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Abstract

In this thesis I shall examine the energy behaviour of a massive charged scalar field in 

an Anti de-Sitter-Reissner-Nordström space-time background using the AdS/CFT 

correspondence. After obtaining the equations of motion for the system I numerically 

solve for the vacuum expectation values of the energy momentum tensor of the field 

on an AdS4 background. It will be shown that the vev condenses as the temperature of 

the black hole is lowered, suggesting superconductivity.

       I then add a time dependent part to the scalar field and examine how it behaves 

on the AdS4 boundary with respect to a varying frequency and momentum. The 

boundary field shows evidence of the emergence of quasiparticle pairs at large 

momentum. The relevant Greens functions are then calculated numerically and 

presented as a sequence of surface and contour plots. From these we are able to 

determine the dispersion relations for the field. I shall also find pseudo-particle masses 

at zero momentum, and consequently see the lowest energy bound which a particle in 

this field can adopt.
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Chapter 1

Introduction

For over the last decade or so, it has been conjectured that there exists an equivalence 

between a class of quantum field theories, and theories possessing gravity, living in a 

certain space-time background. This idea was put forth in 1997 by Juan Maldacena, 

and is thus often refered to as ”The Maldacena duality”. Much of the mathematics of 

the theory was further developed in works by Witten, Gubser, Klebanov, Hartnoll, 

Herzog and Polyakov to name but a few. It was initially born from a conjectured 

equivalence between Type IIB string theory (which is a theory of gravity in a 

particular low energy limit) living in an AdS5 X S5 space-time background, and a super-

symmetric N=4 Yang-Mills gauge field (which is a conformal field theory without 

gravity) living on the boundary of this space. AdS5 X S5 represents a five dimensional 

Anti de-Sitter space (AdS5), times a 5-sphere (S5), and so the conjecture is more 

commonly deemed the AdS/CFT correspondence [1, 2, 3, 4, 5, 6, 7, 8]. All spaces 

conforming to this correspondence are strictly Einstein spaces, as Anti de-Sitter space 

is itself a solution to the vacuum Einstein equations  with constant negative curvature.   

       The correspondence is conjectured to generalise to other dimensions. The 

conformal field theory (CFT) on the boundary naturally lives in one less dimension 

than the bulk gravity theory. For this reason it makes sense to label the 

correspondence as ’AdSd+1/CFTd’. It is known that the isometry group of a (d+1) 

dimensional Anti de-Sitter space is equivalent to the conformal group (SO(d ,2)) in d

dimensions. The AdS/CFT correspondence provides a dictionary between operators O

in the conformal field theory on the AdS boundary, and the fields living in the bulk 

gravity theory. The bulk fields effectively act as a source for the boundary operators. 

It is thus a working example of the holographic principle, first conceived by Gerard ’t 

Hooft, which suggests gravity is related to a lower dimensional theory, and provides a 

real means of solving complicated, quantum systems at strong coupling in d 

dimensions, from the dynamics of simple gravity theories at weak coupling in d +1

dimensions. 
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AdS/CFT Dictionary

Field theory                                                       Bulk Theory    

Vev of operator 

energy-momentum tensor  

dimension of operator

global symmetry

conserved current

O

Tµν

〈 〉

        

↔

↔

↔

↔

↔                    

field  

metric tensor  

mass of field

gauge symmetry

gauge field 

g µν

ϕ

                          

It has been applied, with striking success to many strong coupling problems within 

condensed matter physics, such as holographic superconductor’s and quantum critical 

phenomena, see for example [9-14]. Within the grounds of the AdS/CFT 

correspondence, superconductivity emerges from an instability in an electrically 

charged black hole living in an Anti de-Sitter background, against perturbations from 

a charged scalar field. The instability occurs in the black hole when its Hawking 

temperature T reaches some critical point Tc. For temperature’s T < Tc, the charged 

operators on the conformal boundary condense, while their dual fields in the bulk 

geometry take on non-vanishing profiles within the black hole background. It is shown 

in [10] that such condensates can form even for a very weakly charged scalar field 

when the black hole is close enough to being extremal. That is to say, extremal in the 

sense of having zero temperature.

     Perhaps the most fundamental quantity in the bulk gravity theory is the metric 

tensor gµν . Considering the classical matter action 

                                        
4

M MS d x g= −∫ L
                                                                (1.1)

Where  is the matter Lagrangian and  is the determinant of the metric  tensor.M gL

Varying the metric such that gµν → gµν + δgµν , then the variation in the matter action 

can be written in terms of the energy momentum tensor as
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41

2
MdS d x gT gµν µνδ= −∫

                                   (1.2) 

In conformally invariant theories the energy momentum tensor is traceless,

                                             0T g Tµν
µν= =                                           (1.3)  

and as stated in the dictionary above, for Anti de-Sitter space the metric tensor in the 

bulk space gives rise to the energy momentum operator on the boundary. The metric 

can be regarded as the being a source whose endpoints correspond to the boundary 

operators. There is a general correspondence between fields in the bulk and operators 

on the boundary of AdS. 

     A precise prescription of the conjecture can be written as 

                               
0 ( ) ( )

| 0 ( )
d

boundary

i d x x O x

CFTe x
ϕ

ϕ ϕ∫ = Ζ =  〈 〉
                                            (1.4) 

for some field φ in the bulk geometry, and operators O on the boundary. Here Z is the 

partition function for the field, and φ0 is the boundary value of the bulk field, coupled 

to operator O on the boundary. Equation (1.4) allows one to compute correlation 

functions for strongly coupled quantum fields on a d dimensional boundary from the 

partition functions of a d + 1 dimensional Anti de-Sitter space. 

     We will use this conjecture in chapter 2 to show that the operator corresponding 

to the energy momentum tensor of a massive charged scalar field on the boundary of 

an Anti de-Sitter space-time background, containing an electrically charged black hole, 

does indeed condense as the temperature of the black hole is lowered. This would 

suggest that the current associated with the charged operator will superconduct. 

    I shall first provide a brief description of Conformal theory followed by a review of 

some of the elementary properties of Anti de-Sitter space. From that point we will be 

in a position to proceed with obtaining independent results.
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1.1 Conformal Field Theory

Conformal field theories have played a pivotal role in the development of several areas 

of theoretical physics for over the last decade. They have provided a model for 

describing interacting quantum systems, and also naturally describe critical 

phenomenon in two dimensions. An important first point to note is that all conformal 

field theories are scale invariant. Moreover, when studying critical phenomena, this 

scale invariance is also obeyed at the critical point itself. A conformal field theory not 

only enjoys the Euclidean symmetries but also a number of special conformal 

transformations which also preserve angle, but not length. If one looks at a conformal 

field theory in two dimensions, there exists an infinite dimensional group of local 

conformal transformations which are described by holomorphic functions (see for 

example [17]). 

      A good starting point now would be to look at familiar critical system such as the 

liquid-gas phase transition, whose critical point is described by the Van der Waals 

equation of state. 

                                       

( )
2

2

aN
P V bN NRT

V

 
+ − = 

                                    (1.5) 

Here N is the number of moles of the liquid, and the rest of the parameters are defined 

as usual. It should be recalled that in general the coefficient’s a and b differ for every 

liquid considered. The critical temperature for water is approximately 374K, and the 

phase transition is shown graphically in figure 1 below. Examining one mole of water 

we can write                       

                                         
( )( )2 2 0PV a V b V RT+ − − =

                              (1.6) 

Multiplying this out we get the cubic expression

                                       

2

3 2 0
RT a ab

V b V V
P P P

 − + + − = 
                            (1.7) 

which can be generalised as

                                          1 2 3( )( )( ) 0V V V V V V− − − =                                (1.8)                                     

The critical point Vc  of the transition is where V1 = V2 = V3. One can solve for the 
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critical Volume, Pressure and Temperature from the above to obtain the following

                               
2

8 8
, 3 ,

27 27
           c

c c c

a a bP
P V b T

b Rb R
= = = =

                  (1.9) 

If one defines the dimensionless variables

                                          
, ,        

c c c

P V T
P V T

P V T
= = =ɶ ɶ ɶ

                          (1.10) 

then the Van der Waals equation can be recast in the following dimensionless form

                                               
( )2

3
3 1 8P V T

V

 + − = 
 
ɶ ɶ ɶ
ɶ

                             (1.11) 

This result is known as the law of corresponding states, and it provides an example of 

universality. That is to say that near the critical point, there is no intrinsic length 

scale in the physics; all length scales are important. The critical point in equation 

(1.11) corresponds to where

                                                       1P V T= = =ɶ ɶ ɶ

                             

                         Figure 1. The critical point of a liquid. Image obtained from Wikipedia. File:Phase-diag2.svg
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and at this critical point the physics is also invariant under scale transformations. The 

critical point in Equation (1.11) is the same for all fluids near the critical point, no 

matter what the value of the parameters a and b. This example provides a trivial and 

classical example of a scale invariant theory.

     For the case of relativistic quantum field theories, massless theories are conformal, 

see for example [15], [16]. In Minkowski space, a theory is conformal only if m =0. This 

point can be made clear if one considers a quantum scalar field in a flat Minkowski 

space. Throughout this paper I shall use units for which the speed of light and 

Planck’s constant are set to unity. Consider a neutral scalar field obeying the Klein 

Gordon equation                                              

                                                      
2( ) 0m ϕ− =□

                                                       (1.12) 

where the wave operator has a mostly plus signature. The energy momentum tensor of 

the field is  

                                      
( )2 21

2
T g mµν

ρ
µν µ ν ρϕ ϕ ϕ ϕ ϕ= ∂ ∂ − ∂ ∂ +

                              (1.13) 

In a conformal field theory, the energy momentum tensor of a scalar field is traceless. 

Considering a plane wave solution for the field, one finds the trace of the energy 

momentum tensor to be                                                       

                                                     
22

  T mµ
µ ϕ= −

                                                      (1.14) 

and so, for a neutral quantum scalar field obeying the Klein Gordon equation to be 

2 0.conformal, one can clearly see from (1.14) that we require m =                                                        

    I now describe briefly some aspects of the conformal symmetry group. Conformal 

symmetry is a symmetry under scale invariance, and under the special conformal 

transformations. Along side the Poncairé group, they generate the full conformal 

symmetry group. If we first consider a d-dimensional Euclidean flat space Rd

                  
1 2: ( ,..., )    :         Invariant under rotationsd dx x x x x= ⋅ ⇒ℝ        (1.15) 

where the rotation generators are given as

                                           ab a b b a baL x x L= ∂ − ∂ = −
                                                  (1.16) 
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where the indices a,b =1,...,d. There are d (d-1) /2 generators here, and they generate 

the algebra

                               [ , ]ab cd bc ad bd ac ac bd ad bcL L L L L Lδ δ δ δ= − − +                      (1.17) 

Equation (1.16) defines infinitesimal generators acting on an infinite dimensional space 

of functions, and it generates the SO(d) symmetry group. We also have translational 

invariance

                                              a a ax x xδ→ +                                          (1.18) 

The generators of the group being given as

                                                  a aP = ∂                                              (1.19) 

with algebra

                                                 [ , ] 0a bP P =                                            (1.20)  

and

                                       [ , ]ab c bc a ac bL P P Pδ δ= −                                       (1.21) 

The set {Lab , Pa} generate’s the d(d+1)/2 dimensional Euclidean group. 

     We also have dilations, whose generators are given by 

                              
2 2        (scaling:  )a

aD x x e xλ= ∂ →                             (1.22) 

with algebra

                                     [ , ] 0, [ , ]     ab a aD L D P P= = −                                 (1.23) 

and finally inversions. 

                                   
2 2 2

1 2a a b
a ab ax x x

x dx
x x x

δ
 

→ = − 
                                (1.24) 

The eigenvalues of D in the algebra (1.23) represents the canonical dimensions of the 

generators L and P. Inversions preserve angles but not straight lines; they are 

conformal transformations. We also have the special conformal transformations whose 

generators are given by 
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2 2 a b

a a bK x x x= ∂ − ∂                                       (1.25) 
We  thus have a closed algebra

                                          

[ , ] 0

[ , ] 2( )

[ , ]

[ , ]

a b

a b ab ab

a a

ab c bc a ac b

K K

P K L D

D K K

L K K K

δ

δ δ

=

= −

=

= −                                  (1.26) 

One can count the number of generators to find the dimension of this algebra. There 

are (d+2)(d+1)/2 generators and they generate the conformal group SO(d+1,1). 

Looking briefly now at the Lorentz group in a d+1 dimensional space-time, we have

                               
,1 2 0 2: ( )    d a b

abx x x x x xη= − + ⋅ =ℝ
                                              (1.27) 

where the metric has a mostly plus signature and the indices a,b =0,1,...,d. In d+1

dimensions the boost generators are given as 

                                       
c c

ab ac b bc aL x xη η= ∂ − ∂                                       (1.28) 

with algebra

                                [ , ]ab cd bc ad bd ac ac bd ad bcL L L L L Lη η η η= − − +                      (1.29) 

The dimension of this algebra is now d(d+1)/2, and and it generates the symmetry 

group SO(d,1). For a,b =0,1,...,d , (1.28) above would be a rotation and not a boost. 

For a light cone in Minkowski space (mostly plus signature again)                                 

                                                              
                                                                      Figure 2: Light cone
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one would have the coordinate system 

                            
,1 0 1 0 2 2: ( , ,..., ) : ( )      d dx x x x r r L= ⋅ =ℝ

                                         (1.30) 

In general, one can say that the conformal group acting on Rd, is equivalent to the 

Lorentz group acting on Rd+1,1.  Similarly the conformal group acting on Minkowski Rd,1

is equivalent to the Lorentz group acting on Rd+1,2. A more general result in Rd,1 is 

given as

→                                               ( ,1) ( 1, 2)  SO d SO d⊂ +
                                                               (1.31) 

where the l.h.s is the Lorentz group of Rd,1, and the r.h.s is the conformal group of Rd,1. 

