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We generalize the fractional quantum Hall hierarchy picture to apply to arbitrary, possibly non-Abelian,
fractional quantum Hall states. Applying this to the ¥=5/2 Moore-Read state, we construct explicit trial wave
functions to describe the fractional quantum Hall effect in the second Landau level. The resulting hierarchy of
states, which reproduces the filling fractions of all observed Hall conductance plateaus in the second Landau
level, is characterized by electron pairing in the ground state and an excitation spectrum that includes non-
Abelian anyons of the Ising type. We propose this as a unifying picture in which p-wave pairing characterizes

the fractional quantum Hall effect in the second Landau level.
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I. INTRODUCTION

The fractional quantum Hall (FQH) plateaus in the first
Landau level are described rather well by the Laughlin
states' and the Abelian hierarchy states constructed over
them.2? The observed filling fractions, the measured frac-
tional charge of quasiparticles,*® and recent results from in-
terferometric experiments’3 all support this picture, and are
backed up by a wealth of theoretical and numerical evidence.
The physics of the second Landau level, however, remains
far more perplexing, with the prominence of an even-
denominator v=>5/2 FQH state®!? that cannot be explained
by the standard hierarchy. Fully developed FQH plateaus
have been observed at v=7/3, 12/5, 5/2, 8/3, and 14/5,'0-11
but advances in experiments and sample quality may find
additional plateaus developing where “features” have been
observed, including at another intriguing even-denominator
v=19/8.112 There are also sometimes observed signs of
what appear to be developing FQH states at v=11/5, 16/7,
13/5, 19/7, and 25/9, but these dematerialize as lower tem-
peratures are attained.'’-

The currently held view is that the ¥=5/2 plateau is char-
acterized by p-wave pairing of composite fermions and de-
scribed by the Moore-Read (MR) state, which gives the dra-
matic prediction of quasiparticles with non-Abelian braiding
statistics.!3!* Numerical studies support the case for the MR
state (and its particle-hole conjugate).'>2° Recent tunneling
shot-noise experiments have confirmed the e/4 fundamental
quasihole charge of the v=5/2 state expected for the MR
state.?! Further recent evidence from the scaling behavior in
dc transport experiments??> at v=5/2 best agrees with the
particle-hole conjugate of MR.?324

Although the remaining observed filling fractions in the
second Landau level have odd denominators, numerics indi-
cate that the electron correlations for 7/3=v=8/3 have a
non-Laughlin character similar to that of ¥»=5/2, and so
only v=14/5 is expected to be an Abelian state. Aside from
the Abelian hierarchy states, the non-Abelian Read-Rezayi
(RR) k-body clustered states?® (which include MR) and their
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particle-hole conjugates are essentially the only single layer
spin-polarized descriptions that have been proposed for these
FQH plateaus. There are also other proposed non-Abelian
states, such as the SU(N), NAF (non-Abelian FQH)
states?’?® whose potential relevance to the second Landau
level is largely unexplored. The experiments of Ref. 21 also
found e/3 fundamental quasihole charge for the v=7/3 and
8/3 states, which rules out their being RR or NAF states (as
these candidate states have e/6 fundamental quasihole
charge). There have been no non-Abelian states with e/3
fundamental quasihole charge proposed for the v=7/3 and
8/3 plateaus (prior to this paper).

Clearly it is important to fully explore the possibilities of
non-Abelian candidate FQH states that are consistent with
the experimental status of the second Landau level, or, in
fact, to have any such candidates whatsoever for the ob-
served second Landau level filling fractions, especially for
those in the range 7/3 =v=8/3 where non-Abelian states
are expected to occur. Motivated by this, we generalize the
hierarchy construction so that it can also be applied to non-
Abelian FQH states. By applying this generalized hierarchi-
cal scheme to the MR state, we produce p-wave paired states
and corresponding explicit wave functions. Remarkably,
these states occur at all the observed second Landau level
filling fractions (and even weaker observed features) and in
natural order for those expected to be non-Abelian. This
leads to a simple intuitive picture in which p-wave pairing is
the characteristic property of the second Landau level.

In our application of hierarchy to the MR state, the fun-
damental quasiholes/quasielectrons are assumed to form a
gas of bound pairs, which is projected onto wave functions
analogous to the first Landau level hierarchy. This generates
FQH states with the conformal field theory (CFT) structure
Ising X U(1)g|c, where K is a coupling-constant matrix for a
hierarchy in the charge sector of the MR state (i.e., starting
from Ky,=2) and C is the topological charge spectrum. The
product structure of the underlying CFT is clearly reflected
in the resulting trial wave functions, see Eqgs. (46), (47), (59),
and (60) for some of the more relevant examples. In fact,
some of the trial wave functions are simply a product of a
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Pfaffian and a bosonic hierarchy wave function [e.g., Eq.
(47)] or a product of a bosonic MR wave function and a
composite fermion wave function [e.g., Eq. (58)].

The paper is structured as follows: In Sec. II, we provide
a generalization of the hierarchy scheme that can be applied
to non-Abelian FQH states. In Sec. III, we provide a descrip-
tion of particle-hole conjugation and the Haldane-Halperin
(HH) hierarchy that will be helpful in generalizations. In Sec.
IV, we apply the hierarchy methods to the MR state, produc-
ing a new set of p-wave paired FQH states. We also show
how some of these new states can be re-expressed in a com-
posite fermion type formulation. In Sec. V, we review how
existing numerical studies relate to our proposed states. In
Sec. VI, we compare our proposed states to existing empiri-
cal data. In Sec. VII, we conclude with a summary of our
results and its generalizations, as well as the implications for
topological quantum computation.

