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REVERSIBILITY IN THE DIFFEOMORPHISM GROUP OF THE
REAL LINE

ANTHONY G. O’FARRELL AND IAN SHORT

Abstract. An element of a group is said to be reversible if it is conjugate to its
inverse. We characterise the reversible elements in the group of diffeomorphisms of
the real line, and in the subgroup of order preserving diffeomorphisms.

1. Introduction

An element of a group is reversible if it is conjugate to its inverse. We say that
such an element is reversed by its conjugator. A diffeomorphism of the real line R is
an infinitely differentiable homeomorphism of R whose derivative never vanishes. We
consider the group Diffeo(R) of all diffeomorphisms of R, and the subgroup Diffeo+(R)
of order preserving diffeomorphisms. The object of this paper is to characterise the
reversible elements in each of these two groups.

An involution in a group is an element of order two. One way to obtain a reversible
element is to form the product of two involutions. Such an element is reversed by each of
the two involutions, and conversely, an element that is reversed by an involution can be
expressed as a product of two involutions. Elements reversed by involutions are called
strongly reversible. The only involution in Diffeo+(R) is the identity map. There are
many non-trivial involutions in Diffeo(R), but all are conjugate to the map x 7→ −x.

Interest in reversibility originates from the theory of time-reversible symmetry in
dynamical systems, and background to the subject can be found in [2, 6]. Finite group
theorists use the terms real and strongly real instead of reversible and strongly reversible,
because an element g of a finite group G is reversible if and only if each irreducible
character of G takes a real value when applied to g. Reversibility in the homeomorphism
group of the real line has been considered before by Jarczyk [4] and Young [12]. See
also [3, 8]. Reversibility in the group of invertible formal power series was considered by
O’Farrell in [9]. Previously, in [1], Calica had studied reversibility in groups of germs of
homeomorphisms and diffeomorphisms that fix 0. Reversibility in the diffeomorphism
group of the real line is of particular interest because, whilst it is difficult to fully
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classify conjugacy in Diffeo+(R) and Diffeo(R), we are able to give a complete account
of reversibility.

The main results of the paper follow.

Theorem 1.1. An element of Diffeo+(R) is reversible if and only if it is conjugate to
a map f in Diffeo+(R) that fixes each integer and satisfies

f(x + 1) = f−1(x) + 1, x ∈ R. (1.1)

Theorem 1.1 gives us an explicit method to generate all order preserving reversible
diffeomorphisms.

Theorem 1.2. Each reversible element of Diffeo(R) is either (i) strongly reversible, or
(ii) an element of Diffeo+(R) that is reversible in Diffeo+(R).

The alternatives (i) and (ii) are not exclusive. If f is an order reversing reversible
diffeomorphism then Theorem 1.2 tells us that it is strongly reversible. Composing two
non-trivial involutions in Diffeo(R) gives rise to an order preserving diffeomorphism;
hence f must be an involution.

We prove the following result about composites of reversible maps.

Theorem 1.3. Each member of Diffeo+(R) can be expressed as a composite of four
reversible diffeomorphisms.

We do not know whether each element of Diffeo+(R) can be expressed as a composite
of three, or even two, reversible elements. We also prove the following result about
composites of involutions.

Theorem 1.4. Each member of Diffeo(R) can be expressed as a composite of four
involutions.

The number four in this theorem is sharp because each order preserving diffeomor-
phism that is not strongly reversible cannot be expressed as a composite of three invo-
lutions. An obvious corollary of Theorem 1.4 is that each element of Diffeo(R) can be
expressed as a composite of two (strongly) reversible diffeomorphisms.

The structure of the paper is as follows. Section 2 contains relevant background
material. Then in Section 3 we focus on the group Diffeo+(R), and prove all our
results related to that group, including Theorems 1.1 and 1.3. Section 4 is about the
group Diffeo(R), and in that section we prove all our results about Diffeo(R), including
Theorems 1.2 and 1.4. Finally, in Section 5 we list some open problems.

2. Background results

An element f of a group G is reversible if there is another element h in G such that
hfh−1 = f−1. We say that h reverses f , or that f is reversed by h. If g is an element
of G that is conjugate to f then g is also reversible. We denote the fixed point set of a
homeomorphism g by fix(g). Listed below are several results about diffeomorphisms of
the real line.
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Lemma 2.1 (Sternberg, [11]). Each fixed point free member of Diffeo+(R) is conjugate
either to the map x 7→ x + 1 or the map x 7→ x − 1.

We remark that x 7→ x + 1 and x 7→ x− 1 are not conjugate in Diffeo+(R), but they
are conjugate by the map x 7→ −x in Diffeo(R).