This concludes the section on conformal field theory, and for a more comprehensive 

review, see for example [3,7].

1.2 Basics of Anti de-Sitter Space

As stated in the introduction, Anti de-Sitter space is a maximally symmetric solution 

to the vacuum Einstein equations plus a negative cosmological constant Λ. I will 

discuss some of the basic ideas here but for a thorough review of this space and its 

features, see for example [2-4], [18-21].

       Now consider the gravitational action

                                        

1
( 2 )

16

d
GS d x g R

Gπ
= − − Λ∫

                                           (1.32) 

Where from here on, I shall use the same convention as that of [25] and set Newton’s 

constant G to 1/16π. The vacuum Einstein equations read

                                          

1

2
R g R gµν µν µν− = −Λ

                                                         (1.33) 

⇒                                    

2

2
R d

d

Λ
= −

−                                                                      (1.34) 

11



where R is the Ricci curvature and d is the dimension of the space-time. For such 

Einstein spaces, one sees that the Ricci tensor is directly proportional to the metric 

tensor and dependent only on the dimension of the space in question. The difference 

between de-Sitter space and Anti de-Sitter space is in the sign of the cosmological 

constant. A positive value corresponding to de-Sitter space and a negative value to 

Anti de-Sitter space. For all such Einstein spaces the Ricci tensor can be written in 

terms of the de-Sitter/Anti de-Sitter radius L as 

                                        
2

( 1)d
R g

L
µν µν

−
= ±

                                        (1.35) 

⇒                                    
2

( 1)d d
R

L

−
= ±

                                               (1.36) 

The Einstein tensor would then be given as                                    

                                                               

1

2
G R g Rµν µν µν= −

                                                   (1.37)          

⇒                                                     
2

( 1)( 2)

2

d d
G g

L
µν µν

− −
= ∓

                                                   (1.38) 

The positive choice of (1.36) corresponds to de-Sitter Space while the negative 

corresponds to Anti de-Sitter space. One can then equate (1.34) and (1.36) to obtain 

expressions for the cosmological constant in both de-Sitter and Anti de-Sitter space as 

follows

                                      
2

( 1)( 2)
:

2
      

d d
dS

L

− −
Λ =

                                  (1.39) 

and 

                                     
2

( 1)( 2)
:

2
      

d d
AdS

L

− − −
Λ =

                          (1.40)   

Changing from a mostly plus to a mostly minus metric merely swaps the sign of the 

cosmological constant. 

     Focusing first on de-Sitter space
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1,1 2 2 2 2 1,1 ,1

1 0:      ,    d d d
ddS x x x L dS− −+ + − = ⊂⋯ ℝ                     (1.41) 

⇒                                                 

2 2 2 2
1 0dds dx dx dx= + + −⋯

                                                     (1.42) 

with 

                                          

1,1 ( ,1)

( 1,1)

d SO d
dS

SO d

− ≅
−                                      (1.43)  

We make the following parametrisations

                                                

2 2 2
1

0

cosh

sinh

dx x

L

x L

ρ

ρ υ

υ

= + +

=

=

⋯

                                     (1.44) 

and obtain the metric

                                  
( )2 2 2 2 1cosh dds L d dυ υ −= − + Ω

                                (1.45) 

where dd−1Ω is the transverse line element in d−1 dimensions. If we let d=4 for example, 

we find from (1.39) and (1.36) respectfully

                                               
2

3
0

L
Λ = >

                                                                 (1.46) 

⇒                                                                    4R = Λ                                                (1.47) 

which corresponds to an expanding de-Sitter universe. We can also see that (1.43) 

becomes

                                             

3,1 (4,1)

(3,1)

SO
dS

SO
≅

                                        (1.48) 

where on the r.h.s of (1.48) above we see the Lorentz group  for the R3,1 tangent plane 

in the denominator, while the isometry group of de-Sitter space is in the numerator. 

      We now examine the hyperbolic plane

                                   
2 2 2 2 ,1
1 0:      ,    d d d

dH x x x L H+ + − = − ⊂⋯ ℝ
                                  (1.49) 
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letting

                                                0

sinh

cosh

L u

x L u

ρ =

=                                          (1.50) 

to obtain

                                      
( )2 2 2 2 1sinh dds L du ud −= + Ω

                              (1.51) 

with 

                                             

( ,1)

( )

d SO d
H

SO d
≅

                                          (1.52) 

A useful parametrisation now is to let

                               
( )2 2 2 2sinh       r L u dr L r du= → = +

                         (1.53) 

and the metric (1.51) becomes

                                         
( )

2
2 2 1

2 21

ddr
ds r d

r L

−= + Ω
+

                              (1.54) 

Finally we turn to the Anti de-Sitter space with coordinate system  
                     

                    
1,1 2 2 2 2 2 1,1 1,2

1 1 0 0:      ,    d d d
dAdS x x x x L AdS− − −
−+ + − − = − ⊂ɶ⋯ ℝ          (1.55) 

where the quotient of symmetry groups is now

                          

1,1 1 1 1( 1,2)

( 1,1)
      d d dSO d

AdS S time H
SO d

− − −−
≅ ≈ × ≈ ×

−
ℝ

              (1.56) 

The numerator in (1.56) is now evidently the conformal group in Minkowski space   

R
d-2,1, living in one less dimension than the Anti de-Sitter space. For the case of AdS2,1

we can making the following parametrisations

                   

( )
1

2 2 2 2 2 2 2
1 2

2

cos sinh
cosh sinh

sin sinh
 

x L w
dx dx L wdw wd

x L w

φ
φ

φ

= 
+ = +

=                (1.57) 

and
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( )
0

2 2 2 2 2 2 2
0 0

0

cos cosh
sinh cosh

sin cosh
 

x L w
dx dx L wdw wd

x L w

τ
τ

τ

= 
+ = +

= 
ɶ

ɶ
                (1.58) 

we can write the metric for Anti de-Sitter space in d-dimensions as

                        

                           
( )2 2 2 2 2 2 2cosh sinhds L wd dw wdτ φ= − + +

                                     (1.59) 

This generalises to 

                           
( )2 2 2 2 2 2 ( 2)cosh sinh dds L wd dw wdτ −= − + + Ω

                   (1.60) 

Now making the following substitution

                     

2
2

2
( , ) ( , ) : sinh cosh 1    ,    ,    

r
w r t t L r L w w

L
τ τ→ = = = +

          (1.61) 
we find the general expression for the metric in AdSd

                                         
( )

2 2
2 2 2 ( 2)

2 2 2
1

1

dr dr
ds dt r d

L r L

− 
= − + + + Ω 

+ 
                                                (1.62) 

where it is seen that the last two terms on the  r.h.s of (1.62) comprise the d-1

dimensional hyperbolic plane of Anti de-Sitter space, and the coordinate r runs from -

∞ to +∞.  In the case of AdS4, we have group quotient

                              

1 3 3
4

(3, 2)

(3,1)
      

SO
AdS S time H

SO
≅ ≈ × ≈ ×ℝ

                    (1.63) 

and the cosmological constant is found from (1.40) to be 

                                                 
2

3

L
Λ = −

                                                                      (1.64) 

with                       

                                                  4R = Λ                                                                          (1.65) 

The Ricci scalar (1.65) is just as in the de-Sitter case. More generally we have

                                  

,1
1

( , 2)

( ,1)
 d

d

SO d
AdS AdS

SO d
+ = ≅

                                    (1.66) 
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Below is a graphical representation of a maximally symmetric Anti de-Sitter space 

with two time axes

                  

         Figure 3: Graphical representation of Maximally symmetric Anti de-Sitter space

where 

                                             
2 2 2 2

1 2x t t L− − = −                                      (1.67) 

and time is cyclic in an Anti-clockwise direction in the t1 -t2 plane. This concludes the 

brief discussion on Anti de-Sitter space. For a more detailed account of this space see 

for example [2,4,7,18]. 
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1.3 Black holes

Before proceeding to the next section I will give a very brief account of electrically 

charged (Reissner-Nordström) black holes and some appropriate results that apply to 

the work herein. 

      The Reissner-Nordström solution of the Einstein field equations describes the 

space surrounding a spherical, non rotating, charged black hole. The metric is found by 

solving the coupled Einstein-Maxwell equations, got from considering the action 

                                         

21

4

d dS d x g R d x gF= − − −∫ ∫
                                    (1.68) 

with

                                                   [ ]

0

0

 g F

F

µν
µ νσ

µ νρ

∇ =

∇ =
                                  (1.69) 

Where for now I am working with zero cosmological constant. The energy momentum 

tensor for electromagnetism is given by 

                                     

                                         

1

4
T F F g F Fρ ρσ
µν µρ ν µν ρσ= −

                             (1.70) 

and in terms of a differential form, the electromagnetic field strength is taken to be  

                                             

                                             
24

F dA dt dr
rπ

= = ∧
Q

                                                    (1.71) 

with potential

                                                  
0

4
A

rπ
=
Q

                                                                    (1.72) 

A complete derivation of the Reissner-Nordström metric is given in [22], where they 

also consider the black hole to possess a magnetic charge. Throughout this work I shall 

focus on an electric potential only, and furthermore this electric potential will only 

have a non vanishing 0-component as in (1.63). The metric can be written in 3+1 

dimensions as
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( )

( )

2
2 2 2 2dr

ds r dt r d
r

= −∆ + + Ω
∆

                            (1.73) 

where the horizon function ∆(r)  is derived to be
                                            

                                             
( )

2

2
1

8 4

M
r

r rπ
∆ = − +

Q

                                                      (1.74) 

Where here and throughout this paper I shall work in relativistic units where c = ħ = 1. 

The Reissner Nordström black hole has an inner and an outer event horizon, both 

these horizons are an example of coordinate singularities [23] due to the fact that they 

can be resolved by choosing an appropriate coordinate system. The only intrinsic 

singularity lies at r = 0. The inner and outer horizon can be found readily from (1.74). 

A regular black hole horizon occurs at the largest root of the horizon function. 

                                

                              

2 2 21
(8 )

16 2
,     outer

M
r M r rπ

π
−

± += ± − =Q
                                   (1.75) 

We are interested in the black hole’s outer horizon and can readily see from (1.75) 

that there are three distinct possible scenario’s for an outer horizon. For the case 

where  Q2 > (M/8π)2  it is clear that there are no real solutions, and moreover, the 

metric will be nonsingular everywhere except at the intrinsic singularity where r = 0.

Consequently this region will not be covered by an event horizon and as a result will 

disobey Penrose’s cosmic censorship against naked singularities. We could also have the 

case where Q2 = (M/8π)2 . In this case the black hole becomes extremal, due to the fact 

that one would have  r+ = r- = (M/8π). As a result the t-coordinate is everywhere time-

like except at the horizon r = (M/8π) where it becomes null [24]. For Q2 < (M/8π)2 (1.66) 

becomes singular at r = 0 and r  = r+ becomes the event horizon. Thus outside the 

region r > r+ the r-coordinate is space-like and the t-coordinate is time-like, so the weak 

cosmic censorship criteria is satisfied.

    As a last introductory topic, we take a brief look at a black hole solution with a 

non-zero cosmological constant. The horizon function (1.74) then takes on an extra 

term as 
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( )

2 2

2 2
1

8 4

M r
r

r r Lπ
∆ = − + +

Q

                                                   (1.76) 

The temperature of the black hole is calculated from the function (1.76) at the 

horizon, and is given as

                                                  

( )
T

4

r

π
+′∆

=
                                         (1.77) 

where the prime denotes differentiation with respect to r. The numerator of the r.h.s of 

(1.77) represents the surface gravity of the black hole. I shall calculate an exact 

analytic form for the temperature in the next chapter. Now choosing a gauge for the 

field such that the potential vanishes at the outer horizon, we have. 

                                             
0

1 1
A A dt dt

r r+

 
= = − 

 
Q

                                                (1.78) 

I shall stick to this choice of gauge for the rest of the paper. As mentioned above, in 

asymptotically AdS  regions, ie, at large r, a scalar field obeys the Klein Gordon wave 

equation

                                               
2( ) ( ) 0m rϕ− =□                                          

where here, the scalar only depends on the radial coordinate r. For a charged field the 

equations of motion read

⇒                               
( ) 21

0D g g D m
g

µν
µ νϕ ϕ− − =

−
                                              (1.79) 

where the gauge covariant derivative is given as 
                                              

                                                  D iqAµ µ µ= ∂ −

The determinant of the metric tensor is 

                                                     
2g r− =
                                        (1.80) 

For large r the horizon function can be approximated as

                                            

( )
2

2

r
r

L

 
∆ →  

                                             (1.81) 
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then for a scalar field φ=φ(r), (1.79) becomes

                                        

4
2

2 2

1
0r r

r
m

r L
ϕ ϕ

 
∂ ∂ − = 
                                  (1.82) 

⇒                                                        

2 2 24 0r r m Lϕ ϕ ϕ′′ ′+ − =
                                                        (1.83) 

⇒                                                       

2 2( 1) 4 0m Lδ δ δ− − − − − =
                                                    

⇒                                                             
2 2 23 0m Lδ δ− − =                                                                    

⇒                                                             

2 23 9 4

2

m L
δ±

± +
=

                                                             (1.84) 

which has solutions

                                                 3δ δ+ −= −                                           (1.85) 

These are thus the choices of dimension for a scalar operator on the AdS boundary, 

relating to a field in the bulk geometry with mass m. At the boundary, the leading 

order terms of the field behave like

                                               
3

A B

r rδ δϕ
−

≈ + +⋯
                                    (1.86) 

for some relevant operators A and B describing the conformal field. The only criteria 

which must be obeyed here, is that the mass of the field operators must be above the 

Breitenlohner-Freedman (BF) bound. That is that m 2L2 > -9/4.  Outside this range, the 

field becomes unstable. In the next chapter we shall look closely at the case of a 

conformally coupled scalar field. This takes on a negative mass with a value m 2L2 = ‒2  

which is well inside the BF bound. For more information regarding the conformal 

dimension of operators on the boundary of Anti de-Sitter space, see for example [2].
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Chapter 2Chapter 2Chapter 2Chapter 2

It has been argued [25] that black hole horizons can exhibit spontaneous symmetry 

breaking of an Abelian gauge field for theories with gravity coupled to a matter 

Lagrangian as simple as the following.

