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Duality and nonlinear response for quantum Hall systems
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We derive the implications of particle-vortex duality for the electromagnetic response of quantum Hall
systems beyond the linear-response regime. This provides a theoretical explanation of the remarkable duality,
which has been observed in the nonlinear regime for the electromagnetic response of quantum Hall systems.
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[. INTRODUCTION point of the transition between Laughlin plateaux and the
Hall insulator®

There is now a good understanding of the physical pro- We begin, in the following section, by reviewing the main
cesses underlying the quantum Hall effect, at least at the Hafeatures of the description of the low-energy electromagnetic
plateaux where the Laughlin wave functions and the Jaifiésponse given in Ref. 7. This is followed, in Sec. Ill, by the
hierarchy give accurate and insightful descriptions of the obextension of this description beyond the regime of linear
served phenomena. However, the transition between pld€SPONSE.
teaux, as external quantitiés.g., magnetic fieldare varied,
is less well understood theoretically, despite there now being Il. THE EFFECTIVE THEORY
a wealth of experimental data on these crossovers.

A milestone in this understanding was the observation that Our starting point is the recognition that the energies as-
many features of the critical points of these transitions weréociated with electromagnetic response experiments are
“superuniversal® (see, however, Ref)2and the subsequent much lower than the typical microscopic electronic energies.
interpretation of this in terms of an underlying symmétfy. For instance, the activation energy as measured by the tem-
Unfortunately, the resulting understanding of this symmetryperature dependence of the Ohmic resistivity is of ofer
in terms of microscopic physigs-the law of corresponding ~0.1 K~10 ueV, as compared to the underlying Coulomb
states—suffers from two related drawbacks. First, it relies orand cyclotron energies which are of ord&,~100 K
what are ultimately uncontrolledmean-field approxima- ~10meV.
tions when making contact with quantum Hall observables. All experiments are, in principle, described by a micro-
Second, the derivation suggests that the domain of validity ogcopic Hamiltonian describing the conduction electrons and
the symmetries is more restricted than what appears in exheir interactions, but accurate calculations with this Hamil-
periments, being apparently restricted to the domain of lineatonian are difficult to perform. Although it is not strictly
response and to the immediate vicinity of the critical pointsnecessary for our later discussion, it is useful to imagine this
of the transitions between plateaux. effective theory to be written in the manner of Kivelson, Lee,

In an earlier papérwe argued that many of the conse- and Zhang, as a system of interacting bosons described by a
quences of Kivelson, Lee, and Zhang's analysis could bédield ® coupled to a statistics field, with an odd statistics
understood away from the critical points and without makingparameterd=(2n+1)r. (As is well known, such a system
the mean-field approximation. In a nutshell, this was done bys exactly equivalent in two dimensions to interacting
deriving them from an effective low-energy theory consistingfermions?)
of electromagnetically interacting quasiparticles or vortices. Due to the large hierarch¥,<E., one can imagine in-

In two space dimensions the interactions of particles andegrating out the largely irrelevant high-energy dynamics to
vortices are described by similar Lagrangians, and it is thelerive an effective Lagrangian with which to describe the
symmetries that follow from this similarity, which underlie low-energy experiments. Although the direct, first-principles
the success of the law of corresponding states. These sucalculation of the low-energy effective theory is usually as
cesses may, therefore, be seen to follow as predictions fdfifficult as solving the full microscopic model, progress may
any system for which the low-energy electromagnetic re-be made inasmuch as the low-energy degrees of freedom are
sponse can be shown to be well described by the effectivenore weakly interacting than those at higher energies. In this
theory we propose. case it can be possible to extract precise predictions within

