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Abstract. In this article, we discuss generalized method of moments estimation
of the covariance structure of longitudinal data on earnings, and we introduce and
illustrate a Stata program that facilitates the implementation of the generalized
method of moments approach in this context. The program, gmmcovearn, esti-
mates a variety of models that encompass those most commonly used by labor
economists. These include models where the permanent component of earnings
follows a random growth or random walk process and where the transitory compo-
nent can follow either an AR(1) or an ARMA(1,1) process. In addition, time-factor
loadings and cohort-factor loadings may be incorporated in the transitory and
permanent components.

Keywords: st0001, gmmcovearn, permanent inequality, transitory inequality, gen-
eralized method of moments, GMM, covariance structure of earnings

1 Introduction

In recent years, an increasing number of articles have examined the covariance structure
of longitudinal data on earnings. Prior to work by Hause (1977) and Lillard and Weiss
(1978, 1979), much of the literature on earnings differences focused on differences at a
point in time, using cross-sectional data. However, with increasing availability of panel
data, attention turned to the evolution of individual earnings over time—hence the term
covariance structure of earnings.

In this literature, earnings at a point in time reflect both individual-specific time-
invariant characteristics and also transitory but serially correlated error-term variation.
Consequently, earnings differences at a point in time may reflect either permanent in-
equality or transitory inequality, and tackling these different sources of inequality re-
quires different policy measures.

c© 2011 StataCorp LP st0001
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2 GMM estimation of the covariance structure of longitudinal data

Econometric models of earnings covariance structures are widely used in both macro-
economics and labor economics. Macroeconomists use the estimates as inputs in dy-
namic stochastic general equilibrium models, where the persistence of shocks has im-
plications for consumption and labor supply over the life cycle. Labor economists are
particularly interested in the quantitative importance of the different variance compo-
nents in explaining residual earnings inequality.

Covariance structure models are related to those used in factor analysis but have been
developed in a distinct way by labor economists. Examples of recent research articles
that fit earnings covariance structure models include Moffitt and Gottschalk (2002; 2008;
1995), Baker (1997), Baker and Solon (2003), Dickens (2000), Haider (2001), Ramos
(2003), Cappellari (2004), Daly and Valletta (2008), Guvenen (2009), Gustavsson
(2008), and Doris, O’Neill, and Sweetman (2010a,b).

Estimation of some covariance structure models is possible in Stata using xtmixed.
However, xtmixed only allows fitting of basic models and requires strong parametric
assumptions. For this reason, research in the area has favored a generalized method of
moments (GMM) approach, which is more flexible. The GMM estimator was introduced
into the econometrics literature by Hansen (1982); excellent surveys can be found in
Hall (2005) and Cameron and Trivedi (2005).

Although Stata’s gmm routine, in its moment-evaluator form, could be used to fit each
of a number of covariance structure models on a case-by-case basis, this is relatively
complicated to do—it involves writing an ado file for each specification—and there
are benefits to having a specialist and integrated command that allows researchers to
fit many specifications using a single common command syntax. In this article, we
introduce gmmcovearn, a user-written program that meets this need.

The rest of the article is set out as follows. In section 2, we briefly review the general
principles underlying GMM estimation, and in section 3, we consider this estimator in the
context of the covariance structure of longitudinal data on earnings. Our gmmcovearn

command is explained in section 4 and is illustrated in section 5 with panel data on
earnings for the USA and for Germany. We conclude the article in section 6.

2 A review of GMM estimation

The GMM approach provides a computationally convenient method of performing infer-
ence without the need for distributional assumptions. The key to GMM estimation is
a set of population moment conditions that are derived from the underlying statistical
model. GMM is based on the analogy principle whereby population moment conditions
are replaced by their sample analogues. This in turn provides a system of equations
that form the basis for the derivation of the GMM estimator.
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A. Doris, D. O’Neill, and O. Sweetman 3

Suppose we have a k × 1 vector m and a p × 1 parameter vector θ such that for a
given value θ0 and data Y ,

E {m(Y ; θ0)} = 0

The GMM approach replaces the population expectation with the sample moments

m (θ) =
1

N

N∑

i=1

mi (yi; θ)

and chooses the value of θ that makes m(θ) equal to or close to zero. Formally, the
GMM estimator chooses the value of θ so as to minimize the criterion function

m (θ)
′
Wnm (θ)

where Wn is a positive-semidefinite weighting matrix that does not depend on θ.

For a just-identified model, any full-rank weighting matrix will lead to the same
estimate. For over-identified models, different weighting matrices give rise to different
estimators within the GMM class, all of which are consistent under regularity assump-
tions but differ in terms of efficiency.

The optimal GMM estimator weights by the inverse of the variance matrix of the sam-
ple moments. In practice, the optimal weighting matrix has to be estimated. Provided
the estimated weighting matrix is consistent, this makes no difference asymptotically.
However, estimation of the weighting matrix can lead to biases in finite samples. The
problem arises because in small samples, there is a correlation between the moments
and the weighting matrix.

Altonji and Segal (1996) and Clark (1996) consider the appropriate weighting matrix
in relatively straightforward covariance models, and show that in finite samples the use
of the identity matrix is preferable to the optimal weighting matrix. This approach
has therefore become common practice when estimating the covariance structure of
earnings and is adopted in gmmcovearn and in the remainder of this article. When
the identity matrix is used, the GMM objective function resembles that of an equally
weighted, nonlinear least-squares model.

