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Abstract

We present arguments for the existence of higher dimensional asymptotically AdS non Abelian black

holes with a Ricci flat event horizon and analyze their basic properties. Unlike higher dimensional

black holes with a curved horizon, of the usual Einstein-Yang-Mills system, these solutions have finite

mass-energy. Below some non-zero critical temperature, they are thermodynamically preferred over the

Abelian configurations.

1 Introduction

In recent years it became clear that various well-known, and rather intuitive, features of self-gravitating
solutions with Maxwell fields in d = 3 + 1 spacetime dimensions are not shared by their counterparts with
non Abelian gauge fields. For example, in contrast to the Abelian situation, self-gravitating Yang-Mills (YM)
fields can form particle-like configurations [1]. The Einstein-Yang-Mills (EYM) equations also admit black
hole solutions that are not uniquely characterised by their mass, angular momentum and YM charges [2].
Therefore the uniqueness theorem for electrovacuum black hole spacetimes ceases to exist for EYM systems.
As a result, the literature on gravitating solutions with non Abelian fields has steadily grown up in the last
two decades, including solutions with a cosmological constant Λ (see e.g. [3, 4] and references therein). The
asymptotically anti–de Sitter (AAdS) solutions are of particular interest, since gauged supergravity theories
playing an important role in AdS/CFT, generically contain non Abelian matter fields in the bulk, although
to date mainly Abelian truncations are considered in the literature. Notably, non Abelian AAdS solutions
exhibit new features which are absent for Λ = 0. For example, stable solutions with a global magnetic charge
are known to exist even in the absence of a Higgs field [5], [6].

In the context of the AdS/CFT correspondence [7], Klebanov and Witten have proposed a mechanism
of spontaneously breaking gauge symmetry [8]. This mechanism has recently been exploited by Gubser et.

al. [9]–[12] to explain important phenomena in condensed matter physics, in particular superconductivity and
critical phenomena. This mechanism results, with no recourse to supersymmetry, in a symmetry breaking
boundary theory of a bulk gravitational theory with negative cosmological constant, the temperature of the
black hole being nonzero.

From our point of view, the most interesting development in this domain is the recent discovery in [9] that
some AAdS non Abelian black hole solutions with a Ricci flat event horizon may posses superconducting
horizons which are thermodynamically preferred below some non-zero critical temperature. Such solutions
exhibit hair of the ’electric’ part of the gauge field on the AdS boundary, manifesting the gauge symmetry
breaking mechanism; at the same time the condensate of the ’magnetic’ part floats above the horizon of the
black hole. This mechanism was further exploited in subsequent works [10, 11].

The only case discussed so far pertain to four dimensional AAdS spacetimes with Ricci flat horizon, and
relatively little is known about such higher dimensional solutions with non Abelian matter fields. Naturally,
it is always of interest to see how the dimensionality of the spacetime affects the physical consequences of
a given theory. In particular, it would be interesting to see how general is the mechanism discovered in [9].
Besides, it is known from the work of [13], [14], [15], [16], that static spherically symmetric solutions of the
usual gravitating YM system in spacetime dimensions d > 4 do not have finite energy as a result of their
scaling propertes. Finite energy solutions exist only when the usual YM system is augmented with higher
derivative corrections in the non Abelian action [16], [17]. Therefore the examination of higher dimensional
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gravitating non Abelian solutions with a different topology (in this case with Ricci flat) of the event horizon
is a pertinent task.

Our objective in the present work is to extend this type of symmetry breaking to non Abelian EYM
solutions used by Gubser in [9], to arbitray d = D + 1 dimensional AAdS spacetimes. For this we exploit,
qualitatively, previous results on d dimensional finite energy AAdS solutions for EYM systems given in [16].
In fact, the actual model considered here differs from those of [16] in that the latter is described by the purely
’magnetic’ components of the YM field1 whereas here our model will include also the ’electric’ components
which play an essential role as is the case of [9]. The salient feature of the YM models in [16] is the presence
of higher order terms in the YM curvature, whose role is to supply the necessary (Derick) scaling properties
of the Lagrangian to enable the existence of finite energy solutions. There is however one major departure
between the models in [16] and those exploited here. While the metric Ansatz employed in [16] describes
a spacetime with an Sd−2 × R boundary at infinity, the one here describes in contrast a flat Minkowkian
boundary. One consequence of this is that the appropriate gauge group here is SO(D − 1), i.e. SO(d − 2),
differing from the choice of SO(D), i.e. SO(d − 1), in [16]. This feature is a reminder of the fact that the
electric component A0 of the YM connection takes the role of a Higgs field. The other consequence of a flat
Minkowkian boundary is that inclusion of higher order YM curvature terms are no longer necessary for the
solutions to describe finite energy configurations, as was the case when the black hole horizon had a nonzero
Ricci tensor. This is a result of the much wider range of scaling properties satisfied when the metric has a
Ricci flat event horizon instead of the more restrictive scaling properties of the system when the horizon is
spherical. Inclusion of higher order YM curvature terms, while not necessary for achieving finite energy, is
still possible here, resulting only in quantitative effects. We have eschewed this option here since it is not
qualitatively important. In addition, although we have restricted our attention here to spacetime dimensions
5 ≤ d ≤ 8 for simplicity, it is obvious that this limitation is unimportant.