II. HIERARCHIZATION GENERALIZATION

In the HH picture, hierarchization is carried out by form-
ing a gas of fundamental quasiholes or quasielectrons in an
Abelian FQH state that is projected into a Laughlin-type
state. We generalize this construction by forming a gas of
quasiparticle excitations of specified type in an arbitrary
FQH state that is projected into another FQH-type state. The
kth level hierarchy wave function W, with electron coordi-
nates z; and quasiparticle excitations of arbitrary type (left
implicit) at the coordinates w; is obtained from the (k—1)th

J
level state W,_; by taking the inner product,

Yz, ... SZNG WL - s Wi,
Ny
2 x .
= H du,®; (uy, ... SN W - ’W"k)
a=1
X W _(zy, ... SINGS UL e S UN WL e Wy ), (1)

where u; are the coordinates of excitations in the (k—1)th
level state that form a quasiparticle gas, which is projected
onto a FQH-type state given by the wave function ®,;. These
quasiparticles are matched up with the “electrons” of the ®,
state, which must therefore have the same braiding statistics,
up to a bosonic factor. Also, the quasiparticle gas excitations
(and thus their corresponding “electrons”) should be Abelian.
Together, these ensure single-valuedness of the integrand in
the integration coordinates, and thus a well-defined inner
product and unique lowest energy kth level ground-state
(n;=0) wave function. The specific Abelian excitation type
of these quasiparticles, as well as the wave functions @,
should be determined by physical arguments, possibly in-
volving energetic considerations and charge minimality.

We note that the concept of quasiparticle “condensation”
and the formation of these gases in the hierarchy picture
should perhaps not be taken too literally (and in fact does not
even have a clear meaning in the composite fermion
picture?®). Nonetheless, it provides an intuitively attractive
way of constructing trial wave functions for incompressible
electron liquids. The introduction of large numbers of quasi-
holes or quasielectrons into the parent state allows one to
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lower or raise the filling fraction, but one cannot introduce
the quasiparticles in fixed positions or the new trial wave
function would not be homogeneous. To regain constant
electron density, one should integrate out the coordinates for
the quasiparticle gas. This must be done with appropriate
weighting for the different quasiparticle configurations to
achieve incompressibility for the new state. Heuristically,
one expects that it is a good idea to weight the quasiparticle
configurations by the wave function for some incompressible
state. The hierarchical wave function should then satisfy an
approximate plasma analogy if an orthogonality postulate for
the parent wave function is satisfied.*® This postulate says
that the overlap between electron wave functions with differ-
ent configurations of the quasiparticles vanishes. If this
holds, one expects that expectation values for the hierarchy
state can be calculated using only a single integral over qua-
siparticle positions since the integral over the electron coor-
dinates effectively introduces a delta function into the double
integral over the quasiparticle coordinates. This means that
the expectation values are approximately those for a classical
plasma with two types of particles corresponding to the elec-
trons and the quasiparticles. Of course the wave functions
constructed using the hierarchy also satisfy the more basic
physical requirements for FQH trial wave functions; for ex-
ample, they are antisymmetric and holomorphic in the elec-
tron coordinates.

In order for the inner product integrations to give a non-
zero result, the number of excitations N in the quasiparticle
gas must be chosen such that the highest power of u, in ¥, _,
is equal to that in @, (with «, counting as a negative power).
This also ensures that the resulting electron wave function is
homogeneous. One may think of this as the (k—1)th level
quasiparticle gas determining how many induced “flux”
quanta are felt by the “electrons” in W,_; (where the zeroth
level “flux” and ““electrons” are of course the actual magnetic
flux and electrons of the system). This gives a system of
equations relating the number of flux quanta N, electrons
Ny, quasiparticle gas excitations of each level N; (j
=1,...,k), and additional quasiparticles. This may be imme-
diately solved to obtain the filling fraction®' and shift from
the expression

Ng=v"'Ny-S. (2)

For clean systems on closed surfaces, the shift S is a topo-
logical quantum number that distinguishes different FQH lig-
uids that occur at the same filling fraction.’?33 Clearly, such
ideal conditions do not exist in experiments since physical
FQH systems always have some disorder and occur on dis-
klike topologies so the shift is not experimentally relevant.
However, the shift is nonetheless a good indicator in numeri-
cal “experiments,” where such ideal conditions are achieved
more easily than more realistic conditions. When we refer to
explicit values of the shift in the following, it should be
understood that we specifically mean the shift of the ground
state on a sphere, since S=0 for ground states on the torus,
higher genus surfaces are rarely considered, and excitations
can change the shift to essentially any value.

The quasiparticle excitation spectrum of a kth level hier-
archy state contains a charge 2e¢ boson Bj and chargeless
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bosons B; associated with each level of hierarchization (j
=1,...,k). These are identified with the vacuum in the
anyonic charge spectrum (i.e., quasiparticles that differ only
by these bosons have the same anyonic charge), and all per-
missible quasiparticle excitations must be mutually local
(i.e., have trivial monodromy) with them. Allowed excita-
tions must also be mutually local with the electrons or,
equivalently, with the charge e fermionic hole h of the ex-
citation spectrum (two of which combine to give B;). We say
excitations of ¥, “belong to the jth layer” if they arise en-
tirely from ®;.

