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Abstract—Virtual metrology is the prediction of metrology
variables using easily accessible process variables and mathe-
matical models. Because metrology variables in semiconductor
manufacture can be expensive and time consuming to measure,
virtual metrology is beneficial as it reduces cost and throughput
time. This work proposes a virtual metrology scheme that uses
sliding-window models to virtually measure etch rates in an
industrial plasma etch process. The windowed models use partial
least squares (PLS) regression and a sample weighting scheme
to combat the effects of both process drifts due to machine
conditioning and process shifts due to maintenance events. An
industrial data set is examined and the weighted windowed PLS
models outperform global models and non-weighted windowed
models.

I. INTRODUCTION

Plasma etching is a semiconductor manufacturing process
where material is removed in exact amounts from the surface
of silicon wafers. Etchant gases in plasma form are directed
towards the wafer surface using electric and magnetic fields,
where they react and evaporate to remove matter. Plasma
etching is preferred to wet etching methods as it is capable of
producing a highly anisotropic etch, allowing deep and narrow
trenches to be etched into the wafer surface [1].

Plasma etching is performed in etching chambers, where
conditions are monitored carefully, and etchant gases are
introduced in exact quantities to form plasma. The etch rate is
the rate at which material is removed from the wafer surface. It
is important to control and monitor the etch rate as precisely
as possible since the ultimate trench depth and profile has
a dramatic impact on the performance of the devices being
produced. In-situ measurements of etch rate and etch depth
are expensive, time consuming, and invasive, sometimes re-
quiring destruction of the device. Hence, measurements are not
available to machine operators without considerable metrology
delay and it is not practical for fabrication plants to measure
every wafer processed. Control is difficult to implement under
such conditions and machines running out of specification
without detection can lead to days of useless produce.

Fortunately a great deal of information is available from the
etch chambers as each wafer is processed. This information
includes the temperatures, pressures, gas flows, and electrical

signals that are easily monitored during processing. The aim
of virtual metrology (VM) techniques is to find mathematical
relationships between these easily measured variables and the
variables of interest such as the etch rate or etch depth.

Since it enables process monitoring with low overhead, VM
is gaining increased interest in semiconductor manufacturing
of late in an attempt to increase process control and reduce
cycle time and cost. As Moore’s law drives component dimen-
sions smaller and smaller [2], there is an urgent requirement
for more accurate control of fabrication processes. Fab wide
VM schemes have been suggested that allow feed forward
and feedback of information between different processes [3].
However, the individual VM schemes for each process are not
trivial. Due to the complexities of the plasma etching process,
it is notoriously difficult to model and predict, with more
challenges arising with emerging technologies and techniques
[4]. Some work has focussed on the prediction of contam-
ination in plasma etching chambers [5], and a great deal of
work has been completed on endpoint detection from ancillary
variables [6] [7]. A comprehensive review of virtual metrology
in plasma etch can be found in [8].

Plasma etch modelling is further complicated by regular
preventative maintenance (PM) cycles that aim to maintain the
equipment to a high standard. Unfortunately these maintenance
events can have a pronounced effect on the behaviour of the
etch chambers. Relationships between variables can change
dramatically, and substantial changes and unpredictable shifts
in etch rate are observed. These changes in system behaviour
can invalidate models built upon previous measurements,
increasing the difficulty of delivering accurate predications
of etch rate. Along with this complication, the etch cham-
bers exhibit considerable process drift during processing. The
physical properties of the chamber are changed by chemicals
deposited on the chamber walls after each wafer etched, and
this ultimately affects the etch response. A sample variable
that exhibits PM shifts and process drift is shown in Figure 1

Previous work has examined the disaggregation of datasets
to combat the effect of PM events [9] and to identify key
process variables from datasets [10]. This paper focuses on the
VM of etch rate using sliding-window modelling methods to
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Fig. 1. Normalised variable value from etch process that exhibits shifts due
to maintenance events and drift due to chamber conditioning.

achieve better results. A novel weighted windowed PLS tech-
nique is developed that incorporates maintenance information
into the VM scheme.

The remainder of this paper is set out as follows: Section
II describes the mathematical techniques used to model the
plasma process, Section III examines the modelling schemes
investigated, Section IV details structure of the data used
for the investigations, Section V shows the modelling results
achieved and finally the conclusions are given in Section VI.

II. MODELLING TECHNIQUES

Partial least squares (PLS) is chosen as the modelling
technique for this analysis. PLS is a mathematical technique
used for the modelling of input-output processes. Originally
developed for the field of econometrics, PLS is finding uses
in many industries as of late, and has advantages over other
regression methods in applications where a large number of
collinear regressor variables are available to model a system
where a mathematical relationship cannot easily be described.
In these cases with many variables, few samples, and ill-
understood relationships, techniques such as multiple linear
regression (MLR) can produce erroneous predictions [11]
[12]. In our work, a weighting factor is incorporated to the
modelling process to take machine maintenance events into ac-
count. This section describes PLS, weighted least squares, and
the combination of these techniques to achieve the weighted
PLS algorithm.