The metric Ansatz we use is a direct extension of that in [5, 9, 20], to dimensions with a larger number of
spacelike coordinates. To implement our procedure it is necessary to devise an Ansatz for the YM connection,
generalising that used in previous work on YM fields in AdS spacetime. Here, we have found two distinct
Ansätze which we have verified to be consistent. These generalise the distinct YM connection Ansätze of [9]
and of [10], respectively.

2 General formalism

2.1 The field equations and the abelian solution

Instead of specializing to a particular supergravity model, we shall consider the pure EYM theory with
negative cosmological constant in d ≥ 4 spacetime dimensions

S =

∫

ddx
√
−g

(

1

16πG
(R − 2Λ) − 1

4
F a

µνF aµν

)

, (1)

where the cosmological constant is Λ = −(d − 2)(d − 1)/2ℓ2. Although it seems that the model (1) is
non-supersymmetric in itself (at least2 for d > 4), it usually enters the gauged supergravities as the basic
building block. Therefore one can expect the basic features of its solutions to be generic.

Variation of the action (1) with respect to the metric gµν and the gauge field Aµ leads to the EYM
equations

Rµν − 1

2
gµνR + Λgµν = 8πGTµν , DµFµν = 0, (2)

where Tµν is the YM stress-energy tensor Tµν = F a
µαF a

νβgαβ − 1
4gµνF a

αβF aαβ , and Dµ = ∂µ + ig [Aµ, ·] (with
g the gauge coupling constant).

1Inclusion of the ’electric’ components of the YM field can readily be made, as e.g. in the case of Euclidean signature in
[19].

2The case d = 4, with Λ/(16πG) = −3g2 corresponds to a consistent truncation of N = 4 gauged supergravity and may be
uplifted to d = 11 supergravity [21], [22],[3].
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We shall consider black hole solutions of the above equation with locally flat horizons, which asymptoti-
cally approach a locally AdS spacetime with a boundary at infinity Rd−1. The simplest such configuration
with a nonzero gauge field is represented by the Reissner-Nordström-AdS (RNAdS) black hole with

ds2
d = dr2

r2

ℓ2
−

2M0
rd−3 + 8πG(d−3)

g2(d−2)

q2

r2(d−3)

+ r2dγ2 − ( r2

ℓ2 − 2M0

rd−3 + 8πG(d−3)
g2(d−2)

q2

r2(d−3) )dt2, A = (c − 1
g

q
rd−3 )T dt, (3)

where M0, c, q are constants, T is an element of the gauge group while dγ2 is the line element of the d − 2
euclidean space. The parameters M0 and q are proportional to the mass and electric charge of the solution.

The black hole horison is located at r = rh, with r2
h/ℓ2− 2M0/rd−3

h +(8πG(d − 3)/g2(d − 2))q2/r
2(d−3)
h = 0.

When taking q = 0, the Schwarzschild-AdS (SAdS) black hole with a planar horizon is recovered.

2.2 The Ansatz

We are interested in non Abelian configurations whose magnetic gauge potential vanishes asymptotically,
such that the abelian configuration (3) is approached in that limit. Moreover, we shall suppose that our con-
figurations present a dependence only on a suitable radial coordinate r which is orthogonal to the boundary
of the spacetime.