Lemma 2.2 (Kopell, Lemma 1(a), [5]). Suppose that f and g are C2 order preserving
homeomorphisms of an interval [a, b) such that fg = gf . If g has no fixed points in
(a, b), but f has a fixed point in (a, b), then f is the identity map.

For f in Diffeo(R), we use the notation Taf to denote the truncated Taylor series

Taf =

∞
∑

n=1

f (n)(a)

n!
Xn,

regarded as a formal power series in the indeterminate X.

Let P denote the group of formally invertible formal power series having real coeffi-
cients, under the operation of formal composition. The identity of P is the series

X = X + 0X2 + 0X3 + · · · .

The formal inverse of a power series P is denoted P−1.

Lemma 2.3 (Kopell, Lemma 1(b), [5]). Let f and g be two elements of Diffeo+(R)
that both fix 0 and commute. If T0f = X and 0 is not an interior point of fix(f), then
T0g = X also.

Our final lemma is about reversibility of formal power series. We are unable to find a
precise reference for this lemma, so we provide a brief proof that relies on results from
[7, 9].

Lemma 2.4. If a non-identity element S = X+· · · in P is reversed by another element
T = λX + · · · , where λ < 0, then T is an involution.

Proof. Let S = X + apX
p + · · · , where ap 6= 0. By [9, Theorem 4 and Corollary 6],

p is even. Since T 2 commutes with S we deduce from [7, Proposition 1.5] that the X

coefficient of T 2, namely λ2, equals 1. Hence λ = −1. Next, we can apply [9, Lemma 3
(ii)] to deduce that either T is an involution (in which case the lemma is proved), or else
there is an odd integer q and non-zero real number bq such that T 2 = X + bqX

q + · · · .
However, Lubin shows in [7, Corollary 5.3.2(a)] that two non-identity commuting power
series X +umXm + · · · , where um 6= 0, and X + vnXn + · · · , where vn 6= 0, must satisfy
m = n. We reach a contradiction because p is even and q is odd. Therefore T is an
involution. �

3. Reversibility of order preserving diffeomorphisms

3.1. Reversible maps.

Elementary dynamical considerations tell us that a reversible element in the group of
order preserving homeomorphisms of R must have infinitely many fixed points. In fact,
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a reversing conjugation can only achieve its purpose by shunting the components of the
complement of the fixed point set. This was first pointed out by Calica [1].

We use the following lemma about homeomorphisms.

Lemma 3.1. Suppose that f and h are order preserving homeomorphisms of R such
that hfh−1 = f−1. Then each fixed point of h is also a fixed point of f .

Proof. Suppose that h fixes the point p. We have two equivalent equations hfh−1 = f−1

and hf−1h−1 = f . From these equations we obtain hf(p) = f−1(p) and hf−1(p) = f(p).
Order preserving homeomorphisms such as h have no periodic points other than fixed
points; thus f(p) = f−1(p). Therefore f 2(p) = p, which means that f(p) = p. �

The next lemma works for diffeomorphisms, but not for homeomorphisms.

Lemma 3.2. Suppose that f and h are order preserving diffeomorphisms of R such that
hfh−1 = f−1. If h has a fixed point then f is the identity map.

Proof. If h is the identity map then f is an order preserving involution, and therefore
f is also the identity map. Suppose then that h is not the identity map, but that it
nevertheless has a fixed point. Choose a component (a, b) in the complement of fix(h).
One of a or b is a real number (that is, we cannot have both a = −∞ and b = +∞).
Let us assume that a is a real number; the other case can be dealt with similarly. By
Lemma 3.1, f fixes (a, b) as a set. The map f cannot be free of fixed points on (a, b).
To see this, suppose, by switching f and f−1 if necessary, that f(x) > x for each real
number x in (a, b). Then

x > f−1(x) = hf(h−1(x)) > hh−1(x) = x,

which is a contradiction. Since f has a fixed point in (a, b), Lemma 2.2 applied to the
maps f and h2 shows that f coincides with the identity map on (a, b). We already know
that f coincides with the identity map on fix(h); thus f is the identity map. �

We are now in a position to prove the first main result.

Proof of Theorem 1.1. Let t be the map given by t(x) = x + 1 for each x. Then (1.1)
states that tft−1 = f−1. Thus a diffeomorphism f that satisfies (1.1) is reversible, and
likewise all conjugates of f are reversible.

Conversely, suppose that g and h are elements of Diffeo+(R) such that hgh−1 = g−1.
The theorem holds when g is the identity, so let us suppose that g is not the identity.
This means that we can assume, by Lemma 3.2, that h is free of fixed points. Observe
that h−1gh = g−1; hence by replacing h with h−1 if necessary we can assume that
h(x) > x for each x.

