
ON REDUCING ENTITY STATE UPDATE PACKETS IN DISTRIBUTED
INTERACTIVE SIMULATIONS USING A HYBRID MODEL

Declan Delaney*, Tomás Ward, Séamus McLoone

National University of Ireland, Maynooth, Co. Kildare, Ireland.
*decland@cs.may.ie

ABSTRACT

A key component in Distributed Interactive Simulations
(DIS) is the number of data packets transmitted across the
connected networks. To reduce the number of packets
transmitted, DIS applications employ client-side
predictive contracts. One widespread client-side
predictive contract technique is dead reckoning. This
paper proposes a hybrid predictive contract technique,
which chooses either the deterministic dead reckoning
model or a statistically based model. This results in a
more accurate representation of the entity’s movement
and a consequent reduction in the number of packets that
must be communicated to track that movement remotely.
The paper describes the hybrid technique and presents
results that illustrate the reduction in packet
transmissions. This hybrid technique is compared to the
standard dead reckoning method.

KEY WORDS
Distributed Interactive Simulations, Dead Reckoning,
Hybrid Models, Latency

1. INTRODUCTION

Distributed Interactive Simulation (DIS) involves the
participation of multiple participants communicating over
a computer network [1]. The objective of the DIS
application is to provide a realistic interactive experience
to the participants. A typical example of such an
application is a distributed computer game [2]. However,
a number of technical problems combine to make delivery
of such an experience difficult [3,4,5]. One such problem
is latency, which is the time it takes for information to
propagate across the network to all participants. Another
closely related issue is the problem of network bandwidth.
Within a DIS we refer to these problems as the
information updating issue. Several methods have been
devised to reduce the quantity of data that needs to be
transmitted between participants [6,7,8]. The DIS
standard defines a client predictive contract mechanism
called dead reckoning [9].

This paper proposes a hybrid predictive contract
technique, which dynamically switches between a short-
term dead reckoning model and a longer-term statistical

strategy model. This results in a reduction in the number
of packets that must be communicated to track that
movement remotely compared to a pure dead reckoning
contract. The reduction is dependent on the model error
threshold, as will be explained.

In section two of this paper we describe the information
updating issue as it applies to distributed interactive
applications. Existing solutions to this issue, including
dead reckoning, are also outlined. Section three describes
our proposed hybrid switching technique. A test
environment was developed to compare the new
technique with existing dead reckoning techniques. This
environment is described in section four. Example results
are presented in section five for both the hybrid and dead
reckoning techniques. The paper ends with the
conclusions and suggestions for future research.

2. THE INFORMATION UPDATING ISSUE

Network latency and bandwidth restrictions can combine
to provide poor interactive experience in a distributed
application. If an entity is any element that can be
controlled then it will have a state that can change with
time. To understand the mechanism involved in
communicating entity state information to all participants
in a distributed application, we will consider the typical
case shown in Figure 1. Here we have a central server S
maintaining the definitive state of a DIS. It
communicates with two clients, C1 and C2, separated by
network links with latencies T1 and T2 respectively.
Figure 1 depicts a map of the virtual environment and the
position of entities within that environment. The state of
the DIS, which we will call Η, will be represented by a set
of x-y coordinates for each entity in the simulation. For
the scenario below we would have H = {(x1, y1), (x2, y2)}.
The definitive state of the DIS is that held by the server,
Hs. This state is updated regularly using entity state
packets transmitted from the client set, C={C1, C2},
according to some underlying protocol. We will assume
the impractical case that a new packet is transmitted from
a client once per rendering frame.

In Figure 1 we assume that T1 >> T2 and that T2 is
negligible compared to the velocity of the entities. As a

Figure 1: State of DIS at instant t=tn. Note the difference in local pe

 result we can say that the state of the DIS as far as C2 is
concerned, H2, is tightly coupled via a short latency link
to the server such that
 (1) sHH ≈2

C1 on the other hand is connected via a high latency link
and therefore H1 is tending to lag Hs.

