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Abstract

In this paper, we consider the existence of quadratic Lyapunov functions for certain
types of switched linear systems. Given a partition of the state-space, a set of matrices
(linear dynamics), and a matrix-valued function A(x) constructed by associating these
matrices with regions of the state-space in a manner governed by the partition, we ask
whether there exists a positive definite symmetric matrix P such that A(x)T P +PA(x)
is negative definite for all x(t). For planar systems, necessary and sufficient conditions
are given. Extensions for higher order systems are also presented.
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1 Introduction

Recent years have witnessed great interest in stability problems arising from the study of
switched and hybrid systems [1]. In this area, state-dependent switching between linear
vector fields represents an important problem that arises frequently in practice, when the
rule for switching between the constituent linear systems of a switched system is governed
by the (current) state vector of the system, as is the case for piecewise linear systems [2] and
for the closely related class of complementarity systems [3]. Loosely speaking, the stability
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problems associated with this type of switching system can be divided into two classes. In
the first of these, the state-space is partitioned into a number of regions. This partition
determines the mode switches in the system dynamics, and the problem is to analyze the
stability of the time-varying system defined in this way. In the second class of problem,
one looks for state-dependent rules for switching between a family of unstable systems that
will result in stability. Thus, in the former case, a partition of the state-space is specified
and the problem is to determine the stability of the piecewise linear system defined by that
partition, while in the latter case, the aim is to find stabilizing state-dependent rules for
switching between potentially unstable systems. Before proceeding, it is worth pointing
out that problems in this latter category have been the subject of some discussion in the
hybrid system community. For example, [4, 5] have dealt with this problem with some
success. However, aside from some notable numerical approaches based on linear matrix
inequalities [6], the former problem has received considerably less attention. Our objective
in writing this paper is to begin the task of addressing this problem from a more theoretical
perspective. As this is our initial thrust in this direction, our study begins with a somewhat
simplified version of the aforementioned general problem. Specifically, we consider planar
systems where the state-space partition is constructed using rays passing through the origin
and different linear dynamics are active in the regions between these rays. Given this basic
set-up, we obtain necessary and sufficient conditions for the existence of quadratic Lyapunov
functions and then extend these results to special classes of higher-dimensional systems.

Our paper is structured as follows. We begin by defining the problem of interest and by pre-
senting some background material. Our main results are given in Section 3. After presenting
extensions to higher-dimensional systems in Section 4, we give the proofs of our main results
in Section 5.

2 Problem Description and Background

The motivation for our work arises from the study of stability of the switched system ẋ =
A(x)x, where A(x) takes discrete values {A1, A2, . . . , AN} depending on the current state
x(t). As the vector field defining such a system is discontinuous, solutions in the classical
ODE sense are not guaranteed to exist; however, Filippov solutions [7], defined via the
associated linear differential inclusion, will exist for our system class and it is to this solution
concept that our results apply. One method to deduce the stability of such a system is to
require the existence of a quadratic Lyapunov function V (x) = xT Px, P = P T > 0, such
that A(x)T P + PA(x) is negative definite for all x(t) ∈ R

n×n. This latter problem gives rise
to the linear algebraic problem considered in this paper.

Notation: Recall that a real matrix A is Hurwitz if its eigenvalues have negative real parts.
We will denote by Sn(R) the vector space of n × n real symmetric matrices, and by Pn(R)
the set of n × n real symmetric positive definite matrices. For a subset Ω ⊂ R

n we write
Int(Ω) to denote the (open) interior of Ω. A set Ω ⊂ R

n will be called a double cone with
apex at the origin if tx ∈ Ω for every x ∈ Ω and t ∈ R.
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Common quadratic Lyapunov functions: Given A ∈ R
n×n and P ∈ Pn(R), the function

V (x) = xT Px defines a quadratic Lyapunov function (QLF) for the dynamical system ẋ =
Ax if PA+ATP < 0. (We will often abuse notation and say that P is a QLF for A, meaning
that V (x) is a QLF for ẋ = Ax.) We define the set of all such QLF matrices as

L(A) := {P ∈ Pn(R) |PA + AT P < 0}.

