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Abstract

This paper suggests that IV estimators, utilizing irrelevant but persistent instruments may

produce reliable inferences, in small samples, in cases where the endogenous variables contain

autoregressive roots near unity. In such cases, these estimators appear to outperform IV estimators

with strong instruments as well as some asymptotically efficient cointegration estimators.
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1 Introduction

Selecting appropriate instruments in the context of an Instrumental Variables (IV) pro-

cedure is of paramount importance for producing reliable inferences on the structural

parameters of interest. It is now well understood that if the instruments are only weakly

correlated to the endogeneous variables, then IV estimators are likely to fare no better

than the Ordinary Least Squares (OLS) estimator (see Nelson and Startz 1990a, 1990b,

Buse 1992, Bekker 1994, Bound, et. al. 1995, Dufour 1997, Staiger and Stock 1997 and

Wang and Zivot 1998).

The literature on the ‘weak instruments’ issue implicitly refers to cases where the

regressor is either serially uncorrelated or exhibits a very low degree of persistence. This

is due to the fact that a persistent regressor is always accompanied by strong instruments,

namely its own lagged values. If, for example, the regressor, xt, follows an AR(1) process,

with coefficient ρx, then the lagged value of the regressor, xt−1, is readily available as an

instrument for xt. In such a case, the ‘weak instrument’ problem is not an issue, unless

ρx is close to zero. Moreover, the higher is the value of ρx, the stronger is xt−1 as an

instrument for xt. However, this is true only for values of ρx less than one. If ρx = 1, the

regressor is an I(1) process, participating in a cointegrating regression. In such a case,

the OLS estimator is super-consistent, which in turn implies that ‘first-order’ asymptotic

bias effects dissapear. In such a case, an IV procedure, such as the two-stages least

squares (TSLS) estimator, is inappropriate since it is designed to deal with a problem

that no longer exists. The asymptotic problems in the cointegration case are of different

nature, usually referred to as ‘second-order’ effects (see, for example, Phillips 1988, Park

and Phillips 1988, Phillips and Loretan 1991). To deal with these problems, one has

to employ an asymptotically efficient cointegration estimator, rather than a standard

IV one. If one insists on using IV procedures in the case of cointegration, then she

ends up with an estimator whose asymptotic distribution suffers from nuisance parameter

dependencies (second-order effects) arising not only from the correlation between the

regression error and the regressor, but also from the correlation between the instrument

and the regressor! In other words, the problem of ‘weak instruments’ is reversed. In the
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case of cointegration, a weak, or even more so, an irrelevant instrument is beneficial, since

it simplifies the nuisance parameter dependencies in the asymptotic distribution of the

IV estimator without affecting the consistency of this estimator. This may be thought of

as a beneficial artifact of the spurious regression theory (see Phillips and Hansen 1990).

The preceding discussion implies that the issue of ‘weak instruments’ should be ex-

amined in conjuction with the time series properties of the data in hand. It is true that

a weak instrument is likely to be a problem in a low-persistence environment, but it is

also true that a strong instrument may create more problems than it solves in a ‘high-

persistence’ or ‘near-to-unit-root’ framework. As ρx moves from the stationary to the

unit-root region, first-order effects are declining but second-order effects are emerging.

Although the asymptotic theory has provided clear answers on the properties of IV es-

timators for the two polar cases |ρx| < 1 and ρx = 1, it is of little help to suggest the

optimal estimation procedure, in finite samples, for the cases that ρx is less than but

close to unity. To put it differently, it is not clear whether first or second order effects

are predominant in the case that ρx is in the viscinity of unity. This paper examines

these issues in some detail. Specifically, we address the following questions: What is the

optimal way to estimate the structural parameter of interest, for samples of typical sizes,

when the regressor is a stationary but highly persistent process, correlated with the re-

gression error? Is it still optimal to employ an IV procedure that utilizes the strongest

available instrument(s), as the relevant asymptotic theory suggests? Or is it better to

treat the regression as a nearly-cointegrated one and employ an asymptotically efficient

cointegration estimator?1 This paper offers simulation evidence against these options.

