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Duality and nonlinear response for quantum Hall systems
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We derive the implications of particle-vortex duality for the electromagnetic response of quantum Hall
systems beyond the linear-response regime. This provides a theoretical explanation of the remarkable duality,
which has been observed in the nonlinear regime for the electromagnetic response of quantum Hall systems.
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I. INTRODUCTION

There is now a good understanding of the physical p
cesses underlying the quantum Hall effect, at least at the
plateaux where the Laughlin wave functions and the J
hierarchy give accurate and insightful descriptions of the
served phenomena. However, the transition between
teaux, as external quantities~e.g., magnetic field! are varied,
is less well understood theoretically, despite there now be
a wealth of experimental data on these crossovers.

A milestone in this understanding was the observation
many features of the critical points of these transitions w
‘‘superuniversal’’1 ~see, however, Ref. 2!, and the subsequen
interpretation of this in terms of an underlying symmetry5,6

Unfortunately, the resulting understanding of this symme
in terms of microscopic physics5—the law of corresponding
states—suffers from two related drawbacks. First, it relies
what are ultimately uncontrolled~mean-field! approxima-
tions when making contact with quantum Hall observabl
Second, the derivation suggests that the domain of validit
the symmetries is more restricted than what appears in
periments, being apparently restricted to the domain of lin
response and to the immediate vicinity of the critical poi
of the transitions between plateaux.

In an earlier paper7 we argued that many of the cons
quences of Kivelson, Lee, and Zhang’s analysis could
understood away from the critical points and without mak
the mean-field approximation. In a nutshell, this was done
deriving them from an effective low-energy theory consisti
of electromagnetically interacting quasiparticles or vortic
In two space dimensions the interactions of particles
vortices are described by similar Lagrangians, and it is
symmetries that follow from this similarity, which underli
the success of the law of corresponding states. These
cesses may, therefore, be seen to follow as predictions
any system for which the low-energy electromagnetic
sponse can be shown to be well described by the effec
theory we propose.

Here we extend the discussion of Ref. 7 to applicatio
that are beyond the approximation of linear response. In
ticular, we shall derive duality relations for the electroma
netic response, which apply even in the nonlinear regime
so doing we provide the theoretical explanation of the
markable symmetry under interchange of current and~longi-
tudinal! voltage, which has been measured near the crit
0163-1829/2002/65~15!/155323~7!/$20.00 65 1553
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point of the transition between Laughlin plateaux and
Hall insulator.8

We begin, in the following section, by reviewing the ma
features of the description of the low-energy electromagn
response given in Ref. 7. This is followed, in Sec. III, by t
extension of this description beyond the regime of line
response.

II. THE EFFECTIVE THEORY

Our starting point is the recognition that the energies
sociated with electromagnetic response experiments
much lower than the typical microscopic electronic energi
For instance, the activation energy as measured by the
perature dependence of the Ohmic resistivity is of orderEr
;0.1 K;10 meV, as compared to the underlying Coulom
and cyclotron energies which are of orderEc;100 K
;10meV.

All experiments are, in principle, described by a micr
scopic Hamiltonian describing the conduction electrons a
their interactions, but accurate calculations with this Ham
tonian are difficult to perform. Although it is not strictly
necessary for our later discussion, it is useful to imagine
effective theory to be written in the manner of Kivelson, Le
and Zhang, as a system of interacting bosons described
field F coupled to a statistics fieldam with an odd statistics
parameteru5(2n11)p. ~As is well known, such a system
is exactly equivalent in two dimensions to interactin
fermions.9!

Due to the large hierarchy,Er!Ec , one can imagine in-
tegrating out the largely irrelevant high-energy dynamics
derive an effective Lagrangian with which to describe t
low-energy experiments. Although the direct, first-principl
calculation of the low-energy effective theory is usually
difficult as solving the full microscopic model, progress m
be made inasmuch as the low-energy degrees of freedom
more weakly interacting than those at higher energies. In
case it can be possible to extract precise predictions wi
controllable approximations, even when the same canno
done with the full underlying microphysical system.10–12

When this is possible, direct appeal to the microsco
theory is only required to establish the validity of the a
sumed low-energy degrees of freedom, and it need not pl
crucial quantitative role in the comparison with experime

Our key assumption here, and in Ref. 7, is that the
©2002 The American Physical Society23-1
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techniques may be applied to quantum Hall systems, wh
we will assume that the low-energy dynamics can be
scribed by a system of weakly interacting charged quasi
ticles or vortices. The quasiparticles need not be electr
which could well be strongly interacting in the microscop
theory, but are taken to be some effective description of
low-energy physics. For instance, motivated by the comp
ite fermion picture,13 we take the quasiparticles to be ferm
ons when describing the Laughlin plateaux@for which sxy
51/(2n11) in our units, withe2/h51#. On the other hand
vortices will be assumed instead to govern the low-ene
response of the Hall insulator.