Here we extend the discussion of Ref. 7 to applicationsontrollable approximations, even when the same cannot be
that are beyond the approximation of linear response. In padone with the full underlying microphysical systéfi'?
ticular, we shall derive duality relations for the electromag-When this is possible, direct appeal to the microscopic
netic response, which apply even in the nonlinear regime. Itheory is only required to establish the validity of the as-
so doing we provide the theoretical explanation of the resumed low-energy degrees of freedom, and it need not play a
markable symmetry under interchange of current dodgi-  crucial quantitative role in the comparison with experiment.
tudina) voltage, which has been measured near the critical Our key assumption here, and in Ref. 7, is that these

0163-1829/2002/68.5)/1553237)/$20.00 65 155323-1 ©2002 The American Physical Society



C. P. BURGESS AND BRIAN P. DOLAN PHYSICAL REVIEW B5 155323

techniques may be applied to quantum Hall systems, where _ T
we will assume that the low-energy dynamics can be de- Lq(y,a,b,A)=— 2—06"”%5)\%—G“Mbﬂf%\(aﬁAy)
scribed by a system of weakly interacting charged quasipar-
ticles or vortices. The quasiparticles need not be electrons, +L,(y,b). (3)
which could well be strongly interacting in the microscopic ) ) )
theory, but are taken to be some effective description of th&lere £,(y,b) is the Lagrangian for the vortex motion,
low-energy physics. For instance, motivated by the compos-
ite fermion picture'® we take the quasiparticles to be fermi-
ons when describing the Laughlin platealdar which o,
=1/(2n+1) in our units, withe?/h=1]. On the other hand _ _
vortices will be assumed instead to govern the low-energyith m the vortex massg the vortex chargégoverning its
response of the Hall insulator. coupling to the fieldb,), andV(y) represents possible vor-
More concretely, for those phases described by quasipagey interaction terms.
tiCIeS, fOllOWing Ref. 7, we use the fO”OWing effective La- The central property, which we now assume of the quasi_
grangian, describing the low-energy/long-wavelength interparticle and vortex effective Lagrangians and which under-
action of a collection ofbosonic charged quasiparticles, |ieg our subsequent conclusions, is tg(¢,a) and.,(y,b)
coupled to electromagnetié,, , and statistical gauge fields, have the same functional form when considered as function-
a, , with statistical angle: als of their respective arguments, 4) or (y,b). A sufficient
condition for this to be true—at least at the lowest orders of
- the derivative expansion, which suffice in the low-energy
— —e"Ma,da,+ Ly(€,a+A). (1) limit—is that the interactions with the environment(¢)
20 andV(y), be negligible.(Although sufficient, this condition
might not be absolutely necessary.

Here £,(¢,a+A) is the Lagrangian for the quasiparticles, It remains an intractable problem to solve even these ef-
where§, is the position of theth particle, fective theories in any generality. However,4f,(¢,a) and
L,(y,b) do have the same functional form it is possible to

relate the electromagnetic response for a system of vortices
m. . ) to the response for a similar system of quasiparticles. It is
ﬁf% §§f§kM—Q§’kL(a+ A) = V(&) [6(x—&(1)), this relationship that we now derive, without making the as-
2 sumption of linear response in the fields .

m. . ~- ~
£,=2 | VYR~ ayED,~V(y) | S-yr(1), (@)
k

Lﬁ(%!aiA) =

. . . . lll. THE EXPERIMENTS
wherem is the quasiparticle masg,is the charge, an¥(¢)