Both methods are outperformed by a TSLS estimator that utilizes irrelevant but highly

persistent instruments.

The paper is organized as follows. Section 2 introduces the DGP and briefly reviews

the relevant theory. Section 3 reports the simulation findings and Section 4 concludes the

1Elliot (1998) examines the problems with employing standard cointegration estimators in cases where
the series involved in the regression contain near-to-unit roots. He demonstrates that commonly applied
hypothesis tests on the parameters of interest suffer from severe size distortions, when slowly mean revert-
ing processes are approximated by ones with unit roots. He also shows that using lags of the regressors
as instruments is inappropriate in this case.
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paper.

2 The Model, and Some Background Theory

Consider the regression equation:

yt = θxt + u1t (1)

where the regressor is generated via an AR(1) process:

xt = ρxxt−1 + u2t (2)

We also assume the presence of a third variable, zt, that might serve as an instrument for

identifying θ, which also follows an AR(1) process,

zt = ρzzt−1 + u3t (3)

The error vector ut = [u1t, u2t, u3t]| is assumed to be normal, independent and identically

distributed with zero mean and covariance matrix Σ. Specifically,


u1t

u2t

u3t

 ˜NIID


0

0

0




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (4)

Let us first review some useful results from the existing literature for the stationary and

cointegrating regression cases, defined by |ρx| < 1 and ρx = 1, respectively, starting from

the former.

Stationary Regression

We first assume that |ρx| and |ρz| are less than one, which means that the instrument
and the regressor are I(0) processes. If σ12 6= 0, the OLS estimator, bθLS , results in
asymptotic bias given by the following expression:
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p lim
³bθLS − θ

´
=

σ12
σ22

(1− ρ2x) (5)

It can be seen that the asymptotic bias of bθLS is proportional to the degree of correla-
tion between the regression error and the error that drives the regressor, and inversely

proportional to the degree of persistence of the regressor.

Next, assume that σ12 6= 0 and σ13 = 0. In such a case, θ can be consistently estimated
by TSLS. The set of available instruments can be identified by considering the first-stage

regression, implied by the DGP under study. This can be obtained by first noting that

u2t =
σ23
σ33

u3t + νt and then substituting this expression back into equation (2), to obtain,

xt = ρxxt−1 +
σ23
σ33

zt − ρz
σ23
σ33

zt−1 + νt (6)

The first-stage regression implies that there are three available instruments, namely xt−1,

zt and zt−1. In the case that ρx = σ23 = 0, the mean of the TSLS estimator employing

all the three available, but irrelevant, instruments is the probability limit of the OLS

estimator.

Cointegrating Regression

Let us now focus attention on the case ρx = ρz = 1. Equations (1) - (2) form a

triangular cointegration system, put forward by Phillips (1988). In such a case, bθLS is
T -consistent, even if σ12 6= 0. However, if σ12 6= 0, ‘long-run endogeneity’ problems

(second-order effects) are still encountered within the OLS estimation method. Standard

IV procedures are not designed to deal with such effects. Instead, an asymptotically

efficient cointegration estimator, such as the Fully Modified Least Squares (FMLS), or the

Dynamic OLS (DOLS) estimator should be used. (see Phillips and Hansen 1990, Stock

and Watson 1993). Phillips and Hansen (1990) examine the behaviour of IV estimators in

a cointegration framework, and show that, due to the non-diagonality of Σ, the presence

of relevant instruments makes the asymptotic dependence of the IV estimator on nuisance

parameters more complicated than that of the OLS estimator. If, however, the instrument

and the regressor error are stochastically independent, that is when σ23 = 0, the nuisance
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parameter dependencies are reduced. In other words, asymptotic theory suggests that

irrelevant instruments are preferable to strong ones, in the case that IV procedures are

applied on a cointegrating regression.