More concretely, for those phases described by quasi
ticles, following Ref. 7, we use the following effective La
grangian, describing the low-energy/long-wavelength in
action of a collection ofbosonic charged quasiparticles
coupled to electromagnetic,Am , and statistical gauge fields
am , with statistical angleu:

Lu~j,a,A!52
p

2u
emlnam]lan1Lp~j,a1A!. ~1!

Here Lp(j,a1A) is the Lagrangian for the quasiparticle
wherejk is the position of thekth particle,

Lp5(
k

Fm

2
j̇k

mj̇km2qj̇k
m~a1A!m2V~j!Gd„x2jk~ t !…,

~2!

wherem is the quasiparticle mass,q is the charge, andV(j)
is a potential representing other quasiparticle interacti
with their environment. Equation~2! represents the first few
terms of a derivative expansion of the low-energy quasip
ticle Lagrangian.

For the present applications it is important to keep
mind that the electromagnetic field,Am , which appears in
this effective theory is itself a low-energy effective field.
does not, in particular, include the large background m
netic field B whose presence the quantum Hall effect
quires. ~Indeed, it cannot include such a large field, sin
motion within this field would involve energies of ordervc
5eB/m, which have been integrated out to obtain the lo
energy theory.! Am instead represents all of the weaker fiel
in the low-energy part of the problem, including, in partic
lar, those fields that are applied in order to describe the
tem’s electromagnetic response. The dependence of
energy quantities on the background fieldB is implicit in all
of the parameters of the effective theory, such as in the t
number of particles or vortices, the particle/vortex mas
and couplings, etc.

For those phases whose low-energy behavior is descr
by vortices, we instead use the general vortex action, wh
for our purposes has a very convenient representation
terms of the vortex positionsyk and a new gauge potentia
bm , which is a dual representation of the scalar field, wh
mediates the long-range interactions amongst vortices,9
15532
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L̃u~y,a,b,A!52
p

2u
emlnam]lan2emlnbm]l~an1An!

1Lv~y,b!. ~3!

HereLv(y,b) is the Lagrangian for the vortex motion,

Lv5(
k̃

F m̃

2
ẏk̃

m
ẏk̃m2q̃ẏk̃

m
bm2Ṽ~y!Gd„x2yk̃~ t !…, ~4!

with m̃ the vortex mass,q̃ the vortex charge~governing its
coupling to the fieldbm), andṼ(y) represents possible vor
tex interaction terms.

The central property, which we now assume of the qua
particle and vortex effective Lagrangians and which und
lies our subsequent conclusions, is thatLp(j,a) andLv(y,b)
have the same functional form when considered as funct
als of their respective arguments, (j,a) or (y,b). A sufficient
condition for this to be true—at least at the lowest orders
the derivative expansion, which suffice in the low-ener
limit—is that the interactions with the environment,V(j)
andV(y), be negligible.~Although sufficient, this condition
might not be absolutely necessary.!

It remains an intractable problem to solve even these
fective theories in any generality. However, ifLp(j,a) and
Lv(y,b) do have the same functional form it is possible
relate the electromagnetic response for a system of vort
to the response for a similar system of quasiparticles. I
this relationship that we now derive, without making the a
sumption of linear response in the fieldsAm .

III. THE EXPERIMENTS

Before diving into the implications of particle-vorte
similarity, it is worth describing the evidence for particle
vortex duality beyond linear response. Besides being an
teresting topic in its own right, a description of these expe
mental results provides a sharper statement of what it is
must be derived in the subsequent sections.

The central nonlinear result is summarized by Fig.
which is reproduced from Ref. 8. Each curve in this figu
represents a trace of the longitudinal~Ohmic! currentI x plot-
ted against the longitudinal voltageVx . The different curves
are taken for different values of the applied magnetic field
the magnetic field is varied across the transition between
sxy51 quantum Hall plateau and the Hall insulator. T
solid lines are all traces taken on one side of this transiti
while the dotted lines are taken on the other side.