is a potential representing other quasiparticle interactions Before diving into the implications of particle-vortex
with their environment. Equatio(®) represents the first few similarity, it is worth describing the evidence for particle-
terms of a derivative expansion of the low-energy quasiparvortex duality beyond linear response. Besides being an in-
ticle Lagrangian. teresting topic in its own right, a description of these experi-
For the present applications it is important to keep inmental results provides a sharper statement of what it is that
mind that the electromagnetic fieldy,, which appears in must be derived in the subsequent sections.
this effective theory is itself a low-energy effective field. It ~ The central nonlinear result is summarized by Fig. 1,
does not, in particular, include the large background magwhich is reproduced from Ref. 8. Each curve in this figure
netic field B whose presence the quantum Hall effect re-represents a trace of the longitudi@hmic) currentl, plot-
quires. (Indeed, it cannot include such a large field, sinceted against the longitudinal voltagé, . The different curves
motion within this field would involve energies of order,  are taken for different values of the applied magnetic field, as
=eB/m, which have been integrated out to obtain the low-the magnetic field is varied across the transition between the
energy theory.A , instead represents all of the weaker fieldso,,=1 quantum Hall plateau and the Hall insulator. The
in the low-energy part of the problem, including, in particu- solid lines are all traces taken on one side of this transition,
lar, those fields that are applied in order to describe the syswhile the dotted lines are taken on the other side.
tem’s electromagnetic response. The dependence of low- What is remarkable about this figure is its symmetry
energy quantities on the background fi@ds implicit in all about reflection through the diagonal atis=V,. Traces
of the parameters of the effective theory, such as in the totdbken on one side of the transition are very accurately the
number of particles or vortices, the particle/vortex masseseflections of those taken on the other side of the transition.
and couplings, etc. What is not shown in this figure, but is demonstrated in
For those phases whose low-energy behavior is describeRRef. 8, is that the filling factorss corresponding to the
by vortices, we instead use the general vortex action, whicimirror-image traces are spaced an equal distance atay,
for our purposes has a very convenient representation ir|v—v¢|, from the critical filling factor.
terms of the vortex positiong, and a new gauge potential  The linear-response regime in these plots corresponds to
b, , which is a dual representation of the scalar field, whichthe straight segments near the origin, and within this regime
mediates the long-range interactions amongst vorfices, the reflected current/voltage curves have slopes that corre-
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1E ' ' VAL A Once restricted to the semicircular trajectories in ihe
Pl plane—which correspond to curves having constant
pxy—Ed. (5) is precisely equivalent to the statememt,
=1/p,x. The analogous symmetry for other transitions is
obtained from this by acting with the group element, which
takes (0,1) to the desired end pointsp{/q,p»/q,). For
example, for the 1/3:0 transition this gives the symmetry

generatoro= (30— 1)/(10s—3), which again corresponds

1(45.247 nA)
<o

M124U2B

---91T to ;xx: 1/pxx.- )
SN 21 mK To describe the data beyond linear response we must
e S A ! [ show that the curvek(V,) get mapped into their inverses,
-0 05 00 05 10 V,(T,), by the action of interchanging particles and vortices.
V_ (1.043 mV/o) This is most easily demonstrated by proving the equivalent

statement for the tangents to these curves, which is
FIG. 1. Longitudinal current vs voltage in quantum Hall sys-

tems, taken for several magnetic fields on either side of the critical o dY/X dly 1
point in the o, =1 to Hall insulator transitior(reproduced from Pux(ly)=—== W: PR (6)
Ref. 8. The solid lines correspond to one side of the transition and diy x  Pxdlx)

the dotted lines to the other side. Notice how the solid lines are ) o
reflections of the dotted lines about the diagonal lire/, as would Wheﬁ evaluated a|0ng_ a trajectory for whigly, is constant.
be expected for particle-vortex interchange. Notice that the only difference between E) and the cor-
S _ ) responding result in linear response is the dependendg on
spond to resistivities that are related by =pc/pyx, Where  anq 7 - which is allowed in Eq.(6) but not in linear
pe=pxx(vc) =1 is the universal value of the critical Ohmic response.
resistivity for this transition.
While p,, is varying as just described, what dqgg do?
The experiments show that, is a constant and so does not IV. PARTICLE-VORTEX DUALITY
vary at all through the transitich. IN THE NONLINEAR REGIME
In Ref. 7 it was shown that if the particle and vortex oo
effective Lagrangians have the same functional form as as- we now show how Eq(6) foIIow_s from the sllmllanty of
sumed above and if the quasiparticles are fermimsre- f[he quasiparticle anq vortex effective La}granglans. We QO o)
lated to fermions in a precise waythen this imposes a re- N WO steps. The first step, already given in Ref. 7, is to
markable constraint on the trajectory followed by a system irflerive an expression relating the quasiparticle nonllnear elec-
the conductivity plane as external parametdilee B) are tromagnetic response fa#= 7 to the vortex nonlinear re-
varied. The constraint is that the trajectory must commutgPonse forg=—ar. (Both 6= and §=—, or any other
with a discrete groufi’y(2), which may be defined by the odd mylnple of r, are approprlate.for transitions from the
transformationo— (ag +b)/(2co+d), where the integers Laughlln plateaux since the quaS|_part|cIe§ in thls case are
a,b,c, andd satisfyad—2bc=1. Hereo denotes the con- fermions, such as in the composite fermion picturEhe
venient complex quantity= .+ i o second step, proposed in this paper, is to derive an exact
X XX . . .
This symmetry provides an yexcellent description of Fig. 1expression for how the electromagnetic response for vortices