Stationary Regression with near-to-unit Roots

Finally, let us assume that ρx is close to but less than unity, for example ρx = 0.95.

What is the optimal procedure for estimating θ in this case? Asymptotically, the problem

falls into the category of regressions with stationary variables, where only first-order

effects, arising from σ12 6= 0, are present. In finite samples, however, second-order effects,
arising from the fact that the regressor resembles a unit-root process are also likely to

appear. The presence of both first and second order effects suggests the adoption of an

IV estimator with irrelevant but very persistent instruments. Such instruments may be

spuriously correlated with the regressor, thus (pseudo) dealing with the first-order effects

and, at the same time, minimizing the second-order effects.

3 Monte Carlo Results

The sets of instruments, used in the first-stage regression, are {zt} , {xt−1} , {zt, zt−1, zt−2}
and {zt, xt−1, zt−1}, resulting in the IVZ, IVX, IVZZ and IVZX estimators, respectively.
We also include the OLS estimator for comparison purposes, and two asymptotically

efficient cointegration estimators, namely FMLS and DOLS that are expected to perform

best in the exact cointegration case (ρx = 1). The autoregressive parameters, ρx and ρz,

take values in the intervals [0, 0.8] and (0.8, 1], by steps of 0.1 and 0.02, respectively.

In the first set of experiments we assume that ρx = ρz. For each value of ρx(= ρz), we

generate 2000 series of length 150 (350) starting with u10 = u20 = 0, and then discard

the initial 50 observations, thus generating a sample size of 100 (300). The accuracy of

the seven estimators, introduced above, is assessed by means of the median bias, since for

IVZ and IVX the unconditional mean does not exist. To examine the effects of persistent

instruments on hypothesis testing on θ, we also report the mean, standard deviation,

skewness and kurtosis coefficients of the estimators’ t-statistics. The performance of

these tests is assessed by comparing the 2.5% (t0.025) and the 97.5% (t0.975) points in the
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empirical distributions of the relevant t-statistics with those from the standard N(0,1).

Finally, we report the (average) F-statistics from the first-stage regressions. As for the

rest of the parameters, we set θ = 1, σ11 = σ22 = 1, σ12 = 0.7 and σ13 = 0, that is, we

introduce a rather strong ‘endogeneity’ effect and maintain the orthogonality condition

for zt. Finally, the key parameter, σ23, is set, throughout, equal to zero. This means that

IVZ and IVZZ utilize solely irrelevant instruments for all the values of ρx and ρz.

For brevity, we do not report the full set of results. Instead, we present the results

for the cases ρx = ρz = 0, ρx = ρz = 0.5, ρx = ρz = 0.96 and ρx = ρz = 1 for a sample

size equal to 100, in Tables 1A to 1D, respectively. The results may be summarized as

follows:

(i) When the regressor and the instrument exhibit zero degree of persistence, that is

when ρx = ρz = 0, all the IV estimators employ irrelevant (and serially uncorrelated)

instruments and the results are similar to those obtained in the standard ‘weak instru-

ments’ literature: The F-statistics from the first-stage regressions are very close to unity,

and the median bias of each of these estimators is almost identical to the OLS one. The

empirical distributions of the associated t-statistics are skewed and shifted to the right,

meaning that the t-ratio is expected to be large even if the null hypothesis is true. For

example, the 5% empirical sizes of IVZZ and IVZX are 27.4% and 28.1%, respectively.