The choice of the gauge group compatible with these assumptions (and the corresponding YM Ansatz) is
quite flexible. For the d = 4 case, two different3 non Abelian Ansätze have been proposed in the literature,
both of them for a gauge group SU(2). The first Ansatz used in [9] corresponds to a ”circular polarisation”
of the magnetic YM connection and leads to an isotropic energy momentum tensor for the components on a
surface of constant (r, t), with t the time coordinate. This is not the case for the second YM Ansatz proposed
in [10], where a particular direction in the R2 subspace is choosen, leading to a more complicated metric
Ansatz.

A straightforward generalisation of the isotropic Ansatz in [9] is found for a gauge group SO(D) (with
D < d), the Ansatz for the YM connection being stated by

A(r) = u(r)ni
αΓijm

j
αdt + w(r)dxiΓiD, (4)

in which ΓAB = (Γij , ΓiD) are the gamma matrices in D dimensions and the indices α, β run over the range
α, β = 1, 2, ..(D− 1)/2. In the above relation, xi are the coordinates parametrizing a surface of constant r, t.
Also, the sets (ni

α, mj
α) appearing in (4) form a complete and orthonormal basis of constant valued vectors

of unit length,

D−1
∑

i=1

ni
αmi

β = 0,

D−1
∑

i=1

ni
αni

β = δαβ ,

D−1
∑

i=1

mi
αmi

β = δαβ ,

D−1
2
∑

α=1

ni
αnj

α +

D−1
2
∑

α=1

mi
αmj

β = δij .

The last completeness condition is very important and means that D − 1 is even. Therefore, for d = D + 1,
the YM Ansatz (4) is defined4 only for an even number of space dimensions d. Of course, it can also be
used for an arbitrary spacetime dimension by adding n codimensions yk, with the non Abelian potential
identically zero in the subspace labeled by the extra-coordinates. Obviously, this Ansatz leads to an isotropic

energy momentum tensor in both xi and yk-directions, with T xi

xi 6= T yk

yk .

However, it is possible to define a different non Abelian Ansatz (Ansatz II in what follows), valid for
all even and odd dimensions d. In this case we employ only one (constant valued) set of orthonormal unit
vectors ni, in terms of which

A(r) = u(r)niΓi,d−1dt + w(r)njΓjidxi . (5)

3This contrasts with the case of solutions with a R × Sd−2 boundary at infinity, where the choice of Ansatz is unique, see
e.g. [6].

4The construction of a consistent isotropic Ansatz for d = 2k + 1 necessitates the enlargement of the gauge group, resulting
in a YM connection with more than one magnetic potential. For example for the most interesting d = 5 case, the minimal
gauge group is SO(5), while the Ansatz would contain six non Abelian potentials.
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While the components of the connection (5) take their values fully in the algebra of SO(d − 1), only d − 2
components of the YM connection are effective since niAi = 0. Thus we have one additional radius, but the
fields depend only on the radial coordinate r, so one of the magnetic components is zero. This results also
on an anisotropic energy mementum tensor of the YM field.

For an arbitrary spacetime dimension, a metric form compatible with the above two YM ansätze is given
by

ds2
d = A(r)dr2 + F1(r)

d−n−2
∑

i=1

dxidxi + F2(r)

n
∑

k=1

dyidyi − B(r)dt2, (6)

where we have found convenient to take

A(r) =
1

N(r)
, B(r) = N(r)σ2(r), F1(r) = r2f2(r), F2(r) = r2(f(r))2(n+2−d)/n (7)

with

N(r) = −2m(r)

rd−3
+

r2

ℓ2
, (8)

the function m(r) being related to the local mass-energy density up to some d−dependent factor. For the
case of the first Ansatz (4), the YM field is defined on a subspace labeled by the (r, t; xi)-coordinates, where
i = 1, . . . , d − n − 2 (with n ≥ 0). The second YM ansatz corresponds to an arbitrary d, with n = 1 (Here
we assume without any loss of generality ni = δi

d−2 and write xd−2 = y1.)