specialized to the linear-response regithBirst, the symme-  varies whend is changed fromr to — .
try predicts the critical resistivity in transitions between pla-

teaux to be universal, and to be given by=1 for transi- A. Step |

tions to the Hall insulator from the Laughlin sequence.
Second, it also implies for these transitions that must be
constant throughout the transitidicalled the “semicircle
law” because these trajectories are semicircles when drawn

We start with a system of fermionic quasiparticles de-
scribed usingd= — 7 in Eq. (1). This gives

in the o plang. Finally, there is a symmetry generator that Lo (&a,A)=+ Eeyma 3,8, + Ly €)

maps each semicircle trajectory onto itself, but with end fmmms 2 IR n

points reversed, which corresponds precisely to particle- . _

vortex interchange. As is shown in Ref. 14, this symmetry A€ @tA), = V(L) @)

element is precisely equivalent to the observed symmetry.

For instance, for transitions between e 1 plateau and
the Hall Insulator(which are along the semicircle centered a
o=1%, linking 0=1 and ¢=0) this symmetry acts in the
following way:

On the other hand, the vortex system witkr 7 in Eq. (3)
tgives

~ 1
Ly—-(y,a,b,A)=— 5 e*™a,d,a,—e*"b,d,(a+A),
o—1

201" ® + Tain(y) +T4(y)b, = V(y). ®)

o=
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These are used to generate the electromagnetic responskere «,3=Xx,y. Notice that both of these definitions also

functionsI" [ A] andT",[A] by evaluating the following path apply in the nonlinear regime, so long as E(3) is not
integrals: evaluated at zero fieldA ,=0.

For the dual system we see that Etj2) implies

e(”h)r"wzf [da, (0111 [dg)] fier (p)=TI4"__(p)+ievp,, (15)

and so the nonlinear complex conductivities are related by

9

Xex;{%J’ d3xL,(&,a,A)

0'(9=ﬂ.:0'9=,ﬂ.+ 1. (16)
and

This is essentially the Landau-level addition transformation
(i1R)T lA] — “ of Kivelson, Lee, and Zhanﬁextended here to the nonlinear
e f[dau(x)][dbﬂ(x)]ﬂ [dy, (D] regime. The nonlinear argument given here was first pre-
sented in Ref. 7.

(10

xexr{ﬁf d3xZ,(y,a,b,A)|. .
B. Step Il: An aside
Of course neitheF ,__ . [A] norT',__[A] can be calculated We next examine the effect on the electromagnetic re-
exactly, but the followings argument implies a relation be-sponse of a z shift of ¢ without interchanging particles
tween them that must always be true in the long-wavelengtWith vortices (or varying other external parameter©nce
limit so long as the quasiparticles and vortices interactions athis is known, it may be combined with E(L6) to give the
low energy are similator negligible. effect of particle-vortex interchange without simultaneously
Our goal for these two systems is to use the similarity ofshifting 6. What is different about this discussion is its deri-
the Lagrangians to relate the results of performing the patlvation beyond the regime of purely linear response.

