and NJ trees, apTreeshape (Bortolussi 

et al., 2006), a companion package of APE, specifically dedicated to the analysis of tree 

shape, was used. As the Colless index can only be applied to binary trees, the APE 

function, multi2di, was again used to resolve any polytomies present in the input trees. 

The Colless function in APE generally employs the Yule or PDA models of tree balance 

for standardisation of the measure.  To remove any association with these models the 

“norm parameter” was set to “null”. Normalisation of the resultant Colless index was 

then carried out using an R script (see Electronic Appendix), according to the following 

normalising denominator:  (Heard, 1992; confirmed by Colless, 1995), 

where n is equal to the number of taxa in the tree in question.  

For the MP trees the cherry count and Colless index were calculated in the same 

way as above, however, in this instance it was done for every MPT arising from the 

analysis of a given protein family. Often, in parsimony analyses, a strict (Sokal and 

Rohlf, 1981) or majority rule consensus (Margush and McMorris, 1981) tree is used to 

summarise all MPTs derived for a given data set. As I wanted to ensure that the average 

shape of the recovered MPTs was not misrepresented by the consensus method, the shape 

of each MPT was individually measured using both TBMs. The resultant TBM values 

were merged (independently of each other; i.e. all the cherry counts were combined 

separately to all the combined Colless index values), and from these the mean, mode and 

median values, for each protein family were calculated. These average statistics, in 
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addition to the TBM values of a random MPT per protein family were used for further 

analysis. All average statistics were computed using R scripts (see Electronic Appendix). 

For the Bayesian trees, the cherry count and Colless TBMs were first calculated 

for each tree in the sample selected from all those produced by the PhyloBayes analysis 

(this was repeated for all protein families considered). In a similar fashion to the MP 

trees, the summary statistics (mean, median and mode) of the total cherry count and 

normalised Colless index values were computed for each protein family. Additionally, a 

single tree per protein family was selected at random from those produced by PhyloBayes 

(after convergence), for which the cherry count and Colless index were calculated and 

used for further analysis. Note that, in selecting the random trees, both PhyloBayes 

“chains” were considered. As above, all average statistics and TBMs were calculated 

using R scripts (see Electronic Appendix). Further to the above, an additional class of 

Bayesian tree was used in this study. In general, the tree reported in the Bayesian analysis 

of a given data set is the majority rule consensus of the trees sampled in both chains 

(which should be an unbiased estimator of the trees in the sample – Holder et al., 2008), 

therefore, for each protein family TBMs of the Bayesian consensus tree were also 

calculated and used for further analysis. 

 

4.2.3 Comparison of methods and statistical testing 

The computed Colless and cherry counts, for each tree reconstruction method, 

were then used to perform a series of statistical tests. The study design is such that the 

TBM values derived from every protein family, analysed under each of the considered 

phylogenetic methods, are directly compared. Huelsenbeck and Kirkpatrick (1996) 
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suggested that balance metrics for the same data set, analysed under different 

reconstruction methods, are not independent and therefore cannot be used to test for 

variation between methods using standard statistical approaches. While this assertion is 

true, there are various statistical tests that can be used to detect within-subject (in this 

case the subjects being the protein families) variation, thus avoiding this limitation. 

A total of 16 comparisons were carried out, four per TBM, using the two 

categories of Bayesian trees described above. All sixteen data comparison contained the 

full complement of calculated TBMs for both the ML and NJ trees, and varied in the type 

of MP and Bayesian value included. In one set of data comparisons the mean of the MP 

and Bayesian sample values of a given TBM were used, in another the mode, and so 

forth, up to a total of eight data comparisons (4 per TBM). Finally for the last eight data 

comparisons, MP-values of each TBM were separated as before, while the full 

complement of the Bayesian consensus values for each TBM were used. In this way the 

ML and NJ TBM values remained the same in all comparisons. See Table 4.1 for a list of 

data types included in each comparison performed. 

To measure variance between the data comparisons a parametric test called 

analysis of variance (ANOVA), was implemented. For my study design, where the same 

subject is exposed to various treatments, a specific type of ANOVA, known as repeated 

measures ANOVA (RM-ANOVA) was required. In order to carry out a RM-ANOVA, 

the data comparisons were first tested to see if they upheld the assumptions of this 

parametric test. The power of ANOVA relies on the data adhering to these conditions, 

which are as follows: each data group must be independent of the others and the data 

groups must follow a normal distribution. RM-ANOVA additionally assumes that the 

variance observed between groups is equal across all groups, an assumption known as 
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Table 4.1 The 16 classes of data comparisons carried out. 

In order to conduct a truly comprehensive investigation of the possible inherent shape 

biases of alternative phylogenetic methods, it was necessary to consider each composite 

aspect associated with certain methods. For the parsimony trees, the use of consensus 

approaches was avoided to determine the exact behaviour of this inference method. 

Indeed, this led to greater homogeneity between the parsimony trees for different protein 

families, as not all families result in MPTs and, as such, do not require the use of 

consensus methods. For the Bayesian method of tree inference, two classes of trees were 

considered, both a random sample and the consensus of all trees sampled per protein 

family. Here, unlike the parsimony method, the consensus approach is considered, as this 

is a reflection of how Bayesian trees are inferred in reality, i.e. a consensus approach is 

consistently used for every protein family and has been shown as the appropriate way to 

summarise the sample of trees (Holder et al., 2008). However, to rule out any underlying 

features of the consensus approach for each protein family a sub-sample from each chain 

was additionally selected.  

 

 



!

148 

sphericity. It is generally accepted that ANOVA is remarkably robust to deviations from 

normality (Box and Andersen, 1955, Lindman, 1974), however, breach of the sphericity 

assumption still poses a problem as the RM-ANOVA p-values become untrustworthy. In 

truth, it has been well documented that the majority of empirical data sets are unlikely to 

adhere to the stringent sphericity assumption (Vassey and Thayer, 1987, Overall and 

Doyle, 1994, Keselman, 1998). However, for such cases, it should be noted that two 

corrections for violations of sphericity exist, namely the Greenhouse-Geisser (Geisser 

and Greenhouse, 1958) and Huynh-Feldt (Huynh and Feldt, 1976) corrections. These 

methods, which operate in a similar manner, amend the degrees of freedom relating to the 

F value of the RM-ANOVA to produce a p-value that can be considered a robust 

alternative to that produced by an uncorrected RM-ANOVA (Keselman, 1998). 

As previous analyses of this nature have reported a violation of the assumptions 

of RM-ANOVA (Heard, 1992), it is to be expected the same will be true for the data 

discussed here. However, for the sake of completeness, adherence to the assumptions was 

tested. Each data comparison was assessed for a normal distribution using the Shapiro-

Wilk test (Shapiro and Wilk, 1965). This test produces a W test statistic, which if, for a 

given sample, is particularly small, is representative of a departure from normality. This 

test, implemented in R, returns a p-value, from which the null hypothesis, that the sample 

follows a normal distribution, can be tested. See Table 4.2a & b for the results of the 

Shapiro-Wilk test for each data partition.  

The sphericity of each of data comparison was then tested using Mauchly's 

sphericity test (Mauchly, 1940). This test essentially determines whether a covariance 

matrix of the within-subject variables is proportional to the identity matrix. A matrix is 

said to be spherical if it has equal variances and covariance of 0. This test, implemented 
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Table 4.2a Shapiro-Wilk Test (Bayesian Consensus). 

Results of the Shapiro-Wilk normality test for data comparisons containing the Bayesian 

consensus trees. W is the test statistic. The null hypothesis is rejected for p-values < 0.01. 
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Table 4.2b Shapiro-Wilk Test (Bayesian Sample). 

Results of the Shapiro-Wilk normality test for data comparisons containing the Bayesian 

sample trees. W is the test statistic. The null hypothesis is rejected for p-values < 0.01. 
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in R, using the Car 2.0-2 package (Fox and Weisberg, 2010), produces a p-value, which if 

less than 0.05 indicates a violation of sphericity. See Table 4.3 for the results of 

Mauchly's sphericity test.  

Despite violation of both the normality and sphericity assumptions, sixteen one-

away RM-ANOVAs in total were carried out as follows: four per TBM for each data 

partition, according to the average statistics (i.e. mean, median and mode) and one for the 

random sample from a particular data set. Similar to the tests of the assumptions of 

ANOVA, these were carried out in R, and required the Car 2.0-2 package (Fox and 

Weisberg, 2010). All p-values were then adjusted according to the Greenhouse-Geisser 

and Huynh-Feldt corrections. One final correction to the all ANOVA p-values was 

carried out, to account for the fact that multiple comparisons are being conducted. This 

correction, namely the Bonferroni correction, imposes a significance level of alpha 

divided by the number of considered comparisons. This correction strategy is considered 

more stringent than other corrections of this nature (Sokal and Rohlf, 1995), and is thus 

the most widely used multiple comparison correction strategy. Here, as ultimately 32 

multiple comparisons (including the Friedman test described below) will be carried out, 

significance at the 0.01 level, will correspond to a Bonferroni corrected p-value of 

0.00031. 

As significant differences between treatments were found in all our RM-

ANOVAs (see Section 4.3.1), it was necessary to determine in each case which of the 

TRMs was contributing to the detected variance. In order to do this a comparison 

between means was conducted. Comparisons of variance (or means) can be carried out in 

two ways, either a priori or a posteriori depending on whether there is a question about 

the data defined before the ANOVA is carried out. There is an important difference 
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Table 4.3 Mauchlys’s sphericity Test. 

Results of Mauchly’s sphericity test for data comparisons containing the Bayesian 

consensus trees. The null hypothesis is rejected for p-values < 0.01. 
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between planned (a priori) and unplanned (a posteriori) comparisons of means as the 

significance levels are different for the two. Here, as this experiment is addressed without 

penchant towards any opinion on the data, an a posteriori test, known as Tukey’s 

honestly significant difference method (Tukey HSD test), was conducted. The Tukey 

HSD test is based upon a statistic called the studentized range, which tests differences 

between the means of paired samples, provided the samples are of equal size (Sokal and 

Rohlf, 1995). In the Tukey HSD the probability of this difference is also reported. The 

result of this test, again implemented in R, can be seen in Section 4.3.1. 

To bolster confidence in RM-ANOVA results, in light of violations to its 

assumptions, I additionally performed the Friedman test (Friedman, 1937) on each of the 

data comparisons (16 in total, carried out as per the ANOVA above), implemented in R. 

The Friedman test can be considered the non-parametric equivalent of RM-ANOVA, and, 

as such, differently from standard RM-ANOVA, it does not assume normality or 

sphericity. The null hypothesis of the Friedman test assumes that all subjects have come 

from a population with the same median, essentially considering all treatments to have 

the same effect (Siegel and Castellan, 1988). Like the parametric tests above the 

Friedman test was implemented in R, results of which can be seen in Section 4.3.1. 

As the Friedman test identified significant variance between our subjects it was 

necessary to conduct a post-hoc test to determine between which TRM methods this 

variance was occurring. To do these pairwise comparisons, a statistical measure called 

the Wilcoxon-Nemenyi-McDonald-Thompson test (Hollander and Wolfe, 1999) was 

used.  Again this test was implemented in R and required the Coin package (Hothorn et 

al., 2008). Results can be seen in Section 4.3.1. 
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4.2.4 Testing of implementation bias 

Considering the importance of the ML tree reconstruction method in molecular 

phylogenetics it was deemed necessary to rule out any bias incurred due to the mode of 

implementation, i.e. the software used to execute this method. Accordingly, another ML 

software, RAxML (Stamatakis et al., 2005), was used to derive phylogenetic trees, for 

which the degree of balance was calculated by means of the TBMs used above. 

Tree reconstruction via RAxML was implemented for all 1,008 families passing 

our stringency tests. To facilitate this, the amino acid model specifications returned by 

Modelgenerator (Keane et al., 2006) as per section 2.2.1.3, were used. Upon execution of 

RAxML, the number of substitution rate categories for each protein family was extracted 

from the output of Modelgenerator. For all other RAxML parameters default settings 

were maintained. The resultant trees were rooted as described above (see Section 4.2.1), 

and the TBMs for each tree were computed as outlined for the NJ and ML reconstruction 

methods. These values were then merged for use in further analyses. The TBM values 

calculated for the PhyML derived trees (labelled ML above) were additionally used here. 

Statistical testing of both sets of combined TBMs was then carried out to determine if 

there was a significant difference between the degree of balance between trees obtained 

using RAxML and those derived using PhyML. 