L(A) is an open convex pointed cone in the space of Sn(R) [8]. A matrix P ∈ Pn(R)
is a common quadratic Lyapunov function (CQLF) for {A1, . . . , AN} if P belongs to the
intersection of the cones {L(A1), . . . ,L(AN)}. A solution to the CQLF existence problem in
R

2 is given as follows.

Theorem 1 [9,10] Let A1, A2 ∈ R
2×2 be two Hurwitz matrices. A necessary and sufficient

condition for the pair {A1, A2} to have a CQLF is that the matrices A−1
2 A1 and A2A1 do

not have real negative eigenvalues. An equivalent condition is that all convex combinations
of A1 and A2, and of A1 and A−1

2 , are Hurwitz.

The joint quadratic Lyapunov function problem: Given A ∈ R
n×n and Ω ⊂ R

n, define
the QLF set for the pair (A, Ω) as follows:

L(A, Ω) := {P ∈ Pn(R) | xT (PA + AT P )x < 0 ∀x ∈ Ω, x 6= 0}.

Note that L(A) ⊂ L(A, Ω) and hence if A is Hurwitz then L(A, Ω) is nonempty. The joint
QLF problem for a set of matrices Ai and regions Ωi is to find necessary and sufficient
conditions for a nonempty intersection of the sets {L(Ai, Ωi)}.

Problem statement: Let x1, x2 be two vectors in R
2 and define

Ω1 := {x = αx1 + βx2 |α and β ∈ R, αβ ≥ 0}. (1)

We will describe this region as the closed double cone in R
2 defined by the vectors x1 and

x2. Assume A1, A2 ∈ R
2×2 are Hurwitz matrices. We now state the two problems which are

solved in this paper.

Problem 1: Let Ω1 be a closed double cone of the form (1) and let Ω2 = R
2. Solve the

joint QLF problem for (A1, Ω1) and (A2, R
2). Equivalently, find necessary and sufficient

conditions for the existence of a P ∈ P2(R) such that the following are simultaneously
satisfied:

(i) xT
(

AT
1 P + PA1

)

x < 0, ∀x ∈ Ω1, x 6= 0;

(ii) AT
2 P + PA2 < 0.

3



Problem 2: Let Ω1 be a closed double cone of the form (1) and let Ω2 = R
2 \ Int(Ω1) (note

that Ω2 is also a closed double cone). Solve the joint QLF problem for (A1, Ω1) and (A2, Ω2).
Equivalently, find necessary and sufficient conditions for the existence of a P ∈ P2(R) such
that the following inequalities are simultaneously satisfied:

(i) xT
(

AT
1 P + PA1

)

x < 0, ∀x ∈ Ω1, x 6= 0;

(ii) yT
(

AT
2 P + PA2

)

y < 0, ∀y ∈ Ω2, y 6= 0.

3 Main Results

Below, we present the solutions to Problems 1 and 2. The proofs will be given in Section 5
along with some other related results. We denote by A(Ω) the image of the region Ω under
the action of the matrix A.

Theorem 2 (Solution to Problem 1) There exists a joint QLF for the pairs (A1, Ω1) and
(A2, R

2) if and only if the following conditions are satisfied:

(a) there is no convex combination of A1 and A2, or of A1 and A−1
2 , which has an eigen-

vector in Ω1 with non-negative eigenvalue;

(b) there is no convex combination of A−1
1 and A2, or of A−1

1 and A−1
2 , which has an

eigenvector in A1(Ω1) with non-negative eigenvalue;

(c) there is no nonzero y satisfying both equations
(

aA1 + bA−1
1 + cA2

)

y = 0,

ayyT + bA−1
1 yyT

(

A−1
1

)T
= d1x1x

T
1 + d2x2x

T
2 .

for some non-negative coefficients a, b, c, d1, d2.

Remark 1 Note that Conditions (a) and (b) strongly resemble the singularity conditions for
the CQLF problem in Theorem 1.

Given x1, x2 ∈ R
2, define

C12 = {ax1x
T
1 + bx2x

T
2 | a, b ≥ 0}.

