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8 Abstract Historically, the proteomic investiga-

9 tion of filamentous fungi has been restrained by

10 difficulties associated with efficient protein extrac-

11 tion and the lack of extensive fungal genome

12 sequence databases. The advent of robust protein

13 extraction and separation technologies, combined

14 with protein mass spectrometry and emerging

15 genome sequence data, is leading to the emergence

16 of extensive new knowledge on the nature of these

17 organisms. In this review, we discuss some recent

18 technological advances and their role in exploring

19 the proteome of Aspergillus spp., along with other

20 biotechnologically relevant fungi.

21 Keywords Aspergillus fumigatus � Hypothetical
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26 The main fungal pathogens of humans are Candida

27 albicans and Aspergillus fumigatus. C. albicans is a

28commonly occurring pathogen in the human pop-

29ulation, and in particular in patients undergoing

30cancer chemotherapy. A recent review has de-

31scribed the application of proteomics to study

32diamorphism, drug-induced changes in the Can-

33dida proteome, host-pathogen interactions and

34immunoproteomics (Rupp 2004). A. fumigatus is

35an opportunistic fungal pathogen of immunocom-

36promised patients, causes approximately 4% of all

37hospital-based deaths in Europe and is the most

38common Aspergillus species associated with inva-

39sive aspergillosis (IA) (Brookman and Denning

402000; Brakhage and Langfelder 2002). The mor-

41tality rate associated with IA can be as high as

4260–90%. In particular, IA causes severe morbidity

43and mortality in organ transplant (bone marrow

44and solid organ) and leukaemia patients. More-

45over, it has been estimated that over 3,500 deaths

46per annum in the USA result from aspergillosis

47(Kontoyiannis and Bodey 2002). A growing,

48though limited antifungal drug repertoire is avail-

49able to control IA and includes agents such as

50voriconazole, amphotericin B and the echinocan-

51dins (Enoch et al. 2006). The challenge for the

52research community is to exploit many emerging

53technologies, such as gene disruption strategies,

54microarray analysis and functional proteomics, to

55further our understanding of the biology of

56Aspergilli in general, and A. fumigatus in particular

57with view to identification of new antifungal drug

58targets, in addition to identifying enzymes with
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59 biotechnological potential. The purpose of this

60 article is to outline general proteomic concepts and

61 to provide an update on fungal proteomic studies,

62 with an emphasis on those which have been carried

63 out on A. fumigatus.

64 Proteomic technologies

65 Several studies have shown that mRNA levels do

66 not correlate well with protein expression levels,

67 hence the study of the whole dynamic proteome

68 has gained elevated significance (Griffin et al.

69 2002; Gygi et al. 1999). Proteomic studies to date

70 have used a wide range of techniques, with the

71 majority of studies following the conventional

72 approach of two-dimensional electrophoresis

73 (2-DE) followed by Matrix Assisted Laser Desorp-

74 tion Ionization—Time of Flight (MALDI-ToF)

75 mass spectrometry (MS). Although still a useful

76 technique, Sodium Dodecyl Sulphate-Polyacryl-

77 amide Gel Electrophoresis (SDS-PAGE) has sev-

78 eral inescapable limitations such as the presence of

79 several proteins in a single stained band, which can

80 lead to misidentified proteins and a difficulty in

81 quantifying differential regulation responses.

82 2-DE, which facilitates resolution of complex

83 protein mixtures based on both charge (pI) and

84 molecular mass, and peptide MS have been the

85 two key enabling technologies behind the prote-

86 omics revolution. A variety of pre- and post-

87 2-DE staining methods are available including

88 colloidal Coomassie blue dyes, silver and fluores-

89 cent stains (Patton 2002; Miller et al. 2006; Wu

90 et al. 2006). Silver staining is more sensitive than

91 Coomassie based stains and recently an MS

92 compatible silver stain was introduced (Sinha

93 2001). Although fluorescence based stains have a

94 greater dynamic range and sensitivity than either

95 of the others, cost and questions over suitability

96 for MS (Lanne and Panfilov 2004) mean that

97 colloidal Coomassie staining remains a favourite

98 for subsequent MS analysis.