Due to the non-normal distribution of the balance values in the considered 

samples, the Wilcoxon-Mann-Whitney (u test), which is the non-parametric equivalent of 

Student’s t test (effectively a special case of ANOVA), was selected to determine 

significant variance between the two samples. The u test, one of the most powerful of all 

non-parametric tests, is frequently used to test if two independent samples have the same 

distribution, in cases where it is wished to avoid the assumptions of the t test (Siegel and 
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Castellan, 1988). The u test, like all previous statistical tests, was applied to the RAxML 

and PhyML samples using R, the results of which can be seen in Section 4.3.2. 

Finally, to test the extent to which amino acid model selection could have 

impinged upon the observed results (particularly for the Bayesian analyses which were all 

performed under the LG model), two further PhyloBayes analyses were performed. Both 

supplementary analyses were carried out according to the same protocol as the first 

PhyloBayes run, but differed in the amino acid model specification. The additional 

models selected were CAT (Lartillot and Philippe, 2004) and JJT (Jones et al., 1992), as 

these two models are frequently used in phylogenetic studies. Additionally, selection of 

these models represented a sample from the two ends of a spectrum of model 

development, with JTT being an older model, derived under a parsimony-based approach, 

and CAT being a modern, heterogeneous model (with LG lying in between). The general 

expectation is that JTT should be, on average, the worst fit to the data, while conversely 

CAT should provide the best, with the fit of LG (which is an improvement upon the 

WAG model, which in turn was an improvement upon the JTT model) resting 

approximately in the middle. 

The resultant trees of these PhyloBayes analyses were dealt with in the same 

manner as the first PhyloBayes analysis. That is, for each amino acid model, TBMs were 

calculated for a sub-sample of trees per protein family and, additionally, for the 

consensus tree of that protein family. From the TBMs obtained from the trees in each 

sample, the mean, median, and mode were calculated and respectively combined, while 

the TBMs for a random tree per gene were also computed. Finally, the TBMs for the 

consensus trees were combined, for both TBMs respectively. Ten RM ANOVAs were 

then carried out as follows: one per average statistic and random partition per TBM (i.e. 
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eight in total for the sample trees, and one per TBM for the consensus trees; See Section 

4.3.3). 

 

4.3 Results and discussion 

4.3.1 Analyses of variance: TRMs 

Box plots of all Colless index values can be seen in Figure 4.5a-h, while box plots 

of all cherry count values can be seen in 4.6a-h (data transformations, i.e. logarithm and 

square root of these values can be seen in Appendix A2). Each constituent ANOVA in 

this study established that there is a significant difference in terms of tree shape between 

the various tree reconstruction methods considered. This is true for both the Colless index 

and cherry count TBMs, and for each variation of the data used (i.e. average values, 

random value, Bayesian sample or consensus tree). In all cases, the raw p-value reported 

is < 2.2e-16 (this being the lower bound for ANOVA p-values returned by R), which is 

upheld by both the Greenhouse-Geisser (GG) and Huynh-Feldt (HF) corrections that 

account for violation of the sphericity assumption (see Table 4.4a & b). Here, in the 

interest of being conservative, the upper bound of the p-value range is assumed, 

therefore, the p-values for all ANOVAs are considered to be 2.2e-16. Each observed p-

value is considerably lower than the Bonferroni corrected significance level of 0.00031 

and as such the null hypothesis, that the TRMs have equal variance, can be rejected. 

Results of the Friedman test are in accordance with those reported for the 

ANOVA, however, more precise p-values are returned by this test (see Table 4.5a & b). 

For the Colless index TBM, the smallest p-value (1.54e-22) is observed in the data 
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Figure 4.5a Box plot of mean Colless values featuring Bayesian con. trees. 

 

 

Figure 4.5b Box plot of median Colless values featuring Bayesian con. trees. 
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Figure 4.5c Box plot of mode Colless values featuring Bayesian con. trees. 

 

 

Figure 4.5d Box plot of random Colless values featuring Bayesian con. trees.
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Figure 4.5e Box plot of mean Colless values featuring Bayesian samp. trees. 

 

 

Figure 4.5f Box plot of median Colless values featuring Bayesian samp. trees.
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Figure 4.5g Box plot of mode Colless values featuring Bayesian samp. trees. 

 

 

Figure 4.5h Box plot of random Colless values featuring Bayesian samp. trees. 



!

161 

 

Figure 4.6a Box plot of mean cherry count values featuring Bayesian con. trees. 

 

 

Figure 4.6b Box plot of median cherry count values featuring Bayesian con. trees. 
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Figure 4.6c Box plot of mode cherry count values featuring Bayesian con. trees. 

  

 

Figure 4.6d Box plot of random cherry count values featuring Bayesian con. trees. 
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Figure 4.6e Box plot of mean cherry count values featuring Bayesian samp. trees. 

 

 

Figure 4.6f Box plot of median cherry count values featuring Bayesian samp. trees. 
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Figure 4.6g Box plot of mode cherry count values featuring Bayesian samp. trees. 

 

 

Figure 4.6h Box plot of random cherry count values featuring Bayesian samp. trees.
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Table 4.4a ANOVA Bayesian Sample. 

Results from the 8 ANOVAs conducted using the average statistic, random and Bayesian 

Sample values. The F value is the statistic measure in the ANOVA. Pr(>F) is the p-value, 

while Pr(>F[GG]) and Pr(>F[HF]) are the Greenhouse-Geisser and Huynh-Feldt 

corrected p-values respectively(*** p < 0.001). 
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Table 4.4b ANOVA Bayesian Consensus. 

Results from the 8 ANOVAs conducted using the average statistic, random and Bayesian 

consensus values. Pr(>F), Pr(>F[GG]) and Pr(>F[HF]) are as per Table 4.4a. 
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Table 4.5a Friedman Test Bayesian sample. 

Results from the 8 Friedman Tests conducted using the average statistic, random and 

Bayesian sample values.  

 

 



!

168 

Table 4.5b Friedman Test Bayesian consensus. 

Results from the 8 Friedman Tests conducted using the average statistic, random and 

Bayesian consensus values. 
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comparison of the median values of the Bayesian sample, while the largest p-value 

(4.30e-15) is seen in the data comparison of the mode values of the Bayesian sample also. 

Conversely, for the cherry count the most significant variance (p-value of 1.09e-35) was 

observed between the mode values of the data comparison featuring the Bayesian sample, 

while the largest p-value (3.02e-13) was observed in the data comparison of the random 

values containing the Bayesian consensus. At the Bonferroni corrected 0.00031 

significance level, all Friedman test p-values reject the null hypothesis that the TRMs 

have the same mean. 

As it was clear that there was a significant variance in the balance of trees 

produced by varying TRMs, it was necessary to determine which TRMs were 

accountable. This was achieved in two ways: for the ANOVA data sets, Tukey’s HSD 

test was carried out (see Table 4.6a-d) and, for the non-parametric data sets, the 

Wilcoxon-Nemenyi-McDonald-Thompson test was carried out (see Table 4.7a-d). From 

the results of both post hoc tests it can be seen that there is a significant variance between 

PhyML and all other TRMs. This is true for the cherry count and Colless index, when 

both the Bayesian consensus and sample values are used, and is reflected in all 32 data 

comparisons (see Table 4.8). From examining the box plots it can be seen that PhyML is 

consistently and considerably the most balanced tree reconstruction method as measured 

by the Colless index (see Figure 4.5a-h). This trend, however, is significantly less 

pronounced from the cherry count TBM, with the median band of the PhyML and NJ 

methods continually appearing to be equal (see Figure 4.6a-h), an observation that can 

additionally be extended to the Bayesian TRM when the consensus tree values are used 

(see Figure 4.6a-d). This is not unexpected considering the cherry count is less sensitive 

than Colless index values. 
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Table 4.6a Tukey HSD Test Bayesian consensus trees (Colless index). 

Results from Tukey’s Honestly Significant Difference test performed on the mean, 

median, mode and random Colless index values, featuring the Bayesian consensus trees. 

Significant variance between the groups is measured at the 0.01 level.  
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Table 4.6b Tukey HSD Test Bayesian consensus trees (cherry count). 

Results from Tukey’s Honestly Significant Difference test performed on the mean, 

median, mode and random cherry count values, featuring the Bayesian consensus trees. 

Significant variance between the groups is measured at the 0.01 level. 
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Table 4.6c Tukey HSD Test Bayesian Sample trees (Colless index). 

Results from Tukey’s Honestly Significant Difference test performed on the mean, 

median, mode and random Colless index values, featuring the Bayesian sample trees. 

Significant variance between the groups is measured at the 0.01 level. 
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Table 4.6d Tukey HSD Test Bayesian sample trees (cherry count). 

Results from Tukey’s Honestly Significant Difference test performed on the mean, 

median, mode and random cherry count values, featuring the Bayesian sample trees. 

Significant variance between the groups is measured at the 0.01 level. 
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Table 4.7a Wilcoxon-Nemenyi-McDonald-Thompson Test Bayesian consensus trees 

(Colless index). 

Results from the Wilcoxon-Nemenyi-McDonald-Thompson test performed on the mean, 

median, mode and random Colless index values, featuring the Bayesian consensus trees. 

Significant variance between the groups is measured at the 0.01 level. 
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Table 4.7b Wilcoxon-Nemenyi-McDonald-Thompson Test Bayesian consensus trees 

(cherry count). 

Results from the Wilcoxon-Nemenyi-McDonald-Thompson test performed on the mean, 

median, mode and random cherry count values, featuring the Bayesian consensus trees. 

Significant variance between the groups is measured at the 0.01 level. 
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Table 4.7c Wilcoxon-Nemenyi-McDonald-Thompson Test Bayesian sample trees 

(Colless Index). 

Results from the Wilcoxon-Nemenyi-McDonald-Thompson test performed on the mean, 

median, mode and random Colless index, featuring the Bayesian sample trees. Significant 

variance between the groups is measured at the 0.01 level. 
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Table 4.7d Wilcoxon-Nemenyi-McDonald-Thompson Test Bayesian sample trees 

(cherry count). 

Results from the Wilcoxon-Nemenyi-McDonald-Thompson test performed on the mean, 

median, mode and random cherry count, featuring the Bayesian sample trees. Significant 

variance between the groups is measured at the 0.01 level. 
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Table 4.8 Post hoc test summary. 

Combined results of the Tukey HSD and Wilcoxon-Nemenyi-McDonald-Thompson test 

tables above. The number of times each TRM group is reported as having significant 

variance in the aforementioned tables is counted here. This is categorised according to the 

type of Bayesian tree included in the data comparison, and sub-categorised according to 

the TBM used. The maximum count possible for each TRM group per sub-category is 

eight, while the total count possible for each TRM group is 32. 
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Both post hoc tests report a variance between the MP and Bayesian TRMs in just 

under half of the data comparisons, however, this is limited to those where the Bayesian 

consensus trees are used (see Table 4.6a & b). As such, it appears that this effect can be 

attributed to the use of a consensus tree approach in some of the Bayesian analyses. 

Inspection of the box plots shows that when the consensus tree values are used, the 

degree of imbalance measured by the TBMs is reduced, an effect that is particularly 

evident with respect to the cherry count (see Figure 4.6c and Figure 4.6g for a 

particularly stark example of this effect). This important observation suggests that there is 

a balancing influence that can be attributed to the use of consensus trees in Bayesian 

analyses, and may also be indicative of broader implications in, for example, parsimony 

analyses. When consensus trees are not used to summarise Bayesian trees, the MP and 

Bayesian methods are found to produce trees that are not significantly differently 

imbalanced. 

Also of note from both post hoc tests were the data comparisons that detected 

variance between the NJ and MP methods. As can be seen in Table 4.8, the difference 

between these two TRMs is specific only to the cherry count TBM.  While from the box 

plots there are no obvious common features between these two TRMs, the observed 

variance could be ascribed to the fact that the cherry count is a less sensitive measure of 

balance and, as such, may exacerbate differences between the tree shape of different 

TRMs in a similar manner to what is observed when using standard tree distance metrics 

(e.g. symmetric difference versus quartet distances). 

Finally, there is a significant difference reported between the NJ and Bayesian 

methods in a total of 13 data comparisons. These 13 data comparisons span both classes 

of Bayesian trees (i.e. consensus or sample) used, and also both TBMs (See Table 4.8). It 
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appears that using alternative types of Bayesian trees has a polarising effect on the two 

TBMs, as no variance in the Bayesian consensus data sets is detected by the cherry count, 

however, as measured by the Colless index, 7 out of 8 data sets report variance.  Once the 

Bayesian sample trees are used the opposite is true for these TBMs. It can be suggested 

that this is again due to the use of the consensus approach in one of the Bayesian tree 

types, which causes the degree of balance in these trees to shift in the alternative data 

sets. The inverse relationship between the TBMs is accounted for by the fact that two 

metrics measure alternate aspects of tree shape and therefore should be deemed 

irrelevant. 