A natural method of generating wave functions for FQH
states is to use conformal field theory correlators with appro-
priately chosen vertex operator insertions for the various ex-
citations present.'® Excitations from a particular layer can be
written as a vertex operator insertion in that layer, but gen-
eral excitations may involve insertions of operators in mul-
tiple layers. To produce the ground state for a hierarchization
in which the jth level quasiparticle gas is always formed
from excitations belonging only to the jth layer,>* we use the
CFT correlators,

(Dj(u%j), U

%j;u%ﬁl), ,u%fl))

- Hv_w@)HV(uU*“) : (3)

a=1

where V, and V, are, respectively, vertex operators for the
electrons and quamparhcle gas excitations of the jth layer.
Through most of this paper, we employ the standard conven-
tion of leaving the neutralizing background charge operators
implicit, as well as the Gaussian factors to which they give
rise in the resulting wave functions. Using this expression in
Eq. (1), we take Wy=®, with z=u”), and ®, has no quasi-
particle gas and hence no coordinates u**!) nor vertex op-
erators Vck.

III. RECONSTRUCTING THE PAST
The particle-hole conjugate® of an arbitrary FQH state ¢

is obtained by projecting holes of a v=1 quantum Hall wave
function onto this state. This is carried out by using

¥,=[1 (Za_Z,B)H (za—up) I (un- 4)
a<f a<f
q)l(ul,...,uN1)=Lﬁ(u1,...,uNl), (5)

in Eq. (1). (Index ranges of coordinates will be left implicit
from now on.) Equation (4) may be obtained using the vertex
operators,

V, =V, =¢'%, (6)
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in Eq. (3). Solving the system of equations,

N¢=(N0—1)+N1, (7)

0=No+(N;—1)=(v,/N, =S, (8)

imposed by homogeneity of the wave function and compar-
ing to Eq. (2), we find the particle-hole conjugate of i has

=1- Vw, (9)

S=1;V‘£‘£ (10)

1—Vl//

where vy, and S, are the filling fraction and shift of .

The HH hierarchy,?® combined with particle-hole conju-
gation, may be used to obtain all the FQH states observed in
the first Landau level. This hierarchy is most concisely de-
scribed as a U(1)x CFT or Chern-Simons theory3® where the
coupling-constant K-matrix has nonzero elements Ky, odd,
K;; even for j>0, and K| ;,;=K},, ;= = 1. To make contact
between this and explicit wave functions using CFT correla-
tors, we use

my= Ko (11)
and
1 .
m;=K;——— for j>0 (12)
mj_l

to define the vertex operators,

A A
_ iNm, —
Veo_e v OQD()’ V}\q =e \m0¢0’ (13)

iNm;:p; iL*.
Vej =e""i%i, V)\qj =e \E‘Pj for m; >0
om0 N ’
Vej =N, VMI] =e ’\;__mj“’f for m; <0
(14)
VC./ = VK./J”q./’ (15)
used in Eq. (3) to give
\I’O — H (Za _ Zﬁ)mOH (Za _ M(l))KOI H (u(l u,(BI)) l/mo,
a<pf a<p
(16)
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;= [T @ —ufy TL " ="y L@ =™ for = 0
a.p

a<f

q)j - H (ug) _ ug))—mj

a<f

Substituting these into Eq. (1) reproduces the hierarchy wave
functions given in Ref. 30 if we allow a negative sign in the
exponent to be treated as equivalent to complex conjugation.
To reproduce the hierarchy wave functions given in Ref. 37,
one must replace the terms with negative exponents gener-
ated by vertex operators with negative \ (e.g., those with
K =—sgn{m j}) by terms with matching positive powers of
the complex-conjugated variables. Furthermore, a projection
of the wave function into the lowest Landau level needs to be
applied at the end (replacing z* with 24/dz) when Ky =-1.
Exchanging negative powers for complex conjugates fol-
lowed by lowest Landau level projection should only intro-
duce short-ranged effects and will leave the universal prop-
erties of the states unaffected, as discussed in Ref. 30.

For states constructed using quasielectrons, we have used
Laughlin’s ansatz! for the quasielectrons’ wave functions in
the formulas above. Alternatively, one may use Jain’s
ansatz.?® This may in fact be advantageous since numerical
studies indicate that the latter has a better behaved charge
density and statistics parameter for systems of approximately
100 electrons.?3? It is straightforward to write explicit wave
functions with this alternate description of quasielectrons and
use them in the above hierarchy. Although this will not ex-
actly match the previously proposed hierarchy wave func-
tions, the universal properties should be the same.