A. Partial Least Squares

Systems with a large number of regressor variables often
contain only a small number of underlying or latent factors
that account for variations in the output. The aim of PLS
is to extract these latent factors and model the responses.
This is similar to principal component analysis (PCA), an
unsupervised statistical technique where the latent factors that
describe the variance within a data set, known as principal
components, are extracted. PCA decomposes a data matrix,
Xn×m, made up of n samples and m variables, as the sum of

the outer product of vectors ti and pi plus a residual matrix
E [6].

X = t1pT
1 + t2pT

2 + ... + tlpT
l + E (1)

= TPT + E (2)

where,

T = [t1, t2, ...tl] (3)
P = [p1, p2, ...pl] (4)

and l is the number of principal components. The vectors ti
are known as the scores and T ∈ Rn×l the score matrix;
the pi vectors are the loadings and P ∈ Rm×l the loadings
matrix. For PCA, the decomposition of X is such that the
columns of the loading matrix P are orthonormal and columns
of the score matrix T are orthogonal. The first component is
the linear combination of the m original variables that explains
the greatest amount of variability (t1 = Xp1). For a matrix X
of rank r, r principal components can be calculated. However,
the first l (l < r) of these may be sufficient to explain the bulk
of the variance in the data. If l = rank(X), then E = 0, and
the representation of the data is exact for the new variables
[13].

However, PCA is an unsupervised technique in which the
data matrix is decomposed with no reference to any output
variables. PLS attempts to remedy this situation by decom-
posing the output variables simultaneously and choosing the
scores so that the relationship between successive pairs of
scores is as strong as possible.

Hence, given a system with an input matrix Xn×m, and
an output matrix Yn×k, where k is the number of output
variables, X and Y are decomposed simultaneously as

X = TPT + E and (5)

Y = UQT + F (6)

where U, Q, and F are the output matrix score, loading and
residual matrices. These two decompositions are tied by an
inner relationship, ui = biti, such that the X-loadings are
rotated to maximise the covariance between the X-scores and
the Y-scores. The mixed relationship can be written as

Ŷ = TBQT + F, (7)

where F is to be minimized to predict the output as accurately
as possible [14]. T are the latent vectors, decomposed from
X. If their number is equal to the rank of X, they perform
an exact decomposition of X as in PCA. It should be noted
however, that they only estimate Y, hence the notation Ŷ. For
the purposes of this work, the number of components retained
in the model is optimised using a set of validation data not used
in the determination of the PLS model. The validation data is a
set that is randomly chosen from the training data before the
PLS model is determined. The number of components that
produces the lowest validation data error is kept in the PLS
model. Error values for typical training and validation sets are
shown in Figure 2.

272



0 20 40 60 80 100 120 140 160 180
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Components

M
S

E

 

 

Validation data error

Training data error

Optimal number of variables

Model is overtrained

Training error decreases
monotonically 

Fig. 2. Typical mean squared error (MSE) curves generated during PLS
model training. Notice that as the model becomes overfitted on the training
data, the validation error increases. The number of components retained in
the model is at the point of minimum validation error.

There are a number of different techniques used to perform
PLS on a given dataset. For the purposes of this paper, the non-
iterative partial least squares (NIPALs) algorithms is used, as
described in [15].

B. Weighted Linear Regression

Multiple Linear Regression (MLR) is a linear method that
attempts to model the relationship between two or more
regressor variables and an output variable by fitting a linear
equation to the observed data. This leads to a model of the
form

y = β0 + β1x1 + . . . + βmxm (8)

being fit to each data point. Here, y is a measured output and
x1 . . . xm are system inputs that can be used as regression
variables. We denote the data points to be

yi, xi,1, xi,2, . . . , xi,m, i = 1, ...n

The output observations yi will be represented by the vector y,
the unknown model parameters, β0, β1, . . . , βm by the vector
β, and the data matrix Xn×(m+1) takes the form:

X =




1 x1,1 x1,2 . . . x1,m

1 x2,1 x2,2 . . . x2,m

...
...

...
...

...
1 xn,1 xn,2 . . . xn,m


 (9)

Hence for a given β, the vector of predicted values ŷ is
given by

ŷ = Xβ (10)

We wish to find β such that the sum of squared residuals,

S =
n∑

i=1

e2
i = eT e = (y− Xβ)T (y− Xβ), (11)

is at a minimum. S is minimised when its gradient with respect
to β is zero. Since

S(β) = yT y− 2βT XT y + βT XT Xβ, (12)

then
δS

δβ
= −2XT y + 2XT Xβ = 0, (13)

which we can rearrange as

(XT X)β = XT y. (14)

These normal equations can be solved to give a unique
solution for β provided that XT X is nonsingular [16].