From the box plots it can be seen that the maximum parsimony method is 

consistently the most imbalanced of the considered tree reconstruction methods, a trend 

that is observed from both TBMs (see Figure 4.6c for the most extreme instance of this 

effect). Here, as I wished to avoid the implication of the majority rule consensus 

approach for trees producing many MPTs, it is reasonable to say that this effect is purely 

driven by the tree reconstruction method. As this is observed from both a measure of tree 

balance and tree imbalance, it can be concluded that this does not stem from 

methodological bias.   

However, it must be noted that even though MP is the most imbalanced method, 

the divergence of this method from other methods is not as apparent as one might expect, 

particularly in relation to the NJ and Bayesian TRMs. For example, MP and NJ are 

significantly different only for 9 out of 32 tests. However, when only the most sensitive 

TBM, the Colless index, is considered, no difference between these methods is detected.  

Similarly in the case of the Bayesian approach, if the data comparisons that use Bayesian 

consensus trees are disregarded, no significant difference is detected between this method 
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of inference and MP. This suggests that, in truth, there is little difference between the 

imbalance of trees derived using MP, NJ and Bayesian analysis. 

It is clear that ML produces trees that are more balanced then any other TRM, 

with a significant difference found between MP and ML in all data comparisons (32 out 

of 32).  While this was, to some extent, expected, it was not foreseen that the same trend 

would be observed between ML and NJ, and particularly not between ML and the other 

probabilistic method, Bayesian inference.  This raises the question of whether, in fact, 

ML has a bias in the opposite direction, and has an inclination to produce more balanced 

trees. This poses an interesting prospect, as there is no obvious reason why the use of the 

likelihood function should result in the selection of more balanced trees.  Further to this, 

the Bayesian method of inference, which also uses the likelihood function, fails to 

produce trees as imbalanced as ML.   

An express difference between the ML and Bayesian methods is that branch 

lengths are optimised in the ML approach. Accordingly, it is possible that this 

optimisation process might ultimately lead to the selection of more balanced trees. 

However, conversely the Bayesian method of inference may in itself be problematic, 

finding trees with a similar degree of balance to the MP and NJ methods. Such issues, 

relating to potential biases in either ML or Bayesian analyses, remain as open problems 

and need to be addressed further.  

(

4.3.2 Variance in maximum likelihood 

For the two TBMs, the u test produced slightly varying results. Comparison of the ML 

software implementations under the Colless index determined that there was a significant 
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difference in terms of tree shape between these two methods (see Table 4.9). From the 

box plot of these values (Figure 4.7a) it can be seen that, although the median and spread 

of these two methods are quite disparate, the RAxML Colless values are notably more 

balanced than the PhyML trees derived from the same data.  As the search strategy of 

RAxML is believed to carry out a more thorough search, this result supports the 

conjecture that it is the lack of optimisation of branch lengths in the Bayesian method 

(see above) that causes its resultant trees to be more imbalanced than those obtained 

using ML. If this is found to be true, then the observed similarity between the Bayesian 

and MP methods (see above) might indicate that ML methods should be preferred to 

Bayesian ones. Notably, if PhyML was replaced by RAxML, as the ML representative in 

the data comparisons the same overall trend would continue to be observed; however, 

ML would emerge as even more balanced. 

For the cherry count values no significant difference was observed between the 

two software implementations (see Table 4.9), which is confirmed by the box plots of 

these values where the medians are seen to be equivalent (see Figure 4.7b). This suggests 

that when there is considerable similarity between the compared values, the less sensitive 

cherry count is unable to identify refined differences. Results of this analysis illustrate 

that the influence of software implementation bias can be ruled out as an explanation for 

the trends observed in the above comparisons of TRMs, and, as such, the observed 

balance of the ML method can be considered genuine. 
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Table 4.9 Mann-Whitney u Test  

Results of the Mann-Whitney u test comparing both the Colless index and cherry count 

measures of two alternative ML software implementations, PhyML and RAxML. V is 

equal to the sum of ranks. P-values < 0.01 are deemed significant. 
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Figure 4.7a Box plot of Colless index values of trees produced by PhyML and 

RAxML. 
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Figure 4.7b Box plot of cherry count values of trees produced by PhyML and 

RAxML. 
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4.3.3 Variance in Bayesian inference under varying amino acid models 

From the ANOVAs conducted on the Bayesian trees derived under different 

models, it was observed that, on average, each model produced trees with a consistent 

degree of balance (as measured by the cherry count) and imbalance (as measured by the 

Colless index). This is confirmed by examining the box plots of these data comparisons 

(see Figure 4.8a-e and Figure 4.9a-e). Only one of the ANOVAs using the cherry count 

TBM, namely the mean values comparison, reported a significant difference between 

trees derived using the considered models with a p-value of 0.01 (corrected for violations 

of sphericity; see Table 4.10). However, according to the Boferroni correction of 

significance for these comparisons, 0.001, the null hypothesis can no longer be rejected. 

Of the ANOVAs conducted using the Colless index values, a significant 

difference between the alternative amino acid models is observed only when the Bayesian 

consensus trees were used (see Table 4.10). Therefore, Tukey’s HSD test was then 

implemented to determine between which models the variation was occurring. Results of 

this test reveal that trees built under the JTT and CAT models are divergent from each 

other, while trees built under the CAT and LG models were similarly deviating (see 

Table 4.11). Inspection of the box plot for this data set shows that the CAT tree values 

are significantly more balanced than the LG or JTT model trees (see Figure 4.8e).  This 

result is surprising given that all other data comparisons of this kind report no substantial 

variation between models (see Table 4.10). 

The CAT model is frequently the model of choice for Bayesian analyses, as it 

boasts the ability to incorporate site-specific amino acid motifs in its modelling strategy.  

This model has been shown to be particularly adept at overcoming systematic errors such 

as long branch attraction (Lartillot and Philippe, 2004), therefore, it is fitting that, of the  
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Figure 4.8a Box plot of mean Colless index values from Bayesian sample trees. 

 

 

Figure 4.8b Box plot of median Colless index values from Bayesian samples trees. 
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Figure 4.8c Box plot of mode Colless index values from Bayesian samples trees. 

 

 

Figure 4.8d Box plot of random Colless index values from Bayesian samples trees. 
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Figure 4.8e Box plot of Colless index values from Bayesian consensus trees. 

 

 

Figure 4.9a Box plot of mean cherry count values from Bayesian sample trees. 
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Figure 4.9b Box plot of median cherry count values from Bayesian sample trees. 

 

 

Figure 4.9c Box plot of mode cherry count values from Bayesian sample trees. 
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Figure 4.9d Box plot of random cherry count values from Bayesian sample trees. 

 

 

Figure 4.9e Box plot of random cherry count values from Bayesian consensus trees. 
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Table 4.10 ANOVA Bayesian trees under alternative models 

Results from the 10 ANOVAs conducted using the average statistic, random Bayesian 

sample, and Bayesian consensus values. The F value is the statistic measure in the 

ANOVA. Pr(>F) is the p-value, while Pr(>F[GG]) and Pr(>F[HF]) are the Greenhouse-

Geisser and Huynh-Feldt corrected p-values respectively(*** p < 0.001). 
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Table 4.11 Tukey HSD Test. 

Results from Tukey’s Honestly Significant Difference test performed on the Bayesian 

consensus Colless index values. Significant variance between the groups is measured at 

the 0.01 level. As the Bayesian consensus trees were the only data comparison to display 

variance in the ANOVA, the Tukey HSD test was restricted to this group. 
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models selected for this analysis, CAT produces the most balanced consensus trees (as 

measured by the Colless index). However, as this result is not replicated in the cherry 

count analysis of the same data, or in analyses where consensus trees are not used, it can 

be assumed that this result is unlikely to reflect an important difference. Results of the 

non-parametric Friedman tests converged upon the results of all ANOVAs discussed 

above. Therefore, the incorporation of statistical errors associated with the violation of 

the assumptions of ANOVA can be ruled out. Results of the Friedman test can be seen in 

Table 4.12, while the Wilcoxon-Nemenyi-McDonald-Thompson test conducted on the 

Colless index values for the Bayesian consensus trees can be seen in Table 4.13. 

  

4.4 Conclusions 

This analysis shows that the most frequently used tree reconstruction methods in 

modern phylogenetics produce trees with varying degrees of balance. ML emerges 

clearly as the most balanced tree reconstruction method, while MP manifests to the 

contrary. This result directly contradicts the study of Huelsenbeck and Kirkpatrick (1996) 

where ML is found to be the most imbalanced TRM. However, the trees of Huelsenbeck 

and Kirkpatrick (1996) were produced using nucleotide data and under the simplistic 

Jukes and Cantor (1969) model, two aspects of their study that vary substantially from 

the one discussed here.  

It is possible that different data types may generate trees of different shape, but 

this hypothesis was not tested here. However, it seems that improving the search strategy 

of the ML method (from PhyML to RaxML) resulted in increased symmetry of the 

recovered trees. Therefore, considering that algorithms for effective searches of the tree  
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Table 4.12 Friedman Test Bayesian trees under alternative models 

Results from the 10 Friedman tests conducted using the average statistic, random and 

Bayesian consensus values. 

 

 

 

Table 4.13 Wilcoxon-Nemenyi-McDonald-Thompson Test. 

Results from the Wilcoxon-Nemenyi-McDonald-Thompson test performed on the Colless 

index of the Bayesian consensus trees. Significant variance between the groups is 

measured at the 0.01 level. As the Bayesian consensus trees were the only data 

comparison to display variance in the Friedman test, the Wilcoxon-Nemenyi-McDonald-

Thompson test was restricted to this group. 
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space under ML have improved since those used by Huelsenbeck and Kirkpatrick (1996), 

it can be suggested that their results may have been influenced by the use of poorly 

performing tree search strategies.  This remains as an open question, but can potentially 

be addressed by performing a comparison between trees obtained using RaxML or 

PhyML against those obtained by an older ML algorithm (e.g. those implemented in 

Phylip). 

The results of this study show that the choice of model does not seem to affect 

tree shape. While this is found to be the case specifically for Bayesian inference, this is 

likely to be the case for other phylogenetic methods as well. As such, it is reasonable to 

rule out model selection as a potential explanation for difference between the results 

observed here and those of Huelsenbeck and Kirkpatrick (1996). Further to this, as two 

modern ML software programs display the same over all trend, that ML has propensity to 

produce balanced trees, it can be assumed that what is observed in this study is an 

accurate reflection of a general tendency of this tree reconstruction method. 

The findings of this study are also inconsistent with those of Heard (1992), where 

no variation between tree reconstruction methods was detected. In his study, Heard 

sampled trees from previous publications and examined the degree of balance of these 

trees in relation to one another. Little attention was paid to the type of tree reconstruction 

method used to produce these trees as they were merely classified as being phenetic or 

cladistic in origin. Grouping tree reconstruction methods in this way is likely to have had 

a confounding effect. Neighbor joining can be considered a phenetic method, and is seen 

in this current study to have levels of imbalance similar to those of MP (the cladistic 

method). It is true that other phenetic methods have the tendency to return more balanced 

trees (e.g. UPGMA; see Huelsenbeck and Kirkpatrick, 1996), but merging results from, 
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say, NJ and UPGMA must have an obscuring effect, potentially incurring noise in the 

analysis.  

Further to this, Heard (1992) did not apply a strict lower limit on the number of 

taxa per tree to be included in his study and, therefore, may have introduced random 

effects associated with the Colless index for trees with less than 7 taxa (see Rogers, 1994, 

Rogers, 1996, Harcourt-Brown et al., 2001).  Additionally, in Heard’s (1992) study, only 

208 trees in total were sampled.  This is a relative small number; particularly considering 

that this was further split into cladograms and phenograms, and may be responsible for 

the introduction of further random errors. A final point of note with regard to the study of 

Heard (1992) is that, because of the timing of his study, it seems unlikely that his sample 

included likelihood trees. 