The GMM estimator identifies model parameters if the probability limit of the GMM

criterion function is uniquely minimized at the true parameter vector, θ0. Stock, Wright,
and Yogo (2002) provide a very useful summary of the identification issues that arise
in GMM estimation, and Doris, O’Neill, and Sweetman (2010b) discuss these issues in
the context of the covariance structure of earnings. Weak identification can lead to
inconsistent estimates, nonnormality, and size distortions in hypothesis testing even
in very large samples. However, if the model is well identified, then under suitable
regularity conditions, it can be shown that the limiting distribution of the estimator
θ̂GMM is as follows:
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4 GMM estimation of the covariance structure of longitudinal data

√
N
(
θ̂GMM − θ0

)
d−→ N

{
0, (G′

0G0)
−1

(G′
0S0G0) (G′

0G0)
−1
}

where G0 = plim(1/N)
N∑

i=1

(
δmi/δθ

∣∣
θ0

)
and S0 = plim(1/N)

N∑
i=1

(
mim

′
i

∣∣
θ0

)
.

In practice, G0 and S0 are estimated by evaluating the analytical expressions at the
GMM estimate, θ̂GMM. Hypothesis tests on individual parameters can then be carried
out using a Wald test.

For more-general model specification tests, Newey’s (1985) test of over-identifying
restrictions, based on an adjusted residual sum of squares, can be used. However, as
several authors have noted (Baker and Solon 2003; Ramos 2003; Gustavsson 2008), this
test almost always rejects the specified model at conventional levels. In addition, Baker
(1997) found that such specification tests have inflated size in small samples. For these
reasons, this approach is not used as the basis for specification tests in this literature.
However, the adjusted or unadjusted residual sum of squares is typically used as a
measure of goodness of fit.

3 Estimating the covariance structure of earnings

In the literature on the covariance structure of earnings, the de-meaned logarithm of
earnings of worker i at time t, yit, is the sum of a permanent component (for example,
due to individual-specific fixed characteristics such as the level of education) and a
transitory component (reflecting temporary shocks that affect the individual directly or
indirectly via the labor market). Thus in the very simplest specification,

yit = αi + νit

where αi is the individual-specific permanent component with variance σ2
α and νit are

serially uncorrelated transitory shocks with mean zero and variance σ2
ν . It is assumed

that cov(αi, νit) = 0. It follows that the total variance of (log) earnings is σ2
α + σ2

ν and
the fraction of total inequality that is permanent is given by σ2

α/
(
σ2

α + σ2
ν

)
. Readers

will recognize this as a simple random-effects model, estimable using xtreg, re or
xtmixed. Economists have modified this specification in three main ways: 1) they
have allowed the relative importance of the permanent and transitory components to
change with calendar time and across birth cohorts; 2) they have allowed for persistence
in transitory shocks to earnings, using a variety of autoregressive and moving-average
specifications; and 3) they have allowed the permanent component of earnings to evolve
over time.

When modeling the evolution of the permanent component, two main approaches
have been adopted in the literature. In the first approach, individuals have common
life-cycle profiles and are subject to shocks that permanently change the individual’s
place in the earnings distribution (Dickens 2000). This specification is interchangeably
referred to as the random walk or unit-root model (Baker 1997; Ramos 2003). In the
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A. Doris, D. O’Neill, and O. Sweetman 5

second approach, the random growth model, each worker has an individual-specific
experience–earnings profile so that earnings growth rates vary across individuals in a
systematic way (Haider 2001). In the random walk specification, current earnings are a
sufficient statistic for future earnings, while in the random growth model, information
in addition to current earnings (for example, initial earnings) may be informative about
future earnings. For a detailed discussion and comparison of these two approaches,
see Baker (1997) and Guvenen (2009). Additionally, a few articles have fit covariance
models that combine the random walk model with the random growth model—see, for
example, Ramos (2003) and Moffitt and Gottschalk (2008).

gmmcovearn allows researchers to fit models that incorporate the three key features
of earnings dynamics discussed earlier: time and cohort effects in both the permanent
and the transitory component; either an AR(1) or an ARMA(1,1) process for the transitory
term; and a random growth or random walk model for the permanent component.

The general model we consider assumes that earnings for individual worker i, be-
longing to birth cohort c and with x years of experience at time t, yict, are given by

yict = qcpt (αi + βixit + uit) + scλtνit (1)

uit = ui,(t−1) + wit (2)

where E(αi) = E(βi) = E(wit) = E(νit) = 0. αi and βi have variances σ2
α and σ2

β ,
respectively, and covariance σαβ . The first two terms inside the parentheses in (1)
capture the random-growth component of earnings. Thus each individual may have
a different permanent life-cycle growth rate of earnings, and this growth rate may be
correlated with initial earnings. The final term inside the parentheses, uit, follows a
random walk process, with the variance of wit given by σ2

w and E(ui,(t−1)wit) = 0.

This process allows for random shocks that have permanent effects. The accumulated
variance of the random walk process prior to entry to the labor market cannot be
identified in this model and is incorporated into estimation of σ2

α. This identification
problem arises in any model with fixed effects and a unit-root process. pt and λt

are factor loadings that allow the permanent and transitory components, respectively,
to change over time in a way that is common across individuals; qc and sc allow the
permanent and transitory components, respectively, to differ by cohort. Thus the model
allows for time, experience, and cohort effects. These parameters can be separately
identified because of nonlinearities in the underlying model.