What is remarkable about this figure is its symme
about reflection through the diagonal axisI x5Vx . Traces
taken on one side of the transition are very accurately
reflections of those taken on the other side of the transit
What is not shown in this figure, but is demonstrated
Ref. 8, is that the filling factorsn corresponding to the
mirror-image traces are spaced an equal distance awayDn
5un2ncu, from the critical filling factor.

The linear-response regime in these plots correspond
the straight segments near the origin, and within this reg
the reflected current/voltage curves have slopes that co
3-2
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DUALITY AND NON-LINEAR RESPONSE FOR QUANTUM . . . PHYSICAL REVIEW B65 155323
spond to resistivities that are related byr̃xx5rc
2/rxx , where

rc5rxx(nc)51 is the universal value of the critical Ohm
resistivity for this transition.

While rxx is varying as just described, what doesrxy do?
The experiments show thatrxy is a constant and so does n
vary at all through the transition.8

In Ref. 7 it was shown that if the particle and vorte
effective Lagrangians have the same functional form as
sumed above and if the quasiparticles are fermions~or re-
lated to fermions in a precise way!, then this imposes a re
markable constraint on the trajectory followed by a system
the conductivity plane as external parameters~like B) are
varied. The constraint is that the trajectory must comm
with a discrete groupG0(2), which may be defined by the
transformations→(as1b)/(2cs1d), where the integers
a,b,c, andd satisfy ad22bc51. Heres denotes the con
venient complex quantitys5sxy1 isxx .

This symmetry provides an excellent description of Fig
specialized to the linear-response regime.14 First, the symme-
try predicts the critical resistivity in transitions between p
teaux to be universal, and to be given byrc51 for transi-
tions to the Hall insulator from the Laughlin sequenc
Second, it also implies for these transitions thatrxy must be
constant throughout the transition~called the ‘‘semicircle
law’’ because these trajectories are semicircles when dr
in the s plane!. Finally, there is a symmetry generator th
maps each semicircle trajectory onto itself, but with e
points reversed, which corresponds precisely to parti
vortex interchange. As is shown in Ref. 14, this symme
element is precisely equivalent to the observed symmetr

For instance, for transitions between then51 plateau and
the Hall Insulator~which are along the semicircle centered
s5 1

2 , linking s51 and s50) this symmetry acts in the
following way:

s̃5
s21

2s21
. ~5!

FIG. 1. Longitudinal current vs voltage in quantum Hall sy
tems, taken for several magnetic fields on either side of the crit
point in the sxy51 to Hall insulator transition~reproduced from
Ref. 8!. The solid lines correspond to one side of the transition a
the dotted lines to the other side. Notice how the solid lines
reflections of the dotted lines about the diagonal lineI 5V, as would
be expected for particle-vortex interchange.
15532
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Once restricted to the semicircular trajectories in thes
plane—which correspond to curves having const
rxy—Eq. ~5! is precisely equivalent to the statementr̃xx
51/rxx . The analogous symmetry for other transitions
obtained from this by acting with the group element, whi
takes ~0,1! to the desired end points (p1 /q1 ,p2 /q2). For
example, for the 1/3→0 transition this gives the symmetr
generators̃5(3s21)/(10s23), which again correspond
to r̃xx51/rxx .

To describe the data beyond linear response we m
show that the curvesI x(Vx) get mapped into their inverses
Ṽx( Ĩ x), by the action of interchanging particles and vortice
This is most easily demonstrated by proving the equival
statement for the tangents to these curves, which is

r̃xx~ Ĩ x!5
dṼx

d Ĩ x

5
dIx

dVx
5

1

rxx~ I x!
, ~6!

when evaluated along a trajectory for whichrxy is constant.
Notice that the only difference between Eq.~6! and the cor-
responding result in linear response is the dependence oI x

and Ĩ x , which is allowed in Eq.~6! but not in linear
response.

IV. PARTICLE-VORTEX DUALITY
IN THE NONLINEAR REGIME

We now show how Eq.~6! follows from the similarity of
the quasiparticle and vortex effective Lagrangians. We do
in two steps. The first step, already given in Ref. 7, is
derive an expression relating the quasiparticle nonlinear e
tromagnetic response foru5p to the vortex nonlinear re-
sponse foru52p. ~Both u5p and u52p, or any other
odd multiple ofp, are appropriate for transitions from th
Laughlin plateaux since the quasiparticles in this case
fermions, such as in the composite fermion picture.! The
second step, proposed in this paper, is to derive an e
expression for how the electromagnetic response for vort
varies whenu is changed fromp to 2p.