                 

2 22 2

2

6 1
, ( )

4
    R F iqA m r

L
µν µ µϕ ϕ ϕ ϕ ϕ= + − − ∂ − − =L

                               (2.1)  

Where φ is a charged scalar field, and is a function only of its position variable r. The 

first two terms in (2.1) are just the Einstein-Hilbert Lagrangian plus a negative 

cosmological constant term. The remaining terms are the Abelian Higgs Lagrangian 

minus the usual |φ4| term in the potential. It has been stated [25] that this term can be 

added or discarded without altering the story much. 

     As explained in the introduction, Anti de-Sitter space is a maximally symmetric 

vacuum solution to Einsteins field equations with a negative cosmological constant and 

thus to the equations of motion above. From here on in I shall use a “mostly plus” 

signature, and take this opportunity to point out once more that Newton’s constant G

has been set to a value of 1/16π. I shall also always assume that the scalar field φ(r) is 

too small to significantly back-react on the surrounding geometry, thus simplifying our 

calculations. This yields marginally stable modes in the scalar field. A marginally 

stable mode being one for which the scalar is infinitesimally small and only position 

dependent. More importantly, a marginally stable mode is one for which either A or B 

in (1.86) vanish. The interesting physics lies in the first observed marginally stable 

mode as the temperature of the black hole is lowered. This first mode occurs at a 

critical temperature for which the field operator on the boundary space begins to 

condense.                                                                                                

     The initial work presented here shall mirror [25] quite closely, and I shall start out 

by making plots of the scalar field running from the outer horizon of the black hole out 

to asymptotic infinity as the black hole gets colder and colder. By examining the 

boundary values of the field, it will allow us to find marginally stable modes around 

black hole solutions that do not break the U(1) symmetry. It should be noted that in 

section 2.2 below, no new results are proven, however the equations of motion along 
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with their boundary conditions as given in [25] are recast into a dimensionless form. 

Comparisons are made to plots in [25] as a consistency check. I shall also provide the  

matlab code which generates both my own graphs, and those in [25] for the interested 

reader. 

  

2.1  The Reissner-Nordstrom black hole in AdS4

     We begin our analysis by considering a spherically symmetric, time independent, 

charged scalar field φ(r) with charge q and mass m in an Anti de-Sitter-Reissner-

Nordström space-time containing a black hole with electric charge Q. Such a space-

time  describes charged black holes in a theory governed by the coupled Einstein-

Maxwell equations, and is a solution to the equations of motion following from the 

Lagrangian (2.1). The metric  for the space-time is given as

                                                  

2
2 2 2 2( )

( )
k

dr
ds r dt r d

r
= −∆ + + Ω

∆ (2.2)   

( )r∆where the horizon function  is given by

                          

2 2

2 2
( ) ( ) 0

8
,     

M r
r k r

r rπ
+

 
∆ = − + + ∆ = 

 

Z

L
(2.3)      

2

kd kΩThe transverse metric  is defined through the curvature constant  as

                                     

                               

2

2

2

sin  ,        1,        0     

,                  0,       0 2

sinh  ,      1,   

k

d d k

d d d k

d d k

θ θ φ θ π
θ φ θ π

θ θ φ θ

 = ≤ <


Ω = = ≤ <
 = − −∞ < < ∞

For the case where k = 1, the metric corresponds to that of a unit 2-sphere, while for         

k = 0 it corresponds to the flat space metric on R2. The k = –1 case corresponds to the 

metric of a hyperbolic plane H2. Throughout this work I shall focus only on the k = 0

case, and only use the k = 1 case as a comparison of this work to that of [25].  The 

parameter Z in (2.3) is related to the charge of the black hole by                                                                                                                                                          
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2 21

4
=Z Q

                                                                             (2.4)      

and i am now using a bold face type for the Anti de-Sitter radius L as it will be 

convenient shortly when making these parameters dimensionless. As in (1.77) we work 

in a gauge where the electric potential only possesses a 0-component and vanishes at 

the outer horizon r+ of the black hole. It is define it to be

                                         
0

1 1
A

r r+

 
= − 

 
Q

                                                                         (2.5) 

The parameter M in (2.3) represents the mass of the black hole, while as we saw in     

§1.2, the Anti de-Sitter radius LLLL is related to the cosmological constant via (1.40).  We 

shall see below, the mass term in (2.3) can be got rid of quite easily, and the horizon 

function (2.3) reduces to a 3 parameter family labelled by k, L and Q. One can for 

example study the Poincaré patch of AdS by fixing the charge of the black hole, whilst 

keeping L finite and letting k go to zero. The value of the black hole charge Q will also 

have a finite range, and this range will be determined by finding an exact analytic 

form of the Hawking temperature at the horizon of the black hole. This will be done 

below. 

     We turn our attention now to the horizon function and show that the mass M is 

completely determined by the outer horizon radius r+ and the other parameters in 

(2.3). To that end we note that a regular horizon form’s for a positive root of (2.3), 

and write  

                            

2
4 2 2 2 2

2 2

1
( )

8

M r
r r k r

r π
 

∆ = + − + 
 

L
L Z L

L
(2.6)   

( )Pulling a factor of  out of this givesr r+−

               

2
3 2 2 2 2 2

2 2

1
( ) ( ) ( ) [ ( )]

8
 

M
r r r r r r k r r r k r

r π
+ + + + +
 

∆ = − + + + + − + + 
 

L
L L

L
        (2.7)    

The last term in square brackets can be easily checked
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2
2 2 2 2( )

8

M
r r k r

π
+ + +
 

− − + + = 
 

L
L Z L

                                                    (2.8)   

⇒                                  

2
4 2 2 2 2 0

8

M
r k r r

π
+ + +− − + − =

L
L Z L

                                                       (2.9)    

⇒                           

2 2 2
2 2( )

8

M
r k r

rπ
+ +

+

− + + = −
L Z L

L

                                                           (2.10)   

4Taking a factor of  out of (2.7) and inserting (2.10) we findr+

             

                

( ) ( ) ( )
4 2 2 2

3 2

2 2 2 4
( ) 1 1

r r k
r r r r r r r

r r r r

+
+ + +

+ + +

    
∆ = − + + + −    

    

L Z L

L
                   (2.11)    

At this point it is convenient to define a new set of dimensionless parameters necessary 

for numerical analysis later. We define them as     

                     

                                       
,Z L

r r+ +

= =        
Z L

                                                                 (2.12)    

With these definitions in place it is easy to see from (2.10) that the parameter M is 

determined by the following simple relation   

                                         
2 28 ( )M r k Z Lπ −

+= + +
                                                        (2.13)  

We now move on to find the equations of motion for the field.
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2.2   Equations of Motion

The wave equation for a scalar field in the presence of both gravity and an electric 

field is    

                               
( ) 21

m 0D g g D
g

µν
µ νϕ ϕ− − =

−
                                                    (2.14) 

Where m is the mass of the scalar field and and g is the determinant of the metric 

tensor. Again a slightly different type set has been used for the mass of the scalar from 

the previous chapter as it will shortly be non-dimensionalized, The gauge-covariant 

derivative is given as

                                 

                                          
D iqAµ µ µ= ∂ −

                                                                       (2.15) 

where, as specified above, the electric potential Aµ={A0, 0} is defined such that it 

vanishes on the outer horizon of the black hole. It is explained in [25] that this is a 

preferred gauge choice if we are to examine a scalar which doesn’t vanish at the outer 

horizon. This is due to the fact that if the field does not have a time dependent part, 

the energy in its Lagrangian will diverge to infinity if we choose a non vanishing 

potential at the horizon.  

     The first step now is to make a change of position variable for the scalar field and 

introduce the new dimensionless quAntity         

                                                

r
u

r

+=
                                                (2.16) 

This change of variables is for computational reasons later on, and u naturally runs 

from 1 to 0 as r runs from the outer horizon to infinity. With this in place we may re 

write the horizon function (2.11) as 

                                          

                      
( ) ( )

2
1 3 2 2 1 2 2

2
( ) 1 1

u
u u u u kL u Z L

L

− − − − ∆ = − + + + − 
                                   (2.17) 

⇒                
( ) ( )2 2 2 2 3

2 2

1
( ) 1 1 1u u u kL u Z L u

L u
 ∆ = − + + + − 

                                          (2.18)     
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Now returning back to (2.14) and noting the following   

            

               

/

/

/

       g g
r r

r r

µν
µν

−∆ − ∆   
   ∆ ∆   = =
   
   
   

2 2

2 2

1

1

1

1           (2.19) 

and                             

                                  
2det( )        g g g rµν= ⇒ − =
                               (2.20) 

Expanding (2.14) and recalling that gauge covariant derivatives are replaced by partial 

derivatives when acting on a scalar, we have 

                          
{ }2 00 2 2

0 02

1
( ) ( ) m 0rr

r rr g r g
r

ϕ ϕ ϕ∂ ∂ + ∂ ∂ − =

⇒                   

2
2

2 2

2

1 ( ) 1 1
( ) m 0r r

q
r

r r r
ϕ ϕ ϕ

+

 
∂ ∆∂ + − − = ∆  

Q

                                           (2.21) 

Now using the definition (2.16), and rewriting our scalar field as follows so as to make 

it dimensionless

                                          

r
y y u

r
ϕ += = ⋅

                                             (2.22)  

Eq (2.21) becomes

                       

22 2 2
2

2 2

( ) ( 1)
( ) m 0

u u d d q u
r u y

r r du du r
ϕ ϕ+

+ + +

  − − − ⋅∆ ⋅ + − =   ∆  

Q

              (2.23)  

⇒                          

22
5 4 4 2(1 )

(2 ) 0
Q u u

u y u u y u u y
 − ′′ ′ ′ ′∆ ⋅ + ∆ + ∆ + ∆ + − = 

∆  
m

                     (2.24) 

Where in the last line we multiplied across by  and made the following definitionsr+
2

26



                                      mQ q r+= = ,      Q m
                                                              (2.25)  

to make them dimensionless. The primes in (2.24) indicate differentiation with respect 

to the variable u.  The horizon function ∆(u) in (2.18) can be rewritten as  

                           
( )( )2 2 2 2 2 2 2 2

2

1
( ) 4 1u Z L u kL Z L u kL u

L

−∆ = − + + + +
                     (2.26)  

Similarly we find

                           
( )( )2 2 2 2 2 3

2

1
( ) 2 1 2u Z L u kL Z L u

L

−′∆ = − + + −
                 

⇒                                 

( )( )4 2 2 4 2 2 2 3

2
( ) 2 1 2

u
u u Z L u kL Z L u

L
′∆ = − + + −

                                     (2.27)   

and

                          
( )( )2 2 2 2 2 2 2

2

1
(2 ) 4 3 1 2u Z L u kL Z L u kL

L
′∆ + ∆ = − + + +

                       (2.28)  

Now dividing (2.24) by u and inserting (2.26)→ (2.28) we find 

                         

22
4 3 3 2(1 )

(2 ) 0
Q u

u y u u y u y
 − ′′ ′ ′ ′∆ ⋅ + ∆ + ∆ + ∆ + − = 

∆  
m

                 (2.29) 

and our equation of motion reads

{ }
2

2 2 3 2 2 2 2 2 2 2 2 2

2
(1 )(1 (1 ) ) ( ) 2 3(1 ) 4 ( )

d d
u u u kL u Z L y u u kL kL Z L u Z L u y u

du du
− + + + − + − + + +  

2 4
2 2 2 2 2 2 2 2

2 2 3 2 2 2

(1 ) 1
2 (1 ) ( 2) ( ) 0

(1 (1 ) )

Q L u
Z L u u kL Z L L y u

u u kL u Z L u

 −
+ + − + + − + = 

+ + + − 
m

(2.30) 

We can now work out the appropriate boundary conditions. Making use of the 

linearity of this equation, we can choose our first boundary to be y(1) = 1 at the 

horizon without loss of generality. Equation (2.30) is singular at u = 1, since the 

coefficient of y" vanishes there. At u = 1, we have
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2 2 2 2 2 2 2 2( 3) (1) (1 2) (1) 0Z L kL y kL Z L L y′− − − + − − − =m

                     (2.31) 

and our boundary conditions are

                           

2 2 2 2 2

2 2 2

(1 2)
(1) 1 (1)

( 3)

kL Z L L
y y

Z L kL

+ − − −
′= =

− −
,          

m

                           (2.32) 

Where the above parameters are subject to only one constraint; namely that the 

Hawking radiation at the outer horizon of the black hole be positive. The temperature 

as defined in the previous chapter is

                                                

( )
T

4

r

π
+′∆=

                                                              (2.33) 

The prime here represents differentiation with respect to r. As mentioned in the 

previous section, the term in the numerator of the r.h.s of (2.33) represents the surface 

gravity of the black hole.  Working this quAntity out we find  

                                                              

2

2 3 2

2 2
( )

8

M r
r

r rπ
+

+
+ +

′∆ = − +
Z

L

                                                               

We can use the result obtained in (2.13) to eliminate the M term altogether. 