 Here, the proposal of Colless (1982), that parsimony produces more imbalanced 

phylogenetic trees, is confirmed. This is in line with the classic study of Colless (1995), 

who originally provided experimental evidence for this contention. While variation 

between TRMs impacts significantly on phylogenetics, the gravity of this is somewhat 

limited in the case of molecular studies as it is widely accepted that ML and Bayesian 

inference are the most robust methods. However, as pointed out above, Bayesian trees 

seem quite similar to the parsimony ones, and quite different to the ML ones, which 

implies that these results might well be relevant also to molecular phylogenetics. 

Although these methods return trees that are quite different in terms of balance, it is 

likely, that irrespective of tree shape biases, the overall congruence of ML and Bayesian 

is a good proxy for phylogenetic accuracy.  

The results of this study have, however, a much more serious implication for 

morphology-based analyses, as the use of parsimony may be contributing bias to the 
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observed imbalance of trees (see Harcourt-Brown et al., 2001), particularly as they are 

rarely compared to ML trees (that should be more balanced) derived from the same data. 

It has often been said that molecular trees are more balanced than morphological trees 

and one would wonder to what extent this is the product of phylogenetic methodology, 

rather than the biological truth or problems with coding of morphological characters? The 

answer to this question, again, remains open.  

Finally, the results presented here may also impact upon the field of 

phylogenomics. The study of Wilkinson et al. (2005) suggests that the frequently used 

matrix representation with parsimony (MRP) supertree method is influenced by a tree 

shape bias. Trees produced by this method are shown to be, in general, more imbalanced 

than other supertree methods, an effect which the authors attribute to the way in which 

this method resolves conflict between input trees. Here, I expand on the results of 

Wilkinson et al. (2005) and conclude that it is not MRP per se (or the Baum coding 

scheme) that is problematic, rather it might be maximum parsimony. Wilkinson (personal 

communication) suggests that if parsimony is an asymmetric distance measure, then one 

would expect that its effect would be visible not only in supertree reconstruction but also 

in the analyses of standard molecular data.   

Here, this is shown to be the case and, thus it can be concluded that if parsimony 

produces more imbalanced trees in a general sense, it follows that the parsimony 

component of the MRP supertree method is responsible for the observed imbalance of the 

supertrees produced by this method. This suggests that where possible, parsimony should 

be avoided as a method of phylogenetic reconstruction, particularly when the trees (or 

supertrees) are then used to test macroevolutionary hypotheses (e.g. Purvis et al., 1995, 

Bininda-Emonds et al., 1999, Hone et al., 2005, Ruta et al., 2007, Lloyd et al., 2008, 
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where the balance of a tree is used to identify adaptive radiations). Using MP in this 

context may lead to the detection of false positives, with radiation being observed in 

groups that did not radiate. 
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Chapter 5: General Discussion 

Today, the potential wealth of genomic data obtainable has far exceeded even the 

enthusiastic expectations that were typical of the scientific community early last decade 

(see for example Gee, 2003). This can be attributed to the momentous advancements in 

sequencing technology and, in particular, the development of next generation sequencing 

techniques. Indeed, all previously held expectations are set to be readjusted further with 

the development of affordable technologies such as the Ion Torrent system (Drmanac et 

al., 2010). While this all spells good news for the field of phylogenomics, there are major 

issues associated with this rapid data accumulation, some of which are encountered 

through out this thesis. 

In Chapter 2, a study of the animal phylogeny was conducted featuring 43 

species. While the taxonomic sampling was certainly adequate to recover a robust 

phylogeny, supported by both a supertree and supermatrix approach, it highlights a 

worrying trend. The animals are a group that attain particular interest in complete genome 

sequencing projects (see Sanderson et al., 2010), however a sampling of 43 unique 

species is certainly a poor representation of this group. Further to this, a domain as broad 

and diverse as the eukaryotes currently achieves a sample of only 156 genomes. If this is 

the situation in a well-represented group, the gravity of under representation of less focal 

groups can be deduced.  

In this thesis, as in many studies (e.g. Philippe et al., 2005, Burki et al., 2007, 

Dunn et al., 2008, Hejnol et al., 2009), the use of ESTs offers a means of increasing taxon 

sampling. The approach used in Chapter 3, where the taxonomic sampling of complete 

genomes is supplemented with a broader EST sample, is promising but it can only be 

considered a stopgap solution. ESTs represent a shallow genomic sampling (Zilversmit et 
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al., 2002, see also Chapter 2), often featuring the most highly expressed genes of the 

species of interest. Additionally, there is a substantial amount of missing data associated 

with the use of ESTs, which has recently been shown to have a greater bearing on 

analyses than was previously thought (see Sanderson et al., 2010). Therefore, while 

providing a useful tool, ESTs cannot be considered anything more than an “improvised” 

phylogenomic resource. Despite these limitations, the use of ESTs to build phylogenies is 

generally referred to as phylogenomics, regardless of its original inception as shallow 

genomic studies (see, for example, Hughes et al., 2006). While of late there appears to be 

a more conscientious effort to use a combined EST and complete genome approach (e.g. 

Hejnol et al., 2009), it is expected that strictly EST-based “phylogenomics” will persist 

for the foreseeable future. 

Although many have demonstrated the utility of complete genomic data (e.g. 

Creevey et al., 2004, Philip et al., 2005, Fitzpatrick et al., 2006, Pisani et al., 2007), until 

recently it was not feasible to incorporate genes with a history of duplication. In this 

thesis, in a movement towards a truly phylogenomic approach, genes of this nature were 

integrated into a phylogenomic analysis. In the context of the animal phylogeny, which 

was the subject of Chapter 2, including genes that have undergone duplication is seen to 

have little impact on the topology. However, this represents a rather contrived situation, 

where only four taxa were included, as here my intention was merely to investigate the 

feasibility of the GTP approach.  

Chapter 3 sees a more practicable implementation of GTP, where approximately 

20,000 duplicated genes are supplemented to those typically used in the supertree 

approach. In considering single protein families alone, the gene coverage for over 550 

species amounts to a meagre 7,214 genes, a figure that clearly points to the significant 
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role of duplication in the evolution of the eukaryotes. The resolution of the eukaryote 

phylogeny notably improved upon inclusion of multi protein families, which again is 

indicative of the extent of duplication in this domain, but in a more broad sense 

demonstrates the importance of a maximal gene sampling. While the specific means of 

resolving duplications, GTP, is not beyond reproach, it does present a valuable starting 

point, which I feel should be adopted more frequently in phylogenomic analyses. 

 A considerable problem in light of recent data accumulation, which will 

undoubtedly be exasperated with the future amassing of genomic data, is the limited 

approaches available for analysing genomic scale data. As mentioned recurrently through 

this thesis, the supermatrix approach does offer an appropriate solution, in theory, due to 

its total evidence properties and its associated Bayesian-based inference. However, in 

practice this approach struggles with moderately large data sets, as seen in Chapter 2, and 

subsequently cannot even be considered a viable option for very large data sets such as 

that of Chapter 3. Indeed the study of Hejnol et al. (2009), which is the largest 

supermatrix data set assembled to date, features only 94 taxa and 1487 genes and 

necessitated the use of extremely high performing supercomputing resources, 

exemplifying clearly the current limitations of this approach. 

 Accordingly, supertrees currently provide the only practical alternative for the 

phylogenetic analysis of large genomic data sets. In this thesis the limits of the supertree 

approach were tested in several ways. This was done, firstly, with regard to the volume of 

data this approach could contend with. The three supertree analyses discussed in Chapter 

2 represent the largest sampling of genes considered in a published phylogeny of the 

Metazoa to date, while the study in Chapter 3 sees a ten-fold increase in this sampling, 

representing, as far as I am aware, the largest phylogenetic analysis that has ever been 
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attempted. When compared with the current capabilities of the supermatrix approach, 

supertrees offer the potential to include a far greater genomic depth and breath, 

something which Sanderson (2008) asserts will be required for the recovery of the tree of 

life.  

 Two experimental approaches to supertree reconstruction were considered in this 

thesis. Firstly, in Chapter 2 and 3, the aforementioned duplicated genes were incorporated 

into a supertree approach, which currently is the only means of integrating genes of this 

nature into a phylogenomic approach. Secondly, the use of a combined EST and 

complete genome data set was tested in the supertree context. The relative success, 

coupled with the ease of integration, of both approaches attests to the flexibility of 

supertree methods in light of atypical data.  

 While overall in this thesis the application of supertree methods is met with 

success, it must be noted that the limited MRP supertree method is widely used. In 

Chapter 4 it is demonstrated that the shape biases associated with this method are likely 

to stem from the behaviour of the parsimony component of this approach, rather than 

some feature of the supertree process (for example the Baum and Ragan coding scheme). 

While this is an important distinction, it does not detract from the fundamental bias of 

this method. Although the use of other supertree methods is tested in Chapter 2, the 

resolution of the resulting phylogenies is poor. As such, in the absence of a more 

applicable method, MRP persists as an expedient method. However, I anticipate that the 

advent of a software implementation of ML supertrees is likely to account for the 

inadequacies of current methods such as MRP. 

 It is shown in this thesis that the effective balance of a phylogenetic tree is 

dependent on the tree reconstruction method used. This finding has a two-fold relevance 
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for supertree methods in general. Firstly, trees derived by these methods are used in 

supertree analyses as input trees, therefore, it is likely that an inherent shape bias in the 

input trees may manifest in the global supertree output. Further to this, as seen in the case 

of MRP, some supertree methods have a phylogenetic component, therefore, biases in 

this component will be imposed upon the supertree approach as a whole. The use of 

methods that produce more balanced trees, for example ML, in the absence of evidence 

of an intrinsic bias associated with these methods, should be adopted as balanced trees 

better adhere to the Yule (1924) model.  

 Although there appears to be somewhat of a gap between the accumulation of 

genomic data and the methods used to analyse it, this thesis is testimony to an obvious 

progression in the field of phylogenomics. In 2006, Ciccarelli et al. published a tree of 

life based on only 31 proteins, motivating Dagan and Martin (2006) to refer to it is a tree 

of one percent. Here, due to advancements in computational tools, I am able to present a 

data set that features almost 1000 times more proteins. A progression of this extent, in 

less than five years, is undoubtedly promising for the future of phylogenomics.    
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Abstract

Solving the phylogeny of the animals with bilateral symmetry has proven difficult. Morphological studies have suggested
a variety of alternative hypotheses, of which, Hyman’s Coelomata hypothesis has become the most established. Studies
based on 18S rRNA have failed to endorse Coelomata, supporting instead the rearrangement of the protostomes into two
new clades: the Lophotrochozoa (including, e.g., the molluscs and the annelids) and the Ecdysozoa (including the
Panarthropoda and most pseudocoelomates, such as the nematodes and priapulids). Support for this new animal phylogeny
has been attained from expressed sequence tag studies, although these generally have a limited gene sampling. In contrast,
deep genomic-scale analyses have often supported Coelomata. However, these studies are problematic due to their limited
taxonomic sampling, which could exacerbate tree reconstruction artifacts.
Here, we address both of these sampling limitations; we study the effect of long-branch attraction (LBA) in deep genomic-
scale analyses and provide convincing evidence, using both single- and multigene families, that Coelomata is an artifact. We
show that optimal outgroup selection is key in avoiding LBA and identify the use of inadequate outgroups as the reason
previous deep genomic-scale analyses found strong support for Coelomata.

Key words: Coelomata, Ecdysozoa, phylogenomics, supertrees, outgroup selection, Bayes factors, supermatrix.

Introduction

Bilaterian Phylogenetics Uncertainty still persists pertain-
ing to the early evolution of the Bilateria; an important

group which includes all extant animals with the exclusion

of the sponges, the Placozoa, the Cnidaria, and the Cteno-

phora (see, e.g., Nielsen 2001; Dunn et al. 2008; Hejnol

et al. 2009; Philippe et al. 2009; Sperling et al. 2009). Cen-

tral to this incertitude are the phylogenetic relationships of

the ‘‘pseudocoelomates’’ (sensu Hyman 1940), particularly

that of the Nematoda (i.e., the round worms), which remain

an issue of debate (Telford et al. 2008).
From a morphological point of view, some of the most

prominent features shared by the majority of bilaterians in-

clude bilateral symmetry, a pronounced anteroposterior axis

and a head with a nervous concentration, that is, a brain

(Nielsen 2001). A variety of morphological phylogenies of

Bilateria have been proposed since Darwin’s time (Jenner

and Schram 1999); however, the dominant view has long

been that of Hyman (1940) and her Coelomata hypothesis
(see also Halanych 2004; Philippe et al. 2005; Telford et al.
2008). According to Coelomata, Bilateria were classified in
three groups: the Acoelomata (Platyhelminthes and Nemer-
tinea), the Pseudocoelomata (Nematoda, Nematomorpha,
Rotifera, Priapulida, Kinorhyncha, and Gastrotricha), and
the Coelomata (all the other bilaterian phyla, e.g., the Ar-
thropoda, the Mollusca, the Annelida, and the Vertebrata).