By Lemma 2.1 we see that there is an element k in Diffeo+(R) such that khk−1 = t.
Define f = kgk−1. Then tft−1 = f−1; that is, (1.1) holds. Now f , like g, must have a
fixed point, and by conjugating f by a translation we may assume that this fixed point
is 0. Since translations commute, this conjugation does not affect (1.1). Finally, from
the equation tfnt−1 = f−n we deduce that f fixes each integer. �
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We can construct a diffeomorphism f that satisfies (1.1) explicitly by defining f

on [0, 1] to be an arbitrary order preserving diffeomorphism of [0, 1] such that T0f =
(T1f)−1, and then extending the domain of f to R using (1.1). More precisely, we have
the following corollary of Theorem 1.1.

Corollary 3.3. Let g ∈ Diffeo+(R). Then the following two conditions are equivalent:

(i) The map g is reversible in Diffeo+(R).
(ii) There exist

(a) a formally invertible power series P ;
(b) an order preserving diffeomorphism φ of [0, 1], with

T0φ = P, T1φ = P−1;

and
(c) h ∈ Diffeo+(R), such that g = hfh−1, where, for each n in Z,

f(x) =

{

φ(x − 2n) + 2n if 2n 6 x < 2n + 1,

φ−1(x − 2n − 1) + 2n + 1 if 2n + 1 6 x < 2n + 2.

Remark 3.4. Each map f of part (ii) commutes with x 7→ x + 2. Hence f is the lift
under the covering map x 7→ exp(πix) of the order preserving diffeomorphism of the
unit circle f̄ given by f̄(eiπθ) = eiπf(θ). Moreover f is reversed by x 7→ x + 1; thus f̄ is
reversed by rotation by π.

3.2. Composites of reversible maps.

Lemma 3.5. Each fixed point free element of Diffeo+(R) can be expressed as a composite
of two reversible elements of Diffeo+(R).

Proof. By Lemma 2.1 it suffices to find a single fixed point free map that can be ex-
pressed as a composite of two reversible diffeomorphisms. Let f be a reversible order
preserving diffeomorphism such that f(x+1) = f−1(x)+ 1 for each real number x, and
f(y) > y for each element y of (0, 1). The graph of such a map f is shown in Figure 1.

Let a be an element from the interval
(

1
2
, f

(

1
2

))

. Notice that every order preserving

diffeomorphism h of
[

1
2
, a

]

satisfies h(x) < f(x) for x ∈
[

1
2
, a

]

. Choose an order preserv-

ing diffeomorphism g of
[

a, 5
2

]

such that Tag = T 5

2

g = X, and such that g(x) < f(x)

for each x ∈
[

a, 5
2

]

. (This construction is possible by a classic result of Borel, which
says that to each formal power series P there corresponds a smooth function f de-
fined in a neighbourhood of 0 such that T0f = P .) Next, choose an order preserving
diffeomorphism k from

[

1
2
, a

]

to
[

a, 5
2

]

such that T 1

2

k = Tak = X.

We extend the definition of g to R by defining g(x) = k−1g−1k(x) for x ∈
[

1
2
, a

]

,
and g(x + 2) = g(x) + 2 for all x ∈ R. We extend the definition of k by defining
k(x) = k−1(x) + 2 for x ∈

[

a, 5
2

]

and k(x + 2) = k(x) + 2 for all x ∈ R. The resulting
maps g and k are both order preserving diffeomorphisms. Moreover, one can check
that the equation g(x) = k−1g−1k(x) is satisfied for points x in

[

1
2
, 5

2

]

. Since both
maps commute with x 7→ x + 2, this equation is satisfied throughout R. Finally, we
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Figure 1.

have defined g such that f(x) > g(x) for elements x of
[

1
2
, 5

2

]

, and in fact f(x) > g(x)
everywhere, again, because both maps commute with x 7→ x + 2. Therefore g−1f is a
fixed point free diffeomorphism expressed as a composite of two reversible maps. �

Proof of Theorem 1.3. Choose f in Diffeo+(R). Choose a fixed point free diffeomor-
phism g such that g(x) < f(x) for each x ∈ R. Then g−1f(x) > x for each x in R, so
the map h = g−1f is also free of fixed points. Since f = gh, the result follows from
Lemma 3.5. �

We do not know whether each element of Diffeo+(R) is the composite of three re-
versible elements.