A. Step I

We start with a system of fermionic quasiparticles d
scribed usingu52p in Eq. ~1!. This gives

Lu52p~j,a,A!51
1

2
emnlam]nal1Lkin~j!

1 j m~j!~a1A!m2V~j!. ~7!

On the other hand, the vortex system withu5p in Eq. ~3!
gives

L̃u5p~y,a,b,A!52
1

2
emnlam]nal2emnlbm]n~a1A!l

1L̃kin~y!1 j̃ m~y!bm2Ṽ~y!. ~8!
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d
e
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C. P. BURGESS AND BRIAN P. DOLAN PHYSICAL REVIEW B65 155323
These are used to generate the electromagnetic resp
functionsGu@A# andG̃u@A# by evaluating the following path
integrals:

e( i /\)Gu[A]5E @dam~x!#)
k

@djk
m~ t !#

3expF i

\E d3xLu~j,a,A!G ~9!

and

e( i /\)G̃u[A]5E @dam~x!#@dbm~x!#)
k̃

@dyk̃
m
~ t !#

3expF i

\E d3xL̃u~y,a,b,A!G . ~10!

Of course neitherGu52p@A# nor G̃u5p@A# can be calculated
exactly, but the followings argument implies a relation b
tween them that must always be true in the long-wavelen
limit so long as the quasiparticles and vortices interaction
low energy are similar~or negligible!.

Our goal for these two systems is to use the similarity
the Lagrangians to relate the results of performing the p
integrations. To see this relation first shiftbm→bm1Am in
Eq. ~10!, and then perform the Gaussian integral overam .
The resulting effective Lagrangian is

L̃u5p~y,b,A!51 1
2 emnlbm]nbl2 1

2 emnlAm]nAl1L̃kin~y!

1 j̃ m~y!~b1A!m2Ṽ~y!

5L̃u5p8 ~y,b,A!2 1
2 emnlAm]nAl , ~11!

where the second step definesL̃u8 .

The main point is thatL̃u5p8 has the same form as doe

Lu52p , to the extent that bothL̃kin(y) and Lkin(j) and
j̃ m(y) and j m(j) have the same functional form. This ensur
that G̃u5p@A# is related toGu52p@A# by

G̃u5p@A#5Gu52p@A#2
1

2E d3xemnlAm]nAl , ~12!

even though we cannot calculate either explicitly. Notice t
Eq. ~12! goes beyond linear response—there is no need
assume thatGu@A# or G̃u@A# is quadratic inA.

The relation between the nonlinear conductivities@such as
sxx(Vx)# of the particle and vortex systems is now obtain
by differentiating the response function to obtain the pol
ization tensor

Pu
mn52

d2Gu@A#

dAmdAn
. ~13!

For a conductor the Fourier-transformed quantityPu
mn(v,p)

vanishes linearly atv50 and the conductivity is defined b

sab
u ~A!52 i lim

v→0
@Pu

ab~v,0!/v#, ~14!
15532
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wherea,b5x,y. Notice that both of these definitions als
apply in the nonlinear regime, so long as Eq.~13! is not
evaluated at zero field:Am50.

For the dual system we see that Eq.~12! implies

P̃u5p
mn ~p!5Pu52p

mn ~p!1 i emlnpl , ~15!

and so the nonlinear complex conductivities are related b

s̃u5p5su52p11. ~16!

This is essentially the Landau-level addition transformat
of Kivelson, Lee, and Zhang,5 extended here to the nonlinea
regime. The nonlinear argument given here was first p
sented in Ref. 7.

B. Step II: An aside

We next examine the effect on the electromagnetic
sponse of a 2p shift of u without interchanging particles
with vortices ~or varying other external parameters!. Once
this is known, it may be combined with Eq.~16! to give the
effect of particle-vortex interchange without simultaneou
shifting u. What is different about this discussion is its de
vation beyond the regime of purely linear response.

Before deriving the result of a 2p shift in u we shall
pause to consider what it means. Indeed, one might rea
ably expect thatall physical quantities—and, in particula
the conductivities—should be strictly periodic with respe
to u→u12p. To see why this need not be so in the effecti
theory, we first review why it is true for the microscop
theory.