Theorem 3 (Solution to Problem 2) There exists a joint QLF for the pairs (A1, Ω1) and
(A2, Ω2) if and only if all of the following conditions are satisfied:

(a) there is no convex combination of A1 and A2 which has an eigenvector in Ω1 ∩Ω2 with
non-negative eigenvalue;

(b) there is no convex combination of A1 and A−1
2 which has an eigenvector in Ω1∩A2(Ω2)

with non-negative eigenvalue;
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(c) there is no convex combination of A−1
1 and A2 which has an eigenvector in A1(Ω1)∩Ω2

with non-negative eigenvalue;

(d) there is no convex combination of A−1
1 and A−1

2 which has an eigenvector in A1(Ω1) ∩
A2(Ω2) with non-negative eigenvalue;

(e) there is no nonzero vector y ∈ Ω2 satisfying both equations

(aA1 + bA2 + cA−1
1 − dIn)y = 0,

ayyT + cA−1
1 yyT (A−1

1 )T ∈ C12

for some non-negative coefficients a, b, c, d;

(f) there is no nonzero vector x ∈ Ω1 satisfying both equations

(aA1 + bA2 + cA−1
2 − dIn)x = 0,

bxxT + cA−1
2 xxT (A−1

2 )T ∈ C12

for some non-negative coefficients a, b, c, d;

(g) there is no nonzero vector z ∈ A2(Ω2) satisfying both equations

(aA1 + bA−1
1 + cA−1

2 − dIn)z = 0,

azzT + bA−1
1 zzT (A−1

1 )T ∈ C12

for some non-negative coefficients a, b, c, d;

(h) there is no nonzero vector w ∈ A1(Ω1) satisfying both equations

(aA−1
1 + bA2 + cA−1

2 − dIn)w = 0,

bwwT + cA−1
2 wwT (A−1

2 )T ∈ C12

for some non-negative coefficients a, b, c, d;

(i) denote by S a 2 × 2 matrix of the form

S =

[

s11 s12

−s12 s22

]

,

where s11, s22 are non-negative. Define wi = A1xi, zi = A2xi for i = 1, 2. Then there
are no relations of the forms

[

axi

bzj

]

= S

[

xi

xj

]

[

awi

bzj

]

= S

[

wi

xj

]

[

axi

bwj

]

= S

[

zi

xj

]

[

axi

bxj

]

= S

[

wi

zj

]
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where a, b ≥ 0.

4 Extensions to the Higher-Dimensional Problem

We now indicate how our results can be extended to some higher-dimensional systems. Of
particular interest is the case of nonlinear single-input single-output (SISO) systems; namely,
when one has a pair of matrices in the joint QLF problem with rank one difference. While
a full treatment of this system class is beyond the scope of the current paper and is given
in [11], we provide here a flavour of extensions that are possible. We say that the matrix X

is generated by Ω if there are vectors x1, . . . , xk ∈ Ω such that X =
∑k

i=1 xix
T
i .

Theorem 4 Let A1, A2 ∈ R
3×3 be Hurwitz matrices with a rank one difference. Suppose that

Ω1 ⊂ R
3 is a double cone with apex at the origin and Ω2 = R

3. Then there is a joint QLF for
(A1, Ω1) and (A2, Ω2) if and only if there is no linear combination A2A1 + a2A−1

2 A1 + α2A2
2

with a real negative eigenvalue less than or equal to −a2α2, whose eigenvector has the form
y = (vT Xv)−

1

2 Xv for some matrix X generated by Ω1, where X satisfies the bound

X ≤ (1 + α2)yyT + k2(A2
2 + a2)−1

(

A2yyTAT
2 + a2yyT

)

(

(A2
2 + a2)T

)−1
. (2)

Remark 2 The conditions of Theorem 4 simplify considerably if Ω1 = C ∪ (−C), where C is
a convex cone and where vT x has the same sign for all x ∈ C. In this case, Xv is in Ω1 for
every X generated by Ω1 and thus in the statement of Theorem 4 we may use X = yyT so
that (2) is automatically satisfied.

The proof of Theorem 4 relies on the following dual formulation.