In some applications, it can be shown that some of the
observations used in a regression analysis are less reliable than
others [17], e.g. the variances of all the observations are not
equal or the observations are correlated. A modified approach
to the MLR algorithm can be taken to ensure that the best β
can be found for this situation.

In this case, the sum of squared residuals to the minimised
is given by

S =
n∑

i=1

Wiie
2
i = (y− Xβ)T W (y− Xβ) (15)

where W is a diagonal matrix of the weights applied to
each of the samples i = 1, 2, · · · , n. In many applications
these weights are inversely proportional to the variance of
the samples involved in the regression. Following the same
calculations as before and expressing the equations in matrix
form yields

(XT WX)β = XT Wy (16)

which can again be solved for a unique solution of β.

C. Weighted PLS

The weighted PLS algorithm employed in this work uses a
combination of PLS and weighted least squares. For systems
with a single output variable, PLS can be visualised as a
regression procedure where the scores T generated from the
input matrix X are used as regressor variables to predict
the output variable contained in Y. As Y contains only one
variable, it is not decomposed into loading and score matrices.
In this case, the inner-relation for the PLS algorithm can be
simply described as

Y = Tβ̄, (17)

where β̄ is normally found using the linear least squares
algorithm. A weighted PLS system can be developed by
introducing weights to this least squares problem. Each sample
score determined through the PLS algorithm can be assigned
a weight depending on some criteria, and the parameters β̄
can be determined instead using the weighted linear regression
method. Hence β̄ is given by

β̄ = (TT WT)−1TT Wy (18)

where W is a diagonal matrix of weights relevant to each sam-
ple contained in T. The weights applied should be determined
through engineering knowledge of the system or through
knowledge of differing conditions under which samples were
collected.
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III. PLASMA ETCH MODELLING

Four different modelling methods are examined and com-
pared in this work. This section explains the differences
between each method investigated.

1) Global Modelling: Global models describe models that
are built using a set of training data and are used to predict
all future wafers. These models do not update over time, and
are suitable for systems that do not vary in time or radically
change behaviour. The PLS algorithm is applied only once at
initialisation using the training dataset. Preferably, the training
data set is chosen so that it captures the main behaviour of the
system and future activity is assumed to operate in the same
regime.

2) Sliding window model: Sliding window models begin
with a training dataset and are used to predict future wafers
until new information becomes available. When more mea-
surements are made, the oldest information in the training set
is disregarded and the model is retrained, taking the newest
information into account. These models are trained using the
PLS algorithm every time new information becomes available.
Techniques exist to incorporate new information into PLS [12]
and PCA [18] [19] matrices, and are often referred to as
recursive or adaptive PCA and PLS methods. For the purposes
of this work, the PLS models are retrained when a new sample
is introduced.

3) Weighted sliding window model: In this case the
weighted PLS technique is applied when training the models
for each window. The weights applied to each sample are
determined depending on their relevance to the sample at the
front of the window. The sample weights vary in accordance
with the tool maintenance history to satisfy two assumptions.
Firstly, due to process drift, it is assumed that samples closer
to the front of the window are more relevant for prediction.
Secondly, it is assumed that samples contained within the same
PM cycle as the target sample are more relevant than samples
from previous PM cycles.

In order to fulfill these assumptions, samples are first as-
signed a linearly decreasing weight across the window length,
with the most recent sample given a weight of 1 and the oldest
samples a weight of 0. Next the samples weights are adjusted
according to the number of PM cycles spanned by the window
length. The samples contained in the most recent PM cycle
are first incremented, and older PM cycles are incremented
by progressively lesser amounts. For example, in a window
that spans three PM cycles, 2 is added to the samples in the
most recent PM cycle, 1 to the second most recent, and 0 to
the oldest PM cycle. This scheme leads to a weighting profile
shown in Figure 3. To increase the effect of the weighting
scheme, the weights are exponentially transformed to the
profile shown in Figure 4.

4) Weighted sliding window model with recursion: As
a final addition to the modelling structure, an element of
recursion is incorporated to the weighted regression. As there
is some level of autocorrelation observed in the etch rate
signal, previous values of etch rate yi−1 are added as regressor
variable to the weighted regression that is performed during
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Fig. 4. Weighting profile for window size of 90 samples after exponential
transformation.

model training for ŷi. Effectively the etch rate signal is shifted
by one sample and used as another regressor, such that the etch
rate measurement for the first sample y1 is used to predict the
second etch rate ŷ2, the etch rate measurement from the second
sample y2 is used to predict the third ŷ3 etc.

The PLS scores and the weighting scheme are calculated as
before. However in this case, instead of simply regressing the
PLS scores to the current etch rate, the PLS scores and the
one sample shifted etch rates values are now used to model
the new etch rate.