4. Reversibility in the full diffeomorphisms group

4.1. Order reversing reversible maps.

We denote the set of order reversing diffeomorphisms of R by Diffeo−(R). The next
proposition fails for homeomorphisms.

Proposition 4.1. An order reversing member of Diffeo(R) is reversible in Diffeo(R) if
and only if it is an involution.

Proof. Involutions are all reversible by the identity map. Conversely, suppose that
f ∈ Diffeo−(R), h ∈ Diffeo(R), and hfh−1 = f−1. By replacing h with hf if necessary,
we may assume that h preserves order. From the equation hf = f−1h we deduce that h

fixes the unique fixed point of f . Now, hf 2h−1 = f−2, and f 2 preserves order; therefore
Lemma 3.2 applies to show that f 2 is the identity map, as required. �



REVERSIBILITY OF DIFFEOMORPHISMS 7

Proposition 4.1 accounts for all order reversing reversible diffeomorphisms. In The-
orem 1.1 we described all order preserving diffeomorphisms that are reversed by order
preserving maps. That leaves only order preserving diffeomorphisms that are reversed
by order reversing maps. These are examined next.

4.2. Strongly reversible maps.

Lemma 4.2. Fixed point free diffeomorphisms are strongly reversible.

Proof. A fixed point free diffeomorphism is, by Lemma 2.1, conjugate in the group
Diffeo(R) to x 7→ x + 1, and this map is reversed by the involution x 7→ −x. �

Proposition 4.3. If a member of Diffeo+(R) is reversed by a member of Diffeo−(R)
then it is strongly reversible.

Proof. Let f ∈ Diffeo+(R), h ∈ Diffeo−(R), and hfh−1 = f−1. We wish to show that f

is strongly reversible. Given Lemma 4.2, we may assume that f has a fixed point. By
conjugation, we can assume that the fixed point of h is 0. Notice that h permutes the
fixed points of f . We define an involutive homeomorphism k by

k(x) =

{

h(x) if x > 0 ,

h−1(x) if x < 0 .

If f(0) = 0 then clearly, kfk = f−1; however, k may not be a diffeomorphism. Note
that f ′(0) = 1, because f ′(0) = (f−1)′(0). We consider three cases.

First, suppose that f coincides with the identity on a neighbourhood of 0. In this
case we have freedom to adjust the definition of k near 0 so that it is an involutive
diffeomorphism, without disturbing the validity of the equation kfk = f−1.

Second, suppose that 0 is not an interior fixed point of f , but that T0f = X. Since
h2 commutes with f , it follows from Lemma 2.3 that T0h is an involution, so that k is
already a diffeomorphism.

Third, suppose that 0 is a fixed point of f and T0f 6= X. By Lemma 2.4, T0h is an
involution, and again, k is a diffeomorphism.

Now suppose that 0 lies inside a component (a, b) of R \ fix(f). Since f has a fixed
point, we know that (a, b) 6= R. Moreover, because the order reversing map h fixes
(a, b), both end points a and b are finite, and h(a) = b and h(b) = a. Therefore h2

fixes a, b, and 0, and commutes with f . By Lemma 2.2, h2(x) = x for each x ∈ [a, b].
This means that h and h−1 coincide inside (a, b), so that k is a diffeomorphism, and
kfk−1 = f−1. �

Proof of Theorem 1.2. Combine Propositions 4.1 and 4.3. �

Since all non-trivial involutions in Diffeo(R) are conjugate to x 7→ −x we have the
following explicit method to construct all strongly reversible elements of Diffeo(R):

Corollary 4.4. Let g ∈ Diffeo+(R). Then the following two conditions are equivalent:



8 ANTHONY G. O’FARRELL AND IAN SHORT

(i) The map g is reversible in Diffeo(R) by an order reversing diffeomorphism.
(ii) There exist

(a) a formally invertible power series P that is strongly reversed by the power
series −X;

(b) a point p and an order preserving diffeomorphism φ : [p,∞) → [−p,∞)
such that Tpφ = P ;

(c) h ∈ Diffeo(R), such that g = hfh−1, where

f(x) =

{

φ(x) if x > p,

−φ−1(−x) if x 6 p.

Note that the graph of a map reversed by x 7→ −x is symmetric in the line y = −x.
Refer to [4, 8, 12] for more information on strong reversibility of homeomorphisms.