Lemma 1 Consider Ω1, . . . , ΩN ⊂ R
n such that Ωj = R

n for at least one j = 1, . . . , N .
Then the collection {(Aj, Ωj)} has a joint QLF if and only if there do not exist positive
semi-definite matrices X1, . . . , XN (not all zero) with Xi generated by Ωi for i = 1, . . . , N
such that

N
∑

i=1

AiXi + XiA
T
i = 0. (3)

Proof of Lemma 1 (⇐) If (3) holds, then for any positive definite matrix P ,

0 = TrP (

N
∑

i=1

AiXi + XiA
T
i ) =

N
∑

i=1

TrXi(PAi + AT
i P ).

Writing Xi =
∑

j xijx
T
ij with xij ∈ Ωi gives

0 =
∑

i,j

xT
ij(PAi + AT

i P )xij
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which contradicts the existence of a joint QLF.

(⇒) This is well-known for the case Ωj = R
n for all j = 1, . . . , N [12]. The main idea is to

define the dual cones

LD(Aj , Ωj) = {X ≥ 0 |X generated by Ωj , TrX(PAj + AT
j P ) ≤ 0}

and to view R
n×n as an inner product space by defining 〈A, B〉 = Tr(AT B). Then the

existence of a joint QLF for {(Aj, Ωj)} is equivalent to the existence of a hyperplane in R
n×n

with all cones LD(Aj, Ωj) on the same side. The condition that Ωj = R
n for at least one j

means that the normal vector to this hyperplane is a positive definite matrix. The condition
(3) is the obstruction to the existence of such a hyperplane. Hence if (3) is not satisfied then
there is a positive definite matrix P such that

TrP (AiXi + XiA
T
i ) < 0 for all i = 1, . . . , N

for all Xi generated by Ωi, and this implies the existence of a joint QLF. �

We now apply Lemma 1 with N = 2, n = 3, Ω2 = R
3 and assume that A1 − A2 = uvT is a

rank one matrix. Suppose that there is no joint QLF and consider (3):

A1X1 + X1A
T
1 + A2X2 + X2A

T
2 = 0.

This can be rewritten as

u(X1v)T + (X1v)uT + A2(X1 + X2) + (X1 + X2)A
T
2 = 0.

Since A2 is Hurwitz and X1 + X2 6= 0, X1v must be nonzero, and so vTX1v > 0. Define

y = (vT X1v)−1/2X1v.

It follows that X1v = yyTv and also X1 ≥ yyT . Define W = X1 + X2 − yyT , then

A1yyT + yyTAT
1 + A2W + WAT

2 = 0 (4)

where
X1 ≤ yyT + W. (5)

In general, the matrix W in (4) has rank three, hence there is some real α such that W−α2yyT

is positive semi-definite with rank two. For this value of α define

Z = W − α2yyT .

Then (4) can be written where

(A1 + α2A2)yyT + yyT (A1 + α2A2)
T + A2Z + ZAT

2 = 0. (6)
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Since Z is rank two, there are vectors z1, z2 such that Z = z1z
T
1 + z2z

T
2 . Using results of [8],

(6) can be solved in the following sense: there are real numbers a, b, c such that

A2z1 = az2 + by (7)

A2z2 = −az1 + cy (8)

(A1 + α2A2)y = −bz1 − cz2. (9)

The first two equations can be solved to find z1, z2 in terms of y:

z1 = (A2
2 + a2I)−1(bA2 + acI)y, z2 = (A2

2 + a2I)−1(cA2 − ab)y. (10)

Substituting into (9) leads to

(A1 + α2A2)y = −k2(A2
2 + a2I)−1A2y, k2 = b2 + c2.

This can be recast in the form

(

A2A1 + a2A−1
2 A1 + α2A2

2 + (α2a2 + k2)I
)

y = 0. (11)

Thus the non-existence of a joint QLF for this problem is equivalent to the existence of a
singular vector y = X1v satisfying (11), where X1 is generated by Ω1, and where (5) implies
that

X1 ≤ (1 + α2)yyT + z1z
T
1 + z2z

T
2 .

Using (10) the Lemma follows.

5 Proofs of the Results

In this section, we present proofs of Theorems 2 and 3. Our approach is essentially geometric
and we utilize the fact that the sets of Lyapunov functions that we are studying are convex.
Central to our approach is the notion of tangential hyperplanes and graphical representations
of the sets. We first briefly review these concepts.