99 Following 2-DE, protein spots are identified,

100 excised and subject to digestion with proteolytic

101 enzymes (almost always trypsin). These peptide

102 mixtures are then subjected to MS separation and

103 the resultant peptide mass fingerprints compared

105105to gene/protein sequence databases to facilitate

106protein identification (Resing and Ahn 2005). MS

107instruments comprise an ionisation source, a time

108of flight tube and an ion detector with various

109types of peptide ionization employed including

110MALDI or electrospray ionization (ESI). Peptide

111sequence information can be obtained by so-

112called tandem MS (i.e., ESI Q-ToF or ion trap

113MS/MS) and used for database interrogation to

114enable protein identification as noted above.

115Several groups have published annotated ‘‘ref-

116erence maps’’ for many species with the idea of

117using them as standard comparisons for further 2-

118DE analysis. However, this has been attempted

119for only a very few fungal species (Wildgruber

120et al. 2002; COMPLUYEAST-2DPAGE data-

121base (http://babbage.csc.ucm.es/2d/); Weeks et al.

1222005). However as with most methods employed

123in proteome research, the 2-DE approach has

124limitations and is complemented by alternative

125strategies. Protein fractionation by chromatography

126usually involves pre-fractionation of a protein

127extract prior to trypsin digestion of each fraction.

128Peptides from each fraction are then separated on

129a strong cation-exchange (SCX) column and

130passed directly onto a reversed-phase high per-

131formance liquid chromatography (HPLC) column

132from which peptides are directly eluted for

133tandem MS sequence analysis. This approach

134has been termed Multidimensional protein iden-

135tification technology (MudPIT) and has the

136potential to identify protein–protein interactions

137in yeast (Graumann et al. 2004) and separate and

138identify over 1,480 proteins (Washburn et al.

1392001). An improvement in this method is

140described by Wei et al. (2005) increased the

141number of identified yeast proteins identified by

142MudPIT analysis to 3109 by adding an extra

143RP-HPLC step prior to SCX fractionation, lead-

144ing to increased resolving power and desalting of

145the peptides. Many of the limitations of 2-DE can

146be overcome with these LC-MS techniques as

147shown by studies of membrane bound proteins of

148Neurospora crassa (Schmitt et al. 2006), however

149a combination of both techniques, as shown by

150Breci et al. (2005), demonstrated that each

151approach complements the other, increasing the

152overall coverage and significance of the data.
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153 Challenges to functional proteomics

154 in A. fumigatus

155 A. fumigatus presents a number of significant

156 barriers to the execution of rigorous proteomic

157 studies. Firstly, the rigid cell wall means that

158 protein isolation, prior to 2-DE, requires the

159 application of more extensive extraction technol-

160 ogies than other eukaryotic systems. Secondly,

161 the differential expression of many proteins,

162 which is dependent on environmental conditions,

163 allied to the presence of low abundance and high

164 molecular mass proteins, means that full prote-

165 ome elucidation will require extensive analysis.

166 The identification of post-translational modifica-

167 tions in holo-enzymes also represents a consider-

168 able challenge, although one not unique to

169 A. fumigatus. Fortunately, the A. fumigatus

170 genome (30 Mb encoding approximately 10,000

171 open reading frames) has been sequenced and is

172 now available at ‘CADRE’ (http://www.cadre.

173 man.ac.uk) (Mabey et al. 2004; Nierman et al.