Serial correlation in the transitory shocks, νit, is modeled using either an AR(1) or
an ARMA(1,1) process, with AR parameter ρ and MA parameter θ. Specifically,

νit = ρνi(t−1) + θǫi(t−1) + ǫit (3)

where ǫit is a random variable with variance σ2
ǫ . The recursive nature of the transitory

process necessitates consideration of initial conditions. Panel datasets do not typically
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6 GMM estimation of the covariance structure of longitudinal data

observe individuals from the start of their working lives, and the absence of this in-
formation has to be taken into consideration. Because working lives are not infinitely
long, it is inappropriate to appeal to a long-run steady-state assumption to resolve the
initial-conditions problem (which is the approach taken by xtmixed when fitting AR

and MA specifications for the transitory component). Instead, we follow the approach
suggested by MaCurdy (1982), which has been widely adopted by labor economists, and
treat the variance at the start of our sample period, σ2

ν1, as an additional parameter to
be estimated.

The GMM estimator matches sample variances and covariances to their population
counterparts. In the model specified by equations (1)–(3), the true variance–covariance
matrix for cohort c has diagonal elements

σ2
c1 =

{
q2
cp2

1

(
σ2

α + σ2
βX2

c1 + 2σαβXc1 + σ2
wXc1

)}
+
(
s2

cλ
2
1σ

2
ν1

)
(4)

σ2
ct =

{
q2
cp2

1

(
σ2

α + σ2
βX2

ct + 2σαβXc1 + σ2
wXct

)}
+

{
s2

cλ
2
t

(
ρ2t−2σ2

ν1 + K

t−2∑

w=0

ρ2w

)}
, t > 1 (5)

and off-diagonal elements

Cov
(
yct, yc(t+s)

)
=q2

cptpt+s

{
σ2

α + σ2
βXctXc(t+s) + σαβ

(
Xct + Xc(t+s)

)
+ σ2

wXct

}
+

s2
cλtλt+s

(
ρsσ2

ν1 + ρs−1θσ2
ǫ

)
, t = 1 and s > 0

Cov
(
yct, yc(t+s)

)
=q2

cptpt+s

{
σ2

α + σ2
βXctXc(t+s) + σαβ

(
Xct + Xc(t+s)

)
+ σ2

wXct

}
+

s2
cλtλt+s

(
ρ2t+s−2σ2

ν1 + ρ2K

t−1∑

w=0

ρ2w + ρs−1θσ2
ǫ

)
, t > 1 and s > 0

(6)

where K = σ2
ǫ (1 + θ2 + 2ρθ), Xct is the average experience of individuals in cohort c at

time t, and X2
ct is the average value of experience-squared for cohort c at time t.

The parameter vector to be estimated is given by

ϕ =
{

σ2
α, ρ, σ2

ν1, σ
2
ǫ , λ2 . . . λT , p2 . . . pT , q2 . . . qC , s2 . . . sC , σ2

β , σαβ , σ2
w, θ

}
. Identification

requires a normalization of the factor loadings and in keeping with the literature, we
set p1, λ1, q1, and s1 equal to one. We then use this parameter vector to recover the
individual components of aggregate inequality. The permanent component at time t is
given by the first term in curly braces in (4) or (5), as appropriate, while the second
term in curly braces is the transitory component.

The model given in (1)–(3) above encompasses many, but not all, of the models
that have been used in the empirical literature. Firstly, the program does not allow for
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A. Doris, D. O’Neill, and O. Sweetman 7

heteroskedasticity in the specified variances, as used, for example, by Baker (1997) and
Hoffmann (2009). However, because of identification issues, such specifications have
been used only with extremely large administrative datasets, which are typically not
publically available. Secondly, earlier work by MaCurdy (1982) and Abowd and Card
(1989) found that an MA(2) specification best fits the covariance matrix of earnings
differences. While gmmcovearn cannot fit this model directly, our random walk model
in levels with an ARMA(1,1) transitory term implies an ARMA(1,2) model in differences
(Moffitt and Gottschalk 1995). In practice, the estimated value of the AR parameter is
such that the difference between this and the MaCurdy and Abowd–Card specifications
is small.

4 The gmmcovearn command

gmmcovearn estimates the parameters of the covariance structure of earnings. The pro-
gram requires that the panel dataset be in wide format and contain an earnings variable.
This variable may be specified in logs or in levels and may refer to actual earnings or
to residuals derived from a first-stage regression on a set of observed covariates. If a
heterogeneous profiles model is specified (random growth or random walk), the data
must also include a labor-market experience variable. For models with cohort effects,
the data must contain a cohort indicator variable, and there must be data for every
cohort in each year. The program works for both balanced and unbalanced data at the
individual level.

The program begins by computing the earnings variances and covariances from the
raw data. When the data are unbalanced, each sample moment is constructed using
all the available observations for that moment. For each moment expression, average
experience (and average-squared experience) is calculated using only the information on
individuals who contribute to that moment. The program uses the sample moments;
the population expressions given in (4), (5), and (6); and Stata’s nl command to recover
the parameter estimates. As mentioned earlier, this implies that the weighting matrix
used is the identity matrix. The sample moments are provided as part of the program’s
output. The program adjusts the standard errors of the parameter estimates to take
account of the number of observations used in the computation of each moment, follow-
ing the approach suggested by Haider (2001); this yields valid standard errors whether
the data are balanced or unbalanced.