Tangent hyperplanes at L(A): If P0 is in the boundary of L(A) then P0A + AT P0 ≤ 0
and has a non-empty kernel. Let x0 be a vector in the kernel of P0A + AT P0, then

xT
0 (AT P0 + P0A)x0 = 2xT

0 P0Ax0 = 0. (12)

The set H = {P ∈ Sn(R) | xT
0 PAx0 = 0} is a linear subspace in Sn(R). Since H does not

intersect the QLF set L(A) but does intersect its boundary, it follows that H is tangent to
L(A). Recall that Sn(R) is isomorphic to R

n(n+1)/2, and is equipped with the inner product
〈A, B〉 = TrAT B. Thus the hyperplane H can be described by its normal vector H⊥ ∈ Sn(R):

H = {P ∈ Sn(R) | 〈P, H⊥〉 = 0}.
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Comparison with (12) shows that H⊥ = Ax0x
T
0 +x0x

T
0 AT . Furthermore, the set L(A), being

convex, lies on one side of H , and we note that the normal vector H⊥ is directed away from
it. For two-dimensional systems, every tangent plane to the set L(A) has the form described
above with a normal vector AxxT +xxT AT for some vector x in the plane. This is because in
two dimensions the kernel of the matrix P0A + AT P0 can be at most one-dimensional. Thus
the situation described above applies and leads to the tangent plane of the stated form.

Separating tangential hyperplanes: If A1 and A2 are Hurwitz matrices for which L(A1)
and L(A2) are disjoint then A1 and A2 do not have a CQLF. Since L(A1) and L(A2) are
convex sets, there is a separating hyperplane between these sets and this hyperplane may be
chosen to be a simultaneous tangent plane for both sets. Supposing that this tangent plane
has the form described above then there are vectors x and y such that the normal vector for
the plane is A1xxT + xxT AT

1 at L(A1) and A2yyT + yyTAT
2 at L(A2). Furthermore, since

the plane separates the QLF sets, these normals must be oppositely oriented, hence there is
a positive constant k such that

A1xxT + xxT AT
1 = −k(A2yyT + yyTAT

2 ). (13)

Equivalently, for all symmetric matrices Q ∈ R
n×n, we have

xT QA1x = −kyTQA2y.

The following result allows us to solve this equation.

Lemma 2 [13] Let x, y, u, v be four nonzero vectors in R
n such that for all symmetric

matrices Q ∈ R
n×n, xT Qy = −kuT Qv with k > 0. Then, either

x = αu for some real scalar α and y = −

(

k

α

)

v, or

x = βv for some real scalar β and y = −

(

k

β

)

u.

Lemma 2 implies that some convex combination of A1 and A2, or of A1 and A−1
2 , is singular.

Graphical representations of Lyapunov functions in two dimensions: It is possible
to represent scaled symmetric matrices Q ∈ S2(R) by points in a plane. Each point (q12, q22)
defines a symmetric matrix by

Q =

[

1 q12

q12 q22

]

. (14)

Symmetric matrices whose (1, 1) entry is nonzero can be re-scaled to this form and matrices
whose (1, 1) entry is zero lie in the closure of this set. Figure 1 depicts three points and
the parabola q22 = q2

12. Points on the parabola (eg: Q3) correspond to positive semi-definite
matrices. Points on the positive side of the locus (eg: Q1) correspond to positive definite
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matrices and points on the negative side of the locus (eg: Q2) correspond to indefinite
matrices. Under the assumption that A is not a triangular matrix, the projection of a set
L(A) in the (q12, q22)-plane corresponds to the interior of an ellipse [9]. Figure 1 also shows
a projection of the tangent hyperplane {P | xT PAx = 0} onto the (q12, q22)-plane, where it
appears as a tangent line to the ellipse representing L(A).

q
12

L(A)

0

0 1-1

1

2

q
22

q
22 

= q
12

2

Q
2

Q
1

Q
3

xTPAx = 0

Figure 1: Graphical representation of symmetric matrices.