We can say,

{ }
1

),(,),()(22111 Tttn nn
yxyxtH −= (2)

The main consequence of this is that the user at C1 is
reacting to an environment state H that is not that of the
server Hs. But events in the environment are determined
globally and distributed by the server and its notion of the
environment state Hs. This tends to lead to disruption of
the user interactivity for client C1, which we will describe
as localized interactivity distortion.

We now define a measure of this distortion. A convenient
one may be

 D = ()∑ (3)
=

−
N

i
is HH

1

2

where N is the number of clients participating in a DIS.
We can call this a global DIS distortion figure.
Given the problems manifest in such a DIS how do we
solve the problem such that

 (4) sc HH →
In other words, how do we maintain a consistent DIS state
across all clients or at least dynamically track Hs as fast as

possible for all
Existing solution

2.1 PREDICTI

The most comm
issue involves a
called dead reck
to maintain the
dynamics of all
contract. Each
own entity dyna
its actual dynam
threshold, upda
participants. T
entity. Converg
natural transition
motion when up

Alternative met
include:
• Relevance

the inform
by filterin
geographic

• Network t
reliable m
unsubscrib
groups. M
entity type
environme

• Packet bun
of data pac
network de
of packets

• Data Com
reduction i
transmitted
 User 1

User 2

rceived environment states.

 participants with minimum distortion?
s are presented in the next section.

VE SOLUTIONS

on solution to the information updating
client side prediction contract mechanism
oning [9]: all participating clients agree
 same low order local models of the
 other participating entities. This is the
participant also maintains a model of its
mics, which it continuously compares to
ics. When these differ by a pre-defined

te information is broadcast to all other
hese then update their models for that

ence algorithms are necessary to allow a
 to occur between the modeled and actual

date data arrives [9,10].

hods have also been explored, and these

Filtering techniques: These seek to reduce
ation being transmitted over the network
g the data based on criteria such as
al proximity or rate of change [8].
ransmission protocol: Multicasting and
ulticasting allow hosts to subscribe and
e to any of possibly several multicast
ulticast groups might be created based on
 or geographical location in the virtual
nt [12].
dling: This involves combining a number
kets to create a larger data packet because
vices can only process a limited number
per unit time [8].
pression: These techniques allow the
n the size of the information packet being
. One technique is to encode differences

between successive data packets instead of
transmitting the absolute state [8].

Starting Point

S1• Time Management: This involves pre-empting
events and then locking up the system so that the
event can occur. Alternatively, the execution of
local user input is delayed and disguised as
something else until the local user input can be
relayed to all participants [13,14]

• Priority Scheduling: A transmission priority can be
assigned to information based on criteria such as
speed of movement or rate of error change [15].
This also includes Quality of Service protocols [5].

• Visibility Culling: The environment is divided into
cells and multicasting updates are provided to all
entities that are visible to each other in each cell [3].

The above techniques are based on network management
and network partitioning policies. We are going to look at
a packet-reduction method based on client behavioral
modeling, where we switch between a short-term dead
reckoning model and a long-term statistical-based strategy
model.

3. THE HYBRID TECHNIQUE

3.1 TERMINOLOGY
A goal is the aim or objective a person has in moving
through any environment. For example, the goal might be
to go from point A to point B. Goals can be classified as
either static or dynamic. Static goals are stationary in
time and space whereas dynamic goals develop over time.
In achieving a goal a person can adopt a number of
strategies, so that any one strategy is an expression of the
goal. Strategies can be either steady state, transient or
alternative. Steady state strategies are obvious strategies
that can be modeled on past data and arise out of user
familiarity with the DIS. Transient strategies relate to
new users in the environment who behave in a somewhat
erratic way because they are unfamiliar with the
environment. Alternative strategies are strategies that
lead to the goal but are neither transient or steady state
strategies. The idea underlying the hunt for strategies is
to train a system to expect certain strategies based on past
user behavior or based on expected user behavior. Each
strategy comprises one or more trajectories – a set of
trajectories can be identified with any strategy. A
trajectory is an instance of entity motion in achieving a
goal. As with strategies, trajectories can be steady state
or transient. Multiplicity can refer to either strategies or
goals. Strategy Multiplicity Index (SMI) refers to the
number of goals a strategy leads to. Goal Multiplicity
Index (GMI) refers to the number of steady-state
strategies that lead to the goal. This terminology is
illustrated in Figure 2. In this paper we present results for
a static GMI of 1.