4.1 Syntax for gmmcovearn

The syntax for gmmcovearn is as follows:

gmmcovearn earningsvar
[
if
]
, modeln(#) yearn(#)

[
expvar(exp) firstyr(#)

cohortn(#) cohortvar(cohvarname) firstcohort(#) cohvarname

stvalue(start values) newdataname(momdataname) graph(#)
]
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8 GMM estimation of the covariance structure of longitudinal data

where earningsvar is the stub of the name of the earnings variable in the dataset. The
numeric suffix attached to the stub identifies the year (or panel wave) of the earnings
variable. The program assumes that these suffixes are consecutive integers running from
firstyr() through firstyr()+ yearn()− 1, where firstyr() is the year associated
with the first year observed in the dataset and yearn() is the total number of years
observed (see below).

4.2 Options

modeln(#) specifies the type of model to be fit. The default is modeln(1). modeln()

is required.

modeln(1): AR(1), no growth heterogeneity (σ2
β = σαβ = σ2

w = θ = 0)

modeln(2): ARMA(1,1), no growth heterogeneity (σ2
β = σαβ = σ2

w = 0)

modeln(3): AR(1), random growth (σ2
w = θ = 0)

modeln(4): ARMA(1,1), random growth (σ2
w = 0)

modeln(5): AR(1), random walk (σ2
β = σαβ = θ = 0)

modeln(6): ARMA(1,1), random walk (σ2
β = σαβ = 0)

modeln(7): AR(1), combined random growth and random walk (θ = 0)

modeln(8): ARMA(1,1), combined random growth and random walk

yearn(#) specifies the total number of years over which earnings are observed. yearn()
is required.

expvar(exp) specifies exp as the stub of the name of the experience variable and must be
used for specifications that allow for growth heterogeneity in the life-cycle earnings
profile (modeln(3)–modeln(8)). In the dataset, these suffixes must follow the same
convention as for earningsvar, described above.

firstyr(#) specifies the numeric suffix attached to the first year of earnings data
observed in the sample. The default is firstyr(1).

cohortn(#) specifies the number of cohorts used for the analysis. The default is
cohort(1).

cohortvar(cohvarname) identifies cohvarname as the variable that distinguishes the
different cohorts. The default is cohortvar(cohort).

firstcohort(#) specifies the value of cohvarname for the first cohort. The default is
firstcohort(1).

cohvarname is assumed to be coded in consecutive integers from firstcohort() to
firstcohort() + cohortn() − 1. For example, in a model with four cohorts, the
values of cohvarname could be 1 to 4 (in which case firstcohort() is 1) or 1994 to
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A. Doris, D. O’Neill, and O. Sweetman 9

1997 (in which case firstcohort() is 1994). Nonconsecutive suffixes, such as 1960,
1970, 1980, and 1990, would have to be recoded before being used.

stvalue(start values) specifies the starting values for the estimation. For T years
of data and C cohorts, the values are entered in the following order, separated
by commas: sigalpha, rho, sigv1, sige, l2–lT, p2–pT, q2–qC, s2–sC, sigbeta,
covalphabeta, sigw, theta, corresponding to parameters σ2

α, ρ, σ2
ν1, σ2

ǫ , λ2 . . . λT ,
p2 . . . pT , q2 . . . qC , s2 . . . sC , σ2

β , σαβ , σ2
w, and θ.

The default value for each of the l, p, q, and s parameters is 1; for sigalpha and
rho, it is 0.5; for sigv1 and sige, it is 0.1; for sigbeta, covalphabeta, and sigw,
it is 0; and for theta, it is −0.5. The user should specify starting values only for
the parameters actually estimated in the chosen model (see modeln() above).

newdataname(momdataname) allows the user to create the new dataset momdataname

consisting of two or more variables, depending on the model used. The first vari-
able, moment, contains the sample moments calculated by the program. The second
variable, nobsmoment, contains the number of observations used in calculating the
corresponding moment. If a random growth or a random walk model is specified
(modeln(3)–modeln(8)), the dataset will also contain the average of experience,
aveexp, and the average of squared experience, aveexp2.

For the moment variable, the first T observations are the T sample variances for the
first cohort, the next T observations are the variances for the second cohort, and
so on for each of the C cohorts. Starting at the (T × C + 1)th element, the next
(T −1) elements are the (T −1) first-order covariances for the first cohort, beginning
with the earnings covariance between the first and second year. The next (T − 1)
elements refer to the first-order covariances for the second cohort, and so on. This
pattern is repeated for the higher-order covariances so that the final C observations
are the C(T − 1)th-order covariances.

graph(#) requests a graphical display of the predicted permanent and transitory com-
ponents of inequality [calculated using (4) and (5)], along with predicted and actual
aggregate inequality. Predicted aggregate inequality is simply the sum of the pre-
dicted permanent and transitory components. The default is graph(0). The data
underlying these graphs are available in the saved results (see below).
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10 GMM estimation of the covariance structure of longitudinal data

4.3 Saved results

gmmcovearn saves the following in e():

Scalars
e(numoment) number of moment conditions used in fitting the model

Macros
e(cmd) gmmcovearn
e(cmdline) command as typed
e(properties) b V

Matrices
e(b) coefficient vector: the parameters of the covariance structure model
e(V) adjusted variance–covariance matrix of the parameters
e(momentc) sample moments for the earnings variable for cohort c,

c = firstcohort(), . . . ,firstcohort() + cohortn()−1 (these are
presented in a variance–covariance matrix for each cohort)

e(nobsc) observations used in calculating each of the sample moments for cohort c,
c = firstcohort(), . . . ,firstcohort() + cohortn()−1 (these
are presented in the same format as the corresponding variance–covariance
matrices)

e(permc) predicted permanent component of earnings variance in each of the yearn()
years for cohort c, c = firstcohort(), . . . ,firstcohort() + cohortn()−1

e(tempc) predicted transitory component of earnings variance in each of the yearn()
years for cohort c, c = firstcohort(), . . . ,firstcohort() + cohortn()−1

5 Examples

In this section, we use gmmcovearn to analyze the covariance structure of earnings with
panel datasets for the USA and Germany. The examples are for illustrative purposes
only. The example for the USA uses publically available data and illustrates the use
of our estimator when the data are provided in long format. The German example
estimates a random growth model of earnings and also shows how cohort effects are
accounted for in our estimation procedure. Both examples use unbalanced data.