Tangent hyperplanes at L(A, Ω): Now let Ω ⊂ R
2 be the closed double cone defined by

two vectors x1, x2. Then the set L(A, Ω) lies between the hyperplanes H1 := {P | xT
1 PAx1 =

0} and H2 := {P | xT
2 PAx2 = 0}, and these hyperplanes are tangent to the set. Examples

of possible configurations are shown in Figures 2 and 3. As noted, every tangent line to the
ellipse L(A) has the form {P | xT PAx = 0} for some x ∈ R

2. As x varies between x1 and x2,
the tangent line varies from H1 to H2. As a consequence, any line {P | xT PAx = 0} which
is tangent to L(A) is also tangent to L(A, Ω) when x ∈ Ω. In general, a tangent line may
intersect the boundary of a set L(A, Ω) in one of three ways, as listed below. In each case
we also describe the normal matrix defining the tangent plane:

(i) at a point that lies on the boundary of L(A). The normal is

AxxT + xxT AT (15)

for some x ∈ Ω;

(ii) at the point where the lines defined by H1 and H2 intersect. Thus the tangent line is
a convex combination of H1 and H2 and so its normal is

k2(Ax1x
T
1 + x1x

T
1 AT ) + l2(Ax2x

T
2 + x2x

T
2 AT ) (16)

for some k, l ∈ R;
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q
12

0

0 1-1

1

2

q
22

q
22 

= q
12

2

(c)
(a)

L(A
2
,Ω

2
)

L(A
1
,Ω

1
)

x
1

TPA
1
x

1
=0

x
2

TPA
1
x

2
=0

x
1

TPA
2
x

1
=0

x
2

TPA
2
x

2
=0

q
12

0

0 1-1

1

2

q
22

q
22 

= q
12

2

(b)

L(A
1
,Ω

1
)

L(A
2
,Ω

2
)

Figure 2: Separating tangential hyperplanes: Types (a), (b) and (c).

(iii) at a point that corresponds to where one of the lines defined by H1 or H2 intersects
the “parabola” of semi-definite matrices. The tangent line is a convex combination of
Hi (i ∈ {1, 2}) and the tangent to the parabola. The tangent to the parabola is either
xT

i Pxi = 0 or (Axi)
T PAxi = 0, with corresponding normal vectors xix

T
i or Axix

T
i AT

directed towards the positive definite side of the parabola. Hence, the normal is one
of the following:

k2(Ax1x
T
1 + x1x

T
1 AT ) − l2x1x

T
1 ; (17)

k2(Ax1x
T
1 + x1x

T
1 AT ) − l2Ax1x

T
1 AT ;

k2(Ax2x
T
2 + x2x

T
2 AT ) − l2x2x

T
2 ;

k2(Ax2x
T
2 + x2x

T
2 AT ) − l2Ax2x

T
2 AT .

We now state and prove a preliminary result which contains many of the essential ideas and
is of independent interest.

Theorem 5 Let A1, A2 ∈ R
2×2 be Hurwitz matrices and Ω1 be a closed double cone of the

form (1).

(i) Suppose that Ω2 = R
2. A necessary condition for the existence of a joint quadratic

Lyapunov function P ∈ P2(R) for the pairs (A1, Ω1) and (A2, Ω2) is that there is no
convex combination of A1 and A2, and no convex combination of A1 and A−1

2 , which
has an eigenvector in Ω1 with non-negative eigenvalue.

(ii) Suppose that Ω2 = R
2 \ Int(Ω1). A necessary condition for the existence of a joint

quadratic Lyapunov function P ∈ P2(R) for the pairs (A1, Ω1) and (A2, Ω2) is that
there is no convex combination of A1 and A2 which has an eigenvector in Ω1 ∩ Ω2

with non-negative eigenvalue, and no convex combination of A1 and A−1
2 which has an

eigenvector in Ω1 ∩ A2(Ω2) with non-negative eigenvalue.
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q
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Figure 3: Separating tangential hyperplanes: Types (d), (e) and (f).

Furthermore, these conditions are sufficient in each case to ensure that, for any x ∈ Ω1 and
any y ∈ Ω2, no separating tangential hyperplane of the form described by (13) exists between
L(A1, Ω1) and L(A2, Ω2).