⇒                                               

22 2

2 2 3 2

21 2
( )

r r
r k

r r r

+ +
+

+ + +

 
′∆ = + + − + 

 

Z Z

L L

⇒                                                       

2 2

2 2

1 3
( )

r
r k

r r

+
+

+ +

 
′∆ = − + 

 

Z

L

Thus the temperature of the black hole at the outer horizon is expressed in terms of 

the above parameters as

                                           

2 2 2( 3)
T

4

kL Z L

rπ +

− +
=

                                                        (2.34) 

Demanding that this be positive at the outer horizon of the black hole places the 

following constraint on the parameters
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2 2 2 3 0kL Z L− + >                                                             (2.35) 

For the case where k=0, the above constraint reduces to

                                                   
2 2 3Z L <                                                                     (2.36)  

Thus the product of Z and L cannot be too large. We may assign the black hole an 

intrinsic charge, thus fixing the value of the parameter Z . In [25] Gubser fixes the 

charge of the black hole to unity. If we assign it the same value, then our parameter Z 

takes on a value of 1/2. This naturally places an upper limit on the parameter L. To 4 

decimal places we must have that L < 3.4641, and when this condition is saturated the 

black hole becomes extremal; in the sense that it has zero temperature. One could also 

equate (2.34) to (2.13) and write the Hawking temperature in terms of the mass 

parameter M as

                                      

2
2 21

T 2(1 )
4 8

ML
Z L

r rπ π+ +

 
= + − 

 
                                           (2.37) 

leaving it independent of the curvature constant k. Now, for the special case of a 

conformally coupled scalar field, m2L2 = ‒2, and k=0, so (2.30) simplifies to

               

               
{ }

2
2 3 2 2 2 2 2 2 2

2
(1 )(1 ) ( ) 4 3(1 ) ( )

d d
u u u u Z L y u u Z L u Z L u y u

du du
− + + − + − +  

                        

2 4
2 2 2 2 2

2 3 2 2

(1 )
2 (1 ) ( ) 0

(1 )

Q L u
Z L u u Z L y u

u u u Z L

 −
+ + − + = 

+ + − 
                   (2.38)  

with boundary conditions 

                                       

2 2

2 2

(1 )
(1) 1 (1)

( 3)

Z L
y y

Z L

−
′= =

−
,          

                            (2.39) 

Unfortunately there is no method of finding an analytic solution to (2.38), so we solve 

it numerically for different values of the two parameters L and Q. 

        The boundary conditions however are slightly subtle at u=1 due to the singularity 

there. Thus for computational reasons we must reset the boundary conditions so that 
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they are close to, but not exactly at u=1.  To that end we may re-write (2.38) 

shorthand as

                                     

                                     ( ) ( ) ( ) ( ) ( ) ( ) 0f u y u g u y u h u y u′′ ′+ + =                        (2.40) 
Where
                                            

                                     
2 2 2 3 2 2( ) ( ) (1 )(1 )f u u u L u u u u Z L= ∆ = − + + −

                                     
2 2 3 2 2 2( ) 4 3(1 )g u Z L u Z L u= − +

    

                                     

2 4
2 2 2 2 2

2 3 2 2

(1 )
( ) 2 (1 )

(1 )

Q L u
h u Z L u u Z L

u u u Z L

−
= + − +

+ + −
          (2.41)  

We can now Taylor expand y(u), ƒ(u), g(u) and h(u) about u=1.  Letting u=1‒ε, with ε 

small and positive we can write,

                                      

2 3

0 1 2

1
(1 ) ( ) ...

2
y y y y oε ε ε ε− = − + + +

                     (2.42) 

and

                                      
2

1(1 ) ( ) ...f f oε ε ε− = − + +                                       

                                      
2

0 1(1 ) ( ) ...g g g oε ε ε− = − + +

                                      
2

0 1(1 ) ( ) ...h h h oε ε ε− = − + +                                (2.43)  

Here the subscript "0" represents each function evaluated at u=1, while the subscript 

"1" represents its derivative evaluated at u=1. From (2.38) one can see that ƒ0 =0, 

while the rest of the coefficients are given as

                                                
2 2

0 3g Z L= −

                                                
2 2

0 1h Z L= −

                                                
2 2

1 0 3f g Z L= = −

                                                
2 2

1 6( 1)g Z L= −
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2 4
2 2

1 2 2
3 1

(3 )

Q L
h Z L

Z L
= − + −

−
                                     (2.44)  

We now proceed to work out the values of yi. Expanding (2.40) to first order in ε, we 

have

                     
2

1 2 0 1 1 2 0 1 0 1( )( ) ( )( ) ( ) 0f y g g y y h h y y oε ε ε ε ε ε− + − − + − − + =           (2.45) 

Equating the coefficients of zeroth order power in ε yields

                                                 0 1 0 0 0g y h y+ =

                                   

0
1 0

0

          
h

y y
g

⇒ = −
                                          (2.46) 

Setting y(1) = y0 = 1, we can see from (2.44) that

                                               

2 2

1 2 2

(1 )

(3 )

Z L
y

Z L

−
= −

−
                                                            (2.47) 

Solving for y2  in the remainder of (2.45), one finds

                                            

( )0
1 0 1

0

2

1 0( )

h
g h h

g
y

f g

 
+ − 

 =
+

                                                  (2.48) 

This demands that  ƒ1+g0 ≠ 0.  In fact one can readily see that ƒ1+g0 = 2g0, and so 

(2.48) can be written more compactly as

⇒                                      

2

0 1 0 1 0
2 2

02  

h g h h g
y

g

+ −
=

                                       (2.49)  

Subbing eq’s (2.44) into this we find
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2 4 4 4 2 2

2 2 2 2

4( 1)

2(3 )

Q L Z L Z L
y

Z L

− − +
=

−
                                        (2.50) 

Inserting (2.47) and (2.50) into (2.42) we obtain the leading order terms in the series 

solution about u=1‒ε

                  

2 2 2 4 4 4 2 2
2 3

2 2 2 2 2

1 4( 1)
(1 ) 1 ( ) ...

3 4(3 )

Z L Q L Z L Z L
y o

Z L Z L
ε ε ε ε

   − − − +
− = + + + +   − −    (2.51) 

Thus, to order ε, we can consistently set our boundary conditions as 

                                            

2 2

2 2

1
(1 ) 1

3

Z L
y

Z L
ε ε

 −
− = +  − 

                                               (2.52) 
and 

                           

2 2 2 4 4 4 2 2

2 2 2 2 2

1 4( 1)
(1 )

3 2(3 )

Z L Q L Z L Z L
y

Z L Z L
ε ε

   − − − +
′ − = − −   − −   

                  (2.53) 

After fixing the value of ε to be sufficiently small, we may integrate the scalar from 

directly outside the black hole horizon out to asymptotic infinity. We’re now in a 

position to write a matlab routine (See Appendix) that examines the behaviour of the 

scalar field. It is a trivial matter if one wishes to examine the scalar for different 

masses and different values of the curvature constant k. Including the mass and 

curvature terms, equations (2.44) become

           

                                  
2 2 2

0 3g Z L kL= − −

                                                      

2 2

0 0h g m L= −

                                                      1 0f g=

                                                      

2 2 2

1 6( 1) 4g Z L kL= − −

                                                      

2 4
2 2 2 2 2

1 2 2 2
3( 1) 2

(3 )

Q L
h Z L kL m L

kL Z L
= − + + − +

+ −
                   (2.54) 

Although the rest of this work will focus only on the case of a scalar with negative 
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mass, I have added for completeness, plots for the case of positive mass and curvature 

constant k=1. For figures 4 and 5 below, I have used L values coinciding with those 

taken in [25].
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                      Figure 4:  Examples of marginally stable modes in an 
���

4 geometry.

As a consistency check, eq(2.30) and its boundary conditions where rewritten in terms 

of the position variable r instead of u. Writing the equation of motion out shorthand as

                             ( ) ( ) ( ) ( ) ( ) ( ) 0f r r g r r h r rϕ ϕ ϕ′′ ′+ + =
                                                  (2.55)  

where

                             

3 2 2 2 2

2 2

1
( ) ( 1)( (1 ) - )f r r r r r kL Z L

r L
= − + + +

                              

2
( )

f
g r f

r

 ′= + 
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2
1 2 2( )

( ) ( 1)
qQ

h u r m
f

−= − −
                                                                  (2.56) 

and 

                             

2 2
3 2 2 2

2 2

1 2
( ) 2 1 

Z L
f r r Z L kL

r L r

 
′ = + + + − 

                        (2.57)  

with boundary conditions 

                              

2 2

2 2 2
(1) 1 (1)

3
,         

m L

kL Z L
ϕ ϕ′= =

+ −                               (2.58) 

In the conformal limit with k=0 and m2L2 = ‒2, the latter bound reduces simply to 

                                              
2 2

2
(1)

3Z L
ϕ′ =

−                                         (2.59) 

Which naturally also requires the condition (2.36) to hold true. These results produced 

the following plots, which should be compared to [25]. 
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                                        Figure 5(a),(b),(c): Example of Marginally stable modes in φ(r)
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In Figures 4 and 5, the product’s m2L2 and qL are held fixed while L is varied. These 

values of the parameters essentially hold the theory fixed as the temperature of the 

black hole is varied. For the values of the parameters chosen in Figure 4b, m2 > 0, and 

the field is only integrated out to a value of u=0.1. When taken closer to infinity the 

field begins to diverge, compounding the fact that a scalar with a positive mass can 

never reach the conformal boundary. This point is also made in [25]. We can also 

clearly see the field become more and more unstable as the temperature of the black 

hole is lowered; that is, as the parameter L is raised. 

     We are interested in finding the vacuum expectation value of the operators in the 

conformal quantum field at the AdS4 boundary. They correspond to the field points at 

u = 0 in figure 4. They will be dual to the scalar field in the bulk gravity theory. We 

will show in the next section that there are certain values of the vev and its coupling 

in the conformal field theory that leave the action of the boundary theory unperturbed 

and consequently give rise to an intermittent vanishing of the energy momentum 

tensor for the field at the boundary. As mentioned, it will be the very first instance 

that the vev or its coupling strength vanishes that will be the critical temperature Tc 

for the system, and it is from this point that the scalar begins to condense as the black 

hole gets colder and colder, giving rise to superconductivity.  

     Writing (1.86) in terms of the dimensionless variable u we see the behaviour of the 

solutions of (2.38) at the AdS boundary go like

                                          
2 1

y yy A u B uδ δ− −= +
                                       (2.60) 

For some operators Ay and By in the conformal boundary. These operators can be 

considered to be the ’endpoints’ of the scalar field in the bulk gravity theory. As 

explained in the previous chapter, δ is the mass dimension of the field and its value is 

determined by the quadratic expression

                                     

                                            
2 2 ( 3)m L δ δ= −                                          (2.61) 

where the product m2L2 needs only to obey the BF bound. For the case of a 

conformally coupled scalar field where m2L2 = ‒2, (2.61) has roots δ+ = 2 and  δ- = 1. 

Using the positive root, (2.60) become
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                                              y yy A uB= +
                                            (2.62) 

If one instead takes the negative root, it becomes

                                              y yy B uA= +
                                          (2.63) 

Switching from δ+  to δ-  merely swaps operators [2]. We examine these operators in the 

section below.

       

2.3   The VEV of the trace Energy Momentum          

Tensor

The vacuum expectation value of the trace energy momentum tensor sets the local 

scale for the theory. The energy momentum tensor itself can be generally written in 

terms of a matter action and a dynamical metric as 

                                        

2 MS
T

gg
µν

µν

δ
δ

= −
−                                           (2.64) 

where 

                                        
4

M MS d x g L= −∫                                                

and LM is the matter part of the Lagrangian. When working in a quantum field theory 

(as we are on the conformal boundary of Anti de-Sitter space), one deals with the local 

operators to set the scale, and to that end we call upon the associated trace identity, 

which takes the form

                                           
g Tµν

µν〈 〉 = 〈Θ〉
                                            (2.65) 

where

                                               
i

iOβΘ =
                                                                          (2.66) 

for operators Oi on the boundary space. Equation (2.65) assumes that the operators Oi

form a basis for the trace of the energy momentum tensor with coefficients, the β-

functions. The β-functions arise from the renormalisation group, and encode the energy 

dependence of the operator and its coupling for a given process. As stated in chapter 1, 
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the energy scale and the length scale are viewed on the same footing in Anti de-Sitter 

space-time. The parameter L will set this scale for us. The β-functions are then 

expressed as

                                           
( )i i

d
g L g

dL
β =

                                           (2.67)   

This dependence on the energy/length scale is known as the ’running’ of the coupling 

parameter. Our beta functions will thus find the logarithmic derivatives of the vev and 

its coupling for a varying temperature of the black hole. 

     We turn our attention now to (2.62). We are interested in computing the vacuum 

expectation values of the operators Ay and By at the conformal boundary of Anti de-

Sitter space. This corresponds to where u=0, and we accordingly define our operator to 

be

                                               
(0)y y LA O y= 〈 〉 =

                                                                   (2.68) 

with coupling strength

                                          
(0)y y LB g y′= =

                                                                     (2.69) 

The prime in (2.69) indicates the derivative of the scalar with respect to u, while the 

subscript “Lˮ indicates that both the operator and the coupling parameter are 

evaluated on the boundary as the temperature of the black hole is varied. It is evident 

from §2.2 that in general 
�

Oy� ≠ 0, thus the system exhibits a spontaneous breaking of 

the global U(1) symmetry on the boundary. 