5.1 National Longitudinal Survey (NLS) data

In this example, we use the NLS panel dataset used in Wooldridge (2002) and available for
download within Stata. The dataset provides an unbalanced panel of data on earnings,
schooling, and demographic information for 530 individuals from the NLS for the years
1981 to 1987.

. use http://www.stata.com/data/jwooldridge/eacsap/nls81_87.dta

To begin, we fit a random-effects model with an AR(1) transitory error term,
modeln(1), similar to that fit by Lillard and Weiss (1978). A simpler version of this
model could be fit using xtmixed; however, xtmixed uses a steady-state assumption to
handle initial conditions, which is unlikely to be appropriate, as discussed in section 3.
In contrast, gmmcovearn follows the approach suggested by MaCurdy (1982) and treats
the variance at the start of our sample period, σ2

ν1, as an additional parameter to be
estimated.
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To fit this model with gmmcovearn, we first reshape the data into long format:

. keep id year lwage

. reshape wide lwage, i(id) j(year)

(output omitted )

To illustrate the naming conventions used in our program, we next describe the
variables in this dataset:

. describe

Contains data
obs: 530
vars: 8
size: 15,900

storage display value
variable name type format label variable label

id int %9.0g identifier
lwage81 float %9.0g 81 lwage
lwage82 float %9.0g 82 lwage
lwage83 float %9.0g 83 lwage
lwage84 float %9.0g 84 lwage
lwage85 float %9.0g 85 lwage
lwage86 float %9.0g 86 lwage
lwage87 float %9.0g 87 lwage

Sorted by: id

This dataset contains seven years of earnings data, from 1981 to 1987. The program
requires the user to input earningsvar, which is the stub of the name of the earnings
variable. In this example, earningsvar is lwage. In these data, the numeric suffix
attached to lwage refers to the year of observation. The lowest suffix is firstyr(), the
numeric year attached to the first year of earnings data, which in this case is 81.

A summary of the variables used is provided below:

. summarize

Variable Obs Mean Std. Dev. Min Max

id 530 991.3925 660.7559 4 2229
lwage81 242 9.388543 .5187844 6.71772 11.503
lwage82 261 9.457249 .4130265 7.855649 10.69415
lwage83 312 9.498774 .4851994 6.579612 11.12857
lwage84 349 9.518088 .4505686 7.406881 10.80471

lwage85 359 9.551186 .506268 6.031743 10.79433
lwage86 361 9.643893 .5299772 7.141506 11.53664
lwage87 379 9.704476 .5805771 7.841583 12.80161

This table clearly illustrates the unbalanced nature of the data. For example, there are
242 observations used to calculate the sample variance for 1981 but 379 observations
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12 GMM estimation of the covariance structure of longitudinal data

used to calculate the final-year sample variance. To see the number of observations that
will be used to calculate the covariance of earnings between 1981 and 1982, we can issue
the count command, as follows:

. count if lwage81~=. & lwage82~=.
193

As we will see later, all information on the number of observations used can be
recovered from the program’s saved results. The gmmcovearn command is issued as
follows:

. gmmcovearn lwage, yearn(7) modeln(1) firstyr(81)
(obs = 28)

Iteration 0: residual SS = .1643298
Iteration 1: residual SS = .05161
Iteration 2: residual SS = .0017779
Iteration 3: residual SS = .0016158
Iteration 4: residual SS = .001615
Iteration 5: residual SS = .001615
Iteration 6: residual SS = .001615
Iteration 7: residual SS = .001615
Iteration 8: residual SS = .001615
Iteration 9: residual SS = .001615

Source SS df MS
Number of obs = 28

Model .796840451 16 .049802528 R-squared = 0.9980
Residual .001614961 12 .00013458 Adj R-squared = 0.9953

Root MSE = .0116009
Total .798455413 28 .028516265 Res. dev. = -193.8376

moment Coef. Std. Err. t P>|t| [95% Conf. Interval]

/sigalpha .0683058 .0088071 7.76 0.000 .0491168 .0874948
/rho .3130349 .0608686 5.14 0.000 .1804137 .4456561

/sigv1 .201089 .0144893 13.88 0.000 .1695194 .2326586
/sige .0588356 .0375667 1.57 0.143 -.0230152 .1406864