integrations. To see this relation first shiff, —b,+A , in Before deriving the result of a2 shift in § we shall
Eq. (10), and then perform the Gaussian integral oagr. pause to consider what it means. Indeed, one might reason-
The resulting effective Lagrangian is ably expect thagll physical quantities—and, in particular,
the conductivities—should be strictly periodic with respect
Lo-o(y,b,A)=+3€“"b,3,b,— 3" A,3,A\+ Liin(¥) to 6— 6+ 27. To see why this need not be so in the effective
_ _ theory, we first review why it is true for the microscopic
+j*(y)(b+A),—V(y) theory.
- Within first-quantized theory the action describing the
=Ly ,(y,b,A)=3"™A,L0,A,, (1) coupling of the statistics fielda,, to particles is strictly

h h d defing quadratic. The path integral ovey,, is therefore, Gaussian
where the .secoh §tep f,' - and is equivalentup to an overall field-independent normal-
The main point is thai,_ . has the same form as does ization) to evaluating the action at its stationary poa

E(,,_W, to the extent that bottl,,(y) and Ly(¢) and —a . Since this configuration has a vanishing field strength,
T*(y) andj“(&) have the same functional form. This ensuresf,w_O (away from the position of any of the particles to
thatT ,_ [A] is related tol'y_ __[A] by which it couple$ it is locally pure gauge. The integral

gﬁa;dx“aﬁo about any curve that encloses particle sources,
~ N however; so there is some physics aﬁ and this physics
Do nl Al=Ty-—[A]- Ef d*xe*"*A,d,Ax, (12 encodes the statistics phases that accrue whenever two par-
ticles exchange positiorts
even though we cannot calculate either explicitly. Notice that  |f the particles involved all have hard cores and so can
Eq. (12) goes beyond linear response—there is no need t@ever interpenetrate one another, then the particle positions
assume thaF ,[A] or T',[A] is quadratic inA. may be excised and the physics of the statistics field comes
The relation between the nonlinear conductivifissch as  purely from topology. In this case the above picture gives the
aw(V,)] of the particle and vortex systems is now obtainedwhole story,a, purely encodes particle statistics, and all
by differentiating the response function to obtain the polarphysical quantities are strictly periodic & This is the situ-

ization tensor ation for the microscopic electrons, as described in the quan-
tum Hall context in Ref. 9.
w 0T [A] 13 The picture changes if the source fay, is distributed
o SA, A, (13 continuously. Consider, for example, a uniform distribution

. ) of “charge,” which gives rise to a uniform distribution of
For a conductor the Fourier-transformed quantity’(»,p)  statistical-field magnetic flux. In this case the statistics field
vanishes ||near|y atr=0 and the CondUCt|V|ty is defined by is not pure gauge Sinﬁw;éol and its magnetic part is pro-
0 i B portional to the source density. Consequently the physics can
Top(A)= —1 IM[T5%(w,0)/w], (14 gepend on thdocal values ofa, . Sincea, couples toA,
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only through the combinationa(+A),, particles see this 0 s N 1 ’
magnetic statistics field as an addition to the real magnetic Wo[J]=WolJ]—|5— f j d*xd>x" €™, =7 | 9,5 -
field B. (19

For continously distributed source distributions, simce
encodes more than statistics phases, there is no need fo60 make contact with the polarization tendadf,” we must
physical quantities to be periodic undér—6+27. Such relateW,[J] to I' [ A]. To within a very good approximation
aperiodicity might be expected to occur in phases of thahey are Legendre transforms of one another. That is, defin-