Within first-quantized theory the action describing t
coupling of the statistics field,am , to particles is strictly
quadratic. The path integral overam , is therefore, Gaussian
and is equivalent~up to an overall field-independent norma
ization! to evaluating the action at its stationary pointam

5am
c . Since this configuration has a vanishing field streng

f mn
c 50 ~away from the position of any of the particles

which it couples! it is locally pure gauge. The integra
ram

c dxmÞ0 about any curve that encloses particle sourc
however; so there is some physics inam

c and this physics
encodes the statistics phases that accrue whenever two
ticles exchange positions.15

If the particles involved all have hard cores and so c
never interpenetrate one another, then the particle posit
may be excised and the physics of the statistics field co
purely from topology. In this case the above picture gives
whole story,am purely encodes particle statistics, and
physical quantities are strictly periodic inu. This is the situ-
ation for the microscopic electrons, as described in the qu
tum Hall context in Ref. 9.

The picture changes if the source foram is distributed
continuously. Consider, for example, a uniform distributi
of ‘‘charge,’’ which gives rise to a uniform distribution o
statistical-field magnetic flux. In this case the statistics fi
is not pure gauge sincef mn

c Þ0, and its magnetic part is pro
portional to the source density. Consequently the physics
depend on thelocal values ofam . Sinceam couples toAm
3-4
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DUALITY AND NON-LINEAR RESPONSE FOR QUANTUM . . . PHYSICAL REVIEW B65 155323
only through the combination (a1A)m , particles see this
magnetic statistics field as an addition to the real magn
field B.

For continously distributed source distributions, sinceam
encodes more than statistics phases, there is no nee
physical quantities to be periodic underu→u12p. Such
aperiodicity might be expected to occur in phases of
theory for which quasiparticles or vortices have condense
form a nontrivial ground state.

For quantum Hall systems we are led to a picture v
much like the one that arises in Ref. 5. For the microsco
electrons the physics is strictly periodic under 2p shifts of
the statistics angleu. However, the system has a great ma
phases, and the effective theory built over the ground stat
any particular phase need not be invariant under these s
of the statistics angle. The periodicity of the full theory
seen once all of these phases are viewed together, s
changes tou take one phase into another. The change
phase can be understood qualitatively because changesu
cause changes toam

c , which may be compensated by chang
in Am , and, in particular, in the applied magnetic field. B
changing the applied magnetic field is one of the meth
used to move between different phases in the lab.

Thus, the underlying invariance with respect tou→u
12p emerges in the effective theory as a relation betw
the properties ofdifferent phases of the system, with th
physics of any individual phase not being simply period
We may legitimately ask what the effect of such a shift is
the electromagnetic response of the system.

C. Step II: The calculation

We now proceed with the calculation of the effects o
2p shift of u on the nonlinear response functionGu@A#. To
this end consider the generating functionWu@J# for the elec-
tromagnetic correlation functions:

expS i

\
Wu@J# D5E @dA#expS i

\
Gu@A#1

i

\E d3xAmJmD ,

~17!

whereGu@A# is defined by Eqs.~1! and~9!. To perform thea
integral, shiftAm→BmªAm1am , so that the statistics field
am only appears in the Chern-Simons term and through
current coupling*d3x(Bm2am)Jm. The am integral may
then be explicitly performed, since it is Gaussian. The re
is the following ~neglecting as usual overall factors!:

expS i

\
Wu@J# D5E @dB#expH i

\
S@B#1

i

\E d3xBmJm

2
i

\ S u

2p D E E d3xd3x8emnlJmS 1

]2D ]nJlJ ,

~18!

wheree( i /\)S[B]5*Pk@djk#exp@i/\ *d3xLp(j,B)#.
This makes theu dependence ofWu@J# explicit, and

shows that
15532
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Wu@J#5W0@J#2S u

2p D E E d3xd3x8emnlJmS 1

]2D ]nJl8 .

~19!

To make contact with the polarization tensorPu
mn we must

relateWu@J# to Gu@A#. To within a very good approximation
they are Legendre transforms of one another. That is, de
ing the Legendre transformLu@A# of Wu(J) by

Lu@A#5W@J#2E d3xAmJm ~20!

with Am5dWu /dJm, standard field-theoretic arguments im
ply that Lu is related toGu in the following way:

e( i /\)Lu[A]5E @dA8#expH i

\
FGu@A81A#1E Am8 Jm@A#dxG J ,

~21!

where Jm52dLu /dAm . It follows that Gu@A# and Lu are
equal to one another if theAm8 integral is performed semi
classically. Since the low-energy applied electromagne
fields used in linear response,Am , are very well described
semiclassically, we can equateLu andGu to an equally good
approximation.