Proposition 4.3 shows that elements of Diffeo+(R) that are reversed by order reversing
elements of Diffeo(R) are strongly reversible in Diffeo(R). There are, however, elements
of Diffeo+(R) that are reversed by order preserving elements of Diffeo(R) that are not
strongly reversible in Diffeo(R). In fact, for order preserving diffeomorphisms, the
properties of being reversible in Diffeo+(R) and strongly reversible in Diffeo(R) are
logically independent. To demonstrate this, we must, in turn, find an example of an
order preserving diffeomorphism that is

(i) neither reversible in Diffeo+(R) nor strongly reversible in Diffeo(R);
(ii) not reversible in Diffeo+(R), but strongly reversible in Diffeo(R);
(iii) reversible in Diffeo+(R), but not strongly reversible in Diffeo(R);
(iv) reversible in Diffeo+(R) and strongly reversible in Diffeo(R).

Examples of (i) and (ii) are readily constructed. For (ii), any non-trivial strongly re-
versible diffeomorphism which coincides with the identity map outside a compact set will
suffice, because Theorem 1.1 tells us that such a map cannot be reversible in Diffeo+(R).
We now give an example of (iii), and then a non-identity example of (iv).

4.3. Example (iii).

We shall describe an order preserving diffeomorphism f that is reversible by order
preserving diffeomorphisms, but not by order reversing involutions. The map described
is not even strongly reversible as a homeomorphism. We assume some common knowl-
edge of conjugacy in the homeomorphism group of the real line, which can be found,
for example, in [3].

We shall define f to be an element of Diffeo+(R) such that fix(f) = Z. To specify f

up to topological conjugacy, it remains only to describe the signature on R \ Z, which
we represent by an infinite sequence of + and − symbols. A + symbol corresponds
to an interval (n, n + 1) for which f(x) > x for each x ∈ (n, n + 1), and a − symbol
corresponds to an interval (n, n + 1) for which f(x) < x for each x ∈ (n, n + 1). The
signature of a homeomorphism of R is discussed in more detail in [3]. Suppose the
signature of f consists of the 12 symbol sequence

+, +, +,−,−, +,−,−,−, +, +,−, (4.1)
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repeated indefinitely, in both directions. The map f can be chosen to be a diffeo-
morphism. A portion of a graph of such a function is shown in Figure 2. It satisfies
hfh−1 = f−1, where h is given by the equation h(x) = x + 6. On the other hand, it is
straightforward to see (or refer to [3]) that f is not reversible by a non-trivial involution,
as the doubly infinite sequence generated by (4.1) read forwards is different from the
same sequence read backwards.

Figure 2.

4.4. Example (iv).

Now we give an example of a non-trivial order preserving diffeomorphism f that is
reversible in Diffeo+(R) and strongly reversible in Diffeo(R).

Choose any non-identity function φ in Diffeo+([0, 1]), with T0φ = T1φ = X, and
define in turn

τ(x) = −φ(x), 0 6 x 6 1,
τ(x) = τ−1(x), −1 6 x < 0,

τ(x + 2) = −τ(−x) − 2, −1 < x 6 1,

and extend τ to R by requiring that

τ(x + 4) = τ(x) − 4, x ∈ R.

Then τ is an involutive element of Diffeo−(R), so that f = −τ is an element of Diffeo+(R)
that is strongly reversible in Diffeo(R).

On the other hand, τ(x + 2) = −τ(−x) − 2 for all x ∈ R, so

f(x + 2) = −τ(x + 2) = τ(−x) + 2 = f−1(x) + 2.

Hence f is also reversible in Diffeo+(R).
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Figure 3.

4.5. Composites of involutions.

Proposition 4.5. Each member of Diffeo−(R) can be expressed as a composite of three
involutions.

Proof. Given an element f of Diffeo−(R), choose an involution τ such that τ(x) > f(x)
for each real number x. Then τf(x) > x. The map τf is strongly reversible, by
Lemma 4.2. Therefore f can be expressed as a composite of three involutions. �

Proof of Theorem 1.4. Given an element f in Diffeo+(R), the map −f , a member of
Diffeo−(R), can be expressed as a composite of three involutions. The result follows
immediately from Propositioni 4.5. �

4.6. Composites of reversible maps.

Proposition 4.6. Each member of Diffeo(R) can be expressed as a composite of two
strongly reversible maps.

Proof. Immediate from Proposition 4.5 and Theorem 1.4. �

The corresponding result for homeomorphisms is due to Fine and Schweigert [3].

5. Open questions

We list two open problems which have emerged from our study.

Question 5.1. What is the smallest positive integer m such that each member of
Diffeo+(R) can be expressed as a composite of m reversible maps?
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Certainly m > 1, and we have proven that m 6 4.

Question 5.2. What can be said about reversibility in the group of homeomorphisms
of the real line that are n times continuously differentiable in both directions, or in the
group of homeomorphisms of the real line that are real analytic in both directions?
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