The quasiparticle gas excitations ¢;= *q; are either the
fundamental quasiholes or quasielectrons of the jth level
state ¥, the choice of which should be determined by
whether the filling fraction is, respectively, decreased or in-
creased in going to the next level. Hence, one ought to use

Kj i ==sgn{Kjpy ji1} (18)

The filling fraction and shift may be determined from K di-
rectly to be

1
V=[K_']oo=K_—1, (19)
O k—L
Ky
Lk
S == [K oKy (20)
Vj=0
by solving the system of equations,
k
505N¢=EKU(N,'— 5,,) (21)

J=0

An arbitrary HH quasiparticle excitation is specified by
the number of “fluxes” (vortices) a; € Z in the jth layer. An a
excitation produces a factor of

H (ug) - ugﬂ))_Kj,jH
ap

a<f3 (17)
Elﬁ (g™ = g™ for <0
|
k
ITTT v =uy (22)
Jj=0 @; /
in the wave function W, and is obtained by inserting
k
Vaw) =TT vy, (w), (23)

J=0

Kjohoi .

where \y=qa, and )\j>0=a,~—%]’l, in the CFT correlator.
. ¥ X LT .. .

The electric charges and braiding statistics (in terms of

R-symbols) of such excitations are given by

Q;=ety-K'-ad, (24)

R =exp(imi- K- b), (25)

where fj is the unit vector with one in the jth row. In the HH
hierarchy states, we have the anyonic charges for holes A
=K1y, and bosons By=2h, and B;~,=K-f;. Using the appro-
priate identifications, the entire excitation spectrum in this
case is generated through repeated fusion by the fundamental
quasihole excitation in the highest hierarchy layer so arbi-
trary excitations may be written as nf,. These states have
|det K|-fold ground-state degeneracy on the torus.

There is an alternate description of the FQH states ob-
served at v=5—=— in terms of composite fermions* given by

2pn*l
the wave functions,

WO =P X X ) (26)

where Pp;; is the projection onto the lowest Landau level
and y,, is the wave function for n filled Landau levels. It is
well known’® that these composite fermion wave functions
have the same universal properties (i.e., filling fraction, qua-
siparticle charge, and braiding statistics) as the kth level HH
hierarchy states for k=n—1 with

Ky=2p+1, K;=2 for j>0, (27)
for v=57"7 and with

Kypw=2p-1, K;=-2 for j>0 (28)
for v=5"—. The HH and composite fermion descriptions

2pn—1"
can also be shown to produce the same shift S=2p *n for

these states. Despite the fact that these are just different de-
scriptions of the same topological orders®? (i.e., universality
classes), the composite fermion approach produces different
explicit wave functions that have some advantages, particu-
larly regarding their employment in numerical studies and
the description of quasielectrons (for a thorough discussion
of these and other issues, see, e.g., Ref. 40 and references
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therein). On the other hand, the composite fermion approach
has a shortcoming in that it must still incorporate some sort
of hierarchy. In particular, there are many experimentally
observed FQH states that the v= 21,;; series can only ac-
count for by using particle-hole conjugation, which (as we
have seen) is just a special case of a hierarchical construc-
tion, and even with particle-hole conjugation, this series can-
not account for some experimentally observed lowest Lan-
dau level FQH states, such as those at v=4/11 and 5/13.*! In
any case, the topological order of a state is much more robust
than the particular details of any of its trial wave functions,
and it is the universal properties that can and will distinguish
states experimentally. Since our primary interest in this paper
is in the identification of new states and their topological
order, we will dwell on such issues no longer and simply
state that in circumstances where it could be advantageous
one should consider employing the composite fermion pic-
ture.

IV. BUILDING ON MOORE-READ

The general hierarchy prescription in Eq. (1) can generate
a multitude of states at any given filling fraction so we will
restrict our attention to the constructions that seem most
physically relevant and tenable. Specifically, we build the
simplest possible hierarchy involving the MR state, which is
closely analogous to the HH hierarchy in that the hier-
archization occurs only in the U(l) charge sector of the
theory. This is perhaps the most natural way to form hierar-
chies with non-Abelian states in general because it treats the
mechanism giving rise to the non-Abelian sector (in the MR
case: pairing giving rise to the Ising sector) as a ubiquitous
property of the class of states, while the charge sector is
allowed to form a hierarchy as it is already known to do for
Abelian states. We will also construct a somewhat less
simple hierarchy over MR, which involves the Ising sector in
a nontrivial way, but for which the additional layers are all
U(1)s.

We begin with the MR state at the zeroth level of hierar-
chy. The CFT describing MR may be written as*’

Ising X U(1),]¢, (29)

C={(Ln),(,n),(o,n+1/2):n € 7}. (30)

The Ising sector’s anyonic charges (CFT primary fields), /
(vacuum), ¢ (Majorana fermion), and o (spin), obey the
commutative fusion algebra,

IXI=1, IX¢y=y, IXo=0,

X =1, oxXao=l+¢.  (31)

The entire anyonic charge spectrum C is generated by the
fundamental quasihole, (o, 1/2). The corresponding electron
and fundamental quasihole vertex operators are, respectively,

Yy X o=o,

= 1
Ve, = e 240, V= 0e 5. (32)

To form a hierarchy over the MR state, we must first
specify the zeroth level quasiparticle gas. The physical pic-
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ture we envision here is that forming a gas of fundamental
quasiholes/quasielectrons (o, = 1/2) of the MR state forces
them to pair up into preferential Abelian bound-state excita-
tions that can no longer be recoupled. A pair of o Ising
charges have two possible fusion channels, I and , that
describe their combined anyonic charge. If the quasiparticles
are well separated, the two channels are degenerate; but be-
cause of the density of quasiparticles required for the hierar-
chy construction, they will necessarily be in close proximity
and so this degeneracy will be broken. It is not a priori clear
which fusion channel is favored and in fact this may be dif-
ficult to determine from first principles as there could be
many-quasiparticle effects. However, we expect that the fa-
vored channel will be the one which leads to a fusion product
that is just a Laughlin-type quasiparticle of charge *e/2.
This will lead to the simplest hierarchy wave functions,
which most resemble the HH hierarchy. For the MR state,
this means favoring the I channel so we expect the zeroth
quasiparticle gas to be composed of excitations with anyonic
charge (I,K;;), where Ky = * 1 indicates paired quasiholes/
quasielectrons. The corresponding vertex operator and result-
ing wave function are
Koi
VCO=Ie’7“’°, (33)