/l2 1.209775 .3380594 3.58 0.004 .4732069 1.946343
/l3 1.497133 .496198 3.02 0.011 .4160105 2.578256
/l4 1.142064 .3835471 2.98 0.012 .3063868 1.977742
/l5 1.317238 .4160183 3.17 0.008 .4108118 2.223664
/l6 1.438042 .464473 3.10 0.009 .4260424 2.450042
/l7 1.706241 .5657103 3.02 0.011 .4736643 2.938818
/p2 .9159306 .0803285 11.40 0.000 .7409098 1.090951
/p3 1.112308 .0998032 11.15 0.000 .894856 1.329761
/p4 1.307378 .1214745 10.76 0.000 1.042708 1.572048
/p5 1.449588 .1411007 10.27 0.000 1.142156 1.75702
/p6 1.466273 .1388268 10.56 0.000 1.163796 1.768751
/p7 1.470464 .1267276 11.60 0.000 1.194348 1.74658

Estimated parameters with corrected standard errors below
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

sigalpha .0683058 .024722 2.76 0.006 .0198516 .1167599
rho .3130349 .077011 4.06 0.000 .1620961 .4639736

sigv1 .201089 .0402344 5.00 0.000 .122231 .279947
sige .0588356 .0456725 1.29 0.198 -.0306809 .1483521

l2 1.209775 .4187484 2.89 0.004 .3890433 2.030507
l3 1.497133 .6406559 2.34 0.019 .2414706 2.752796
l4 1.142064 .4497494 2.54 0.011 .2605716 2.023557
l5 1.317238 .5380952 2.45 0.014 .2625906 2.371885
l6 1.438042 .5672408 2.54 0.011 .3262706 2.549814
l7 1.706241 .6850775 2.49 0.013 .3635139 3.048968
p2 .9159306 .1452523 6.31 0.000 .6312413 1.20062
p3 1.112308 .2170894 5.12 0.000 .6868211 1.537796
p4 1.307378 .237724 5.50 0.000 .8414475 1.773308
p5 1.449588 .2657075 5.46 0.000 .9288111 1.970366
p6 1.466273 .270121 5.43 0.000 .9368458 1.995701
p7 1.470464 .3122724 4.71 0.000 .8584214 2.082507

The output header includes the standard information on goodness of fit produced by the
nl command. This includes the residual sum of squares (unadjusted) which, as noted
earlier, is sometimes used as a measure of fit in the empirical literature.

The parameters sigalpha, rho, sigv1, sige, l2–l7, and p2–p7 correspond to σ2
α,

ρ, σ2
ν1, σ2

ǫ , λ2 − λ7, and p2 − p7. The result for rho indicates moderate persistence in
the transitory shock; the factor loadings l2–l7 and p2–p7 indicate rising transitory and
permanent variances over time.

The standard errors reported in the top panel of the output are incorrect: they
fail to take into account the number of individuals used when calculating the sample
moments. Correctly adjusted standard errors are reported in the bottom panel. The
corresponding adjusted variance–covariance matrix is saved in e(V).

Hypothesis tests can be carried out using test after running the gmmcovearn com-
mand. For example, a test that the permanent factor loadings, pt, are constant over
time can be carried out using a Wald test, as follows:

. test _b[p2]=_b[p3]=_b[p4]=_b[p5]=_b[p6]=_b[p7]=1

( 1) p2 - p3 = 0
( 2) p2 - p4 = 0
( 3) p2 - p5 = 0
( 4) p2 - p6 = 0
( 5) p2 - p7 = 0
( 6) p2 = 1

chi2( 6) = 12.14
Prob > chi2 = 0.0588

In this example, we reject constant permanent factor loadings at the 6% significance
level.
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To illustrate the saved results from gmmcovearn, we use ereturn list.

. ereturn list

scalars:
e(numoment) = 28

macros:
e(cmd) : "gmmcovearn"

e(cmdline) : "lwage, yearn(7) modeln(1) firstyr(81)"
e(properties) : "b V"

matrices:
e(b) : 1 x 16
e(V) : 16 x 16

e(temp1) : 7 x 1
e(perm1) : 7 x 1
e(nobs1) : 7 x 7

e(moment1) : 7 x 7

As noted above, gmmcovearn begins by computing the earnings covariances from the
raw data. Because we have only one cohort in this dataset, there is only one sample
covariance matrix saved in e(moment1).

. matrix list e(moment1)

symmetric e(moment1)[7,7]
81 82 83 84 85 86 87

81 .26913726
82 .14437909 .17059092
83 .08859929 .11214142 .23541845
84 .12305372 .09880327 .13358462 .20301206
85 .09517703 .08657077 .13002885 .15184436 .25630733
86 .10260867 .09372365 .11757618 .13149989 .1893622 .28087588
87 .0913199 .09370207 .11586105 .13049657 .16674991 .19970039 .33706979

The number of observations reported in the header of the output table for gmmcovearn
refers to the number of moment conditions used in the analysis and not the number of
individuals used in the estimation. The number of individuals contributing to each of
the sample moments is saved in e(nobs1).

. matrix list e(nobs1)

symmetric e(nobs1)[7,7]
81 82 83 84 85 86 87

81 242
82 193 261
83 206 229 312
84 209 232 282 349
85 213 227 274 300 359
86 206 219 265 290 315 361
87 212 230 270 302 314 315 379

These sample sizes are used in the calculation of the corrected variance–covariance
matrix for our parameter estimates, which are saved in e(V).

The components of the variance decomposition are saved in e(perm1), which con-
tains the permanent component of inequality, and e(temp1), which is the transitory
component. To recover the permanent components, we simply type
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. matrix list e(perm1)

e(perm1)[7,1]
perm

cohort1year1 .06830577
cohort1year2 .05730368
cohort1year3 .08450995
cohort1year4 .11675074
cohort1year5 .14353134
cohort1year6 .14685449
cohort1year7 .14769514

The results reported above indicate a steady increase in permanent inequality over this
time period.