IV. DATASET DESCRIPTION

Over a period of six months, etch process (EP) data from
a five-step industrial trench etch process was collected from
an etch chamber. In total, process data for 18524 wafers was
collected. This dataset spans 18 PM cycles in total. The EP
data collected consists of over 90 different variables such as
time series measurements of power delivered to the chamber,
matchbox inductor positions, internal chamber temperatures,
gas flow rates, and end point times. Time series measurements
were reduced to mean and standard deviation values for each
step. As the main trench etch occurred in one of the later
steps of the etch process, the variables from these steps were
used for the analysis. Through visual inspection and further
engineering knowledge, the variables were reduced to a set of
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28 variables that were thought to be of most importance to the
etch process. All variables were mean centered and variance
normalised before analysis.

Of the 18524 wafers collected, 794 wafers were measured
optically downstream from the etch process. This corresponds
to a measurement frequency of 4.3%. The etch rate for each
wafer is determined by dividing the measured etch depth by
the main trench etch time. The etch rate values are incorpo-
rated into the dataset, and are aligned with the respective EP
data.

Due to errors with recording instruments and glitches with
machinery, a number of erroneous values were recorded.
Hotelling’s T 2 statistic was used to identify clear outliers in
the dataset and those points were removed. As a result, some
gaps in the data exist where wafers were processed but no data
is available, but unfortunately this is unavoidable.

V. RESULTS

The models described in Section III are applied to the etch
dataset using window lengths between 30 and 350 samples.
The window lengths describe the number of past samples used
to train PLS models for the prediction of each wafer. In the
case of global models, the window size specifies the number
of wafers used initially to create the model.

As an error metric, the mean squared error (MSE) for the
fitted model is given by

MSE =
1
n

n∑

i=1

e2
i (19)

A larger MSE value for a model indicates a worse fit than one
with a lower MSE. The MSE for a model has units equal to
the square of the original quantity units.

The coefficient of determination, R2, is also provided as a
measure of how well future outcomes may be predicted by the
developed model. The R2 statistic has values between 0 and 1
and is defined as

R2 = 1−
∑n

i=1 e2
i∑n

i=1(yi − ȳ)2
, (20)

with ȳ denoting the mean of the observed output values. R2

gives some information about the goodness of fit of a model.
For a linear fit, an R2 of 1 indicates that the regression line fits
the data perfectly. The R2 statistic is equivalent to the square
of the correlation between the real and fitted values, y and ŷ.

The MSE for each model type over a range of window
sizes is depicted in Figure 5. The large MSEs recorded for
global models over the window lengths investigated show that
the global models fail at successfully modelling the etch rate
variations. A more detailed view of the MSE results for the
other modelling techniques is provided in Figure 6. The R2

values for each of the techniques are shown in Figure 7. We
can see from these figures that the weighting scheme notice-
ably increases the accuracy of the windowed PLS models.
Further improvements are observed with the incorporation of
recursion in the model. The weighted windowed models that
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Fig. 5. Mean squared error values for all model types over a range of window
lengths.
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incorporate recursion perform consistently better than all of
the other model structures.

The best results were recorded for a window length of
270 wafers that spanned 7 PM cycles. This window length
predicted the actual etch rate for the remaining 524 wafers with
a MSE of 0.255 and R2 of 0.734. The predictions and actual
etch rate for this model and a similarly trained global model
are shown on the same axis in Figure 8. A graphical analysis
of the errors produced from this model is shown in Figure 9.
Errors are found to obey a relatively normal distribution.
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Fig. 9. Graphical analysis of model errors showing (a) error magnitudes, (b)
normal probability plot, (c) histogram of error values, and (d) scatter plot of
predicted and actual values.

VI. CONCLUSION

This paper has investigated the application of PLS based
sliding window models to an industrial trench etch data
set. Sliding windowed models outperform unchanging global
models for all window sizes examined. This result is expected
due to the effect of maintenance activities that can dramatically
change the behaviour of the system and the relationships
between the input and output variables. Windowed models
take new information into account and as a result they are
more successful at following new regimes of operation that
arise after maintenance events.

An increase in accuracy is achieved through the application
of a novel sample weighting scheme to the PLS algorithm,
where the weights are determined in accordance with the
maintenance history of the machine. The incorporation of this
information leads to an decrease in prediction error and an
increase in the coefficient of determination R2 for almost all
window sizes investigated.

Further increases in accuracy are achieved by incorporating
some recursion in the models. In this case, the addition of
previous etch rate measurements to the virtual metrology

models aid predictions of future etch rates.
The predictions made during this work require only the

etch process data collected from the manufacturing tool. No
additional sensors were installed on the etch tool. The main
advantage of this approach is that a low cost virtual metrology
scheme is realisable with only the minimum amount of extra
software infrastructure.
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