     Now, the effective action for the boundary theory can be written as

                                       0[ ]eff y y yS g S g O= + 〈 〉
                                                            (2.70) 

Where S0 is a fixed point in the action of the conformal field theory. The second term 

on the r.h.s of (2.70) represents perturbations away from this fixed point. In what 

follows we shall see that there exists value’s of the vev, and its coupling for which the 

action (2.70) remains unperturbed at the boundary, and consequently leads to a 

vanishing of the energy momentum tensor. 
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                            Figure 6: (a) Operator Oy  on the AdS4 boundary, qL=3, Q=1, Z=1/2

             

                 

                       Figure 6: (b) coupling constant gy on the boundary, qL=3, Q=1, Z=1/2
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                                 Figure 6: (c) Operator Oy  on the AdS4 boundary, q=1, Q=1, Z=1/2

              

                                 Figure 6: (d) coupling constant gy on the boundary,  q=1, Q=1, Z=1/2
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Above are plots of both the operator and its coupling at the conformal boundary. It is 

important to note that for all the below plots in this section I work in the case of a 

conformally coupled scalar field and so take k=0 and m2L2 = ‒2. The charge q of the 

scalar was absorbed into the total system charge Q in the previous section, and I set 

the value of Q to be unity, thus assigning the parameter Z a value of 1/2. These values 

of the parameters apply to all the plots in this section unless specified under the graph. 

It can be seen from figures 6(a) and (c) that the operator Ay  takes on a positive value 

of 1.46 at zero L. The points of interest are where either the vev, or its coupling vanish 

(the points marked with a red dot above), and more importantly the first instance at 

which one of them vanishes. This point represents the critical temperature of the 

system and can be seen in figure 6(b) to occur at L=0.371. Here we have set qL=3 as 

in [25], and one see’s from figure 6(c) and (d) that if one instead sets the scalar charge 

to unity, that the L value at which the critical temperature is reached increases by 

quite a bit, with Tc occuring at L=1.93 for 6(c) and L=1.037 for 6(d). In figure 6(a) 

the critical temperature for the vev is clearly marked, and the L value at which this 

critical temperature occurs coincides with the lowest L value chosen by Gubser in [25] 

for the parameters chosen above. As in [25], I have let the product qL=3 in figures 6

(a) and 6(b), and the critical temperature in 6(a) occurs at L=1.31. This marginally 

stable mode can be seen plotted in figure 5(a) above. Plugging the L value of the 

critical temperature in figure 6(a) into (2.34) and recalling that we’re working with k=

0, we find Tc = 0.205/r+, and for figure 6(b) we find Tc = 0.236/r+. This is the critical 

temperature for the system if one holds qL=3, while varying L. When the scalar charge 

is set at unity as in figures 6(c) and (d), we find the critical temperature for 6(c)  

corresponding to the vev y(0) to be Tc = 0.165/r+. and for 6(d), which corresponds to 

the coupling y'(0) to be Tc = 0.217/r+. We can set r+ to unity without a loss in 

generality. At the critical temperature in each instance the scalar begins to condense 

and for temperatures T < Tc  it can be seen that the scalar tends towards a zero value. 

This point can perhaps be made slightly clearer if one performs a parametric plot of 

the operator versus its coupling. The resultant plot displays a rather striking spiral-

like behaviour near the origin. In figure 7 below we are seeing the temperature of the 

black hole decrease as the curve spirals in on itself, and just as in the previous plots of 

the operator and its coupling, the curve naturally tends towards zero the colder the 

black hole gets. This kind of spiral behaviour near the origin has been observed in 
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other works such as [26] and [27]. Albeit for very different theories, in which they work 

with a system of fermions, the motivation and resultant plots are indeed quite similar. 

         

  

             Figure 7(a): Parametric plot of the vev <Ay> verses its coupling gy, qL=3, Q=1, Z=1/2
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           Figure 7(b): Parametric plot of the vev <Ay> verses its coupling gy, q=1, Q=1, Z=1/2
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    The dotted red points in figures 6 represent a fixed action in the boundary theory, 

ie, at these points the action for the field at the boundary remains unperturbed 

because the second term on the r.h.s of (2.70) vanishes giving 

                                            0[ ]eff yS g S=
   

Now, essentially what we are looking for, from (2.65 - 2.67) is the following

                                          ( )y yg Oβ〈Θ〉 = 〈 〉
                                                                 (2.71) 

⇒                               

(0) (0)  y y L L

d d
L g A L y y

dL dL

   ′〈Θ〉 = =                                                    (2.72) 

One could also work in terms of the negative root of (2.61) with a mass dimension           

δ- = 1. In this case the vev of the energy momentum tensor would read

                                   
(0) ' (0) L L

d
L y y

dL

 〈Θ〉 =                                         (2.73) 

If we set the fixed action S0=0, then the total effective action becomes the product of 

the operator and its coupling strength, 

                                       
[ ] (0) '(0)eff yS g y y= ⋅

                                         (2.74) 

The reader will notice that taking the logarithmic derivative of this action will result 

in the sum of the vev’s for both roots of (2.61). 

                       
[ ] '(0) (0) (0) '(0)eff y

d d d
L S g L y y L y y

dL dL dL

   = +                         (2.75) 

⇒                             1 2[ ]   eff yS g′ = 〈Θ 〉 + 〈Θ 〉
                                             (2.76) 

Where the prime and subscripts in (2.76) are clarified in (2.75). We make separate 
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plots of the effective action and vevs of the energy momentum tensor on the AdS 

boundary.
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                 Figure 8: The effective action of the theory at the boundary,  q=1, Q=1, Z=1/2
                           

This is reminiscent of Fig.7(b) and naturally possesses precisely the same amount of 

zero nodes, as L is increased from 0 to its cut off point. We thus expect the energy 

momentum tensor to vanish accordingly at these points. As the temperature of the 

black hole is reduced, the amplitude of each crest in the effective action decreases 

periodically until it oscillates around zero near extremality.     

     To obtain the vevs of the energy tensor numerically, a central difference technique 

was used in accordance with (2.72) and (2.73). The results are as follows

44



  

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

2

3

4

5

6

7

8

L

L(dy'(0)/dL)*y(0)

  Figure 9(a): The VEV of the trace energy momentum tensor for mass dimension δ+ = 2,  qL=3, Q=1
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Figure 9(b): The VEV of the trace energy momentum tensor for mass dimension δ- = 1,  qL=3, Q=1
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                                         Figure 9(c): Plot of 9(a) and 9(b) back to back

Setting the scalar charge to unity doesn’t alter the plots a whole lot.
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    Figure 9(d): The VEV of the trace energy momentum tensor for mass dimension δ+ = 2,  q=1, Q=1
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   Figure 9(e): The VEV of the trace energy momentum tensor for mass dimension δ- = 1,  q=1, Q=1
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                                 Figure 9(f): Plot of 9(d) and 9(e) back to back

It is interesting to see both vevs plotted back to back, as although they are out of 
phase with each other they seem to mirror one other in a sense.  
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2.4   Time dependent scalar field

Equations of Motion 

We now attempt to find a dispersion relation for the field. This will again be a purely 

numerical endeavour. We must however re-derive the equation of motion with the 

appropriate boundary conditions. Firstly we assume the scalar has a time dependence 

and rewrite the field as 

                                        
( ) ( ), , ( ) i t Kxt r x r e ωϕ ϕ − −=

                                                         (2.77)  

where for our purposes it is sufficient to take the wave-vector K to be purely in the x-

direction and transverse to the radial coordinate r. Inserting (2.74) into (2.14) one 

finds

        
{ }2 00 2 2 2 2

0 02

1
( ) ( ) ( ) ( ) m 0rr xx yy

r r x x y yD r g D D r g D D r g D D r g D
r

ϕ ϕ ϕ ϕ ϕ+ + + − =
    (2.78) 

The field has no y-dependence so the scalar derivative in that direction is accordingly 

zero. If we set  Ax = Ay = 0  in the electric potential (it should be noted that here Ay 

denotes the y-component of the electric potential and not the operator of the last 

section), (2.75) becomes

                           

⇒           
( )2 2 2 2 2 2

0 0 0 0 2 2

1 1 1
2 ( ) m 0r r xiqA q A r

r r
ϕ ϕ ϕ ϕ− ∂ − ∂ + + ∂ ∆∂ + ∂ − =

∆                         (2.79) 

⇒            

2 2 2 2
2 20 0

2 2

21
( ) m 0r r

qA q A K
r

r r

ω ω
ϕ ϕ

 − +
∂ ∆∂ + − − = 

∆ 
                                      (2.80) 

The first term in (2.80) is the same as that of our original analysis in §2.2 so we focus 

on the term linear in φ. We again make the definitions (2.16) and (2.22) and in what 

follows we shall only consider the case where the curvature constant k = 0. Equation 

(2.80) then becomes 
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2 2 2 2 2 2 2 22 2
2 20 0

2 2 2

21
( ( )) m 0

r r qA r q A K ru u d d
r u y r u y

r r du du r r

ω ω+ + + +
+ +

+ + +

   − +
− − ∆ ⋅ + − − ⋅ =   

∆      

⇒    

2 2 2 2 2
2 2 2

2 2

1 2 (1 ) (1 )
( ( )) 0

u u d d Q u Q u
r u y K u u y

r r du du r

ω ω
+

+ + +

   − − + −
− − ∆ ⋅ + − − ⋅ =   

∆  

ɶ ɶ
m

⇒       

2 2 2
4 2 2 22 (1 ) (1 )

( ) 0
d dy Q u Q u

u y u K u u y
du du

ω ω − − + − ∆ + + − − ⋅ =   
∆   

ɶ ɶ
m

⇒      

{ }
2 2 2

3 2 2 22 (1 ) (1 )
(2 ) 0

Q u Q u
u uy u y y K u y

ω ω − − + −
′′ ′ ′ ′∆ + ∆ + ∆ + ∆ + − − = 

∆ 

ɶ ɶ
m

Giving

    
( )

2 2 2
4 3 3 2 2 22 (1 ) (1 )

(2 ) 0
Q u Q u

u y u u y u K u y
ω ω − − + −

′′ ′ ′ ′∆ + ∆ + ∆ + ∆ + − − = 
∆ 

ɶ ɶ
m

(2.81) 

Where again all parameters have been rescaled as follows to make them dimensionless

                
, , , m , , xL Z r r Q q K K

r r
ω ω + +

+ +

= = = = = =                    ɶ
L Z

Qm

      (2.82) 

Recalling the definition of the horizon function (2.18) our equation of motion becomes.

             
{ }

2
2 3 2 2 2 2 2 2 2

2
(1 )(1 ) ( ) 4 3(1 ) ( )

d d
u u u u Z L y u u Z L u Z L u y u

du du
− + + − + − +

(2.83)
4 2 2 2

2 2 2 2 2 2 2 2 2

2 3 2 2 2

( (1 ) 2 (1 ) ) 1
2 (1 ) ( 2) ( ) 0

(1 )(1 )

L Q u Q u
Z L u u Z L K L L y u

u u u u Z L u

ω ω − − − + + + − + − − + = 
− + + − 

ɶ ɶ
m

There is one problem with this equation however. The squared frequency term in the 

prefactor of y(u)  diverges at the horizon where u = 1. We deal with this by looking for 

solutions to (2.83) of the form 

                                          ( ) (1 ) ( )y u u x uν= −
                                                               (2.84) 

The value of the exponent ν is to be determined so that it rids the singularity in y(u). 

49



Due to the fact that (2.83) is a second order differential equation we expect ν to take 

on two separate values ν± corresponding to ingoing and outgoing waves (or visa versa) 

at the outer horizon. Due to the premise that matter cannot escape the black hole 

once its outer horizon is reached, we will concern ourselves with the appropriate value 

of ν obeying ingoing boundary conditions at the outer horizon. From (2.84) the u-

derivatives of the scalar are given as

                               
1( ) (1 ) ( ) (1 ) ( )y u u x u u x uν νν −′ ′= − − + −                              (2.85) 

and

                   
2 1( ) ( 1)(1 ) ( ) 2 (1 ) ( ) (1 ) ( )y u u x u u x u u x uν ν νν ν ν− −′′ ′ ′′= − − − − + −            (2.86) 

To simplify what follows, we again rewrite equation (2.83) shorthand as

                                ( ) ( ) ( ) ( ) ( ) ( ) 0f u y u g u y u h u y u′′ ′+ + =
                                            (2.87) 

Where all prefactors are defined as in (2.83) Inserting (2.84)→(2.86),  (2.87) becomes

                 

{ }
{ } { }

2 1

1

( ) ( 1)(1 ) ( ) 2 (1 ) ( ) (1 ) ( )

( ) (1 ) ( ) (1 ) ( ) ( ) (1 ) ( ) 0

f u u x u u x u u x u

g u u x u u x u h u u x u

ν ν ν

ν ν ν

ν ν ν

ν

− −

−

′ ′′− − − − + −

′+ − − + − + − =
                    (2.88)  

We rewrite the following prefactors as 

                      

( )
( ) (1 ) ( ), ( ) ( )

(1 )
       and       

h u
f u u F u h u J u

u
= − = +

−

ɶ

                      (2.89) 

where

                                   
2 3 2 2( ) 1F u u u u Z L= + + −

                                                    

4 2 2 2

2 3 2 2

( (1 ) 2 (1 ) )
( )

(1 )

L Q u Q u
h u

u u u Z L

ω ω− − − +
=

+ + −

ɶ ɶɶ

                                                   

2 2 2 2 2 2 2( ) 2 (1 )J u Z L u u Z L K L= − + −
                                              (2.90) 

Inserting (2.89) into (2.88) and rearranging, one finds
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( ) ( )1 1(1 ) ( ) (1 ) 2 ( ) (1 ) ( 1) (1 ) ( ) 0F u x u u g F x u u F g h J u x uν ν νν ν ν ν+ −′′ ′− + − − + − − − + + − =ɶ

 (2.91) 

(1 )Dividing this through by a factor of  givesu ν−

               

( )
2 ( )

( ) ( ) 2 ( ) ( ) 0
(1 )