5.2 German earnings data

To illustrate the use of gmmcovearn for a more complicated model that includes cohort
effects, we use a data extract from the eight waves of the European Community House-
hold Panel for Germany. The years covered by the survey are 1994–2001. As in the
previous example, the data are unbalanced. The earnings variable for each year is the
residual from a first-stage regression of earnings on potential experience and potential
experience squared. The earnings variables are yi1994–yi2001 and the individual ex-
perience variables are potexp1994–potexp2001. In the dataset, the cohort indicator
variable is birthcoh, which takes the values 1–4 corresponding to the four cohorts in
the data. The number of individuals in each cohort is given below.

. tab birthcoh

birthcoh Freq. Percent Cum.

1 1,650 24.41 24.41
2 1,109 16.41 40.82
3 1,547 22.89 63.71
4 2,453 36.29 100.00

Total 6,759 100.00

The following shows the estimates of a random growth model with cohorts and an
AR(1) specification for the transitory error term.

. gmmcovearn yi, yearn(8) modeln(3) cohortn(4) expvar(potexp) firstyr(1994)
> cohortvar(birthcoh)
(obs = 144)

Iteration 0: residual SS = .4483834
Iteration 1: residual SS = .0186083
Iteration 2: residual SS = .0086681
Iteration 3: residual SS = .0070441
Iteration 4: residual SS = .0070062
Iteration 5: residual SS = .0070061
Iteration 6: residual SS = .0070061
Iteration 7: residual SS = .0070061
Iteration 8: residual SS = .0070061
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Source SS df MS
Number of obs = 144

Model 2.16612446 26 .083312479 R-squared = 0.9968
Residual .007006143 118 .000059374 Adj R-squared = 0.9961

Root MSE = .0077055
Total 2.17313061 144 .015091185 Res. dev. = -1021.378

moment Coef. Std. Err. t P>|t| [95% Conf. Interval]

/sigalpha .4386704 .0605217 7.25 0.000 .318821 .5585198
/rho .3417541 .0361788 9.45 0.000 .2701102 .4133979

/sigv1 .0742456 .0062163 11.94 0.000 .0619355 .0865556
/sige .0301694 .0112735 2.68 0.009 .0078448 .0524939

/l2 1.498371 .2427683 6.17 0.000 1.017624 1.979118
/l3 1.312379 .2569202 5.11 0.000 .8036072 1.821151

(output omitted )

/sigbeta .0003872 .0000489 7.92 0.000 .0002904 .0004841
/covalphab~a -.012158 .001729 -7.03 0.000 -.0155819 -.0087341

Parameters with corrected standard errors below

Coef. Std. Err. z P>|z| [95% Conf. Interval]

sigalpha .4386704 .1706614 2.57 0.010 .1041801 .7731606
rho .3417541 .0361377 9.46 0.000 .2709254 .4125827

sigv1 .0742456 .0118533 6.26 0.000 .0510135 .0974776
sige .0301694 .0104324 2.89 0.004 .0097223 .0506164

l2 1.498371 .2208264 6.79 0.000 1.065559 1.931183
l3 1.312379 .2312379 5.68 0.000 .8591613 1.765597
l4 1.162531 .1944341 5.98 0.000 .7814474 1.543615
l5 1.193413 .1942618 6.14 0.000 .8126667 1.574159
l6 1.297056 .2167269 5.98 0.000 .8722795 1.721833
l7 1.279366 .2119609 6.04 0.000 .8639299 1.694801
l8 1.428739 .2584156 5.53 0.000 .9222535 1.935224
p2 .9842998 .0313717 31.38 0.000 .9228123 1.045787
p3 1.07534 .0433522 24.80 0.000 .9903711 1.160309
p4 1.08418 .050535 21.45 0.000 .9851328 1.183226
p5 1.148706 .0694794 16.53 0.000 1.012529 1.284883
p6 1.168077 .0789378 14.80 0.000 1.013362 1.322793
p7 1.205651 .0887034 13.59 0.000 1.031796 1.379507
p8 1.219382 .0922591 13.22 0.000 1.038558 1.400207
q2 .989772 .111584 8.87 0.000 .7710713 1.208473
q3 .7322496 .1311763 5.58 0.000 .4751487 .9893505
q4 .4866869 .1032265 4.71 0.000 .2843667 .689007
s2 .6293472 .0628975 10.01 0.000 .5060703 .7526241
s3 .8336288 .0684399 12.18 0.000 .6994891 .9677684
s4 1.214287 .0917179 13.24 0.000 1.034523 1.394051

sigbeta .0003872 .0001758 2.20 0.028 .0000426 .0007319
covalphabeta -.012158 .005614 -2.17 0.030 -.0231613 -.0011547

The parameters sigalpha to covalphabeta correspond to σ2
α, ρ, σ2

ν1, σ2
ǫ , λ2 . . . λ8,

p2 . . . p8, q2 . . . q4, s2 . . . s4, σ2
β , and σαβ . The cohort loadings show that the youngest

cohort (birthcoh = 4) has the lowest permanent variance and the highest transitory
variance. The variance of the random growth parameter, sigbeta, is significant, which
supports the heterogeneous growth-profiles model. The covariance between the random
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effect and the random growth parameter, covalphabeta, is negative and significant,
indicating that those with lower initial earnings have higher earnings growth rates.