174 2005). However, although in silico annotation of

175 the A. fumigatus genome has been carried out,

176 experimental data to support gene identification

177 is limited and many genes (approximately 5% of

178 total) are identified as encoding ‘hypothetical

179 proteins’. In addition, although many genes have

180 been identified based on homology analyses, the

181 actual functions of the cognate proteins in

182 A. fumigatus remain to be elucidated.

183 Proteomic strategies to overcome limitations

184 Until recently, strategies for A. fumigatus 2-DE

185 have not been forthcoming. However, Kniemeyer

186 et al. 2006 and Carberry et al. 2006 have pre-

187 sented comparable protocols for the efficient

188 extraction of proteins from A. fumigatus mycelia

189 prior to 2-DE (Fig. 1). Both publications have

190 noted the importance of mycelial disruption in

191 liquid N2 and the presence of thiourea in extrac-

192 tion buffers, while Kniemeyer et al. observed that

193 sulfobetaine improved 2-DE resolution. More-

194 over, differential expression of enzymes (identi-

195 fied by MALDI and tandem MS) involved in the

196 glyoxylate cycle, gluconeogenesis and ethanol

197 degradation pathways was observed during

198growth on glucose and ethanol, respectively.

199Using MALDI MS detection, Carberry et al.

200(2006) noted the identification of a number of

201previously ‘hypothetical proteins’, now more

202accurately described as unknown function

203proteins. Shimizu and Wariishi (2005) have

204demonstrated that protein extraction and subse-

205quent 2-DE from protoplasts from the basidio-

206mycete, Tyromyces palustris, gave superior results

207to mycelial protein extraction.

208The aim of most proteomic analyses is the

209generation of quantitative data on differential

210protein expression in response to environmental

211alterations. Difference Gel Electrophoresis

212(DIGE) was developed by Unlu et al. (1997)

213and uses fluorescent cyanide dyes to pre-label the

214protein samples prior to IEF. Currently three

215different dyes are available, which means that

216three differently labeled protein extracts can be

217electrophoresed together on the same IEF strip,

218thereby preventing inter-gel variation. Also due

219to the high sensitivity of the dyes, only 50 lg of

220each protein mixture is required for labeling,

221giving a total of 150 lg protein loaded onto each

222IEF strip so high protein concentrations are not

223required. The general approach is to label two

224separate protein extracts with a separate dye and

225then label a pooled preparation of both unlabeled

226extracts with the third dye; therefore each gel has

227an internal control. After electrophoresis of all

228three labeled protein extracts on the same gel,

229images are scanned using a fluorescent scanner

230and quantitative results are based on the total

231fluorescence intensity of each spot. This technique

232has been used in fungi to identify stress-related

233responses whereby the DIGE identification of 260

234differentially expressed protein isoforms from

2352-DE via MALDI MS revealed the complexity

236of the cellular response to oxidative stress (Weeks

237et al. 2006).

238Sub-proteomic strategies

239Many researchers have opted to use sub-proteo-

240mic approaches to study proteins of interest due

241to the complexity of whole cell proteomic analysis

242(Fig. 1). As with LC-MS/MS analysis, pre-frac-

243tionation of proteins prior to 2-DE analysis is
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244 common, with many studies employing prior

245 protein purification. In A. fumigatus, glutathione

246 (GSH)-Sepharose affinity chromatography was

247 used to selectively detect and purify glutathione

248 binding proteins, resulting in more than ten

249 proteins resolved on 2-DE and the identification

250 of a putative translation elongation factor with

251 GST activity (Carberry et al. 2005). Bruneau

252 et al. (2001) used an octyl-Sepharose fractionation

253 followed by 2-DE and MALDI MS to identify

254 nine glycosylphosphatidylinositol-anchored pro-

255 teins in A. fumigatus, five of which were homologs

256 of putatively GPI-anchored yeast proteins. Rei-

257 ber et al. (2005) used Q-Sepharose separation

258 followed by gel permeation chromatography to

259 partially purify two proteins whose expression

260 was up-regulated under iron-free conditions from

261 A. fumigatus, Subsequent MALDI and tandem-

262 MS analysis identified both proteins as nonribos-

263 omal peptide synthetases, SidD and SidC (Fig. 1).

264 Sub-proteomics is also exemplified by the

265 analysis of proteins secreted by many of the

266 industrially important strains of fungi. Filamen-

267 tous fungi in particular have the ability to secrete

268 various proteins, peptides and enzymes, and to

269 this end secretome analysis has been studied by

270 several groups. Taka-amylase, glucoamylase and

271aspergillopepsin were identified by Zhu et al.