F g F h
f u x u g F x u J x u

u

ν ν
ν

 − + +
′′ ′+ − + + = 

− 

ɶ

           (2.92) 

We can now solve for ν in the quadratic in the prefactor of x(u) at u = 1, such that it 

cancels out the divergence there. We note that at the horizon, g(1) = −F(1),  thus ν

takes on the solutions

                                          

2 (1)

(1)

h

F
ν = −

ɶ

⇒                                                           

2

2 2(3 )

i L

Z L

ω
ν

±
=

−

ɶ

                                                                         (2.93) 

We find the negative choice of (2.93) to correspond to an ingoing wave at the outer 

horizon of the black hole. We now write (2.92) longhand

                  

{ }
2

2 3 2 2 2 2 3 2 2 2 2 3 2 2

2
(1 )(1 ) ( ) 4 3(1 ) 2 (1 ) ( )

d d
u u u u Z L x u Z L u Z L u u u u Z L x u

du du
ν− + + − + − + − + + −

                           

2 3 2 2 2 2 3 2 2 2( 1)
(1 ) (4 3(1 ) )

(1 ) (1 )
u u u Z L Z L u Z L u

u u

ν ν ν −
+ + + − − − +

− −

                  

4 2 2 2
2 2 2 2 2 2 2

2 3 2 2

( (1 ) 2 (1 ) )
2 (1 ) ( ) 0

(1 )(1 )

L Q u Q u
Z L u u Z L K L x u

u u u u Z L

ω ω − − − +
+ + − + − =

− + + − 

ɶ ɶ

     (2.94) 

Although slightly tedious, it benefits to write (2.94) as

                               

                                ( ) ( ) ( ) ( ) ( ) ( ) 0f u x u G u x u H u x u′′ ′+ + =                           (2.95) 

and for a moment we shall focus purely on the function H(u) in (2.92) above. Using the 

following relation’s 
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ˆ( ) (1) (1 ) ( )F u F u F u− = −

                                         ˆ( ) (1) (1 ) ( )g u g u g u− = −

                                         ( ) (1) (1 ) ( )h u h u H u− = −ɶ ɶ ɶ
                                   (2.96) 

ˆ ˆ( ) ( ) ( ) ( )we can rewrite the prefactor  using , , and  defined above asH u F u g u H uɶ   

2 3 2 2 2 2 2 2 3 2 2 2 2 2( 1)
( ) (1 3 ) (4 3(1 ) 3 )

(1 ) (1 )
H u u u u Z L Z L Z L u Z L u Z L

u u

ν ν ν −
= + + − − + − − + + −

− −

             

4 2 2 4
2 2 2 2 2 2 2

2 3 2 2 2 2

( (1 ) )
2 (1 )

(1 )(1 ) (1 )(3 )

L Q u L
Z L u u Z L K L

u u u u Z L u Z L

ω ω− −
+ − + − + −

− + + − − −

ɶ ɶ

                                       

2 2 2 2 2 4

2 2

(3 )
( ) 0

(1 )(3 )

Z L L
x u

u Z L

ν ω − +
+ =

− − 
 

ɶ

                                        (2.97) 

The singularity is now confined to the last term on the third line of (2.97) above, and 

one can clearly see that inserting equation (2.93) into this successfully rids this term. 

We can tidy up the remaining terms by extracting a factor of (1−u) in everything bar J

(u), giving 

    

2 2 2 2 2 2 3 2 2 2 2
4

2 2 2 2 3 2 2 2 3 2 2

(4 )(2 (1 )) (1 ) 2
( )

(3 ) (1 ) 1

Z L u u Z L u u Z L u u Q u Q
H u L

Z L u u u Z L u u u Z L

ω ω  − + + − + − + + − −
= +  − + + − + + −  

ɶ ɶ

                        

                        
}2 2 2 2 2 2 2 2 2 22 1 2 (1 )Z L u u Z L u u Z L K Lν+ − − + − + −(3 )

                          (2.98) 

With this prefactor, equation (2.95) is now perfectly regular at the horizon of the black 

hole. For simplicity in notation we may absorb all factors of L into the other 

parameters by defining the following

                                   
2 2, , ,Z ZL Q QL L K KLω ω= = = =         ɶ

                               (2.99) 

and (2.94) becomes

     
{ }

2
2 3 2 2 3 2 2 2 3 2

2
(1 )(1 ) ( ) 4 3(1 ) 2 (1 ) ( )

d d
u u u u Z x u Z u Z u u u u Z x u

du du
ν− + + − + − + − + + −
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2 2 2 2 3 2 2 2

2 2 2 3 2 2 3 2

(4 )(2 (1 )) (1 ) 2

(3 ) (1 ) 1

Z u u Z u u Z u u Q u Q

Z u u u Z u u u Z

ω ω − + + − + − + + − −
+ + +

− + + − + + −

                       
}2 2 2 2 2 2(3 2 1) 2 (1 ) ( ) 0 Z u u Z u u Z K x uν+ − − + − + − =

               (2.100) 

Boundary Conditions

We now need to work out the appropriate boundary conditions. Again because of the 

linearity of the equation we may choose x(1)=1 at the horizon of the black hole 

without a loss of generality. We again let u=1‒ε and Taylor expand the scalar and its 

coefficients about u=1. The results are completely analogous to those in §2.2. We have

                                    

2 3

0 1 2

1
(1 ) ( )

2
 x x x x oε ε ε ε− = − + + + ⋅⋅⋅
                    (2.101) 

where we take x0 = x(1) = 1. Expanding the prefactors gives

                                    
2

1(1 ) ( ) ...f f oε ε ε− = − + +

                                    
2

0 1(1 ) ( )G G G oε ε ε− = − + + ⋅⋅⋅

                                    
2

0 1(1 ) ( )H H H oε ε ε− = − + + ⋅⋅⋅                            (2.102) 
and the xi are given as 

                                              

0
1

0

H
x

G
= −

                                              (2.103) 
and 

                                    

0
1 0 1

0

2

1 0

( )

( )

H
G H H

G
x

f G

 
+ − 

 =
+                                    (2.104) 

⇒                                        

1 2

0 0 1 0 1
2

1 0

( )

( )

G H G H H
x

f G

− + −
=

+                                          (2.105) 

The subscript "0" again represents each coefficient evaluated at the black hole horizon, 

53



while the subscript "1" represents its derivative evaluated there. Equation (2.105) does 

not reduce to the equivalent of (2.48), as now ƒ1 ≠ G0. The coefficients are worked out 

to be 

                                            
2

1 3f Z= −

                                                                

2

0 ( 3)(1 2 )G Z ν= − +

                              

                                                              
{ }2

1 6 ( 1)(1 )G Z ν= − +

                                       

2
2 2

0 2 2 2

6 2
(1 ) 3 1

(3 ) (3 )

Q
H Z K

Z Z

ω ω
ν

 
= − − − − − 

− − 

                

2 4 2 2 2
2

1 2 3 2 2 2

(3 2 3) 6 (1 )
(1 3 )(1 2 )

(3 ) (3 ) (3 )

Z Z Q Z Q
H Z

Z Z Z

ω ω
ν

+ + −
= − + − − − +

− − −
               (2.106) 

Thus to first order in ε  we have

                                                     

                           

2(1 ) (3 )f Zε ε− = − + ⋅⋅⋅

                          
{ }( )2 2(1 ) ( 3)(1 2 ) 6 (1 )(1 )G Z Zε ν ν ε− = − + + − + + ⋅⋅⋅

             

                         

2
2 2

2 2 2

6 2
(1 ) (1 ) 3 1

(3 ) (3 )

Q
H Z K

Z Z

ω ω
ε ν

   
− = − − − − −   

− −   
                              

                        

2 4 2 2 2
2

2 3 2 2 2

(3 2 3) 6 (1 )
(1 3 )(1 2 )

(3 ) (3 ) (3 )

Z Z Q Z Q
Z

Z Z Z

ω ω
ν ε

 + + −
+ − + + − + + ⋅⋅⋅ − − −  (2.107)

We may now plug these results into (2.103) and (2.104) to find the appropriate 

boundary terms. The calculation of the resulting xi  is rather tedious and long-winded. 

For brevity we make the following definition’s before writing them down.

                                            
2

1

(3 )Z
α =

−        
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2(1 )Zγ = −

                                                 (1 )ρ ν= +

                                                                          

                                                                        
(1 2 )σ ν= +

                                                                   (2.108) 

With these in place, we find 

                                
{ }2 2 2

1 (6 3 1) 2  x Q K
α
γ ω α ν ωα

σ
= − − − −

                                        (2.109)  

and                 

( ) ( ){ 2
1 1 2 2 2 2 2 2

2
(2 ) (6 3 1) 2 6 (6 3 1) 2x Q K Q Kα ρ αρ γ ω α ν ωα ργ γ ω α ν ωα− −  = − − − − − − − − −  

              

                                    
}3 2 4 2 2 2 2(3 2 3) 6 (1 3 )Z Z Q Q Zα ω α ωγ α σ− + + + − − −

                       (2.110) 

Thus to first order in ε our boundary conditions are 

                                  

{ }2 2 2(1 ) 1 (6 3 1) 2x Q K
α

ε ε γ ω α ν ωα
σ
 − = − − − − −                               (2.111) 

and

                                  

{ }2 2 2(1 ) (6 3 1) 2x Q K
α

ε γ ω α ν ωα
σ

′ − = − − − −
                      

( ) ( ){ 2
1 1 2 2 2 2 2 2(2 ) (6 3 1) 2 6 (6 3 1) 2Q K Q Kε α ρ αρ γ ω α ν ωα ργ γ ω α ν ωα− −  − − − − − − − − − −   

              

                                
} )3 2 4 2 2 2 2(3 2 3) 6 (1 3 )  Z Z Q Q Zα ω α ωγ α σ− + + + − − −

                        (2.112) 

It can be readily seen as another consistency check, that in the limit where ω = K = 0, 

the boundaries, (2.111) and (2.112) reduce down to (2.52) and (2.53). We are now in a 

position to modify the previous matlab routine to include a frequency and wave vector 

dependence (See Appendix), and can start formulating pictures of how the scalar 

varies with respect to both, ultimately determining the dispersion relation for the 
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boundary field.  

2.5   Dispersion relations 

     As before, the AdS/CFT dictionary requires that we assign operators on the 

boundary theory which have corresponding duals in the bulk gravitational theory. By 

examining how the scalar behaves with respect to a varying frequency and momentum, 

we can extract the value’s of the field and its derivative at u = 0 to act as these 

operators. If one increases the momentum K in a low energy regime, the field seems to 

manifest itself in the appearance of quasiparticle peaks in a momentum space 

representation. This will be shown in a succession of plots given in the numerical 

results below. 

     Information regarding the behaviour of a bosonic field can be obtained from the 

fields propagator, which in a momentum space representation gives the probability 

amplitude that the field travels with a certain energy and momentum. It can be 

written as

                               
( , ) ( , ) (0, )RG K K Kω ω= 〈 〉O O

                                                      (2.113) 

for field operators O(ω,K) living in Anti de-Sitter space. We note the propagator for a 

free field in momentum space is given as
                                

                        
2 2 2 2 20

( , )
( )

  R
K

i i
G K

K m m
ω

ω ω=
= =

− − −
                                              (2.114) 

ie, It can be considered as the inverse of the wave operator appropriate to the field. 

For brevity in the notation, I have dropped the bars from ω and K. Now, we are 

interested in finding the Greens functions for the quantum field at the conformal 

bound of Anti de-Sitter space. It is a difficult matter to compute the two-point 

function (2.113) directly. A reasonable approximation [12] however, would be to 

calculate the Greens function

                                  

( ) ( , )
( , ) Re

( , )
Q

A K
G K

B K

δ ω
ω

ω
 

=  
                                                        (2.115) 

In (2.115) the two functions in the quotient on the r.h.s are defined by    
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(0)( , ) ( , )A K x Kω ω= 〈 〉

                                                          (2.116) 

and

                                  
(0)( , ) ( , )B K x Kω ω′= 〈 〉

                                                           (2.117) 

where the r.h.s of (2.116) and (2.117) are the vev and its coupling of the scalar field 

evaluated on the boundary of AdS. The superscript ’(0)’ denotes the fact that the AdS 

boundary corresponds to where u=0. The superscript ’δ’ on the left hand side of 

(2.115) will represent the mass dimension of the operators. The spectral functions for 

the system are given as

                                   

( ) ( , )
( , ) Im

( , )
Q

A K
K

B K

δ ω
ω

ω
 

Π =  
                                                        (2.118) 

and are of physical importance as they measure how much spectral weight a particle 

with momentum K has at energy ω. It is Anticipated in this analysis that at zero 

frequency the spectral functions will vanish everywhere no matter what value of the 

other parameters are chosen. This can be seen if one looks back to the equations of 

motion, where the only complex component lies in the exponent ν which is directly 

proportional to the fields energy. For all Greens functions, and consequently dispersion 

relations calculated below, I shall work with mass dimension two, ie, the positive root 

of (2.61). The subscript ’Q’ represents the charge of the system, and it will come in 

handy later when I evaluate this Greens function at different temperatures. 