2.3 The equations of motion and asymptotic solutions

Within these Ansätze, the EYM field equations reduce to a set of five ordinary differential equations which
can be expressed in a unified form as5 (where one takes c = 1/2 for the Ansatz I and c = 1/(d − 3) for
Ansatz II)

w′′ =

(

2f ′

f
− d − 4

r
− σ′

σ
− N ′

N

)

w′ +

(

u2

Nσ2
− (d − n − 3)w2

r2f2

)

w

N
= 0,

u′′ +

(

d − 2

r
− σ′

σ

)

u′ − 1

c

uw2

r2Nf2
= 0,

m′ =
d − n − 2

2n
rd−2N

f ′2

f2
+ α2rd−4

(

Nw′2

f2
+ c

r2u′2

σ2
+

(d − n − 3)w4

2r2f4
+

u2w2

Nσ2f2

)

, (9)

σ′ =
2σ

f2r

(

d − n − 2

2n
r2f ′2 + α2(w′2 +

w2u2

N2σ2
)

)

,

f ′′ =
2nα2

(d − n − 2)r2f

(

u2w2

N2σ2
− (d − n − 3)w4

r2f2N
− w′2

)

−
(

d − 2

r
− f ′

f
+

N ′

N
+

σ′

σ

)

f ′,

where α2 = 8πG/(g2(d − 2)). For d = 4 , n = 0, the above equations reduce to those derived in [9]
albeit for a different metric Ansatz6. The Abelian Reissner-Nordström solution (3) is found for m(r) =
M0 − c(d − 3)q2α2/2rd−3, f(r) = σ(r) = 1, w(r) = 0, u(r) = u0 − q/rd−3.

Unfortunately, no exact non Abelian solutions of this system are yet known. However, one can analyse
their properties by using a combination of analytical and numerical methods, which are sufficient for most

5Here and in what follows, the relations for the case with no codimensions are found by formally setting f ≡ 1, followed by
the limit n → 0.

6d = 4 AAdS non Abelian black holes with a Ricci flat horizon were discussed previously in [20].
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purposes. The solutions have the following expansion7 at r = rh > 0 near the event horizon, located at rh:

m(r) =
rd−1
h

2ℓ2
+ m1(r − rh) + O(r − rh)2, σ(r) = σh + σ1(r − rh) + O(r − rh)2,

f(r) = fh + f1(r − rh) + O(r − rh)2, (10)

w(r) = wh + w1(r − rh) + O(r − rh)2, u(r) = u1(r − rh) + u2(r − rh)2 + O(r − rh)3.

Here, following [9] we interpret wh as a ’magnetic’ condensate. All coefficients in the above relation can be
expressed in terms of the real constants σh, wh, fh, u1. One finds e.g.

m1 =
rd−6
h α2

2σ2
hf2

h

(2cf4
hu1r

4
h + (d − n − 3)σ2

hw4
h), f1 = − 2α2(d − n − 3)nrd−5

h ℓ2w2
h

(d − n − 2)f2
h((d − 1)rd

h − 2m1r2
hℓ2)

,

σ1 =
1

f2
h

(

2σhw2
1α

2

rh
+

(d − n − 2)

n
f2
1 rhσh +

2α2r2d−3
h ℓ4u2

1w
2
h

((d − 1)rd
h − 2m1r2

hℓ2)2σh

)

, (11)

w1 =
(d − n − 3)ℓ2w3

h

f2
hr3

h(d − 1 − 2m1ℓ2

rd−2
h

)
, u2 =

u1

2

(

−d − 2

2
+

σ1

σh
+

ℓ2w2
h

cf2
hr3

h(d − 1 − 2m1r
2−d
h ℓ2)

)

.

Note also that the physical condition N ′(rh) > 0 implies the following condition on the boundary data
2cf2

hu2
1/σ2

h + (d − n − 3)w4
h/(r4

hf2
h) < (d − 1)/(α2ℓ2).

We are interested in solutions of the EYM equations approaching at infinity the Abelian RNAdS solution
(3). This implies the following asymptotic expansion as r → ∞

m(r) = M0 −
(d − 3)α2

ℓ2
(J2 + cq2ℓ2)

1

rd−3
+ O(1/rd−1), σ(r) = 1 − (d − 3)2

(d − 2)

J2

r2(d−2)
+ O(1/r2(d+2)),

f(r) = 1 − f̄

rd−1
+ O(1/r2(d−2)), w(r) =

J

rd−3
+ O(1/rd−1), u(r) = u0 −

q

rd−3
+ O(1/r2(d−2)), (12)

with M0, J, q, f̄ real constants. The holographic interpretations of u0, q, and J are as follows: u0 is the
chemical potential, q is the electric charge, and J is that component of the current Ji on the boundary
connected with the spontaneously broken part of the bulk gauge symmetry [9]. In other words, we have a
D-dimensional conformal field theory described on the boundary of AdSD+1 space equipped with SO(D−1)
conserved currents, which satisfy their own current algebra8. The normalisable boundary value of the
’magnetic’ field w(r) = J/rd−3 + O(1/rd−1) corresponds to the vacuum expectation value of the boundary
currents proportional to J arising after symmetry breaking, and, the existence of the horizon ’magnetic’
condensate wh.