Figure 2: Terminology – S1 to S11 are strategies;G1 to
G9 are goals; T1 is a sample trajectory; GMI is the Goal
Multiplicity Index – how many strategies reach that goal;
SMI = Strategy Multiplicity Index – how many goals this
strategy lead to.

3.2 THE HYBRID MODEL

The hybrid model M is of the following form;

Γ−+=)1(ppM χ (5)
where χ is any conventional dead reckoning model, Γ is a
long term model of entity strategy and p is a binary
weighting factor governed by:

 p = 1 for θ≥Γ−M
 = 0 otherwise (6)

where θ represents a distance measure threshold between
the modeled behavior and the long term model.

The model given by M is used by participating clients in a
DIS. The parameters and initial entity state used by the
model are updated every time the state deviates from the
true state by a predefined threshold amount Tm.

While alternative soft blending techniques could be
employed here, we have opted for a simple switching
technique to illustrate the principles involved.

4 DEVELOPING THE STRATEGY MODEL

4.1 THE TEST ENVIRONMENT

The long-term strategy model employed in the hybrid
prediction technique can be constructed in various ways:
(1) by recording past actual entity movements in the
environment, (2) by heuristically identifying possible
strategies based on the examination of the environment
and (3) by employing automatic path-finding techniques.

Goal

S2

S3 S4

S5

G1

G2

G3

S7 S8

S6

S9
S10

S11

GMI = 2

T1

G9

SMI = 3

G8

G7

G6
G5 G4

For this paper we developed a Java, game-type
application that recorded user trajectories in a controlled
two-dimensional environment – see figure 3.

Figure 3: A screen shot of the trajectory recording
software. The target is shown as a circle to the top right.
The black areas are obstacles that do not allow users to
pass. The white trail represents the past motion.

Figure 4: A screen shot of the trajectory recording
software showing the user-restricted view.

Users were asked to navigate from a fixed starting
position to a fixed target position in as short a time as
possible. Their view of any obstacles in their path was
restricted to a circular area around their immediate
position. This is illustrated in Figure 4. The user began
with no knowledge of the location of the target and
repeated the exercise until they had produced the quickest
time possible. Each attempt constituted a trajectory. Data
was collected and stored for each trajectory. This
provided the basis of the statistical-based strategy model
that we will use in the hybrid contract technique.

4.2 THE STRATEGY MODEL

Using the software application, a minimum of five and
maximum of fourteen trajectories were recorded from
fourteen different users. The final trajectory for ten of
the fourteen users is plotted in Figure 5.

150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

350

400

X coordinate

Y
 C

oo
rd

in
at

e

Plot of Raw User Attempts to achieve Goal

Figure 5: A plot of the last user trajectory for 10 users.
The trajectory indicated in bold is the strategy chosen to
be the strategy model.

Observation of this plot shows that the trajectories of the
users converge to a recognizable steady-state strategy.
This observation underlies the motivation behind the
hybrid contract approach. In this paper we will select and
use one of these trajectories as representative of the
steady-state strategy. In future work, we intend to obtain
a better strategy model based on all ten data sets. The
results obtained are described in the following section.

5. RESULTS

The strategy model was obtained as described in the
previous section. Of the remaining four data sets, two
were chosen and analyzed to compare the hybrid and first
order dead reckoning contract techniques. The same
threshold value was set for both. Table 1 shows the
number of packets sent for all trials for both user datasets
and for both methods.

 User 1 User 2
Trial
no.