     I shall now provide a series of plots of both the real and imaginary parts of (2.116) 

and (2.117) for a range of frequency values at zero momentum. I begin by setting the 

charge of the system to unity, then increasing it until the black hole is almost 

extremal. As the parameter L was absorbed into the other parameters, the charge now 

sets the temperature of the system, and one will see that close to extremality, ie,     

Q=3.4, the field becomes highly unstable. I shall give the temperature value for each 

set of plots given. It is worth remembering at this point that we are working for the 

case of a conformally coupled scalar field here, so we still have m2L2 = ‒2, and q=1.
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2.6  Numerical Results 2.6  Numerical Results 2.6  Numerical Results 2.6  Numerical Results 

                          K=0,   Q=1,   Z=1/2,  T=0.219     

                  

         Figure 10(a): Re[A(ω,K)] ~ blue, Im[A(ω,K)] ~ red, corresponding to zero momentum and Q=1

                  

           Figure 10(b): Re[B(ω,K)] ~ blue, Im[B(ω,K)] ~ red, corresponding to zero momentum and Q=1             
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                                                      K=0,   Q=2,   Z=1,  T=0.159      

                  

         Figure 10(c): Re[A(ω,K)] ~ blue, Im[A(ω,K)] ~ red, corresponding to zero momentum and Q=2

                   

         Figure 10(d): Re[B(ω,K)] ~ blue, Im[B(ω,K)] ~ red, corresponding to zero momentum and Q=2  
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                                                     K=0,   Q=3,   Z=3/2,  T=0.0597      

                   

             Figure 10(e): Re[A(ω,K)] ~ blue, Im[A(ω,K)] ~ red, corresponding to zero momentum and Q=3  

                      

            Figure 10(f): Re[B(ω,K)] ~ blue, Im[B(ω,K)] ~ red, corresponding to zero momentum and Q=3
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                                                  K=0,   Q=3.4,   Z=1.7,  T=0.0088     

                     

         Figure 10(g): Re[A(ω,K)] ~ blue, Im[A(ω,K)] ~ red, corresponding to zero momentum and Q=3.4

                    

         Figure 10(h): Re[B(ω,K)] ~ blue, Im[B(ω,K)] ~ red, corresponding to zero momentum and Q=3.4
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In Figures 10(g) and (h) above the black hole is very close to being extremal, with 

Qmax=3.4641. Beyond the value we have taken for Q, the field becomes even more 

unstable until (2.36), which now of course reads

                                                     3Z <                                           (2.119)  

becomes saturated and the numerics of the system go crazy. One can grasp a better 

idea of how both the operator and its coupling behave in momentum space from a 3D 

perspective, and to that end I provide a complete graphical representation of the 

behaviour of the vev’s (2.116) and (2.117). It will be seen that as one lowers the 

temperature of the black hole, which now corresponds to increasing the coupled charge 

of the system, the boundary field begins to develop into quaisparticle peaks at large 

momentum.  
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                                   Q=1,   Z=1/2,  T=0.219

              

                                                          Figure 11(a): Surface plot of Re[A(ω,K)] 

                   

                                                             Figure 11(b): Contour plot of Re[A(ω,K)] 
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                                                               Figure 11(c): Surface plot of Re[B(ω,K)] 

                    

                                                                Figure 11(d): Contour plot of Re[B(ω,K)] 
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                                                                   Q=2,   Z=1,  T=0.159      

                   

                                                               Figure 11(e): Surface plot of Re[A(ω,K)] 

                   

                                                               Figure 11(f): Contour plot of Re[A(ω,K)] 
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                                                               Figure 11(g): Surface plot of Re[B(ω,K)] 

                       

                                                                   Figure 11(h): Contour plot of Re[B(ω,K)] 

                         

               

66



                                                                  Q=3,   Z=3/2,  T=0.0597 
     

                       

                                                                       Figure 11(i): Surface plot of Re[A(ω,K)] 

                       

                                                                  Figure 11(j): Contour plot of Re[A(ω,K)] 

                

67



                      

                                                                     Figure 11(k): Surface plot of Re[B(ω,K)] 

                           

                                                                       Figure 11(l): Contour plot of Re[B(ω,K)] 
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                                                                 Q=3.4,   Z=1.7,  T=0.0088      

                        

                                                                    Figure 11(m): Surface plot of Re[A(ω,K)] 

                             

                                                                       Figure 11(n): Contour plot of Re[A(ω,K)] 
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                                                                            Figure 11(o): Surface plot of Re[B(ω,K)] 

                               

                                                                         Figure 11(p): Contour plot of Re[B(ω,K)] 
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As one increases the charge of the system, and consequently reduces the temperature 

of the black hole, we see the field begins to develop into quasiparticle peaks at large 

momentum. For the unfamiliar reader, a quasiparticle should be thought of as more of 

an effect from the particles its surroundings. Its behaviour is a result of the 

composition of the field/medium to which it belongs; one might use the analogy of a 

bubble in a glass of beer. They are formed here at large momentum as one increases 

the charge of the system. Close to extremality we see the formation of multiple 

quasiparticle peaks. This can be seen in Figure 11:(o),(p) above where the charge Q is 

taken almost at its upper limit. The amplitude of these peaks decrease from some 

value of ω to lower values as one takes the frequency of the field to be more positive 

or more negative. Similar behaviour will be seen in the plots of the imaginary part of 

the boundary field and its derivative in the next series of surface and contour plots, 

however the most obvious quasiparticle peaks will be seen in the Greens function plots 

taken after what follows. These peaks will represent the resonant frequencies in the 

boundary field.  

     Allow me first to present the imaginary part of the vev (2.118) and its coupling 

(2.119) at the AdS boundary. Again, I will evaluate these functions for an increasing 

coupled charge until the black hole is just about extremal. 
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                                      Q=1,   Z=1/2,  T=0.219

                        

                                                                    Figure 12(a): Surface plot of Im[A(ω,K)] 

                          

                                                                   Figure 12(b): Contour plot of Im[A(ω,K)] 
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                                                                        Figure 12(c): Surface plot of Im[B(ω,K)] 

                               

                                                                            Figure 12(d): Contour plot of Im[B(ω,K)] 
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                                                                            Q=2,   Z=1,  T=0.159 
     

                               

                                                                          Figure 12(e): Surface plot of Im[A(ω,K)] 

                              

                                                                          Figure 12(f): Contour plot of Im[A(ω,K)] 
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                                                                               Figure 12(g): Surface plot of Im[B(ω,K)] 

                             

                                                                            Figure 12(h): Contour plot of Im[B(ω,K)] 
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                                                                   Q=3,   Z=3/2,  T=0.0597

                           

                                                                      Figure 12(i): Surface plot of Im[A(ω,K)] 

                          

                                                                        Figure 12(j): Contour plot of Im[A(ω,K)] 
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                                                                         Figure 12(k): Surface plot of Im[B(ω,K)] 

                          

                                                                         Figure 12(l): Contour plot of Im[B(ω,K)] 
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                                                                 Q=3.4,   Z=1.7,  T=0.0088  
   

                            

                                                                   Figure 12(m): Surface plot of Im[A(ω,K)] 

                           

                                                                     Figure 12(n): Contour plot of Im[A(ω,K)] 
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                                                                      Figure 12(o): Surface plot of Im[B(ω,K)] 

              

                             

                                                                     Figure 12(p): Contour plot of Im[B(ω,K)] 
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Greens Functions: Eq (2.115)

        

         Figure 13(a): Greens function;  G = Re[A(ω,K) / B(ω,K)] ,  Q=0.1,  Z=0.05, T=0.239          

        
                       Figure 13(b): Contour of Fig 13(a),showing Dispersion Relations
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                   Figure 13(c): Greens function;  G = Re[A(ω,K) / B(ω,K)],  Q=0.185,  Z=0.0086, T=0.238     

                         

                

                                  Figure 13(d): Contour of Fig 13(c),showing Dispersion Relations
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                       Figure 13(e): Greens function;  G = Re[A(ω,K) / B(ω,K)], ,  Q=0.5,  Z=0.25, T=0.234

                         

                 

                                  Figure 13(f): Contour of Fig 13(e),showing Dispersion Relations
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                              Figure 13(g): Greens function;  G = Re[A(ω,K) / B(ω,K)],  ,  Q=1,  Z=0.5, T=0.219

                

                                 Figure 13(h): Contour of Fig 13(e),showing Dispersion Relations     
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                  Figure 13(i): Greens function;  G = Re[A(ω,K) / B(ω,K)],  ,  Q=1.93,  Z=0.97, T=Tc =0.165

                   

                                    Figure 13(j): Contour of Fig 13(i),showing Dispersion Relations
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                         Figure 13(k): Greens function;  G = Re[A(ω,K) / B(ω,K)],   ,  Q=2,  Z=1, T=0.159 

                                                                        

                     

                                       Figure 13(l): Contour of Fig 13(i),showing Dispersion Relation                                                                                
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                            Figure 13(m): Greens function;  G = Re[A(ω,K) / B(ω,K)],  Q=3,  Z=3/2, T=0.0597

                      

                                       Figure 13(n): Contour of Fig 13(k),showing Dispersion Relation
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Spectral Functions: Eq (2.118)

              

             Figure 14(a): Spectral function;  Π = Im[A(ω,K) / B(ω,K)],   Q=0.1,  Z=0.05, T=0.239

                          

             
                        Figure 14(b): Contour of Fig 14(a),showing Dispersion Relations
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             Figure 14(c): Spectral function;  Π = Im[A(ω,K) / B(ω,K)] ,  Q=0.185,  Z=0.0086, T=0.238
                                  

                   
                                   Figure 14(d): Contour of Fig 14(c),showing Dispersion Relations
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                  Figure 14(e): Spectral function;  Π = Im[A(ω,K) / B(ω,K)]  ,  Q=0.5,  Z=0.25, T=0.234                               

                

                             Figure 14(f): Contour of Fig 14(e),showing Dispersion Relations
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                Figure 14(g): Spectral function;  Π = Im[A(ω,K) / B(ω,K)]  ,  Q=1,  Z=0.5, T =0.219

                                          

                                                                         Figure 14(h): Contour of Fig 14(g),showing Dispersion Relations
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                 Figure 14(i): Spectral function;  Π = Im[A(ω,K) / B(ω,K)]  ,  Q=1.93,  Z=0.97, T =Tc =0.165   

                                      

                                      Figure 14(j): Contour of Fig 14(i),showing Dispersion Relations           
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                                     Figure 14(k): Spectral function;  Π = Im[A(ω,K) / B(ω,K)]  ,  Q=2,  Z=1, T =0.159                                                   

                     

                                      Figure 14(l): Contour of Fig 14(k),showing Dispersion Relations
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                        Figure 14(m): Spectral function;  Π = Im[A(ω,K) / B(ω,K)]  ,  Q=3,  Z=3/2, T =0.0597 

                     

                                                  Figure 14(n): Contour of Fig 14(m),showing Dispersion Relations
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The dispersion relations for the scalar at the AdS boundary can be seen easily from the 

contour plots in figures 13 and 14 above. They are merely the peak values on the large 

ridges, and are clearly marked in figure 13(b) as an example. At high temperatures, 

figures 13(b) and (d) for example, there is a definite symmetry between the upper and 

lower dispersion relations. As the temperature of the black hole is lowered, the upper 

branch disappears and this symmetry is lost. The interesting physics lies in the 

dispersion relations for which ω(0)≠ 0. An example of such is the branch marked with 

the upper arrow in Figure 13(b). The zero momentum value of this branch represents 

the pseudo-particles mass, where the upper branch in each of the contour plots 

corresponds to the particles in the field, and the lower branch corresponds to their 

anti-particles. The gap between ω(0)=0 and the point where each branch hits zero 

momentum gives the difference in the energy of the field between its vacuum energy 

and the next lowest energy state. More precisely it is the lowest possible bound for any 

energy state which is orthogonal to the vacuum, and it represents the lightest particle 

in the field. In the figures above, this ”mass” gap increases as one lowers the 

temperature of the black hole. This only holds true for the upper branch until one 

reaches the critical temperature associated with the vev y(0), which was worked out  in 

§2.3 to be Tc=0.165. At this point it becomes impossible to see a pseudo-particle mass. 

I provide a list of these pseudo-particle mass values below, denoting the value of the 

upper branch (particle) by Ω+ and the lower branch (anti-particle) by Ω-, which are 

both in units of 1/r+L2.  Recall that the Anti de-Sitter radius L and the outer horizon 

radius r+ have now been set to unity and we are working in the case where the 

curvature constant k = 0. This means the temperature of the black hole is solely 

determined by the choice of the coupled scalar-black hole charge Q. The values chosen 

here for Q, cover essentially its entire range. 
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(1) Pseudo(1) Pseudo(1) Pseudo(1) Pseudo----particle mass for particle particle mass for particle particle mass for particle particle mass for particle �� � ��� �
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          Figure 15: Best fit plot of pseudo-particle mass Ω+ versus Temperature T for  Ω+ =|Ω+|
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(2) Pseudo(2) Pseudo(2) Pseudo(2) Pseudo----particle mass for Antiparticle mass for Antiparticle mass for Antiparticle mass for Anti----particle particle particle particle �� (The first plot below doesn’t take   (The first plot below doesn’t take   (The first plot below doesn’t take   (The first plot below doesn’t take  
absolute values of absolute values of absolute values of absolute values of �� while the second does.)while the second does.)while the second does.)while the second does.)