The case d = 4, n = 0 considered in [9] is special from the point of view of the asymptotic expansion,
since the finite energy requitements are compatible with a nonvanishing value of the magnetic potential at
infinity. The condition w(∞) = 0 is imposed there by requiring w to make a finite contribution to the norm
of the non Abelian potential [9]. However, one can easily see from the field equation (9) that for d > 4,
w(∞) 6= 0 results in a divergent value of the mass function m(r), which gives further justification to the
choice (12).

The constant u0 in the asymptotic expansion (12) corresponds to the electrostatic potential Φ = u0/g,
while q fixes the electric charge density Qe = (d − 3)q/g. Other quantities of interest are the mass-energy
density M , Hawking temperature T and entropy density S,

M =
(d − 2)M0

8πG
, T =

N ′(rh)σh

4π
=

σh

4π

(

(d − 1)rh

ℓ2
− 2m1

rd−3
h

)

, S =
1

4G
rd−2
h . (13)

The constant J which enters the asymptotics of the magnetic non Abelian potential w(r) corresponds to an
order parameter describing the deviation from the Abelian solution.

7The case of Ansatz II for d = 4 is special, as the near horizon expansions of w(r) and f(r) are different in that case:
w(r) = wh + w2(r − rh)2 + O(r − rh)3 , f(r) = fh + f2(r − rh)2 + O(r − rh)3. However, the horizon data is still determined
by σh, wh, fh, u1.

8The dual CFT global current Ji is defined through TrAiJi, where Ai here is the asymptotic YM connection.
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Figure 1: The profiles of typical solutions are shown as a function of radial coordinate for Ansatz I (a) and
Ansatz II (b).

3 Numerical solutions

3.1 Scaling properties and general features

We start by noticing that the equations (9) are not affected by the transformation:

r → λr, m → λd−3m, ℓ → λℓ, u → λu, α → α/λ (14)

while w, σ and f remain unchanged. Thus, in this way one can always take an arbitrary positive value for α.
The usual choice is α = 1, which fixes9 the EYM length scale L =

√

8πG/(g2(d − 2), while the mass scale
is fixed by M = (8πG/(g2(d − 2))(d−3)/2/G. All other quantities get multiplied with suitable factors of L.
However, in what follows, to avoid cluttering our expressions with a complicated dependence of (G, g, d), we
take a unit value for α and ignore the extra-factors of g and G in the expressions of various global quantities.

For solutions with a spherical event horizon, the event horizon radius and the value of the magnetic
potential on the horizon are independent parameters (see e.g. [6]). This is not the case for the solutions
here, in which case one can always set rh = 1 without any loss of generality. This is a consequence of the
following scaling symmetry of the system (9):

r → λr, w → λw, u → λu, m → λd−1m, (15)

while σ, f and the cosmological constant remain unchanged10.
The system (9) presents in addition two more scaling symmetries associated with the functions σ and

f (e.g. σ → λσ, u → λu, t → λt etc.). In the numerical procedure these symmetries are used to set
σ(∞) = f(∞) = 1 and thus to fix the horizon values of the functions σ and f . Together with the other
symmetries mentioned above, this leaves us with three numerically relevant parameters: wh, u1 and the AdS
length scale ℓ. Since equations (9) are invariant under the transformation w → −w, only values of wh > 0
are considered.

The equations (9) with boundary conditions implied in turns by (10), (12) have been solved numerically,
using a standard shooting method. As expected, the properties of the solutions obtained for the two distinct
YM Ansätze (4), (5) are rather similar and thus we have preferred to present them together. For the first
case, families of solutions have been constructed in a systematic way for d = 4, 6, 8 with n = 0, and d = 5, 7

9These are the units usually used in the literature on EYM solutions [23]. Note also that (14) is a generic property of the
EYM system, shared by solutions with a different event horizon topologies.