The first major challenge to Coelomata came from the
analyses of taxon-rich 18S rRNA data sets (Halanych et al.
1995; Aguinaldo et al. 1997), which proposed an alternative
division of the Bilateria (with the possible exclusion of the
Acoela—see Ruiz-Trillo et al. 1999; Littlewood et al.
2001; Hejnol et al. 2009; but see also Philippe et al.
2007) into the Protostomia and Deuterostomia. The 18S
rRNA data further suggested a partitioning of the proto-
stomes into the Lophotrochozoa (Halanych et al. 1995), in-
cluding, for example, the molluscs and the annelids (i.e., the
Eutrochozoa), and the Ecdysozoa (Aguinaldo et al. 1997),
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including the Panarthropoda and several of Hyman’s Pseu-
docoelomata. This new animal phylogeny is now generally
known and will hereafter be referred to as the Ecdysozoa
hypothesis.

Ever since the genomes of the arthropod Drosophila mel-
anogaster (a coelomate protostome), the vertebrate Homo
sapiens (a coelomate deuterostome), the nematode Caeno-
rhabditis elegans (a pseudocoelomate protostome), and the
fungus Saccharomyces cerevisiae (a nonmetazoan out-
group) became available, many have attempted to test hy-
potheses of bilaterian relationships using genomic-scale
data sets, or in any event, data sets deemed to be of geno-
mic scale at the time they were assembled (Blair et al. 2002;
Copley et al. 2004; Dopazo et al. 2004; Wolf et al. 2004;
Dopazo H and Dopazo J 2005; Philip et al. 2005; Rogozin
et al. 2007, 2008; Zheng et al. 2007). A number of these
studies (Copley et al. 2004; Dopazo H and Dopazo J
2005; Irimia et al. 2007; Roy and Irimia 2008; and Belinky
et al. 2010) have endorsed Ecdysozoa, however, only that of
Dopazo H and Dopazo J (2005) used standard phylogenetic
analyses of aligned sequence data.

The majority of published deep genomic-scale analyses
have supported Coelomata, leading Lynch (2007), for exam-
ple, to conclude a literature survey on this argument by
claiming: ‘‘. . . [Ecdysozoa] continues to be presented as
a fact in many major textbooks, even though phylogenies
based on large numbers of protein-coding genes generally
either place nematodes on their traditional position or are
equivocal on the matter. . ..’’ Studies supporting Coelomata,
however, characteristically suffer from a sparse taxonomic
sampling (see also Halanych 2004), which can exacerbate
phylogenetic artifacts, particularly long-branch attraction
(LBA), in the presence of a fast-evolving species such as
C. elegans (e.g., Pisani 2004; Delsuc et al. 2005; Philippe
et al. 2005; Jeffroy et al. 2006; Sperling et al. 2009).

Studies conducted using the expressed sequence tags
(ESTs) methodology (Philippe et al. 2005, 2009; Dunn
et al. 2008; Lartillot and Philippe 2008; and Hejnol et al.
2009), on the other hand, are characterized by a denser tax-
onomic sampling and generally include more appropriate
(animal) outgroups and as such should be less prone to
LBA. Accordingly, EST-based studies have recurrently sup-
ported Ecdysozoa (see Philippe et al. 2005; Lartillot and Phil-
ippe 2008 in particular). However, with the exception of
Hejnol et al. (2009), who considered 1,487 genes (but only
for a very small subset of the taxa they sampled), ESTstudies
represent shallow genomic sampling (Zilversmit et al. 2002),
with Philippe et al. (2005) considering only 146 genes, Dunn
et al. (2008) 150 genes, and Philippe et al. (2009) 128 genes.
Additionally, EST libraries generated for phylogenetic purpo-
ses are generally not normalized (e.g., Dunn et al. 2008;
Hejnol et al. 2009), and the protein-coding genes sampled
in these studies do not represent a random sample of the
genes in the considered genomes. Rather, they correspond

to a sample of the most highly expressed genes. This non-
random sampling is not a problem per se, nevertheless, it
does pose the question: what will the outstanding propor-
tion of the animal proteome disclose? To date, the answer
has often been that standard sequence analyses of deeply
sampled genomic data sets favor Coelomata.

Phylogenomics: Methodological Approaches From
a methodological point of view, two principal approaches
are generally employed in phylogenomics: the supertree
and the supermatrix approach (Delsuc et al. 2005), with
both approaches having different strengths and weak-
nesses.

In the supertree approach, gene trees are recovered for
each individual protein family using the most appropriate
phylogenetic method. Gene trees are then combined using
one of a number of existing supertree methods (for a brief
introduction, see McInerney et al. 2008). Advantages of the
supertree approach include: 1) the ability to analyze each
gene individually under the best-fitting substitution model,
2) the capacity to amalgamate trees derived from the anal-
ysis of both single- and multigene families, and 3) a signifi-
cant decrease in the computational time necessary to build
large phylogenies (facilitating the handling of data sets scor-
ing thousands of genes) for hundreds of taxa (e.g., Pisani
et al. 2007). As gene families are first analyzed in isolation,
the major limitation of the supertree approach is that the
combined trees can be based on relatively small alignments.
This can result in significant statistical errors, which may
translate into poorly supported phylogenomic supertrees.
Filtering strategies, that is, eliminating genes that do not
pass the permutation tail probability (PTP) test (Archie
1989) or that do not support the monophyly of universally
accepted clades (Pisani et al. 2007), which also serves to
alleviate the negative impact of hidden paralogy when an-
alyzing sets of single-gene families, can be used to improve
resolution significantly.

In the supermatrix approach, single-gene alignments are
merged into a multiple gene alignment, which is then ana-
lyzed using the most appropriate phylogenetic method. The
principal merit of this approach is that gene concatenation
allows for the minimization of statistical errors, often result-
ing in well-supported trees (Delsuc et al. 2005). The main
shortcomings of this approach are: 1) while it minimizes sto-
chastic errors, it tends to exacerbate systematic ones (e.g.,
Delsuc et al. 2005; Jeffroy et al. 2006). Although the use of
well-performing, parameter-rich models, like categories
model (Lartillot and Philippe 2004; Philippe et al. 2007),
alleviates this problem, it does not fully eliminate it (e.g.,
Jeffroy et al. 2006). 2) The supermatrix approach does
not lend itself to the integration of multigene families
and as such limits the information that can be analyzed
to that of single-gene families or in some rare cases (i.e.,
when the gene phylogeny is well understood) to single
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paralogy groups within a multigene family (e.g., Dunn et al.
2008; Hejnol et al. 2009; Philippe et al. 2009). 3) If the num-
ber of considered genes, species, or both is considerably
large, supermatrix analyses become very difficult to perform
due to memory and time constraints (see, e.g., Hejnol et al.
2009). Technological advances should ameliorate this prob-
lem, but this limit of the supermatrix approach can be
expected to persist for the foreseeable future.

Circumventing LBA LBA (Felsenstein 1978) is a common
phylogenetic artifact (see Brinkmann and Philippe 1999;
Pisani 2004; Delsuc et al. 2005; Jeffroy et al. 2006), which
can affect every phylogenetic method (Pisani 2004; Delsuc
et al. 2005; Jeffroy et al. 2006). Because time and rate are
confounded in branch length estimation (e.g., Yang 2006),
LBA results in trees in which fast-evolving species are artifac-
tually grouped together or with distantly related taxa (e.g.,
with the outgroups). Two straightforward approaches to re-
duce LBA are optimal outgroup selection (to minimize root
to tip distances in a phylogeny) and increased taxon sam-
pling (to break long branches), see also Pisani (2004).

Early, deep genomic-scale analyses used fungal out-
groups or on occasion even more distantly related out-
groups (e.g., Blair et al. 2002). These clearly represent
poor choices to investigate the phylogenetic relationships
of the Bilateria as they may serve to exacerbate LBA. Dopazo
H and Dopazo J (2005) performed standard sequence anal-
yses of a deeply sampled genomic data set using a distant
(fungal) outgroup. Realizing that a fungal outgroup might
not have been adequate for their analyses, and in the ab-
sence of a closer outgroup, these authors used a relative-
rate test (for an overview, see Robinson et al. 1998) based
approach to identify clock-like genes. Analyses of these
genes found support for Ecdysozoa. Although their results
are interesting, their approach is not without problems. First,
the relative-rate test is not particularly sensitive; a more dis-
criminating approach (i.e., the likelihood ratio test) should
have been used instead. In addition, their relative-rate tests
were implemented under the simplistic Kimura’s distance in
PROTDIST (Felsenstein 2005), which is unlikely to have fit
their data well. Finally, these authors considered only homo-
logues of protein-coding genes found in 18 human chromo-
somes, unnecessarily discarding potentially informative
genes not found in this subset of human chromosomes.

The number of complete animal genomes has now in-
creased significantly making the improvement of taxonomic
sampling in genomic-scale phylogenetic analyses possible.
Recent genome sequencing projects have included that
of the cnidarian Nematostella vectensis and the placozoan
Trichoplax adherans. Although there is ongoing debate over
the phylogenetic relationships of these organisms, there is
general agreement that both are nonbilaterian Metazoans
(see Dunn et al. 2008; Hejnol et al. 2009; Philippe et al.
2009; Sperling et al. 2009). Accordingly, N. vectensis and

T. adhaerens represent more appropriate outgroups for test-
ing hypotheses of bilaterian evolution than fungi (see also
Philippe et al. 2005). We thus avoided gene selection strat-
egies (e.g., Dopazo H and Dopazo J 2005), focusing instead
on taxonomic sampling and outgroup selection to test hy-
potheses of bilaterian evolution.

Maximizing Gene Sampling within a Phylogenomic
Approach The strongest test of a phylogenetic hypothesis is
one considering all the relevant information (e.g., Kluge
1989). In phylogenomics, EST studies can maximize taxo-
nomic sampling, whereas studies using complete genomes
can maximize gene sampling. Accordingly, a pragmatic so-
lution to the Coelomata versus Ecdysozoa controversy can
only be achieved through the congruence of taxonomically
well-sampled EST studies and deep genomic-scale analyses.

Here, we performed analyses to maximize gene sam-
pling. We implemented a pluralist approach where phyloge-
nomic trees of Bilateria were generated using supertrees
and consensus trees, summarizing both single- and multi-
gene family trees. Because supertrees do not allow for
the integration of the subsignals in the data (Pisani and Wil-
kinson 2002), we augmented our study to include a super-
matrix approach, where single-gene families were
concatenated and concomitantly analyzed. This was done
to confirm the results from the supertree analyses and to
provide a statistical test, within a Bayesian framework, of
the fit of the considered hypotheses (i.e., Coelomata and
Ecdysozoa) to the data.

An experimental approach was used to investigate the
support for the considered alternative hypotheses in the
light of LBA and to reject the one most likely to be artifac-
tual. In particular, the effect of using fungi, nonbilaterian
animals, or both, in order to break long branches, was ex-
amined. By comparing our results with those of previous EST
studies, we evaluate the congruence between different phy-
logenomic approaches.

Materials and Methods

Data Collection Genomic data for 43 eukaryotic species
were downloaded from COGENT (http://maine.ebi.ac
.uk:8000/services/cogent/), DOE Joint Genome Institute
(http://genome.jgi-psf.org/), EMBL-EBI IPI (http://www.ebi
.ac.uk/IPI/IPIhelp.html), Ensembl (http://www.ensembl.org
/info/data/ftp/index.html), and National Center for Biotech-
nology Information (ftp://ftp.ncbi.nih.gov/genomes/).

Experimental Phylogenomics and Data Set Assembly
Rather than simply collecting all available animal genomes
and reconstructing yet another metazoan phylogeny, we
took an experimental approach. We made the following
ad hoc (working) assumption: Coelomata is the true tree
and not the result of LBA (our null hypothesis). We predicted
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what the consequences of this null hypothesis would be, se-
lected a suitable set of complete genomes, and tested
whether the predictions derived from our assumption could
be met. If our predictions were to be upheld by the data, the
null hypothesis was not to be rejected, whereas if over-
turned, the data would reject the null hypothesis.