(ii) When the regressor and the instrument exhibit a moderate degree of persistence,

that is when ρx = ρz = 0.5, the results are, to a large extent, consistent with the relevant

theory. The best performing estimator is IVZX, whose median bias is smaller than that

of OLS by a factor of twenty, followed by IVX. For this level of persistence, IVZ and IVZZ

still follow, to a large extent, the behaviour of OLS. However, some small but important

differences between this and the previous case are visible: First, the F-statistics for IVZ

and IVZZ have increased from 0.98 to 1.70 and from 0.99 to 1.28, respectively, despite

the fact that their population analogues, remain fixed to zero. Second, the median bias

of IVZ as a ratio to that of OLS has decreased from 1.004, in the zero persistence case,

to 0.87 in the present case. Third, the distributional divergencies of the IVZ and IVZZ

t-statistics from the standard normal, have slightly decreased.
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(iii) As the degree of persistence rises, the performance of IVZ and IVZZ improves

monotonically. For ρx = ρz = 0.96, the instruments, employed by these estimators, do not

appear to be irrelevant at all! The corresponding F-statistics are now as large as 20.94 and

8.28, respectively, thus heavily over-estimating their population analogues, which remain

equal to zero. This means that ‘spurious’ regression effects in the first-stage regressions

are clearly in place, despite the fact that the series involved are still I(0). However, these

effects turn out to be quite beneficial as far as statistical inferences on θ are concerned.

The median bias of IVZ (IVZZ), as a ratio to the median bias of OLS, is as low as 0.42

(0.57). Moreover, the distribution of the IVZ t-statistic is located close to zero (around

0.307) as opposed to that of OLS, located around 2.16. In fact, IVZ produces the best-

centered t-statistic of all the estimators under consideration. For example, the mean value

of the IVZ t-statistic is closer to zero than that of the IVX t-statistic, which reaches the

value of -0.592. In other words, the empirical distribution of the t-statistic produced by

an IV estimator utilizing an irrelevant instrument is better centered than that of an IV

estimator, employing an extremely strong instrument. Moreover, the IVZ t-statistic is, in

general, better approximated by a standard N(0,1), than any other estimator’s t-statistic.

For example, the t0.025 and t0.975 points for IVZ are -1.21 and 2.09 respectively, thus

resulting in an empirical size of 3.6%. On the other hand, the corresponding pairs for OLS,

IVX, DOLS and FMLS are (0.588, 3.776), (−2.37, 1.332), (−1.219, 3.773), and (−0.679,
3.773), resulting in empirical sizes of 59.1%, 7.05%, 25.5% and 35.95%, respectively. This

in turn implies that IVZ outperforms not only IVX, but also FMLS and DOLS, as far as

hypothesis testing on θ is concerned.

(iv) In the extreme case ρx = ρz = 1, IVZZ and, especially, IVZ continue to perform

surprisingly well. In this case the dominance of IVZ over IVX is clear in all aspects

of statistical inference. For example, the mean values of the IVZ and IVX t-statistics

are 0.040 and -1.019, respectively and the (t0.025, t0.975) pairs are (−1.603, 1.739), and
(−2.645, 0.840), respectively. It is interesting to note that the performance of IVZ is
comparable even to that of the cointegration estimators, FMLS and DOLS, which now

operate in their natural environment.
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The effects described above are summarized in Figures 1 and 2, that describe the

median bias of IVZ and IVX, respectively relative to that of OLS, for sample sizes of 100

and 300. It can be seen that the relative bias of IVZ, as opposed to that of IVX, tends

to zero as ρx(= ρz) tends to one. It can also be seen that as the sample size increases,

and the relevant asymptotic theory of stationary regressions becomes more relevant, the

‘irrelevant instruments’ effect weakens. However, the rate at which this effect declines

appears to be extremely slow.

In all the experiments, so far, we have retained the assumption ρx = ρz, that is, the

instruments and the regressor exhibit the same degree of persistence. How many of the

above results remain valid when ρx 6= ρz? To answer this question, we run another set

of experiments, where the value of ρx is kept fixed to a particular value from the set

I = {0, 0.1, ...1} . For this value of ρx, ρz takes sequentially all the values of I. We repeat
the same procedure until all the values of ρx ∈ I are exhausted. Overall, we run 121

simulations, plus some additional, more specific ones, for ρx in the neighborhood of unity.

The results (not reported) suggest that the general picture, described above, remains the

same for the cases that the instruments and the regressor exhibit different degrees of

persistence, provided that the difference |ρx − ρz| is not very large. For example, when
ρx = 0.96, then IVZ performs satisfactorily well for a value of ρz as low as 0.8 (and, of

course, as large as unity).