It then follows that the derivativeWmn
u 5d2Wu /dJmdJn is

related to Pu
mn by Pu

mnWnl
u 5Ll

m , where Lmn5hmn

2pmpn /p2. We use here~for convenience of notation only! a
relativistic notation withhmn5diag~21,1,1,1!.7 For brevity
we write this relation asWmn

u 5(Pu
mn)21.

Combining the above results, in momentum space
have

~Pu
mn!21'~P0

mn!211S u

p D \

Ap2
J mn, ~22!

whereJmn5 i emlnpl/Ap2.
For u52p this reproduces the results of Ref. 7 for th

flux attachment transformation for the conductivities,

2
1

s̃
52

1

s
12, ~23!

wheres̃ is obtained fromPu
mn as in Eq.~14!. This is the flux

attachment transformation of Ref. 5, extended again to
nonlinear regime. The only difference between Eq.~23! and
the linear-regime results of Ref. 7 is that heres can be a
function of the external electromagnetic effective field.

D. Particle-vortex interchange

Our goal is to derive Eq.~6! as the effect of particle-
vortex interchange~at fixedu), and so we must combine th
results of Eqs.~16! and ~23!.

The simplest way to do so is to recognize the gro
G0(2), which is obtained through repeated applications
Eqs.~16! and~23!.5,6,16A familiar form for this group struc-
ture is most easily seen by writing it in terms of the tw
operations
3-5
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T:s→s11, S:s→2
1

s
, ~24!

which satisfy (ST)351. In terms of these operations th
group of interest@G0(2)# is generated by

T:s→s11, ST2S:s→ s

122s
. ~25!

The operationS is only introduced here for convenienc
It is not a symmetry of the quantum Hall effect, since
cannot be obtained by repeated applications of the b
transformations~16! and ~23!. (S represents interchange o
the conductivity and the resistivity. Although it is not a sym
metry of the quantum Hall effect, for which the charge c
riers are fermions, it should be a symmetry for tw
dimensional systems in which the charge carriers
bosonic.7!

Combining the two operationsT andST2S we see that the
effect of interchanging fermionic quasiparticles and vortic
is given by

TST2S~s!5
s21

2s21
, ~26!

which is precisely Eq.~5!, although now generalized to th
nonlinear regime by including field-dependents.

As was discussed earlier, this provides a successful
scription of the nonlinear duality of the transition betwe
the sxy51 plateau and the Hall insulator. Since the gro
structure is the same as in the linear-response regime
may now repeat the linear-response arguments14 to immedi-
ately understand the analogous result for particle-vortex
terchange in the transitions to the Hall insulator from t
Laughlin sequence,sxy51/(2n11), despite the fact that th
quasiparticles in this instance enjoy fractional statistics,
so are no longer fermions.

To understand then5 1
3 →0 transition in the form pre-

sented here, we obtain it as a symmetry transformation of
n51→0 transition just described. The modular symme
~25! dictates that the 1→0 transition follows a semicircle in
the complex s plane, with the critical point atsc5(1
1 i )/2,14 and we have found the quasiparticle-vortex dua
to be implemented by the transformation, Eq.~26!.

This transformation interchanges the end points 0↔1 and
leaves the critical point,sc , fixed. To study other transitions
such as then5 1

3 →0 transition examined experimentally, w
must find the group element that maps this basic semici
of radius1

2 , arching betweens51 ands50, onto the semi-
circle of radius 1

6 , arching betweens5 1
3 and s50. Once

found, this group element can be used to transform Eq.~5!
ys

o
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-

e

s

e-

we

-

d

e

le

into the transformation appropriate for particle-vortex inte
change in the1

3 →0 transition. The result of this exercise
the transformations→(3s21)/(10s23). As is easily
checked, this interchangess5 1

3 and s50 and maps the
critical point sc5(31 i )/10 to itself.