theory for which quasiparticles or vortices have condensed ting the Legendre transfor,[ A] of W,(J) by
form a nontrivial ground state.
For quantum Hall systems we are led to a picture very
electrons the physics is strictly periodic undet 2hifts of ) _ u ) . .
the statistics anglé. However, the system has a great manyVith A,=0W,/5J*, standard field-theoretic arguments im-
phases, and the effective theory built over the ground state &Y thatL is related tol', in the following way:
of the statistics angle. The periodicity of the full theory is e(i/h)Lg[A]:f [dA']eXp{l—{Fﬁ[Aq’A]"'J ALJM[A]dX ]
seen once all of these phases are viewed together, since h a
changes tof take one phase into another. The change of (21)
cause changes &f, , which may be compensated by changesgqya) to one another if tha, integral is performed semi-
in A, and, in particular, in the applied magnetic field. But c|5ssically. Since the low-energy applied electromagnetic
changing the applied magnetic field is one of the methodsig|gs used in linear responsd,,, are very well described
Thus, the underlying invariance with respect e~ 0 approximation.

+2m emerges in the effective theory as a relation between |; ihan follows that the derivativiv? = 52W, 1 534537 is
the properties ofdifferent phases of the system, with the v v -

prop P Y related to II4” by II4"W{, =A%, where A,,=7,,
We may legitimately ask what the effect of such a shift is ON L lativistic notation withy, =diag~1,1,1,1." For brevity
the electromagnetic response of the system. . ) . &Y -1

we write this relation a®V,,, = (IT5") "~
Combining the above results, in momentum space we

much like the one that arises in Ref. 5. For the microscopic L(’[A]:W[‘]]_f dsXAﬂ‘]M (20)

any particular phase need not be invariant under these shifts

phase can be understood qualitatively because changes inyhere J#= — 8Lyl SA,, . It follows thatT'JA] and L, are

used to move between different phases in the lab. semiclassically, we can equdtg andT", to an equally good

physics of any individual phase not being simply periOdiC'—pMpylpz. We use heréfor convenience of notation onla
C. Step Il: The calculation have

We now proceed with the calculation of the effects of a

' i i 0\
277 shift of ¢ on the nonllnear response functibp[ A]. To (T27) T (T L | = | 7w, 22)
this end consider the generating functify[ J] for the elec- T \/52
tromagnetic correlation functions:
where 7, = i€, ,p" \p>.
i i i For =2 this reproduces the results of Ref. 7 for the
ex;{gwa[\]]) =f [dA]ex;{#“g[A]Jr ZJ d3xA#J“), flux attachment transformation for the conductivities,
1
17 1 1
. . —=z=——+2, (23
wherel' )[A] is defined by Eqs(1) and(9). To perform thea ps o

integral, shiftA,—B,:=A,+a,, so that the statistics field

a, only appears in the Chern-Simons term and through thevhereo is obtained fron1%” as in Eq.(14). This is the flux
current couplingfd3x(B,L—aM)J“. The a, integral may attachment transformation of Ref. 5, extended again to the
then be explicitly performed, since it is Gaussian. The resulhonlinear regime. The only difference between E28) and

is the following (neglecting as usual overall factgrs the linear-regime results of Ref. 7 is that herecan be a
function of the external electromagnetic effective field.
i i i
p— = — — 3
ex% 7 WH[J]) f [dB]eXp{ 7 SIBl+ ﬁf d°xB,,J* D. Particle-vortex interchange

il 1 Our goal is to derive Eq(6) as the effect of particle-
- ﬁ(z_) J f d3xd3x’e"““\lﬂ<7) aVJA}, vortex interchangéat fixed 8), and so we must combine the
m J results of Eqs(16) and(23).

(18) The simplest way to do so is to recognize the group
I'o(2), which is obtained through repeated applications of
wheree"MSIBl= [TI,[d¢,Jexp[i/f [d*XL,(£,B)]. Eqgs.(16) and (23).>%1®A familiar form for this group struc-
This makes thef dependence ofV,[J] explicit, and ture is most easily seen by writing it in terms of the two
shows that operations
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1 into the transformation appropriate for particle-vortex inter-
Tio—o+1l, So—- pt (24)  change in thet —0 transition. The result of this exercise is
the transformationo— (30 —1)/(100—3). As is easily
which satisfy 8T)3=1. In terms of these operations the checked, this interchanges=3 and =0 and maps the
group of interesfI'¢(2)] is generated by critical point o.=(3+1i)/10 to itself.