                         

0.01
0.1
0.185
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.1502
1.1503
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.93
1.95
2
2.1
2.2

;   
;    

; 
;
;
;
;
;
;
;
;    

;  
;

;
;

;
;
;
;
;
;
;
;      
;
;   

;
;
;

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= 2.3

2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2

;
;
;
;
;
;
;

;
;
;

Q
Q
Q
Q
Q
Q
Q
Q
Q

=
=
=
=
=
=
=
=
=

0.239
0.239
0.238
0.238
0.237
0.236
0.234
0.232
0.229
0.226
0.223
0.219
0.215
0.212
0.212
0.210

   ,  
   ,  
   , 
   ,
   , 
   ,
   ,
   ,
   ,
   ,
   ,  
   ,
   ,
   ,
   ,
   ,

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =

0.205
0.199
0.194
0.188
0.181
0.174
0.167
0.165
0.163
0.159
0.151
0.142
0.134
0.124
0.114
0.104

   ,
   ,
   ,
   ,
   ,
   ,
   ,  
   ,
   ,  
   ,
   ,
   ,
   ,
   ,
   ,
   ,
   

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ =
→ 0.094

0.083
0.071
0.060
0.048
0.035

,
   ,
   ,  
   ,
   ,
   ,

T
T
T
T
T
T

=
→ =
→ =
→ =
→ =
→ =

1.45
1.15
1.00
1.00
0.85
0.70
0.55
0.55
0.40
0.25
0.25
0.10
0.10
0.10

0.05
0.05
0.0

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω = −
→ Ω =
→ Ω =
→ Ω = 5

0.20
0.20
0.20
0.35
0.35
0.35
0.50
0.50
0.50
0.50
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ Ω =
→ 0.65

0.65
0.65

   
   
   

−

−

−

Ω =
→ Ω =
→ Ω =

96



  

                      

                        Figure 16(a): Best fit plot of pseudo-particle mass Ω- vs T , for Ω-≠ |Ω-|

                     

              

                  Figure 16(b): Best fit plot of pseudo-particle mass Ω- vs T , for Ω- = |Ω-|
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The curves in figures 15 and 16 where fitted as accurately as possible by eye over the 

values calculated above, which are shown in the figures as blue x’s. For case (1) above, 

the results are completely consistent with a straight line. One can see the pseudo-

particle mass increase linearly as the black hole grows colder until it reaches the 

critical temperature associated with the vev y(0), which was found in §2.3 to be      

Tc=0.165. Beyond this point the pseudo-particles associated with Ω+ are seen to 

disappear. There is no structure at the critical point for the coupling strength y'(0), ie, 

at Tc=0.217. 

     There is slightly more to report from case (2). One can see that Ω- passes through 

zero at Tc = 0.212 which is extremely close to the critical temperature of the coupling 

strength y'(0). The slight difference in the third decimal place here can be put down to 

the numerics of the programme which generated it. A fine tuning, that is to say, a 

larger number of grid points would indeed produce a vanishing of Ω- at exactly        

Tc=0.217. This tells us that the pseudo-particles associated with Ω- become massless at 

exactly this critical temperature. The pseudo-particle mass Ω-, effectively ”switches 

on” at temperatures either side of this critical temperature. One can also readily see 

that Ω- levels off and becomes flat immediately after the critical temperature, Tc=0.165 

is reached. This is precisely the temperature that the Ω+ branch disappears. At this 

critical temperature, Ω- takes on a constant value of 0.5, and increases only slightly to 

0.65 as the temperature of the black hole is lowered where it perhaps remains until the 

black hole becomes extremal (a more rigorous analysis in the lowest temperature 

regime would be required to see if Ω- remains constant at 0.65, or decreases, etc). At 

this critical temperature, the particle and Anti-particle pseudo-masses can be very 

roughly related as, Ω+ ≈(15/2)Ω-. It should be noted that temperatures any lower than 

the ones considered here, could not really have been trusted to give accurate values for 

Ω-. One needs only look back at figures 10(g) and (h) to see that temperatures below 

T ≈ 0.035 produce highly unstable results. 

     It should also be recalled that the only difference between the parameters in the 

pseudo-particle mass analysis here, and that of the vevs in §2.3 is that L is now taken 

to be unity, so the critical temperature for the vev y(0) corresponds to a charge of      

Q =1.93. In fact the temperature here is completely determined by the charge of the 
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system. On the other hand, in §2.3, the black hole charge was taken to be unity, and 

the critical temperature for the vev y(0) was found at L =1.93. In that case, the 

temperature was completely determined by the Anti de-Sitter radius L. 

Discussion

In this work I have examined the behaviour of the energy of a massive scalar field in 

an Anti de-Sitter - Reissner Nordström black hole space-time. The scalar field which 

was considered during these calculations was conformally coupled. We therefore took 

the curvature constant k=0, and assigned the field a negative mass. Following a 

detailed derivation of the equations of motion governing the system, I show that the 

boundary operator of the field corresponding to the trace of the energy momentum 

tensor in the bulk gravity theory begins to condense at a critical temperature which 

was calculated for two separate values of the scalar fields charge. This then suggests 

that the current related to this charged operator will superconduct. The vacuum 

expectation value of this operator was then found numerically, and it is seen to vanish 

periodically from the instance that the critical temperature is reached. It develops 

more and more zero nodes as the temperature of the black hole is decreased, ie, the 

energy of the field approaches an instability as the black hole approaches extremality. 

The operator and its coupling were plotted together in a parametric plot and a spiral-

like behaviour is observed around the origin. This sort of behaviour has been observed 

in other works concerning Fermions, unlike the present paper concerning bosons, and 

references are given to this end for the interested reader.  The vev’s for operators with 

both mass dimensions of equation (1.78) both plotted back to back in what followed. 

The two curves are out of phase with each other however the behaviour of one mirrors 

that of the other exactly. 

         I then added a time dependent part to the field in order to extract the 

dispersion relations for the conformal field at the boundary. After providing a 

succession of graphs of the vevs of the operator and its coupling in momentum space, I 

provide plots of the relevant Greens and Spectral functions for the system. From these 

we can see the dispersion relations for the field at the AdS boundary. There is an 

obvious symmetry between the dispersion relations of the fields particles and Anti-

particles at high temperatures. This symmetry is lost as the black hole gets colder. 
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The dispersion relations then allowed us to calculate pseudo-particle masses at zero 

momentum. This was done for both particles and Anti-particles at temperatures 

ranging from well above critical temperature down to temperatures in which the black 

hole was almost extremal. The absolute value of the pseudo-particle masses calculated, 

represent the lowest energy level that a particle in this field can take above its vacuum 

energy, and it was shown that as one lowers the temperature of the black hole, the 

value of the pseudo-particle masses increased. The boundary field also exhibits several 

resonant frequencies which can be clearly seen in the Greens and spectral function 

figures. At resonance, the field seems to manifest itself in the form of sharp 

quasiparticle like peaks, however there does not seem to be any symmetry in the 

emergence of these peaks.   
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Appendix: Matlab code used

Code 1

% This routine produces figures 4

function adscft
global k L Z Q Q1 q

L=1.31;
k=0;
Q1=1;
Z=Q1/2;
q=3/L;
Q=q*Q1;   % In case one wishes to change the intrinsic charge of the scalar

f1=(Z^2*L^2-k*L^2-3);
g0=f1;
g1=6*(Z^2*L^2-1)-4*k*L^2;
h0=(Z^2*L^2-k*L^2-1);
h1=3*(Z^2*L^2) - k*L^2 - (((Q*L^2)^2)/(3+k*L^2-Z^2*L^2)) - 1;
x1=-(h0/g0);
x2=(((h0/g0)*(g1+h0) - h1)/(f1+g0));

eps=0.000001; 
dy1= x1 - eps*x2;
y1=1-eps*x1;

[u,y]=ode45(@renosol,[1-eps,0],[y1,dy1]);
plot(u,y(:,1))
xlabel('u')

function dy=renosol(u,Y)

dy=zeros(2,1);
dy(1) = Y(2);

global k L Z Q

f=(1-u)*(1+u+u^2 +k*L^2*u^2-u^3*Z^2*L^2);
g=u*(4*u^2*(Z*L)^2-3*u*(1+(k+Z^2)*L^2) +2*k*L^2);
h=((((Q*L^2)^2)*(1-u))/(1+u+u^2+k*L^2*u^2-u^3*Z^2*L^2)) -u*(1+L^2*(k+Z^2))+ 
2*u^2*Z^2*L^2;

dy(2) = -(h/f)*Y(1)-(g/f)*Y(2);
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Code 2

% A slight modification to code 1 above solves for the scalar field at the 

% AdS boundary. This code produces figures 6 -> 9. As mentioned, to obtain 

% the VEV's of the field, a central difference formula was used on the     

% solutions A and B below in accordance with eq (2.72) and (2.73) 

function adscft2

global k L Z Q Q1 q

for L=(0:0.002:3.4641)

k=0;
Q1=1;
Z=Q1/2;
q=3/L;
Q=q*Q1;   % In case one wishes to change the intrinsic charge of the scalar

f1=(Z^2*L^2-3);
g0=f1;
g1=6*(Z^2*L^2-1);
h0=(Z^2*L^2-1);
h1=-((Q^2*L^4)/(3-Z^2*L^2))+3*Z^2*L^2-1;

eps=0.00001;
dy1= -(h0/g0)-eps*(((g1+h0)*(h0/g0)-h1)/(f1+g0));
y1=1+eps*(h0/g0);

[u,y]=ode45(@renosol,[1-eps,0],[y1,dy1]);
x=[u,y];
x2=size(x);
b=x2(1,1);
A=x(b,2);      % y(0)
B=x(b,3);      % y'(0)
disp(A)        % displays y(0)...
C=B.*A;   % Perturbation away from fixed action at the boundary
plot(L,A,'b')
hold on
xlabel('L')
end

function dy=renosol(u,Y)

dy=zeros(2,1);
dy(1) = Y(2);

global k L Z Q

f=(1-u)*(1+u+u^2 +k*L^2*u^2-u^3*Z^2*L^2);
g=u*(4*u^2*(Z*L)^2-3*u*(1+(k+Z^2)*L^2) +2*k*L^2);
h=((((Q*L^2)^2)*(1-u))/(1+u+u^2+k*L^2*u^2-u^3*Z^2*L^2)) -u*(1+L^2*(k+Z^2))+ 
2*u^2*Z^2*L^2;

dy(2) = -(h/f)*Y(1)-(g/f)*Y(2);    % Equations of motion
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Code 3

% Code that solves for the scalar phi(r) in Gubser's paper [25]; figures 5

function gubser
global k q Q1 Q L Z m

k=0;
Q1=1;
Z=Q1/2;
L=3.23;
q=3/L;
Q=1;
m=sqrt(-2/L^2);

epsilon=0.000001;
y1=1;
dy1= (m^2*L^2)/(3+k*L^2-Z^2*L^2);     % boundary conditions

[r,y]=ode45(@gupsolution,[1+epsilon,10],[y1,dy1]);    % Integrator

plot(r,y(:,1),'g')
hold on
xlabel('r')
ylabel('phi(r)')
title('k=0, m^2*L^2=-2, qL=3')

function dr=gupsolution(r,Y)

dr=zeros(2,1);
dr(1) = Y(2);

global k L m Q Z q

f = (1/(r^2*L^2))*((r-1)*(r^3 + r^2 + (k*L^2 + 1)*r - Z^2*L^2));
fp = (1/(r^2*L^2))*(2*r^3 - 2*Z^2*L^2/r + Z^2*L^2 + k*L^2 + 1);
g = (2*f/r + fp);
h=(((((q*Q)^2)*(((1/r) - 1)^2))/f) - m^2);

dr(2) = -(h/f)*Y(1)-(g/f)*Y(2);
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Code 4

% Code that solves for the Greens functions 

% and Spectral functions at the AdS Boundary

function adscft3

global Z L Q Q1 q v k w

for k=(0: 0.1 :4)

for w=(-4 : 0.15 : 4)

Q1=1;

Z=Q1/2;

L=1;

q=1;

Q=q*Q1;

v=-(1i*w*L^2)/(3-Z^2*L^2);

f2=(Z^2*L^2-3);

g0=f2*(1+2*v);

g1=-6*(1-Z^2*L^2)*(1+v);

h0=(1-Z^2*L^2)*(((6*w^2*L^4)/((3-Z^2*L^2)^2))-3*v-1)-((2*Q*w*L^4)/(3-Z^2*L^

2))-k^2*L^2;

h1=-(1-3*Z^2*L^2)*(2*v+1)-(((w^2*L^4)*(3*Z^4*L^4+2*Z^2*L^2+3))/((3-Z^2*L^2)

^3)) +(((6*Q*w*L^4)*(1-Z^2*L^2))/((3-Z^2*L^2)^2)) -((Q^2*L^4)/(3-Z^2*L^2));

eps=0.000001;

dx1=-(h0/g0)-eps*((((g1+h0)*(h0/g0))-h1)/(f2+g0));

x1=1-eps*(-h0/g0);                                 % Bounary conditions

[u,x]=ode45(@renosol,[1-eps,0],[x1,dx1]);

y=[u,x];

y1=size(y);

b=y1(1,1);

A=(y(b,2));

B=(y(b,3)); 

A1=real(A);   % vevs...

B1=real(B);   

A2=imag(A);   
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B2=imag(B);    

C=A./B;

D=real(C);     % Greens function

E=imag(C);     % Spectral function     

plot3(k,w,D)

hold on

xlabel('K')

ylabel('w')

end

end

function dx=renosol(u,X)

dx=zeros(2,1);

dx(1) = X(2);

global Z L Q k w v

v=-(1i*w*L^2)/(3-Z^2*L^2);

f=(1-u)*(1+u+u^2-u^3*Z^2*L^2);

f1=(1+u+u^2-u^3*Z^2*L^2);

g=-2*v*f1+4*u^3*Z^2*L^2-3*u^2*(1+Z^2*L^2);

h=((w^2*L^4)*(4-Z^2*L^2+u+u^2-Z^2*L^2*u^3)*(2+u-Z^2*L^2*(1+u+u^2)))/(((3-Z^

2*L^2)^2)*f1) +(((Q^2*L^4)*(1-u)-2*Q*w*L^4)/f1) + v*(3*Z^2*L^2*u^2-2*u-1)+2

*Z^2*L^2*u^2-u*(1+Z^2*L^2)-k^2*L^2;

dx(2) = -(h/f)*X(1)-(g/f)*X(2);       % Equations of motion

% To obtain the surface and contour plots, the solutions where reshaped    

% into appropriatly sized matrices according to the size of the vectors ω   

% and K, and plotted against them. 
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