Dead
Reckoning

Hybrid Dead
Reckoning

Hybrid

1 19 13 31 32
2 19 17 26 27
3 28 25 18 15
4 20 19 8 3
5 14 12 10 7
6 17 13 14 4
7 9 6 13 13
8 14 12 8 4

Table 1: The number of packets transmitted for two user
sets for both pure dead reckoning and the hybrid method.
Trial 1 is the initial trial. Threshold value: 25.

A selected number of trials for user 2 are shown in
Figures 6a to 6c. Each plot shows the model strategy
(dotted line), the user trajectory (continuous line), the

packets transmitted (asterisks) and the trajectory as
reconstructed by the remote client.

Figure 6a plots the initial user trajectory. The user
wanders around the environment seeking the target, which
is located at the top right end of the strategy model curve.
The strategy model is employed on only one occasion,
where it overlaps the trajectory. Most packets are
therefore the result of the threshold value between the
trajectory and the dead reckoning model being exceeded.
It was expected that the strategy model would have almost
no relevance since the user had never seen the
environment before. The reconstructed trajectory at the
remote client is jagged because a first order dead
reckoning algorithm is used. Thirty-two packets are
transmitted.

In Figure 6b trajectory five of user 2 is plotted. In this
case the user has had four previous attempts and is more
familiar with the environment. The trajectory and the
strategy model are in agreement for all but two sections of
the trajectory. In these two sections dead reckoning is
employed. The remote client uses the strategy model for
reconstruction purposes except for these two sections.
Only seven packets are transmitted. If pure dead
reckoning were used, ten packets would be required.

Figure 6c shows user 2’s final trajectory. The user
trajectory meanders about the model strategy, but remains
within the threshold distance from the strategy for all but
one section of the trajectory. The reconstructed trajectory
is therefore superimposed on the strategy curve except for
this section. Only four packets were transmitted. If pure
dead reckoning were used, eight packets would be
required.

−100 0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

X coordinate

Y
 c

oo
rd

in
at

e

Model Strategy
User Trajectory
Hybrid Packets Transmitted
Remote reconstruction of user trajectory

Figure 6a: The first user 2 trajectory attempt. The user
wanders, attempting to locate the target (to the top right).
The rugged remote reconstruction results from using a
first order dead reckoning algorithm. The strategy model
is used on one occasion.

150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

350

400

X coordinate

Y
 c

oo
rd

in
at

e

Model Strategy
User Trajectory
Hybrid Packets Transmitted
Remote reconstruction of user trajectory

Figure 6b: This is the fifth user 2 attempt. The user
trajectory reaches the target. Where the remote
reconstruction (dashed line) appears to disappear, it is in
fact superimposed on the model strategy. Dead reckoning
is employed on two occasions only.

150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

350

400

X coordinate

Y
 c

oo
rd

in
at

e

Model Strategy
User Trajectory
Hybrid Packets Transmitted
Remote reconstruction of user trajectory

Figure 6c: This is the eighth trajectory for user 2. Dead
reckoning is only employed on one occasion. For most of
its length, the trajectory is remotely represented as the
strategy.

It should be noted the performance of the hybrid
technique is based on a relatively high threshold error
value. Reducing this value results in a poorer
performance from the hybrid model, although it is never
any worse than the pure dead reckoning model. It is
conceivable that employing a multiple-model strategy,
where the number of models is related to threshold, would
significantly improve modeling performance.

6. Conclusions and Future Work
In this paper we have described a technique called hybrid
switching that reduces the number of packets that need to
be transmitted to maintain state fidelity across a simple
distributed application.

Using a test environment developed in Java we compared
the dead reckoning technique with a hybrid switching

technique and we illustrated that the hybrid technique
required fewer packets compared to dead reckoning for
remote trajectory reconstruction. However, as previously
noted, this was based on a high threshold value.

Future work will involve looking at improving
performance for lower values of threshold through the use
of multiple model strategies and multiple model blending
techniques.