Once mapped to the resistivity plane, the transition is
again along the line with constapt,=3, along which the
particle-vortex interchange becomgs— 1/pyy . This shows
that the experimental observations of Ref. 8 are a conse-

The operatiorSis only introduced here for convenience. quence of the particle-vortex interchange, even deep within
It is not a symmetry of the quantum Hall effect, since it the nonlinear regime. Just as for linear respontes effec-
cannot be obtained by repeated applications of the basigve field theory analysis sheds light on why the duality is
transformationg16) and (23). (S represents interchange of experimentally successful so far from the critical points, to
the conductivity and the resistivity. Although it is not a sym- hich the analysis of Ref. 5 was believed to be restricted.
metry of the quantum Hall effect, for which the charge car- |n conclusion we have shown that the law of correspond-
riers are fermions, it should be a symmetry for two-ing states is applicable in the nonlinear regime—well outside
d|men§|$nal systems in which the charge carriers aref the linear regime of its original derivation. In particular
bosonic?) the pseudoparticle-vortex duality, which was invoked to ex-

Combining the two operationBandST°S we see thatthe plain the experiments in Ref. 8, can be extended into the
effect of interchanging fermionic quasiparticles and vorticeshonlinear regime, as is necessary to explain these experimen-
is given by tal observations.

Our arguments assume the long-wavelength, low-energy
TSTS(0)= L, (26) Iimit and are applicable to any system in which the interec—
201 tions between the pseudoparticles are weak, as are the inter-

which is precisely Eq(5), although now generalized to the actione between the vortices, so that there _is a symmetry
nonlinear regime by including field-dependent under interchange of pseudoparticles and vortices. More gen-

As was discussed earlier, this provides a successful dé&rlly one could allow stronger interactions between the
scription of the nonlinear duality of the transition betweenPSeudoparticles, provided the interaction potential between
the o,=1 plateau and the Hall insulator. Since the groupvortlces is of the same form, but this might be harder to

structure is the same as in the linear-response regime, wW&2lize in practice.

may now repeat the linear-response argunténesimmedi- For .fermionic pseudoparticles the resulting symmetry
ately understand the analogous result for particle-vortex in9r0UP iSI'o(2) and this group therefore, seems to be the one
terchange in the transitions to the Hall insulator from theélevant to the .quagélum 'HaII effecother candidates have
Laughlin sequencer,, = 1/(2n+ 1), despite the fact that the also been considered,which may be the relevant symme-

quasiparticles in this instance enjoy fractional statistics, andf!€S When electron spins are not well separated by Zeeman
so are no longer fermions. splitting 8) It was argued in Ref. 7 that a different group is

To understand the/=%—0 transition in the form pre- relevant when the pseudoparticles are bosonic—the group
]

sented here, we obtain it as a symmetry transformation of th@iVen by the matrixy = (?3) with &, d both even and, ¢ both
»=1-0 transition just described. The modular symmetry©dd or vice versa. This group is often denotedIbg,(ZZ) in

(25) dictates that the 1-0 transition follows a semicircle in  the mathematical literature and is generatedslayndT*. The

the complexo plane, with the critical point air,=(1 arguments presented here are, of course, just as applicable to
+i)/2.%% and we have found the quasiparticle-vortex dualitySUch bosonic systems.

to be implemented by the transformation, E26).

This transformation interchanges the end pointsDand
leaves the critical pointy., fixed. To study other transitions, We thank A. MacDonald and J. Maldacena for helpful
such as thes=3—0 transition examined experimentally, we discussions. C.P.B. is grateful to Aspen Centre for Physics
must find the group element that maps this basic semicirclevhere part of this work was carried out. Our research has
of radius3, arching betweer=1 ando=0, onto the semi- been assisted by financial support from N.S.E.RGanad3
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