10 The global quantities scale as follows: M → λd−1M , T → λT , S → λd−2S, Qe → λd−2Qe, Φ → λΦ, J → λd−2J .
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Figure 2: The phase diagram of the non Abelian solutions is plotted for several dimensions, for Ansatz I (a)
and Ansatz II (b). The value of n is zero, except for the d = 5 curve in Figure 2a.

with n = 1. Several configurations with d = 6, n = 2 have been constructed as well. When choosing instead
the YM Ansatz (5), we have constructed solutions in d = 4, 5 and 6 dimensions. For every considered value
of ℓ, we could find regular black hole solutions for only one interval 0 ≤ wh < wc

h. The value of wc
h increases

as ℓ decreases, wh = 0 corresponding to the RNAdS solution (3) .
In all these cases, we noticed a number of common features. The behaviour of solutions for generic

initial data is such that w → w0 6= 0 at large r (in which case the total mass-energy diverges), or else
there is a singularity at finite r. Given (wh, ℓ), solutions with the right asymptotic behaviour (12) exist
only for a discrete set of values of u1. As in the well known case of the Bartnik-McKinnon solutions [1],
the solutions here are also indexed by the node number of the magnetic potential w(r). It turns out that
the configurations with nodes represent excited states whose energy is always greater than the energy of the
corresponding nodeless configurations, and are therefore ignored in what follows.

For all solutions the functions m(r), σ(r) and u(r) always increase monotonically with growing r. How-
ever, f(r) and w(r) feature a more complicated behaviour. Tyical solutions are presented in Figure 1 for
both Ansätze. For sufficiently small ωh, all field variables remain close to their values for the Abelian con-
figuration with the same rh. Significant differences occur for large enough values of ωh and the effect of the
non Abelian field on the geometry becomes more and more pronounced.

3.2 Thermal properties and superconducting horizons

For all cases we considered, finite energy solutions were found only for values of the Hawking temperature less
than a critical temperature Tc. As in the d = 4 case in [9] this Tc is, within numerical error, the temperature
at which the RNAdS solution admits a static linearised perturbation, with nonvanishing but infinitesimally
small11 w. Also, our numerical results indicate that Tc goes to zero for some critical value of the AdS length
scale ℓ, but the corresponding solutions do not appear to have a singular behaviour there.

These features are shown in Figure 2 for several values of d. For a given dimension the part of the
parameter space above the curve corresponds to the unbroken phase, where only Abelian solutions exist.

In Figure 3, we plot several quantities which are invariant under the transformation (15) as a function
of the ratio T/Tc. ∆F there is the difference in the free energy density, M − TS, between a non Abelian
solution and the the RNAdS solution with the same T and Qe. As usual, ∆F < 0 means that the non
Abelian solution is thermodynamically favoured.

In all cases there is a second order phase transition with simple critical exponents, from RNAdS solutions
to solutions with normalisable non Abelian condensates. We have verified that for Tm < T < Tc, (with Tm

11Our numerical code usually provided good quality solutions for T & Tc/2.
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Figure 3: J/Qe and ∆F/Q
(d−1)/(d−2)
e are plotted as a function of T/Tc for d = 5 (Ansatz I) and d = 6

(Ansatz II) non Abelian solutions.

always around 0.7 Tc), the solutions satisfy the universal relation J/Qe = j1/2

√

1 − T/Tc, where j1/2 depends
on the model.

4 Further remarks

In this work we have presented arguments that the d = 4 picture discovered in [9] is generic for the higher
dimensional case as well. Considering several values of d ≥ 5, we have found evidence for the existence
of a second order phase transition with simple critical exponents, from the (electrically charged) RNAdS
solutions with a flat event horizon to non Abelian configurations with a nontrivial magnetic field.

One should also note that the existence of these finite energy non Abelian solutions with d > 4 represents
a surprise in itself, since it contradicts the expectation based on the no-go theorems in [13], [14], [15],[16]. The
negative results in the latter were proven for configurations with a spherical topology of the event horizon, in
which case the electric potential necesarily vanishes when d ≥ 5. Purely magnetic EYM solutions with finite
mass were found by considering corrections to the YM Lagrangian consisting in higher order terms of the
Yang–Mills hierarchy of the form Lp = Tr F (2p)2 where F (2p) is the 2p-form p-fold totally antisymmetrised
product of the SO(d) YM curvature 2-form F (2) (see e.g. [17] for asymptotically flat configurations and
[16], [18] for solutions with a cosmological constant). Such systems occur in the low energy effective action of
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Figure 4: Left: The profiles of a d = 4 dyonic non Abelian EYM solution with spherical horizon (continuous
line) is plotted together with a RNAdS configuration with the same Hawking temperature and electric
charge. Right: A number of quantities are presented as function of the magnetic charge for non Abelian
monopoles and RNAdS solutions with the same temperature for d = 4 solutions with ℓ = 1. We have ploted
the Hawking temperature (multiplied with a factor of ten, for better visualisation), the ratio between the
entropies of the Abelian and the SU(2) solutions, the black hole masses and the difference between the free
energies.