Based on our assumption, we first predicted that in
sparsely sampled (four taxon) data sets, Coelomata should
invariably be recovered irrespective of whether a distant
(fungal) or closer (animal) outgroup was used. Conversely,
we anticipated that if Coelomata was due to a LBA artifact,
then it would only be recovered when using a distant out-
group. We further hypothesized (based again on the postu-
lation that Coelomata is the ‘‘bona fide’’ tree) that
Coelomata should continue to be recovered in the presence
of an extensive taxonomic sampling, irrespective of the out-
group used. Alternatively, if Coelomata was the result
of LBA, we would expect that it should not be recovered
if a targeted sampling strategy was adopted to break the
long branch connecting the distant (in our case fungal) out-
group and the Bilateria. This could be done by including
N. vectensis and/or T. adhaerens in the analyses or by replac-
ing the fungal outgroups with animal outgroups (i.e.,
N. vectensis and/or T. adhaerens).

We assembled (from our starting set of 43 genomes) five
intersecting data sets to test our predictions. Two of these
data sets contained a minimal sampling, scoring only four
taxa. The remaining three data sets included 41, 42, and
43 species, respectively. The four-taxon data sets were de-
signed to mimic the taxonomic sampling of the earliest phy-
logenomic studies, whereas the 41, 42, and 43 taxon data
sets were constructed to contain the broadest possible sam-
pling of complete animal genomes (for a list of the species in
each of the five data sets, see supplementary table S1,
Supplementary Material online).

The sparsely sampled data sets were used to investigate,
at themost fundamental level, the effect of outgroup choice
in phylogenomics. Accordingly, these data sets only differed
in the outgroup they included, whichwas either S. cerevisiae
or N. vectensis. In both data sets, the remaining three taxa
were H. sapiens, D. melanogaster, and C. elegans. For these
sparsely sampled data sets, N. vectensis was preferred over
T. adhaerens as outgroup to the Bilateria, as there is little
doubt that cnidarians are closer to the Bilateria (Hejnol
et al. 2009; Philippe et al. 2009; Sperling et al. 2009).

Similarly, the three densely sampled data sets scored
a common set of 40 bilaterian species (see supplementary
table S1, Supplementary Material online), to which one
to three outgroups were added. The 41-taxon data set only
included S. cerevisiae as the outgroup. The 42 species data
set contained two animal outgroups (N. vectensis and
T. adhaerens) but did not include S. cerevisiae. Finally, the
43 species data set included both the fungal and the animal
outgroups (S. cerevisiae, N. vectensis, and T. adhaerens).

These densely sampled data sets were used to investigate
the effect of using alternative taxon sampling strategies
and optimal outgroup selection.

If Coelomata is the correct topology, it should always be
recovered in the densely sampled data sets. If Coelomata is
a LBA artifact, we expect it to appear only when the fungal
outgroup is used in isolation. That is, when the long branch
joining the fungi and the Bilateria is present and unbroken.
Accordingly, our expectation is that if the data is affected by
LBA, Coelomata should be recovered from the 41-taxon
data set but not from the 42 and the 43-taxon data sets.

Protein Family Identification For each sparsely and
densely sampled data set, homologous sequences were
identified and clustered using the BlastP based, all-versus-
all approach of Creevey et al. (2004), Fitzpatrick et al.
(2006), and Pisani et al. (2007). For the sparsely sampled
data sets, protein families were also identified using themar-
kov cluster (MCL)-based algorithm of Enright et al. (2002).
Details of how both protein identification strategies were
implemented are reported in the Supplementary online in-
formation (SI). As a result, a total of seven initial data sets
(four sparsely sampled and three densely sampled ones)
were used in this study.

For each of these seven data sets, gene families were par-
titioned into two groups. Families scoring only one member
for any given genome (i.e., the putative single-gene families)
were separated from those containing multiple members
per genome (i.e., the multigene families). Because phyloge-
netic analyses can only be performed on gene families that
score four or more sequences, only single- and multigene
families consisting of a minimum of four sequences were
retained for further analysis (for a comparison of the number
of single- and multigene families in each of the 7 considered
data sets, see table 1).

Only single-gene families are typically used for phyloge-
netic reconstruction (e.g., Pisani et al. 2007; Hejnol et al.
2009). This is to minimize the complexity associated with
the analysis of multigene data sets and the inclusion of sig-
nals representing the relationships of paralogous genes.
However, this approach has the disadvantage of considering
only a minority of the genes in the genomes, whereas the
strongest test of a phylogenetic hypothesis is one consider-
ing all relevant information (e.g., Kluge 1989). Only upon
the integration of multigene families can such a test be per-
formed. Here, by exploiting the flexibility of the supertree
approach, we have combined both single- and multigene
families to generate trees based on the deepest possible
sample of genomic data. However, due to the volume of
multigene families generated, it was not currently practica-
ble to analyze the multigene families in all seven data sets.
Owing to their smaller size, the four 4-taxon data sets were
selected as exemplar cases for analysis using both single-
and multigene families.
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Alignment, Curation, and Identification of Gene
Families Conveying Significant Hierarchical Signal All
considered single- and multigene families were aligned us-
ing ClustalW (Thompson et al. 1994). As the accuracy of tra-
ditional multiple sequence alignment software has been
questioned (e.g., Löytynoja and Goldman 2008), the single-
and multigene families in our four-taxon data sets were also
aligned using PRANK (Löytynoja and Goldman 2008). This
was done to investigate whether alignment-dependent
biases (Löytynoja and Goldman 2008) influenced our re-
sults. This experiment was limited to our four-taxon data
sets as aligning sequences using PRANK is computationally
expensive.

Due to the number of protein families obtained from our
data sets, manual curation of alignments was unfeasible.
Gblocks (Castresana 2000) was thus used to eliminate
highly variable and potentially misaligned regions. Gblocks
parameters were set as follows: gapped positions were not
eliminated, the minimum block length was set to eight
amino acid positions, whereas the maximum number of per-
mitted consecutive nonconserved positions was set to 15
(see also Pisani et al. 2007). Curated alignments were sub-
jected to the PTP test (Archie 1989). This allowed the iden-
tification of families conveying significant hierarchical signal
(see Pisani et al. 2007). Such families were considered to
contain sufficient hierarchical structure to be deemed phy-
logenetically informative. The PTP test was implemented in
PAUP4.0b10 (Swofford 1998). Settings were as follows:
2,000 permutations with heuristic search with one random
addition sequence and the MulTrees option set to off. For
the PTP test, a probability value P ! 0.05 was considered
significant. Alignments not passing the PTP test (P "
0.05) were disregarded, as they would not contribute any-
thing except noise to the analyses.

Model Selection and Phylogenetic Analysis PHYML
(Guindon and Gascuel 2003) was used to perform maxi-
mum likelihood (ML) phylogenetic analyses of each align-
ment passing the PTP test. ML analyses were performed
under the best-fitting substitution model, as inferred using
the Akaike information criterion in Modelgenerator (Keane
et al. 2006). For each single- and multigene family tree, sup-
port was evaluated using bootstrap (100) replicates.

Single-gene trees were manually inspected to evaluate
possible instances of hidden paralogy; trees that failed to
recover the monophyly of uncontroversial, universally ac-
cepted groups (e.g., Vertebrata or Arthropoda) were ex-
cluded from further analyses (see also Pisani et al. 2007).

Supertree and Consensus Tree Analyses Supertrees rep-
resent a generalization of the consensus tree problem in the
case of partially overlapping trees (Semple and Steel 2003).
Both consensus and supertree methods were used to derive
phylogenomic supertrees representing the relationshipsTa
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among the species in our seven starting data sets. The num-
ber of gene families considered at each stage of the protocol
used to generate the supertrees is reported in table 1.

Deriving Phylogenomic Supertrees for the Four-Taxon
Data Sets For each of the final four-taxon data sets (see
fig. 1; eight in total arising from alternative homology
assessment and alignment procedures), we derived phylo-
genomic consensus trees. These were built using 1) the
set of all the single-gene families, 2) the set of all the multi-
gene families, and 3) the combined set of all single- andmul-
tigene families. Accordingly, a total of 24, four-taxon,
phylogenomic trees were derived. Table 1 reports the num-
ber of genes used to build each of these trees.

Each of the eight single-gene family based, four-taxon
phylogenomic trees (see fig. 1) were built as follows: 1)
the 100 bootstrap ML trees generated for each single-gene
family in that data set were pooled to generate a single
bootstrap tree file. 2) The trees in the pooled, bootstrap tree
file were summarized using the majority rule consensus tree
method (Margush and McMorris 1981), as implemented in
the software Consense (Felsenstein 2005). This was possible
as all considered bootstrap trees were on the same taxon set
(i.e., they were fully overlapping). As these phylogenomic
trees were derived from pooling trees obtained from the in-
dividual bootstrap replicates, assessment of the support for
the clades in these trees was straightforward because the

four-taxon phylogenomic trees were also bootstrap consen-
sus trees.

Each of the eight multigene family-based phylogenomic
trees (see fig. 1) were derived as follows: 1) for each consid-
ered multigene family, the 100 bootstrap ML trees were
used to generate reconciled species trees. This was done us-
ing the duplication only, gene tree parsimony (GTP) method
(e.g., Cotton and Page 2004) as implemented in the soft-
ware DupTree (Wehe et al. 2008), with the nogenetree op-
tion turned on, using a partial queue based heuristic search
(see supplementary fig. SI1, Supplementary Material online
for an exemplar multigene family and the corresponding
GTP-derived species tree). 2) The resulting species trees
(one per bootstrap ML tree) were pooled into a single file.
3) The pooled, bootstrap (species) trees were summarized
using the majority rule consensus method (as implemented
in the software Consense), thus generating a bootstrap con-
sensus phylogenomic tree. Also, in this case, the use of the
majority rule consensus method could be implemented, as
all the bootstrap species trees were on the same taxa set.

Each of the eight combined multigene family and single-
gene family phylogenomic trees (see fig. 1) were derived as
follows: the corresponding sets of individual bootstrap trees
(obtained from the ML analyses of the single-gene families)
and the species trees derived from the DupTree analysis of
the bootstrap trees from the multigene families (see above)
were pooled into a single file. Trees in the pooled file were

FIG. 1.—Testing outgroup choice in minimally sampled data sets. Majority rule consensus trees derived from ML gene trees. Bootstrap support

from both multigene families and single-gene families is shown for each node. The following core ingroup species are common to all: Homo sapiens,
Drosophila melanogaster, and Caenorhabditis elegans. Outgroups used are (A) the yeast Saccharomyces cerevisiae (B) the cnidarian Nematostella
vectensis. Bootstrap support values are shown for each combination of protein family identification and alignment method. Bootstrap support is

displayed for single-gene families, multigene families, and combined single-gene families and multigene families, respectively.
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summarized using the majority rule consensus method to
derive a bootstrap consensus phylogenomic tree.

The GTP-PTP Test Not all of our multigene families were
used for phylogenetic reconstruction (i.e., some families, de-
spite passing the PTP test, were deemed not viable). An ad-
ditional PTP test was developed to evaluate whether the
duplication history of each considered multigene family
was phylogenetically informative. To implement the GTP-
PTP test, for each optimal multigene family tree derived us-
ing PHYML, 100 permuted trees were generated. This was
done by randomly swapping the labels associated with the
terminal nodes of the optimal multigene family tree,
whereas maintaining the unlabeled phylogenetic history
as fixed. This is similar to the YAPTP test of Creevey et al.
(2004). Each permuted tree was used to infer a species phy-
logeny using the GTP method (as implemented in DupTree).
The score of each GTP reconstruction was recorded, and
these values were compared against the GTP score of the
species history derived from the original (unpermuted) mul-
tigene family tree. Families were retained for phylogenetic
analysis when the species history derived from the unper-
muted tree was significantly better than those obtained
from the GTP analysis of the permuted trees. For these anal-
yses, the significance level was set to P ! 0.01. PERL scripts
to implement the GTP-PTP are available upon request.

The species phylogeny embedded in multigene families
failing to pass the GTP-PTP test has essentially been erased
due to a complex gene deletion/duplication history. These
multigene families can only contribute noise to the analyses
and were thus not used for phylogenetic reconstruction.

Deriving Phylogenomic Trees for the 41, 42, and 43-
Taxa Data Sets Because genes do not have a universal dis-
tribution, in the case of the 41, 42, and 43 species data sets,
single-gene families could score in the range of 4–41, 4–42,
or 4–43 sequences, respectively. That is, unlike the four-
taxon data sets, single-gene family trees in these data sets
are partially, rather than fully, overlapping. Accordingly,
gene trees derived from protein families identified in these
larger data sets could not be summarized using a standard
consensus method. Instead a supertree approach was used
to derive phylogenomic supertrees for these data sets.