4 Conclusions

Our conclusions from the investigation of the behaviour of the TSLS procedure, under

alternative degrees of persistence of the regressor and the instruments used, are the fol-

lowing: First, the performance of the estimator, utilizing solely irrelevant instruments,

improves monotonically, as the degree of persistence of the regressor and that of the in-

struments, increases. Second, in the case where the regressor and the instruments are

near-to-unit root processes, the estimator that utilizes a single irrelevant instrument,

outperforms IV estimators with strong instruments, as well as asymptotically efficient

cointegration estimators.
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Table 1 
Small Sample Performance of Alternative Estimators 

(Sample Size = 100) 
Estimator Median 

bias Mean( t) Standard 
deviation (t) Skewness Kurtosis t0.025 t0.975 F-stat 

Panel A ρx =ρz=0 
OLS 0.698 9.809 1.447 0.159 3.107 7.054 12.771 --- 
IVZ 0.701 0.796 0.783 0.848 3.993 -0.378 2.615 0.98 
IVX 0.737 0.856 0.815 0.657 3.094 -0.347 2.672 1.03 
IVZZ 0.681 1.371 1.018 0.391 3.031 -0.340 3.511 0.99 
IVZX 0.686 1.386 1.019 0.321 2.777 -0.317 3.464 0.99 
DOLS 0.694 7.326 1.836 0.555 3.413 4.232 11.493 --- 
FMLS 0.698 10.155 1.887 0.376 3.602 6.707 14.170 --- 
         
Panel B ρx =ρz=0.5 
OLS 0.531 7.601 1.114 0.113 2.950 5.486 9.789 --- 
IVZ 0.463 0.693 0.793 0.576 3.008 -0.532 2.494 1.70 
IVX -0.026 -0.016 0.925 0.736 3.400 -1.404 2.105 31.51 
IVZZ 0.509 1.149 0.895 0.200 2.719 -0.424 2.962 1.28 
IVZX 0.020 0.243 0.971 0.687 3.452 -1.286 2.391 11.20 
DOLS 0.351 5.215 1.515 0.511 3.401 2.676 8.478 --- 
FMLS 0.471 7.334 1.510 0.368 3.533 4.595 10.559 --- 

         

Panel C ρx =ρz=0.96 
OLS 0.077 2.155 0.825 0.048 3.136 0.588 3.776 --- 
IVZ 0.032 0.307 0.844 0.302 2.841 -1.210 2.092 20.94 
IVX -0.025 -0.592 0.936 0.176 3.100 -2.370 1.332 714.59 
IVZZ 0.044 0.404 0.837 0.193 2.826 -1.123 2.138 8.28 
IVZX -0.022 -0.516 0.933 0.167 3.109 -2.285 1.404 240.99 
DOLS 0.028 1.161 1.243 0.107 3.335 -1.219 3.773 --- 
FMLS 0.032 1.567 1.135 0.061 3.174 -0.679 3.848 --- 
         
Panel D ρx =ρz=1 
OLS 0.030 1.080 0.936 -0.081 3.136 -0.816 2.886 --- 
IVZ 0.001 0.040 0.856 0.074 2.802 -1.603 1.739 54.84 
IVX -0.030 -1.019 0.897 0.237 3.203 -2.645 0.840 1558.69 
IVZZ 0.006 0.102 0.877 0.046 2.784 -1.593 1.781 20.37 
IVZX -0.029 -0.958 0.897 0.212 3.190 -2.599 0.909 525.99 
DOLS 0.000 0.004 1.143 0.029 3.423 -2.234 2.281 --- 
FMLS 0.001 0.097 1.077 0.072 3.136 -1.952 2.293 --- 
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Figure 1 
 

Median Bias of IVZ relative to that of OLS 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
 

Median Bias of IVX relative to that of OLS 
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