string theory and are, in some sense, the non Abelian counterparts of the Lovelock gravitational hierarchy 12.
By contrast, we have verified that to construct finite energy EYM solutions with Ricci flat horizons, inclusion
of higher derivative terms in the YM curvature to the action (1) is not necessary. For this reason we have
restricted our attention to the usual gravitating YM system, as inclusion of higher order YM terms results
only in (unimportant) quantitative changes.

An important question is, whether it is only for solutions planar event horizon that the non Abelian
solution is themodynamically favoured over the Abelian one? To answer this question, consider simply the
case of the d = 4 dyonic SU(2) black holes with spherical event horizon topology originally discussed in Ref.
[6]. These solutions are found within the Ansatz

ds2 =
dr2

N(r)
+ r2(dθ2 + sin2 θdφ2) − σ2(r)N(r)dt2 , with N(r) = 1 − 2m(r)

r
+

r2

ℓ2
, (16)

A =
1

2

{

u(r)τ3dt + w(r)τ1dθ + (cot θτ3 + w(r)τ2) sin θdϕ
}

,

where τa are the Pauli matrices. Without any loss of generality, by using the symmetry (14), one can
set 4πG = g = 1. The problem reduces in this case to a system of four coupled ordinary differential
equations. The properties of these solutions including the boundary conditions and the asymptotic expansion
can be found13 e.g. in [6]. The generic behaviour of the solutions is such that they have a nonvanishing
magnetic charge Qm = 1 − w2(∞). Non Abelian solutions with Qm = 1 are found for special values of
u′(rh) and have grrgtt 6= −1. The dyonic Abelian RNAdS solution with unit magnetic charge corresponds
to w(r) = 0, u(r) = u0 + q/r, σ(r) = 1, m(r) = M0 − (1 + q2)/2r. Considering again the case of a
canonical ensemble, we have found numerical evidence for the existence of non Abelian solutions which are
thermodynamically favoured over the Abelian ones. An example of such a situation is presented in Figure 4
for an AdS length scale ℓ = 3. There, the Hawking temperature and the electric charge are T ≃ 0.0053 and

12However, inclusion of members of this gravitational hierarchy turns out to be of no practical utility because subject to the
symmetries imposed such terms with the requisite scaling properties vanish.

13The function p(r) in [6] corresponds to 1/σ(r) in the Ansatz (16).
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Qe ≃ 0.751 for both solutions, while the masses are slightly different: M(RNAdS)≃ 1.334 and M ≃ 1.33 for
the non Abelian counterpart. This implies ∆F < 0 and thus the existence of a phase transition14.

One should also remark that, for d = 4, the presence of a non Abelian electric field is not crucial for the
existence of a phase transition between Abelian and non Abelian solutions. Setting u(r) = 0 in the Ansatz
(16), our numerical results indicate the existence of purely magnetic non Abelian configuration which are
thermodynamically favoured over the abelian solutions with the same magnetic charge15 and temperature.
In Figure 4b we plot a number of relevant quatities for a family of d = 4 EYM monopole black holes with
rh = 1 and ℓ = 1 and the corresponding RNAdS solutions. The gauge potential w(r) is nodeless for all
solutions there. The solution with Qm = 0 corresponds to the Schwarzschild-AdS (SAdS) black hole with
a spherical horizon. One can see that for Λ = −3 all non Abelian solutions with rh = 1 have ∆F < 0.
However, the generic picture is more complicated, with a nontrivial dependence on ℓ, rh.

A study of these aspects is beyond the purposes of this work and will be presented elsewhere.
We close by remarking that the asymptotic AdS structure of the spacetime is crucial for the existence of

such solutions. As proven in [25] for d = 4, the asymptotically flat EYM solutions have no magnetic charge
while their electric part vanishes identically. Moreover, by using the data in [2], one can easily verify the
difference between the free energy of a SU(2) hairy black hole and the Schwarzschild solution with the same
temperature is always positive.
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