For each of the three densely sampled data sets, consen-
sus supertrees were generated as follows: 1) the bootstrap
trees obtained from the ML analysis of each considered sin-
gle-gene family were pooled into one single data set. 2) In-
put tree bootstrapping (Creevey et al. 2004; Burleigh et al.
2006; Moore et al. 2006; Pisani et al. 2007) of the pooled
trees was used to generate 100 pseudoreplicate data sets. 3)
For each pseudoreplicate data set, supertrees were derived
using the matrix representation with parsimony (MRP)
method (Baum 1992; Ragan 1992). To do so, for each pseu-
doreplicate data set, a standard MRP matrix was generated

using CLANN (Creevy and McInerney 2005). This matrix
was then analyzed using maximum parsimony in PAUP
(Swofford 1998) to generate the MRP supertrees. For the
parsimony analysis, 100 heuristic searches were performed
with random sequence addition and tree bisection and re-
connection branch swapping. 4) The supertrees derived
from the analysis of each pseudoreplicate data set were
summarized using themajority rule consensusmethod, gen-
erating a majority rule consensus genomic supertree in
which support for the clades recovered was expressed as
their bootstrap support.

Supermatrix Analysis For each of the 41, 42, and 43 taxon
data sets, a superalignment of the single-gene families that
passed the PTP test was generated. However, only families
that contained at least one nematode sequence were con-
catenated. This was done to reduce the dimensions of the
superalignment (thus making it more manageable) whereas
retaining all the information that could possibly bear on the
phylogenetic position of the Nematoda. The three concat-
enated data sets generated in this way were thus subsam-
ples of our complete data sets and scored: 43392 amino acid
positions (41-taxon data set), 38701 amino acid positions
(42-taxon data set), and 25857 amino acid positions
(43-taxon data set). Because the considered genes are
not universally distributed, there was a significant amount
of missing data in each alignment.

Phylogenetic analyses of the three data sets were per-
formed in Phylobayes (Lartillot and Philippe 2004) under
the CAT þ G model. We selected CATas it has been shown
(e.g., Philippe et al. 2007; Sperling et al. 2009) that this
model provides a better fit to data in comparison with or-
dinary general time reversible models (e.g., Whelan and
Goldmanmodel [WAG] ormechanistic general time revisible
[GTR]). We also tested the use of CAT-GTR but under this
model we could not reach convergence.

For each data set, two independent runs were per-
formed. Convergence was tested using the bpcomp pro-
gram (which is part of phylobayes). Two runs were
considered to have converged when the maximum differ-
ence in observed bipartitions dropped below 0.2.

BFs: Testing Coelomata and Ecdysozoa in a Bayesian
Framework Bayes factors (BFs) are general statistical tools
that can be used, within a Bayesian framework, to compare
alternative models—for example, the trees representing the
relationships for a group of taxa (see Sperling et al. 2009)
and evaluate the weight of evidence in favor of one of
the compared models (and hence against the alternative
one). To calculate BFs for each considered data set, we
ran two constrained Bayesian analyses using MrBayes
(Ronquist and Huelsenbeck 2003). Each of these analyses
could only visit trees compatible with one of the two com-
pared hypotheses (i.e., Ecdysozoa or Coelomata). For each
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of the two constrained analyses, two runs of one chain
were run for 1,000,000 generations (sampling every 100
generations). A burn in of 500,000 generations was consid-
ered for all analyses. All analyses were performed under
WAG þ G. This is not ideal, but we could not perform BF
analyses under CAT, as the current Phylobayes output is
not suitable for estimating BFs (see also Sperling et al.
2009), while running our analyses under GTR in MrBayes
was not feasible because of time limitations.

BFs were calculated in Tracer 1.4.1 (Rambaut and
Drummond 2007) using, for each constrained analysis,
the trace files from the run of highest harmonic mean. Stan-
dard errors around the estimated BF were calculated using
the bootstrap (1,000 replicates). BFs were interpreted
according to the table of Kass and Raftery (1995).

Results

Four-Taxon Data Sets The four species data sets were an-
alyzed to assess at a very basic level the effect of outgroup
selection in phylogenomics. The first interesting result we
obtained from these analyses was that only a somewhat di-
minutive number of single-gene families conveying a signif-
icant amount of phylogenetic information could be
identified (see table 1). This was not fully unforeseen as
the stringency of the PTP test increases as the number of
considered species decreases. More families were found
when N. vectensis was used as an outgroup instead of S.
cerevisiae; however, the difference was small (from 31 to
48). The number of single-gene families passing the PTP test
in the four-taxon data sets did not change significantly when
either an alternative homology assignment strategy or align-
ment software was used (see table 1), suggesting that the
small number of single-gene families arising from these
analyses does not stem from methodological biases. It

merely implies that when only 4 taxa are considered, there
are very few, universally distributed single-gene families
conveying significant phylogenetic information pertinent
to testing hypotheses of bilaterian relationships. The num-
ber of multigene families (see table 1) passing all of our
quality checks is also quite low but significantly higher than
the equivalent number of single-gene families. This was to
be expected as there are far more multigene families than
single-gene families in the average animal genome. How-
ever, interestingly, we noted that although the number of
phylogenetically informative multigene families identified if
S. cerevisiae is used as outgroup is 258 (using the Creevey
et al. 2004 homology assessment strategy) or 392 (using
MCL), the number of phylogenetically informative multi-
gene families identified when N. vectensis is the outgroup
is 516 (using the Creevey et al. 2004 homology assessment
strategy) or 682 (using MCL), that is approximately twice as
many. This strongly implies that using closer outgroups is
key to maximizing the amount of phylogenetic information
and increasing the signal to noise ratio in phylogenomic
data sets.

Phylogenomic trees derived from single-gene families
passing the PTP test showed that when S. cerevisiae was
used as an outgroup, support was found for Coelomata
(see fig. 1). This result holds true irrespective of the protein
family identification method used and of the alignment soft-
ware used (see fig. 1 and table 2). When only multigene
families are used similar results are found, although there
is a significant decrease in the level of support observed
(fig. 1 and table 2). Finally, in the phylogenomic, trees ob-
tained when both the single-gene families and the multi-
gene families were considered concurrently the support
for Coelomata ranges between 55% and 61% depending
on the clustering method and alignment software used

Table 2
Percentage Bootstrap Support for Each Hypothesis (Coelomata, Ecdysozoa, or the Alternative Topology) Arising from the Analysis of the Sparsely

Sampled Data Sets

Percent Support for Each Hypothesis Under Each Alignment Protocol

ClustalW PRANK

Data Set Homology Search Gene Families Coelomata Ecdysozoa

Vertebrata–

Nematoda Coelomata Ecdysozoa

Vertebrata–

Nematoda

Fungal outgroup Creevey et al. (2004) Single 81 9 10 84 6 10

Multi 53 26 21 58 23 19

Single þ multi 56 24 20 61 20 19

MCL Single 84 6 10 79 7 14

Multi 52 26 21 58 22 20

Single þ multi 55 25 20 60 20 20

Animal outgroup Creevey et al. (2004) Single 14 84 2 6 86 8

Multi 21 61 18 18 65 17

Single þ multi 20 62 17 13 73 14

MCL Single 9 88 3 7 90 3

Multi 21 60 19 19 63 18

Single þ multi 20 61 18 18 65 17
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(fig. 1 and table 2). This represents a marked decrease in the
support for Coelomata. Similar results were obtained in the
study of Philippe et al. (2005), although based solely on sin-
gle-gene families.

When the cnidarian N. vectensis is used as an outgroup,
Coelomata is no longer recovered. Instead, a nematode–
arthropod clade emerges, supported most strongly in the
analysis of the single-gene families (bootstrap proportion
[BP]5 90%; fig. 1 and table 2). Support for Ecdysoza arising
from the analysis of single-gene families andmultigene fam-
ilies, both in isolation and when combined, ranges from
60% to 90% (fig. 1 and table 2).

It is important to note that when multigene families are
used, we observe a general decrease in support for the no-
des in the recovered tree, irrespective of whether a fungal or
animal outgroup is used. This suggests that multigene fam-
ilies contain more noise than single-gene families. Or more
likely that the approach used to infer species trees from the
multigene family trees (i.e., duplication only GTP) is not ideal
and cannot completely eliminate the paralogy signal. It is to
be expected that the development of more refinedmethods
for inferring species trees from multigene family trees will
alleviate this problem in the future.

Analyses of the four-taxon data sets illustrate that when
a closer outgroup is used sequence analyses with a deep ge-
nomic sampling support Ecdysozoa. Conversely, Coelomata
is found only when a distant outgroup is used, thus failing to
uphold our predictions. The recovery of Coelomata can be
better viewed as inconsistent (i.e., ‘‘strongly supported but
erroneous’’ Philippe et al. 2005), arising from the selection
of a distant outgroup. In the presence of a distantly related
outgroup like S. cerevisiae (which probably shared a last
common ancestor with the Bilateria one billion years ago;
see Peterson et al. 2008; Sperling et al. 2010), the rapidly
evolving nematode C. elegans is placed at the base of the
tree, close to the outgroup. When in its stead, a closer out-
group (N. vectensis), which probably shared a last common
ancestor with the Bilateria only $ 670 MYA (Peterson et al.
2008; Sperling et al. 2010) is used, C. elegans emerges as
the sister group of the arthropod D. melanogaster and thus
as an Ecdysozoan. This strongly implies the recovery of Coe-
lomata to be the result of a tree reconstruction artifact.

Densely Sampled Data Sets Although the small data sets
demonstrate at the most fundamental level the effects of
outgroup selection, they still consider only a scant taxo-
nomic sampling. These analyses allow us to reject our null
hypothesis (i.e., Coelomata is the true tree) but only relative
to small data sets. To test the validity of these results in
a more practicable context, we turned our attention to data
sets with a broader taxonomic sampling.

Three experiments were performed. In the first, a data set
in which taxon sampling was incremented from 4 to 41 spe-
cies was used. Saccharomyces cerevisiae was maintained as

the outgroup, whereas all supplementary taxa included
were Bilaterian. That is, no attempt at breaking the putative
long branch between the fungi and the Bilateria was made.
In the second experiment, a data set sampling 43 taxa was
used. This data set was designed to contain the full comple-
ment of taxa from the first data set but additionally included
T. adhaerens andN. vectensis. Here S. cerevisiae, T. adhaerens,
and N. vectensis were simultaneously used as outgroups for
the Bilateria. The branch joining the fungi and the Bilateria
was still present, but now it was split into three shorter
branches, allowing us to investigate the effect of targeted
taxon sampling. Finally, the third data set sampled 42 ge-
nomes. All metazoan genomes used to generate the first
two data sets were retained, whereas S. cerevisiae was re-
moved. Excluding S. cerevisiae eliminates the long branch
joining the fungi and the Bilateria, thus allowing the investi-
gation of using only nonbilaterian metazoans (T. adhaerens
and N. vectensis) as outgroups.

The analysis of the data set generated for experiment one
resulted in 2,164 single-gene families passing the PTP test.
Results of an input tree bootstrapping supertree analysis of
the ML bootstrap trees generated for these families is re-
ported in figure 2A and shows the placement of the Nem-
atoda as the sister group of all the other Bilateria, that is,
100% support for Coelomata. This tree also displays mono-
phyletic Deuterostomia, Arthropoda and, interestingly, Eu-
trochozoa. (BP 5 98%, 100%, and 100%, respectively).
The BF analysis shows that the data fit the Coelomata tree
better than the Ecdysozoa tree, thus decisively discriminat-
ing against Ecdysozoa: log10-BF 5 10.792 (±0.29).

When S. cerevisiae, T. adhaerens, and the Cnidarian N.
vectensis were concurrently used as outgroups, we found
a total of 1,949 single-gene families that conveyed signifi-
cant phylogenetic signal (see table 1). When these gene
families were used for supertree reconstruction, Ecdysozoa
was recovered but with very low support (BS5 43%; see fig.
2B). Bilateria finds significant support in this analysis (BP 5
99%) and is partitioned into Protostomia and Deuterosto-
mia. Monophyly of the Eumetazoa is also supported
(BP 5 85%), whereas support for Protostomia is not very
high (BP 5 60%). Inspection of the partition table for this
bootstrap analysis shows that Coelomata is still recovered,
albeit with minimal support (BP 5 13%). This is suggestive
of an enduring LBA effect. LBA is obviously reduced when
the additional animal outgroups are included in the analyses
to the point where the Ecdysozoa tree is themost commonly
recovered in the individual bootstrap replicates. However,
the reduction of the LBA effect is not significant enough
to completely exclude Coelomata from the set of possible
solutions. Interestingly, BFs still favor Coelomata with re-
spect to Ecdysozoa (at the least under WAG þ G): log10-
BF 5 6.67 (±0.59). However, in agreement with the results
of the bootstrap analysis, which suggest that the LBA effect
was indeed reduced when nonbilaterian animals were
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included in the sample, the weight of the evidence in favor
of Coelomata is now greatly decreased (by 4.122 points in
a log10 scale). That is, when the fungi–Bilateria branch is
broken Coelomata is still favored but the data fits the tree
;13,243 times less well than it did when the branchwas not
interrupted.