ACKNOWLEDGEMENT
This work was funded by Enterprise Ireland Basic
Research Grant SC/2002/129/.

REFERENCES

[1] S. K. Singhal and M. Zyda, Networked Virtual

Environments (S. Spencer ACM Press, 1999).
[2] D. Kushner, The Wizardry of ID, IEEE Spectrum

(39) 8 August 2002, 42-47.
[3] C. Faisstnauer, D. Schmalstieg, and W. Purgathofer,

Scheduling for very large Virtual Environments and
Networked Games using Visibility and priorities,
Proceedings of the 4th IEEE International Workshop
on Distributed Simulation and Real-Time
Applications, San Francisco, California 24 - 26
August 2000, 31-38.

[4] L.A.H. Liang, Wentong Cai, u-Sung Lee and S. J.
Turner, Performance Analysis of Packet Bundling
Techniques in DIS, Proceedings of the 3rd IEEE
International Workshop on Distributed Interactive
Simulation and Real-Time Applications, College
Park, Maryland 23 - 24 October 1999, 75-82.

[5] A.S. Tannenbaum, Computer Networks Third
Edition, (Prentice-Hall, 1996).

[6] Wentong Cai, F.B.S. Lee, and L. Chen, An Auto-
adaptive Dead Reckoning Algorithm for Distributed
Interactive Simulation, Proceedings of the 13th
Workshop on Parallel and Distributed Simulation,
Atlanta, Georgia 1 - 4 May 1999, 82-89.

[7] G.J. Valentino, S.T. Thompson, T. Kniola and C.J.
Carlisle, An SMP-based, Low-latency, Network
Interface Unit and Latency measurement System: the
SNAPpy system, Proceedings of the 2nd IEEE
International Workshop on Distributed Interactive
Simulation and Real-Time Applications, Montreal,
Canada, 19 - 20 July 1998, 62-70.

[8] M.A. Bassiouni, Chiu Ming-Hsing, M. Loper, M.
Garnsey and J. Williams, Performance and reliability
analysis of relevance filtering for scalable distributed
interactive simulation, ACM Transactions on
modeling and computer simulation, (7)3, July 1997,
293-331.

[9] IEEE Standard for Distributed Interactive
Simulation - Application Protocols IEEE Std
1278.1-1995.

[10] C. Durbach and J.M. Fourneau, Performance
evaluation of a dead reckoning mechanism,
Proceedings of the 2nd IEEE International
Workshop on Distributed Interactive Simulation and
RealTime Applications, Atlanta, Georgia, 1 - 4 May
1999, 23-29.

[11] T.K. Capin, J. Emeraldo and D. Thalmann, A dead
reckoning technique for streaming virtual human
animation, IEEE Transactions on Circuits and
Systems for Video Technology, (9)3 April 1999, 411-
414.

[12] J. M. Pullen, Reliable Multicast network Transport
for Distributed Virtual Simulation, Proceedings of
the 3rd IEEE International Workshop on Distributed
Interactive Simulation and Real-Time Applications,
College Park, Maryland, 23 - 24 October 1999, 59-
66.

[13] B. G. Worthington and D.J. Roberts, Encapsulating
Network Latency Compensators in VRML,
Proceedings of VWSIM (Virtual Worlds and
Simulation Conference) Int. Conf. SCS Western
Multi-conference, San Diego, USA, January 2000.

[14] D.J. Roberts and P. M. Sharkey, Maximising
Concurrency and Scalability in a Consistent ,
Causal, Distributed Virtual Reality System, whilst
minimising the effect of Network Delays,
Proceedings of the 6th IEEE Workshop on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, Cambridge, MA , June 1997, 161-166.

[15] C. Faisstnauer, D. Schmalstieg, and W. Purgathofer,
Priority Round-Robin Scheduling for very large
Virtual Environments, Proceedings of the IEEE
Virtual Reality 2000 Conference, New Brunswick,
New Jersey, 18 - 22 March 2000, 135-142.