‘I’():Pf{ ! } H (Za_Zﬁ)z

Za—2p a<p

X H (Za - MB)KOI H (ua - uﬁ) 1/29 (34)
@B

a<f

where Pf is the Pfaffian defined for a 2n X 2n antisymmetric
matrix A,z by

PHA 5} =

1 n
(2n)!!02 Sg“(“)gAv@j—l)u(zj)- (35)

€Sy,

In order to build the simplest hierarchy over MR, we take
all higher layers to be Abelian U(1) Hall fluids with the
minimal charge excitations of each level comprising its qua-
siparticle gas. It follows that each level’s quasiparticle gas
excitations are trivial in the Ising sector, and hence we may
again use the K-matrix formalism to describe the resulting
hierarchy states as

Ising X U(1)lc, (36)
(I’C—{) aj € Z’
:oa; e/,

o (fa) : a;e’ ’ (37)

1
(O',L_i) Lo ap e 7+ E,aj>0 e/

where now Ky,=2 (rather than Ky, odd) and, as before, the
other nonzero elements of K are Kj; even for j>0 and
K;_ | ;=K;;1=—sgn{K;;}. The anyonic charges in the spec-
trum C are given by A=(a;,a), where a; is the Ising charge
and a is the U(1)g flux vector. We obtain explicit ® ;- for
use with Egs. (1) and (34) by simply applying Egs. (3), (14),
and (15) for the new K. The filling fraction and shift are
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V=T, (38)

S=S,+1, (39)

where vg and Sg are given in Egs. (19) and (20), respec-
tively, and the +1 is due to the Pfaffian from the Ising sector.

An arbitrary A=(a;,a) quasiparticle excitation corre-
sponds to insertion of the vertex operator,

Vaw) = af(w)Va(w), (40)

with V; from Eq. (23) but now permitting half-integral a,.
These quasiparticle excitations have the electric charge and
the braiding R-symbols given by

QA = QJ’ (41)
AB _ papbipib
REP = RAVIRED, (42)

where Q; and R* are given in Eqs. (24) and (25), respec-
tively, and the Ising sector’s RZII’I’I are

R'=R}/=R}'=R," =R} =1,

LT
RfY=-1, RV7=R7'=-i, R]"=¢7's,

(43)

In these states, we have hy=(,K-f,), By=(I,2K-f,), and
Bj~o=(I,K-7;). Two quasiparticle excitation types are needed
to generate the entire charge spectrum: the fundamental
quasiholes/quasielectrons in the lowest and highest layers,
ghy=(0,3i)) and q,=(1,,). The resulting states have
3|det K]|-fold ground-state degeneracy on the torus when the
system has an even number of electrons N, and |det K|-fold
torus degeneracy when N, is odd.

We obtain a v=2/3 ground-state wave function at the first
level of hierarchy by using

2 -1
K= ,
{—1 2}

Dy, -y ) =TT (il — ). (44)

a<pf

for which

This state has S=4, a ninefold ground-state degeneracy on
the torus (for N, even), and the spectrum generating excita-
tions gh, and ¢; have minimal electric charge e/3. This pro-
vides a candidate state for v=8/3.

Alternatively, we obtain a v=2/5 ground-state wave func-
tion at the first hierarchy level by using

[2 | ]
K= ,
1 -2

(I)l(ul, ,MNI): H (Ma—MB)S/Z. (45)

a<f

for which

This state has S=2, a 15-fold ground-state degeneracy on the
torus (for N, even), and the spectrum generating excitations
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ghy and ¢ have minimal electric charge e/5. This provides a
candidate state for v=12/5.

To be completely explicit, we plug Eqs. (34), (44), and
(45) into Eq. (1), follow the prescription for dealing with
negative exponents as discussed for the Abelian hierarchy in
Sec. III and include the appropriate Gaussian factors to ob-
tain the »=2/3 and 2/5 wave functions,

Ny

N N
vy = | 11 dzuﬂe‘(1Mz)ﬁagl\zalz—(1/4€2)za|=1|ua|2 T Gty up)?
w=l a<f
. d 1 ,

XIT{uf—2—|Pf I1 (za—2p)°,  (46)
“p 926/ \Za=2p) a<p
Ny
‘Pg/gss) = II dzu#e‘(”‘“z)ﬁlavﬁl\za\z—(l/4€2)22’;|ua|2
pu=1

< 1T (- M:;)2|Ma— ug|
a<f

1 } IT Gcamzp?. (47)

Za—2p a<p

I (u, - ZB)Pf{
B

where N1=%N0+1 and ¢ =\/§ is the magnetic length. We
remind the reader that the previous discussion regarding al-
ternate descriptions of quasielectrons should be kept in mind
for the wave function in Eq. (46).