272(2004) as major enzymes produced during conid-

273ial germination by Aspergillus oryzae strain

274RIB40, an important industrial fungus. Another

275study of A. oryzae compared the extracellular

276proteins produced under submerged and solid-

277state culture conditions (Oda et al. 2006). Exten-

278sive secretome analysis has also been performed

279on A. flavus, which degrades the flavonoid rutin as

280the only source of carbon via an extracellular

281enzyme system. 2-DE analysis identified only 20

282proteins in un-induced cultures in comparison to

28370 proteins that were detected when A. flavus was

284cultured in the presence of rutin (Medina et al.

2852004). In a follow up study, 51 unique A. flavus

286secreted proteins from the three growth condi-

287tions whereby ten proteins were unique to rutin-,

288five to glucose- and one to potato dextrose-grown

289A. flavus with sixteen secreted proteins common

290to growth on all three media. Fourteen hypothet-

291ical proteins or proteins of unknown function

292were detected (Medina et al. 2005). Similar stud-

293ies have also been conducted on plant pathogenic

294fungi and wood degrading fungi (Belen Suarez

295et al. 2005; Abbas et al. 2005).

296Sub-proteomics of fungal species has also

297involved separation and analysis of constituent

298proteins of fungal cell walls, thought to be a major

299factor in virulent strains of fungi, and organelles

300such as mitochondria. Cell wall and membrane

301bound proteins are difficult to analyse via 2-DE

302techniques as they are hydrophobic and poorly

303represented, remain insoluble in most IEF buffers

304and require solubilisation by detergents that

305generally are not IEF compatible. The use of

306novel sulfobetaine detergents suitable for IEF has

307been used to increase the solubility of such

308proteins (Grinyer et al. 2004a; Kniemeyer et al.

3092005) Additionally, conidial surface associated

310proteins of A. fumigatus, extracted at pH 8.5 in

311the presence of a 1,3-beta-glucanase, were anal-

312ysed using a 2-DE / LC-tandem MS approach by

313Asif et al. (2006). In total, 26 separate conidial

314surface proteins were identified and although

315many identified proteins contained secretion sig-

316nal sequences, one protein, the allergen Aspf3,

317was present without a secretion signal and was

318postulated to have a possible role in triggering

319allergic responses due to A. fumigatus. Significantly,

Fig. 1 A general strategy for protein extraction and
identification from filamentous fungi of biomedical and
commercial importance and for which extensive genome
sequence data is available. Following mycelial lysis,
protein extracts can either be fractionated by 2-DE or a
combination of ion-exchange (IEX), size-exclusion (SE)
and affinity chromatography. Following trypsinisation,
MALDI-ToF MS facilitates peptide mass fingerprinting
and database interrogation leading to protein identifica-
tion (ID)
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320 Ito et al. (2006) have used a combined immuno-

321 proteomics/MS approach to demonstrate that

322 antibodies from immunocompromised mice, pre-

323 viously immunised with A. fumigatus conidia, are

324 primarily directed against allergen Asp f3 and

325 further demonstrated that vaccination with re-

326 combinant Asp f3 was protective.

327 The fully sequenced and annotated model

328 fungus Neurospora crassa and the unsequenced

329 biocontrol agent T. harzianum have both been

330 used to dissect the proteome of the fungal

331 mitochondria (Schmitt et al 2005; Grinyer et al.

332 2004b). Both studies used a combined 2-DE and

333 LC-MS/MS approach of selected trypsinised pro-

334 teins, resulting in the identification of 249 proteins

335 by Schmitt et al. (2006), highlighting the success

336 of the sub-proteomic and 2-DE approaches in

337 functional proteomics.

338 Conclusion

339 The availability of genome sequence availability

340 and protein MS technologies are beginning to

341 reveal the complex and dynamic nature of fungal

342 proteomes. Significant biotechnological and bio-

343 medical advances have already been made and

344 many more await the exploitation of the above

345 strategies.
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