Adding graph(1) as an option in the above command returns a graph of the pre-
dicted transitory and permanent components of inequality [calculated using (4) and (5)]
as well as the predicted and actual aggregate inequality, as shown below.
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The data for the predicted permanent and transitory components used in these graphs
are saved in e(perm1)–e(perm4) and e(temp1)–e(temp4).

Because researchers in this area sometimes report convergence problems, it is good
practice for users to experiment with a range of starting values by using the stvalue()

option to check the robustness of the reported parameter estimates. In the following
example, we use a starting value of ρ of 0.9, which is far away from our previous
parameter estimate. In this example, the model quickly converges to point estimates
that are practically identical to those reported earlier.

gmmcovearn yi, yearn(8) modeln(3) cohortn(4) firstyr(1994) cohortvar(birthcoh)
> expvar(potexp)
> stvalue(.5,.9,.1,.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,.01,-.01)
(obs = 144)

Iteration 0: residual SS = 5.183927
Iteration 1: residual SS = .6704438
Iteration 2: residual SS = .3053995
Iteration 3: residual SS = .0147202
Iteration 4: residual SS = .0079693
Iteration 5: residual SS = .0070087
Iteration 6: residual SS = .0070062
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Iteration 7: residual SS = .0070061
Iteration 8: residual SS = .0070061
Iteration 9: residual SS = .0070061
Iteration 10: residual SS = .0070061

Source SS df MS
Number of obs = 144

Model 2.16612446 26 .083312479 R-squared = 0.9968
Residual .007006143 118 .000059374 Adj R-squared = 0.9961

Root MSE = .0077055
Total 2.17313061 144 .015091185 Res. dev. = -1021.378

moment Coef. Std. Err. t P>|t| [95% Conf. Interval]

/sigalpha .4386703 .0605215 7.25 0.000 .3188213 .5585194
/rho .3417535 .0361787 9.45 0.000 .2701098 .4133973

/sigv1 .0742456 .0062163 11.94 0.000 .0619356 .0865557
/sige .0301693 .0112735 2.68 0.009 .0078446 .052494

/l2 1.498373 .2427693 6.17 0.000 1.017624 1.979122
/l3 1.312381 .2569215 5.11 0.000 .8036066 1.821156

(output omitted )

/sigbeta .0003872 .0000489 7.92 0.000 .0002904 .0004841
/covalphab~a -.012158 .001729 -7.03 0.000 -.0155819 -.0087341

Parameters with corrected standard errors below

Coef. Std. Err. z P>|z| [95% Conf. Interval]

sigalpha .4386703 .1706613 2.57 0.010 .1041804 .7731602
rho .3417535 .0361377 9.46 0.000 .270925 .412582

sigv1 .0742456 .0118533 6.26 0.000 .0510136 .0974777
sige .0301693 .0104324 2.89 0.004 .0097221 .0506165

l2 1.498373 .220828 6.79 0.000 1.065558 1.931188
l3 1.312381 .2312394 5.68 0.000 .8591603 1.765602
l4 1.162533 .1944351 5.98 0.000 .7814469 1.543618
l5 1.193415 .1942636 6.14 0.000 .8126652 1.574165
l6 1.297058 .2167281 5.98 0.000 .8722788 1.721837
l7 1.279368 .2119622 6.04 0.000 .8639294 1.694806
l8 1.428741 .2584167 5.53 0.000 .9222536 1.935228
p2 .9842999 .0313717 31.38 0.000 .9228124 1.045787
p3 1.07534 .0433522 24.80 0.000 .9903712 1.160309
p4 1.08418 .050535 21.45 0.000 .9851329 1.183226
p5 1.148706 .0694793 16.53 0.000 1.012529 1.284883
p6 1.168077 .0789377 14.80 0.000 1.013362 1.322793
p7 1.205651 .0887032 13.59 0.000 1.031796 1.379506
p8 1.219382 .092259 13.22 0.000 1.038558 1.400207
q2 .9897719 .111584 8.87 0.000 .7710713 1.208473
q3 .7322497 .1311767 5.58 0.000 .4751481 .9893513
q4 .4866869 .1032268 4.71 0.000 .2843661 .6890078
s2 .6293474 .0628975 10.01 0.000 .5060705 .7526243
s3 .8336278 .0684398 12.18 0.000 .6994883 .9677673
s4 1.214286 .0917179 13.24 0.000 1.034522 1.39405

sigbeta .0003872 .0001758 2.20 0.028 .0000426 .0007319
covalphabeta -.012158 .005614 -2.17 0.030 -.0231613 -.0011547
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6 Conclusion

Models of the earnings covariance structure are widely used in both labor economics
and macroeconomics. The most common approach to fitting these models entails the
use of GMM. However, there is no routine that allows for easy and fast estimation of
these models. gmmcovearn is a user-written Stata program that is designed to meet this
need.

The program first computes earnings variances and covariances from the raw data.
These sample moments, combined with appropriate population expressions are then
used with Stata’s nl command to recover the parameter estimates. The program uses
these parameter estimates to decompose aggregate inequality into its permanent and
transitory components and provides a graphical display of this decomposition.

The program has a number of attractive features. First, it is not written for one
specific data structure; it allows for balanced and unbalanced data and has flexibility
with respect to the number of time periods and the number of cohorts. In addition, a
wide range of models can be fit, covering the majority of those used in the empirical
literature. Moreover, it calculates standard errors that are correct for the given data
structure. The program also allows the user to easily experiment with alternative start-
ing values, which may be important in practice. These features combine to facilitate
easy and fast estimation of earnings covariance models.
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