We can obtain a v=3/8 state at the second level of hier-
archy by using K,;=K,,=-2 [i.e., building on the v=2/5
state from Eq. (47)]. This gives a candidate state to describe
what may be a FQH state developing at v=19/8 seen in
Refs. 11 and 12 From this we can predict that the next state
to appear in the second Landau level after v=19/8 would be
the next level of hierarchy occurring at v=26/11 (i.e., v=2
+4/11 obtained from K;;=K»,=K33=-2).

We also note that a v=4/5 state is produced at the third
level of hierarchy by using K;;=K»,=K33=2, but, as it must
pass through an unobserved v=3/4 state (v=9/4 and 11/4
appear to be Fermi liquids of composite fermions'?) in the
second hierarchy level, this is rather unlikely to be the cor-
rect description for the observed v=14/5 plateau, which is
expected to be a Laughlin state anyway.

If the MR quasiholes/quasielectrons were instead to pair
up in the ¢ channel to form a hierarchy’s zeroth level quasi-
particle gas of (i,K,;) excitations, we would have

Vo= the 3 %, (48)

NIV

Za - Zﬁ a<pB

X o=ug) o I ) —ug)'?, (49)
a3 a<pf

instead of Egs. (33) and (34), where Z,=z, for «

=1,...,Ny and ZMNO:ua for a=1,...,N,. Taking all higher

layers to be Abelian again gives a hierarchy described by

Ising X U(1)g|c and Egs. (14) and (15) but now with K, odd

in order to match the braiding statistic of the ¢, excitations.
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In this case, the first layer’s chargeless boson is B,
=(¢,K-f,) and excitations with a¢;=c must have ay,a, € Z
+% (and hence cannot be written as a single layer excitation).

Specifically, the charge spectrum is given by

(IL,a) a; €7,
oo (pa) a; e 7, (50)
(o,a) ag.a, € 7.+ % aj-y €7
For these states, the filling fraction and shift are
v=vg (51)
and
S=Sk+1+v ' [K ", (52)

where vg and Sy are again given by Egs. (19) and (20),
respectively.

We obtain a v=1/3 ground-state wave function at first
level of hierarchy using

K= ,
1 -1

Dy, -y ) = T (ug—ug). (53)

a<pf

for which

This state has S=3, a ninefold ground-state degeneracy on
the torus (for N, even), and the spectrum is generated by two
minimal electric charge e/3 excitations, (o,1/2,1/2) and
(1,0,1). This provides a candidate state for v=7/3.

We obtain a v=3/5 ground-state wave function at first
level of hierarchy using

K= ,
-1 3

Dy, -y ) = [T (il — ). (54)

a<pf

for which

This state has S=13/3, a 15-fold ground-state degeneracy on
the torus (for N, even), and the spectrum is generated by two
minimal electric charge e/5 excitations, (o,1/2,1/2) and
(1,0,1).

One can also construct these kinds of hierarchies over the
particle-hole conjugate of the MR state, which recent experi-
ments seem to indicate may in fact describe the v=5/2
plateau.?? This is exactly the same as taking the particle-hole
conjugate of the hierarchy states we have built on the MR
state. In particular, particle-hole conjugating the state in Eq.
(46) gives a candidate for v=7/3 (with S=-5), particle-hole
conjugating the state constructed from Eq. (53) gives a can-
didate for »=8/3 (with S=0), and particle-hole conjugating
the state constructed from Eq. (54) gives a candidate for v
=12/5 (with §=-4).

As it may be advantageous for numerical studies, it is
expedient to reformulate these hierarchical states using a
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composite fermion type construction of wave functions. This
is straightforward for the hierarchies in which the zeroth
level quasiparticles pair up in the trivial channel of the non-
Abelian sector because the hierarchization is entirely in the
U(1) charge sector and thus one simply applies a transforma-
tion similar to the one that relates the HH hierarchy to the
composite fermion description of the Abelian states. In par-
ticular, the v:m states with ground-state wave func-

tions,
1
(BS-CF) _ PLLL{ Pf{ } Vas X+n}’ (55)
Za—Z2p

(which have S=2p+2*n) are equivalent to the kth level
Ising X U(1)g hierarchy states for k=n—1 with

K00=2p+2, K]J=2 for J>O, (56)
for v= 15,57 and with

K00=2p, K]IZ—Z for ]>O, (57)
for v= m. These wave functions can be compactly

written in the suggestive form

. CF
\I,E)BSCF)=\;[,(1MR)\I,( n) ’ (58)
2pn*1
where \I’(IMR) is a v=1 bosonic MR wave function and
(cp . . . .
W, is the composite fermion wave function from Eq.

(2%3)77(ljlearly, these are not exactly the same as the wave
functions in Eq. (55) since the lowest Landau level projec-
tion no longer acts on their entirety, but one might expect it
to be a reasonably good approximation. In any case, the
choice of partitioning for lowest Landau level projection
does not affect the universal properties, so the difference
between these is only relevant for numerical studies.

Since we want states built on the v=5/2 MR state, we
focus on the two Ky,=2 series,

(BS-CF) 1
V., = PLLL{Pf{ }Xan}, (59)
n+1 Za— Z,B

(BS-CF) 1
Vo, o= PLLL{ Pf{ }X?X—n} , (60)
3n-1 Za™2p

which have shifts S=2+n and 4—n, respectively. For n=2,
these wave functions, respectively, give alternative descrip-
tions of the ¥=2/3 and 2/5 ground-states constructed in Egs.
(46) and (47).