In the third experiment, S. cerevisiae was interchanged
with two animal outgroups (T. adhaerens and N. vectensis).
With this specific taxonomic sampling, we recovered a total
of 2,216 single-gene families conveying significant phyloge-
netic signal. Their analysis recovered a phylogenomic super-
tree supporting all major, recognized groups (Protostomia,
Deuterostomia, Euthrocozoa, and Arthropoda). Additionally
this analysis found significant support for Ecdysozoa (BS 5
90%) within Protostomia (see fig. 3), with the BF now deci-
sively discriminating against Coelomata: log10-BF 5 90.811
(±0.977). If one compares the fit of the Ecdysozoa tree to the
data set where S. cerevisiae is the only outgroup, with the fit
of the same tree to the data set where only the animal out-
groups were used, a dramatic change (;10100) in the BF in
favor of Ecdysozoa is observed. This clearly highlights thema-
jor role played by outgroup selection in phylogenomics.

These results are finally confirmed by our supermatrix
analyses. In these analyses, when S. cerevisiae was used
as the only outgroup, convergence could not be reached
and the resulting phylogeny (not shown) was nonsensical.

When all outgroups were included (fig. 4A), Ecdysozoa
was recovered, but the effect of LBA was still evident. If
one was to root the tree usingN. vectensis to better pinpoint
the LBA effect, a tree essentially consistent with the new
animal phylogeny was recovered. However, in this rooted
tree, S. cerevisiae is incorrectly clustered within Protostomia.
If the tree is correctly rooted using S. cerevisiae (not shown),
the Lophotrochozoa would be incorrectly attracted toward
the root. This result, which was somewhat unexpected, is
probably a partial consequence of our gene subsampling
strategy, in which we maximized information bearing on
the relationships of the Nematoda, while ignoring the Lo-
photrochozoa and the Deuterostomia (see Materials and
Methods); however, it is also clearly telling of an enduring
LBA effect. Finally when only the animal outgroups are used
(fig. 4B), the Ecdysozoa tree is recovered. In figure 4B, sup-
port for the Urochordata as members of the Deuterostomia
is not significant, and this group is thus collapsed into a poly-
tomy. We conjecture that this result is also most likely an
effect of our gene subsampling strategy (see above). This
is confirmed by the supertree analysis of our full data sets
in which support for monophyletic Deuterostomia varies be-
tween 94% and 100% depending on the outgroup used
(see figs. 2 and 3). Notably, a similar effect was observed
in the ESTstudy of Hejnol et al. (2009) in which Urochordata
became unstable when gene sampling was reduced; see

FIG. 2—Phylogenomic supertrees of the Bilateria. (A) A tree derived using only the fungal outgroup. This tree is based on 2,164 from 41 species.

(B) A tree derived using fungal and animal (nonbilaterian) outgroups. This tree is based on 1,949 genes from 43 species. The monophyly of Ecdysozoa,

Lophotrochozoa, and Protostomia is recovered in (B), whereas (A) supports Coelomata. Numbers at the nodes represent bootstrap support. Full circles

indicate 100% bootstrap support for a node.
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supplementary figure S1 (Supplementary Material online)
Hejnol et al. (2009).

Discussion

Phylogenomics in a Pluralist Context ESTs provide an ex-
cellent means of increasing taxon sampling and have been
shown to produce highly resolved, well-supported phylog-
enies (e.g., Philippe et al. 2005, 2009; Dunn et al. 2008;
Hejnol et al. 2009). However, EST studies consider only
a shallow sampling of genomic content and include a large
amount of missing data, the effect of which has never been
thoroughly investigated. For Coelomata to be robustly re-
jected, EST data, although obviously important, cannot
be considered sufficient: accord between taxonomically rich
EST studies, and gene-rich deep-scale analyses must be

reached. With the wealth of genomic data that is currently
available, arising from an ever-increasing number of se-
quencing projects, coupled with advances in sequencing
technologies, taxon sampling is becoming less of a limitation
for deep genomic-scale phylogenetic analyses. In short, we
now have at our disposal the data to conduct extensive, ex-
perimental phylogenomic studies of metazoan evolution.

Supertree methods offer an ideal solution for the recon-
struction of large-scale phylogenies based upon complete
genomes, as they provide a means of overcoming the limits
of gene concatenation-based approaches. Gene concatena-
tion methods, at present, do not allow for the easy amal-
gamation of thousands of genes. Supertrees (and in the
four taxon case consensus methods), implementing a divide
and conquer strategy, facilitate the analysis of entire ge-
nomes for many taxa by coalescing the results of multiple

FIG. 3.—Phylogenomic supertree of the Bilateria recovered using only animal (nonbilaterian) outgroups. This tree is based on 2,216 genes from 42

species. High support for the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia can be observed. Numbers at the nodes represent bootstrap

support. Full circles indicate 100% bootstrap support for a node.
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FIG. 4.—Results of the supermatrix analyses. (A) The effect of LBA is obvious if one roots the tree using Nematostella vectensis, as a tree essentially
consistent with the new animal phylogeny is recovered, but Saccharomyces cerevisiae is incorrectly nested within the Protostomia. (B) A tree illustrating

that Ecdysozoa is easily recovered when analyses are performed using only nonbilaterian animals as outgroups. Numbers at the nodes represent

posterior probabilities. Full circles indicate a posterior probability of 1. Posterior probabilities lower than 1 have only been reported for nodes that are

relevant to the Ecdysozoa versus Coelomata problem. Urochordata is collapsed in a basal polytomy because the posterior probability of Deuterostomia

is less than 0.5.
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subanalyses to attain a global solution (Wilkinson and
Cotton 2006). However, supermatrix approaches also have
important advantages, particularly as they overcome the
most important limitation of supertrees, that is that the lat-
ter do not allow hidden subsignals to interact and thus lack
total evidence like properties (Pisani and Wilkinson 2002).
In addition, supermatrix approaches allow for the use of sta-
tistical tools (like BFs) to test alternative phylogenetic hy-
potheses. Bearing in mind that both approaches have
highly desirable and significantly different properties, we
therefore opted for a pluralist, supertree/consensus tree
and supermatrix approach in our study.

Our four-taxon analyses show that multigene families can
be appropriately treated to derive species phylogenies and
suitably included in a consensus tree (if all considered gene
families are universally distributed) or supertree (if the gene
families are not universally distributed) analyses. In particu-
lar, we show that all our consensus supertrees (including
those that sample multigene families) continue to support
Ecdysozoa, a result that is further confirmed by our super-
matrix analyses.

Supertrees have previously been employed to address the
phylogenetic position of the nematodes (Philip et al. 2005).
Although carefully conducted, using the best methods and
data available at that time, this analysis did contain (by the
authors’ own admission) a very limited sampling of just 10
genomes. In particular, a noticeable problem that Philip et al.
(2005) facedwas the absence of an adequate outgroup (i.e.,
nonbilaterian metazoan genomes). As postulated by Philip
et al. (2005), in time, an increased sampling could well serve
to alter their results. In line with that prediction, our super-
tree analyses performed using appropriate outgroups and
a significantly increased taxon (and gene in the case of
the four-taxon data sets) sampling has revealed an alterna-
tive topology (see figs. 2B, 3, and 4B). Our results suggest
that the study of Philip et al. (2005) and indeed other geno-
mic-scale analyses (e.g., Blair et al. 2002; Wolf et al. 2004)
may have been influenced by systematic errors arising from
poor outgroup choice, sparse taxon sampling, and hidden
paralogy.

Circumventing Systematic Errors Our study illustrates
the importance of outgroup choice in phylogenomic-scale
studies. We see that the use of a distant outgroup has
a marked effect, irrespective of whether ingroup sampling
is spare or dense. We found, like in other studies (Philippe
et al. 2005; Rota-Stabelli and Telford 2008), that outgroup
choice completely alters the resulting topology, conse-
quently lending analogous support to competing hypothe-
sis. The recovery of the Coelomata topology can be
considered a LBA artifact brought about by the use of a di-
vergent outgroup. Comparison of BF values gives an indica-
tion of the strength of the bias and of how difficult it is to
limit its effects. Our results also reject the contention of

Rosenberg and Kumar (2001) and Rokas and Carroll
(2005) that poor taxon sampling is irrelevant as long as
enough genes are considered.

Our densely sampled data sets illustrate that optimal out-
group selection is more important than targeted taxon sam-
pling in avoiding LBA artifacts. If a distant outgroup (S.
cerevisiae) is included in the analysis, targeted taxon sam-
pling (i.e., breaking the long Bilateria–fungi branch), does
not completely eradicate (as shown most powerfully by
the BF analyses) LBA. Only upon the exclusion of S. cerevi-
siae do the BFs show a radical decrease in fit of the Coelo-
mata tree. Optimal outgroup selection is a rarely addressed
topic in phylogenetics and phylogenomics, and one has to
bear inmind that the optimal outgroup for a given data set is
not necessarily the closest one (for an interesting example,
see Rota-Stabelli and Telford 2008). Aside from LBA, an-
other important source of phylogenetic artifacts is gene
(or amino acid) composition bias, and one should thus try
to select outgroups that simultaneously minimize the likeli-
hood of both artifacts occurring.

Stringency and the Selection of Families for Phyloge-
netic Reconstruction When analyzing a small selection of
genomes we could not identify a number of single-gene
families comparable with those identified by, for example,
Blair et al. (2002). Disparity between our study and that
of Blair et al. (2002) is particularly striking when comparing
their four-taxon data set to our data set including S. cere-
visiae. Although the ultimate results of both data sets are
congruent, that is, both data sets support Coelomata;
our analysis considers 70% less single-gene families than
Blair et al. (2002). Failure of these data sets to have corre-
lating numbers of single-gene families merits discussion.We
suggest that the observed difference can partially be ex-
plained by the use of different outgroups. Blair et al.
(2002) primarily used a plant outgroup and only in cases
where plant genes were not available was a fungal outgroup
used. However, this difference can also be accounted for by
the implementation of measures to assess data quality in our
study. Under our protocol, a gene family was only consid-
ered for phylogenetic analysis if it demonstrated significant
clustering signal. Our approach thus ensured that noisy fam-
ilies or families devoid of clustering signal were eliminated
from our analysis. It is interesting to note that prior to this
filtering stage, the number of single (four-taxon)- gene fam-
ilies identified in our study was twice the number identified
by Blair et al. (2002).

Conclusions
The Ecdysozoa hypothesis has accumulated significant sup-
port in recent years (Philippe et al. 2005; Irimia et al. 2007;
Bourlat et al. 2008; Dunn et al. 2008; Lartillot and Philippe
2008; Telford et al. 2008), particularly from the analyses of
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EST data sets. To supplement this amassment of evidence,
here, we present support for Ecdysozoa from genomic-scale
data sets. From these, overall, Ecdysozoa represents the
most cogent hypothesis. It is supported from the analyses
of both single-gene families and multigene families, once
suitable outgroups are considered. Coelomata, on the other
hand, is only supported upon the inclusion of a distantly re-
lated outgroup, which suggests that this topology is system-
atically generated by a LBA artifact.

Our results, based on arguably the deepest gene sam-
pling of the Bilateria to date, present overwhelming support
for Ecdysozoa and clearly illustrate that it is the use of a dis-
tant outgroup that mislead previous analyses. Taken in com-
bination with results from the aforementioned ESTstudies, it
now appears that all aspects of molecular-based phyloge-
netics support the rejection of Coelomata. Although lack
of unambiguous morphological support for Ecdysozoa per-
sists as a moot point, in the light of overwhelming molecular
evidence and lack of morphological evidence conclusively
discrediting Ecdysozoa, is it now finally time to shed the no-
tion of Coelomata?

Supplementary Material
Supplementary figure SI1 and table S1 are available at Ge-
nome Biology and Evolution online (http://www
.oxfordjournals.org/our_journals/gbe/).
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