Proof of Theorem 5 (⇒) Let σα[A1, A2] := αA1 + (1 − α)A2, where α ∈ [0, 1]. Suppose
that P is a joint QLF for the pairs (A1, Ω1) and (A2, R

2). It follows that P is a QLF for
(σα[A1, A2], Ω1), for all α ∈ [0, 1], since:

α(AT
1 P + PA1) + (1 − α)(AT

2 P + PA2) = σα[A1, A2]
T P + Pσα[A1, A2]

and if xT (AT
1 P + PA1)x < 0, ∀x ∈ Ω1, x 6= 0 and AT

2 P + PA2 < 0 then xT (σα[A1, A2]
T P +

Pσα[A1, A2])x < 0, ∀x ∈ Ω1, x 6= 0. This immediately implies that there is no convex
combination of A1 and A2 which has an eigenvector x in Ω1 corresponding to an eigenvalue
λ ≥ 0. To see this, suppose that σα[A1, A2]x = λx for some α ∈ [0, 1], x ∈ Ω1, λ ≥ 0. Then
xT Pσα[A1, A2]x = λxT Px ≥ 0 which is a contradiction. Necessity in the other instances
follows in a similar manner by setting ŷ = A2y, where y ∈ R

2 is nonzero, for example and
noting that the inequalities yT (AT

2 P +PA2)y < 0 and ŷT (A−T
2 P +PA−1

2 )ŷ < 0 are equivalent.
Then P is a QLF for (A2, R

2) if and only if P is a QLF for (A−1
2 , R2).

(⇐) Suppose that there does not exist a joint QLF for the pairs (A1, Ω1) and (A2, R
2). Then

there exists a separating tangential hyperplane between the sets L(A1, Ω1) and L(A2, R
2).

One of these separating tangential hyperplanes may be of the form described by (13) with
x a nonzero vector in Ω1 and y a nonzero vector in R

2. From Lemma 2, either

x = r1y and A1x = −
k

r1

A2y (18)

for some real scalar r1, or

x = r2A2y and A1x = −
k

r2

y (19)
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for some real scalar r2. Suppose that (18) is the solution. Then
[

A−1
2 A1 +

(

k
r2

1

)

I
]

x = 0

which means that A−1
2 A1 has eigenvectors in Ω1 with real negative eigenvalues. Alterna-

tively,
[

A1 +
(

k
r2

1

)

A2

]

x = 0 meaning that there exists a convex combination of A1 and

A2 which has eigenvectors in Ω1 and is singular. Suppose that (19) is the solution. Then
[

A2A1 +
(

k
r2

2

)

I
]

x = 0 which means that A2A1 has eigenvectors in Ω1 with real negative

eigenvalues. Alternatively,
[

A1 +
(

k
r2

2

)

A−1
2

]

x = 0 meaning that there exists a convex com-

bination of A1 and A−1
2 which has eigenvectors in Ω1 and is singular. Sufficiency for the

other case follows in a similar fashion. �

Remark 3 The conditions presented in Theorem 5 are necessary but generally not sufficient
for determining joint QLF existence.

Proof of Theorem 2 (⇐) We exploit an idea similar to Theorem 5. Assume that the sets
L(A1, Ω1) and L(A2, R

2) are disjoint. These are open convex sets and we will assume initially
that their closures are also disjoint. (At the end of the proof we consider the case where
their closures may intersect.) We denote their closures by L(A1, Ω1) and L(A2, R2). Using
the representation (14) and the fact that L(A1, Ω1) and L(A2, R2) are disjoint closed convex
sets and one of them is bounded, ie: L(A2, R2), it follows that there are infinitely many lines
in the plane which separate these sets. Among these separating lines are two extreme cases
which are simultaneously tangential to both sets. A line which is simultaneously tangential
to the sets L(A1, Ω1) and L(A2, R2) can be described in terms of two normal vectors in the
space of symmetric matrices. These normal vectors must be oppositely directed since by
assumption there is no joint QLF for the sets. The six possible types of tangent lines to the
set L(A1, Ω1) are described by (15), (16) and (17). Every tangent line to L(A2, R

2) can be
described by A2yyT +yyTAT

2 for some y ∈ R
2. Setting a convex combination of these normal

vectors to zero leads to the six possible cases listed below:

(i) A2yyT + yyTAT
2 + k2(A1x1x

T
1 + x1x

T
1 AT

1 ) + m2(A1x2x
T
2 + x2x

T
2 AT

1 ) = 0;