V. COMPARISON TO NUMERICAL STUDIES

In the absence of sufficient definitive experimental evi-
dence, FQH theorists have traditionally turned to numerical
studies as another tool to help educate our guesses as to the
likelihood of various proposals’ correctness. As it has histori-
cally been difficult to exclude candidate states from conten-
tion using the available experimental data, a number of quan-
tities that are experimentally unobservable but suitable for
numerical evaluation have risen to prominence as indicators
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of the quality of trial wave functions. These include the shift,
the ground-state degeneracy on the torus, and the overlap for
small systems (usually on a sphere) with wave functions cal-
culated by exact diagonalization of various Hamiltonians for
lowest Landau level electrons. Clearly, it is of great interest
to perform such numerical analyses also for our trial wave
functions. This should be possible using the methods of Refs.
43 and 44 with the composite fermion formulation of Egs.
(59) and (60), perhaps with some careful thought regarding
the quality of approximation obtained when moving certain
terms outside the lowest Landau level projections. We plan
to address such numerical matters more thoroughly in a fu-
ture publication.*> Here we will give a brief discussion of
previous numerical work on second Landau level states.

Unfortunately, it seems that there is very little numerical
work on the v=7/3 and 8/3 FQH plateaus, apart from Ref.
25, in which the electron-electron correlation functions seem
to favor non-Abelian states at these filling fractions.

For v=12/5, a study of zero-thickness systems on a
sphere with Ny=15 and 18 was carried out in Ref. 26. This
work shows that as the pseudopotentials of the model Hamil-
tonian used for the exact diagonalization are varied around
the Coulomb point there is a region where the k=3 RR state
has a good overlap with the numerically obtained wave func-
tion and a region where the Abelian composite fermion wave
function has a good overlap with the numerically obtained
wave function. However, there is also a region between these
where the overlap for the RR state drops to zero and where
the overlap for the Abelian wave function is still very small.
From this, one can draw the conclusion that there is room for
another phase at v=12/5. A flux scan for § =N,= 14 with
second Landau level Coulomb interactions on the sphere us-
ing the techniques in Ref. 17 reveals* a v=12/5 state with
S=2. This matches our v=12/5 state given in Eq. (47) but
neither the Abelian hierarchy nor the RR states that, respec-
tively, have S=4 and S=-2.

A numerical study including nonzero thickness for sys-
tems on a torus with Ny=15 and 18 was carried out in Ref.
47. The ground-state degeneracy for the Coulomb potential
is observed to be fivefold and tenfold for different regions in
the parameter space. For Ny=15 (i.e., N, odd), the observed
fivefold torus ground-state degeneracy is consistent with our
v=2/5 states although it is also consistent with an Abelian
hierarchy state. For Ny=18, a 15-fold ground-state degen-
eracy consistent with our state did not appear. The tenfold
ground-state degeneracy (for both N,) is consistent with the
k=3 RR state; however, the splitting of these ground states is
not as small for Ny=18 as it is for Ny=15 and also the gap
(from these to the next states) is smaller, even comparable to
the ground-state splitting. A 15-fold torus ground-state de-
generacy may well emerge when physical effects, such as
Landau level mixing and particle-hole symmetry breaking
are incorporated in the simulations or simply if larger system
sizes or a larger region of the pseudopotential and layer
thickness parameter space are explored. Furthermore, nu-
merical studies for systems on a disk with boundary edge
have found that edge effects can play a significant role in
determining which phase is stabilized'® so analyzing the sys-
tem on a sphere or torus (or any topologically closed surface)
may well be insufficient for comparison to real experimental
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conditions. In any case, there is plenty of room for additional
numerical analysis of v=12/5, and the work done so far
certainly does not exclude our states as a viable alternative to
the Abelian or k=3 RR states at v=12/5.

VI. COMPARISON TO EXPERIMENTAL STUDIES

While an intuitively appealing physical picture and exten-
sive numerical analyses are important and helpful, one
should keep in mind that the main focus of arguments in
support or opposition of any proposal will undoubtedly turn
back to empirical data, once more is obtained from the ex-
periments currently being pursued. Several types of experi-
ments are needed to determine the true nature of the ob-
served FQH states. Interferometry experiments that probe
braiding statistics can provide a “smoking gun,” to unam-
biguously identify states as non-Abelian**>? and can be used
to distinguish between certain classes of topological order,>?
for example, between Abelian, Ising, and Fibonacci (i.e., be-
tween HH, MR/BS, and k=3 RR) type states. However, cer-
tain “similar” states, such as those with Ising fusion rules in
the non-Abelian sector, cannot be distinguished from braid-
ing alone. Experiments that probe scaling behavior’*-¢ or
thermal Hall conductance’’ should, in principle, be able to
distinguish between such similar states. Although the neces-
sary evidence for a complete characterization of all the sec-
ond Landau level states is currently lacking, rapid progress is
being made on the experimental front.