Once mapped to the resistivity plane, the transition
again along the line with constantrxy53, along which the
particle-vortex interchange becomesrxx→1/rxx . This shows
that the experimental observations of Ref. 8 are a con
quence of the particle-vortex interchange, even deep wi
the nonlinear regime. Just as for linear response,7 this effec-
tive field theory analysis sheds light on why the duality
experimentally successful so far from the critical points,
which the analysis of Ref. 5 was believed to be restricted

In conclusion we have shown that the law of correspo
ing states is applicable in the nonlinear regime—well outs
of the linear regime of its original derivation. In particula
the pseudoparticle-vortex duality, which was invoked to e
plain the experiments in Ref. 8, can be extended into
nonlinear regime, as is necessary to explain these experim
tal observations.

Our arguments assume the long-wavelength, low-ene
limit and are applicable to any system in which the intera
tions between the pseudoparticles are weak, as are the i
actions between the vortices, so that there is a symm
under interchange of pseudoparticles and vortices. More g
erally one could allow stronger interactions between
pseudoparticles, provided the interaction potential betw
vortices is of the same form, but this might be harder
realize in practice.

For fermionic pseudoparticles the resulting symme
group, isG0(2) and this group therefore, seems to be the o
relevant to the quantum Hall effect~other candidates hav
also been considered,17 which may be the relevant symme
tries when electron spins are not well separated by Zee
splitting.18! It was argued in Ref. 7 that a different group
relevant when the pseudoparticles are bosonic—the gr
given by the matrixg5(cd

ab) with a, d both even andb, c both
odd or vice versa. This group is often denoted byGu(2) in
the mathematical literature and is generated bySandT2. The
arguments presented here are, of course, just as applicab
such bosonic systems.
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F.C.A.R. ~Québec!, the Ambrose Monell Foundation, an
Enterprise Ireland, Basic Research, Grant No. SC/1998/7
to

.

*Email address: cliff@physics.mcgill.ca
†Email address: bdolan@thphys.may.ie
1H.P. Wei, D.C. Tsui, M.A. Paalanen, and A.M.M. Pruisken, Ph

Rev. Lett.61, 1294 ~1988!; L. Engel et al., Surf. Sci.229, 13
~1990!.

2The experimental situation more recently has become m
.

re

murky, with new evidence for3 and against4 scaling behavior.
We predict scaling and universality to occur in any system
which the particle-vortex duality we propose applies.

3P.T. Coleridge, Phys. Rev. B60, 4493 ~1999!; P.T. Coleridge,
Solid State Commun.112, 241 ~1999!.

4D. Shahar, M. Hilke, C.C. Li, D.C. Tsui, S.L. Sondhi, and M
3-6



s.

hy

is

DUALITY AND NON-LINEAR RESPONSE FOR QUANTUM . . . PHYSICAL REVIEW B65 155323
Razeghi, Solid State Commun.107, 19 ~1998!.
5D.-H. Lee, S. Kivelson, and S.-C. Zhang, Phys. Rev. Lett.68,

2386 ~1992!; S. Kivelson, D.-H. Lee, and S.-C. Zhang, Phy
Rev. B46, 2223~1992!.

6C.A. Lütken and G.G. Ross, Phys. Rev. B45, 11 837~1992!; 48,
2500 ~1993!.

7C.P. Burgess and B.P. Dolan, Phys. Rev. B63, 155309~2001!.
8D. Shahar, D.C. Tsui, and M. Shayegan, Science274, 589~1996!.
9For a review with references see, S.-C. Zhang, Int. J. Mod. P

B 6, 25 ~1992!.
10S. Weinberg, Prog. Theor. Phys. Suppl.86, 43 ~1986!.
11J. Polchinski, hep-th/9210046~unpublished!.
12R. Shankar, Rev. Mod. Phys.66, 129 ~1994!.
15532
s.

13For a review of the composite fermion picture see, e.g.,Compos-
ite Fermions: A Unified View of the Quantum Hall Regime, ed-
ited by O. Heinonen~World Scientific, Singapore, 1998!.

14C.P. Burgess, Rim Dib, and B.P. Dolan, Phys. Rev. B62, 15 359
~2000!.

15D. Arovas, J.R. Schrieffer, and F. Wilczek, Phys. Rev. Lett.53,
722 ~1984!.

16C.A. Lütken, Nucl. Phys. B396, 670 ~1993!.
17Y. Georgelin and J.-C. Wallet, Phys. Lett. A224, 303 ~1997!; Y.

Georgelin, T. Masson, and J.-C. Wallet, J. Phys. A30, 5065
~1997!.

18When the spins are not well split, it is a smaller group that
relevant, B.P. Dolan, Phys. Rev. B62, 10 278~2000!.
3-7