(ii) A2yyT + yyTAT
2 + k2(A1x1x

T
1 + x1x

T
1 AT

1 ) − m2x1x
T
1 = 0;

(iii) A2yyT + yyTAT
2 + k2(A1x1x

T
1 + x1x

T
1 AT

1 ) − m2A1x1x
T
1 AT

1 = 0;

(iv) A2yyT + yyTAT
2 + k2(A1x2x

T
2 + x2x

T
2 AT

1 ) − m2x2x
T
2 = 0;

(v) A2yyT + yyTAT
2 + k2(A1x2x

T
2 + x2x

T
2 AT

1 ) − m2A1x2x
T
2 AT

1 = 0;

(vi) See (13).

These six equations lead to the singularity conditions of Theorem 2, as follows. Equation (i)
can be solved by first writing X = k2x1x

T
1 + m2x2x

T
2 so that it becomes

A2yyT + yyTAT
2 + A1X + XAT

1 = 0. (20)

If X is semi-definite then this is a special case of Equation (vi), which we discuss shortly. If
X is positive definite then there is a unique λ > 0 and vector w such that

X = λyyT + wwT . (21)

13



Inserting this into (20) gives

(A2 + λA1)yyT + yyT (A2 + λA1)
T + A1wwT + wwTAT

1 = 0.

Applying Lemma 2 (and noting that y 6= w) yields

(A2 + λA1 + αA−1
1 )y = 0

for some λ, α > 0. Together with (21) this leads to Condition (c) of Theorem 2.

Equations (ii) and (iv) are alike and lead to similar conditions. Equation (ii) can be written
as

A2yyT + yyTAT
2 +

(

(

k2A1 −
m2

2
In

)

x1x
T
1 + x1x

T
1

(

k2A1 −
m2

2
In

)T
)

= 0

where In is the n × n identity matrix. If y is parallel to x1 this leads to (k2A1 −
m2

2
In +

αA2)x1 = 0 which is a special case of Condition (a). If y and x1 are not parallel this leads
to (k2A1 −

m2

2
In +αA−1

2 )x1 = 0 which is again a special case of Condition (a). Equation (iv)
leads to identical conclusions with x1 replaced by x2 and so also leads to Condition (a).

Equations (iii) and (v) are also alike. Equation (iii) can be written as

A2yyT + yyTAT
2 +

(

k2A−1
1 −

1

2
m2In

)

A1x1x
T
1 AT

1 + A1x1x
T
1 AT

1

(

k2A−1
1 −

1

2
m2In

)T

= 0.

If y and x1 are parallel this leads to (k2A−1
1 − m2

2
In + αA2)A1x1 = 0 which is a special case

of Condition (b). If y and x1 are not parallel it leads to (k2A−1
1 − m2

2
In + αA−1

2 )A1x1 = 0
and this again is a special case of Condition (b). Similar reasoning applies to Equation (v).

Equation (vi) was dealt with in Theorem 5 and leads to Condition (a). This concludes
the argument by showing that all possible cases of simultaneous tangent lines are covered by
Conditions (a), (b) and (c). Since the existence of these lines is equivalent to the disjointness
of the sets L(A1, Ω1) and L(A2, R2), this shows that the conditions are sufficient to distinguish
the two sets. In the case where L(A1, Ω1) and L(A2, R

2) are disjoint but with intersecting
boundaries again there must be at least one simultaneous tangent hyperplane. So the above
reasoning applies again and leads to the same conclusions.

(⇒) Necessity follows in a fashion similar to in the proof of Theorem 5. Note that Condition
(c) is equivalent to the existence of y, X satisfying (20). �

Outline of proof of Theorem 3 The strategy is the same as for Theorem 2. That is, we
identify lines in the plane which can be simultaneously tangent to both of the sets L(A1, Ω1)
and L(A2, Ω2). For these lines, we equate the normal vectors to the tangents of both sets,
and this leads to the (many) spectral conditions in the Theorem. �
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6 Conclusions and Future Work

In this paper we have presented a framework for solving joint quadratic Lyapunov function
problems for continuous time linear state-dependent switching systems. A detailed exposition
for planar systems is given, and we indicate how these results can be extended to higher-
dimensional systems. These latter conditions will be explored in companion papers.
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