The decisive experimental evidence that does exist at
present is in complete agreement with our proposed states.
This essentially means our states occur at the observed filling
fractions and have fundamental quasihole charges that match
the measured values in Ref. 21. This is notable for the pla-
teau at filling fraction »=7/3 and 8/3 since our states are
presently the only proposed spin-polarized non-Abelian can-
didates for these plateaus with e¢/3 fundamental quasihole
charge. Distinguishing states by their fundamental quasihole
charge is more difficult for v=12/5, as the Abelian hierarchy
state, the k=3 RR state, and our proposed states all have the
same e/5 fundamental quasihole charge.

TABLE 1. Experimentally observed filling fractions and excita-
tion gaps (in mK) of fractional quantum Hall states in the second
Landau level. The number in brackets following A is the number of
the reference where the corresponding gap values were reported
(Ref. 61 reported data for two different samples). A * indicates an
observed plateau but no gap value reported.

A [10] 100 * 110 55

A [58] * 310 * *
A [11] ~600 70 * * *
A [61] 584 * 544 562 252
A’ [61] 206 272 150 =60
A [59] 110 130 60

A [12] 590 * 450 290 *
A [60] 225 262 64 149
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On a more qualitative level, one can argue that the order
of appearance and relative strengths of measured energy gaps
in the second Landau level (see Table I) put constraints on
what theories should be proposed and provide support for
our hierarchy picture in the same way that they do for the
Abelian hierarchy in the lowest Landau level. In this vein,
one may argue that the observation'!!2 of a strong feature (or
more optimistically, a FQH plateau) at »=21/8 supports our
proposal, as such a state emerges naturally from our v
=12/5 state by adding one additional layer of hierarchy (or
alternatively by filling one additional Landau level of com-
posite fermions). It is notable that the v=>5/2 state, which we
use as the parent state for our hierarchy, usually has the
largest gap, while states that occur at higher hierarchical lev-
els have decreasing gaps. An interesting empirical property
of the second Landau level is the apparent lack of particle-
hole symmetry. Even in the case v=7/3 and 8/3 where the
filling fractions are particle-hole conjugate, the gaps (in all
but one sample) have a large disparity A;;~2Ag;5 so it
seems likely that these states are not particle-hole conjugates
of each other (although possibly depending on the sample
and experimental conditions). In particular, this suggests that
(at least) one of them is not a standard Abelian state, and a
natural guess would be that it is thus a non-Abelian state.

VII. CONCLUSION

We have shown how to perform general hierarchical con-
structions of FQH states. Applying this framework to the v
=5/2 Moore-Read state, we have constructed hierarchies of
states (and their corresponding trial wave functions) that we
propose as candidates for all the observed FQH states (as
well as features suggestive of developing FQH states) in the
second Landau level. The quasiparticle excitations of these
proposed states all have non-Abelian statistics of the Ising
type. The resulting hierarchy provides a picture in which
p-wave pairing characteristic of the MR state is the ubiqui-
tous mechanism that generates non-Abelian statistics in FQH
states. These proposed states are consistent with all the pres-
ently available experimental evidence.

This hierarchical framework can also be applied to any
other candidate for the v=5/2 state and similarly produce
new candidate states for all the observed second Landau
level plateaus. In particular, one can build a hierarchy on the
SU(2), X U(1), NAF state?® or similarly constructed states
given by SO(5); X U(1), or SO(7); X U(1),. We note that
Ising, SU(2),, SO(5),, and SO(7); all have the same fusion
algebra and all have a fermionic field (the equivalent of the
) assigned to the electron in such states. One can also use
versions of all these states in which the non-Abelian sectors
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occur in the opposite chirality, i.e., Ising X U(1),, SU(2),
X U(1),, etc. Altogether, this provides (at least) 16 distinct
sets of candidate states (including the particle-hole conju-
gates) covering all observed filling fractions of the second
Landau level. Although these other candidates are mostly
unlikely, the point is that one may apply a hierarchical con-
struction to whatever state is the correct description of v
=5/2 and produce candidates for all the other observed sec-
ond Landau level states. Also, for a given filling fraction, the
states built from theories with the Ising fusion algebra in
their non-Abelian sector will all have the same fundamental
quasihole charges but slightly different braiding statistics and
scaling behavior.

It is straightforward to produce similar hierarchies over
other non-Abelian states, such as the RR states; however it is
also less fruitful in that the observed second Landau level
filling fractions are not naturally produced nor does it pro-
vide a conceptual picture of second Landau level FQH phys-
ics that is as appealing.

Finally, we remark that while non-Abelian FQH states are
of great interest in their own right, their study has an addi-
tional impetus provided by their prospective application in
topological quantum computation.>%3 We recall that the qua-
siparticle excitations of the states we have proposed here will
have the same braiding statistics as the parent state at v
=5/2, up to Abelian factors coming from the hierarchy. In
particular, this means that neither the hierarchy built on the
MR state nor those built upon any of the other current can-
didate states for »=>5/2 will have computationally universal
non-Abelian braiding statistics [see Egs. (31) and (43)]. In
order to achieve universal quantum computation with such
states, quasiparticle braiding® must be supplemented by op-
erations that are topologically unprotected® or involve
changing the topology of the system.®®” On the other hand,
the non-Abelian statistics of the k=3 RR state is described
by Fibonacci anyons, which are known to have computation-
ally universal braiding.®® Thus, it is of great interest for to-
pological quantum computation whether the v=12/5 state is
RR, BS, or HH (or something else entirely) as the outcome
to this question will have fundamental consequences for its
implementation in FQH systems.
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