Altitude Control Feasibility for a Seaweed Harvester
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Abstract—In this paper, the feasibility of the altitude control of
a seaweed harvester is examined. The harvesting system consists
of a vessel and a suspended harvester device, the altitude of
which is controlled by a winch. The goal of the control action
is to maintain the harvester at a constant altitude with respect
to the seabed profile. A control strategy is proposed, including a
vessel motion feed-forward action, using a motion reference unit
(MRU), and an altitude feedback loop, using a sonar device for
altitude measurement.

I. INTRODUCTION

The seaweed harvester system under consideration is shown
in Figure 1. The challenge of maintaining a suspended device
at a specific distance from an undulating sea bed is new, though
the solution we adopt draws upon considerable prior art in the
area of marine systems and hydrodynamics. In particular, the
body of knowledge available on offshore cranes is particularly
relevant [1]-[3]. We develop a detailed hydrodynamic model
for the vessel/harvester system, which relates the heave vari-
ations in the harvester to the wave motions experienced by
the vessel, upon which model-based control designs can be
built. In particular, we are interested to see if it is feasible
to control the harvester altitude to within £10cm. This is
necessary in order to maintain an optimum cutting height
while avoiding any environmental damage to the seabed. The
ship is subject to ocean wave disturbances, and moves at an
average constant speed, with a periodical turning manoeuvre,
in relatively shallow water.

The feed-forward control strategy proposed requires a one-
step prediction and several prediction strategies are formu-
lated, and compared. A gain scheduled PID controller is also
formulated, and used for baseline comparison. A simulator,
obtained by modifying the Fossen et al [4] Simulink MSS
Toolbox, is used to evaluate the control performances, and the
control results of the two control strategies are compared and
discussed.

The paper addresses the problem as follows: Section II
introduces the hydrodynamic reference frames which will form
the setting for the hydrodynamic model for the vessel/harvester
system. The dynamics of the vessel and the winch system
are detailed in Section III, along with any simplifying mod-
elling assumptions. Section IV details both the gain-scheduled
PID and feedforward/feedback control designs, the tracking
response of which are documented in Section V. Finally,
conclusions are drawn in Section VI.
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Fig. 1.

The seaweed harvester [1]

II. REFERENCE FRAMES

The ship and harvester model, presented here will have
9 degree of freedom (DOF), and its coordinate systems are
shown in Figure 2. For the vessel subsystem, the following
right-hand reference frames are considered, as in [5]:

o North-east-down frame (n-frame).
The n-frame, (04, T, Yn, 2n ), is used to define the abso-
lute position of the vessel. The z-axis points towards the
north, the y-axis towards the east, and the z-axis towards
the center of the Earth.

« Ship body-fixed frame (b;-frame).
The by-frame, (op,,Zb,,Yb,, 26, ), fixed to the hull, is
used to formulate the equations of motion. The z-axis
points towards the direction of motion, the y-axis towards
starboard, and the z-axis points downwards. Together
with the n-frame, the b;-frame also defines the orientation
of the vessel. For marine vehicles, the axes are chosen to
coincide with the principal axes of inertia [5].

o Hydrodynamic ship frame (h;-frame)
The hj-frame is used to compute the force and the motion
due to interactions between the hull and the waves. The
frame, (Op,, Thy, Y, 2h, ), is not fixed to the hull, and
moves with the constant average speed of the vessel,
following its path. Therefore, the wave-induced forces,
computed in this inertial reference frame, make the vessel
oscillate with respect to the hj-frame.

For the harvester motion, the following right-hand reference
frames are considered:

+ Hydrodynamic harvester frame (hy-frame).
The ho-frame, (0pn,, Thy, Yne, 2. ), i not fixed to the
harvester, and is used to compute the force due to
interactions between the harvester and the waves. As
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Fig. 2. Reference frames

for the hi-frame, the ho-frame moves at the average
speed of the vessel, following its path. This reference
frame is considered to be inertial, and the frame origin is
determined such that the z-axis passes through the time-
averaged position of the harvester center of gravity.
o Winch body fixed frame (bo-frame).

The bo-frame is fixed to the winch, and its origin,
(Oby s Tby, Ybos 20, )» cOincides with the center of the winch
motor axis. The rope is assumed to be a rigid element,
without mass, therefore the harvester and the rope are
considered to be a single rigid body, and the winch bs-
frame is used for computing the harvester equations of
motion and the motor equations.

III. VESSEL AND WINCH DYNAMICS

The 9 DOF dynamical model, detailed in this section,
includes the effects of a forward vessel speed, the wave loads,
the ship propellers and motion control forces, and the winch
motor dynamics. This formulation arises from the unified ship
model, given in [5], [6] and includes the seakeeping fluid mem-
ory effects. From a control prospective, the design becomes
more challenging, because the wave induced disturbance is
considered to be acting on the system input, rather than the
output. The force response amplitude operator (Force-RAO)
[5], a set of linear transfer functions, is used for modelling
the linear wave-excitation forces.

The modelling approach presented in this paper is a more
general extension of the formulation of [7], where the coupled
dynamics of the vessel and the harvester are formulated by
using the Newton-Euler equations with eliminated constraints
(NEEC), as in Shabana [8], and O’Cathain [9]. The harvester,
the specific design of which is currently confidential, is
assumed to be a vertical circular cylinder, and the hydro-
dynamic parameters are computed in WAMIT [10], for both
the vessel and the harvester device, and processed using the
Matlab/Simulink MSS toolbox [4].

A. Modelling assumptions

The system dynamics are formulated under the assumption
that the bo-frame dynamics, between the real motor speed
b2 N
v

= 252 and the desired motor speed vgz, is given by the
following first order LTI system, after Messineo et al [2] and

m =

27

Sagatun et al [3]:

m

022 = [— Mol + [\olz, (1)

where % is the time constant of the closed loop speed servo

system. The servomotor has an incremental encoder, which
measures the drum rotational speed, and the measurement
noise is assumed to be white:

W, (t) = N{O, VAR(WE)}. 2)

The vessel is equipped with a motion reference unit (MRU
5) [11], an accelerometer-based position, velocity and accel-
eration estimation device, which uses an ad-hoc Kalman filter
[12], and provides the measurement [11] of the vessel roll,
pitch and yaw angles, corresponding angular rate vectors fixed
to the vehicle frame, in addition to the relative (dynamic)
heave, surge and sway positions. The MRU 5 sensor specifi-
cations express the measurement noise in terms of root-mean-
square-error (RMSE). The MRU measurement noise is also
modelled as white noise:

Warro (t) = [ Warro, Warru, ]T7 3)

where:
Whru, (t) = N{O, UJQWRUi}‘ “4)

The harvester device is equipped with a sonar device, which
senses the instantaneous seabed profile. To simulate the real
sonar measurement, we assume that the sonar has a cone-
shaped beam dispersion surface, with a dispersion angle as,
and an additional (white) measurement noise, Wi(t) [13].
In this initial study, we assume the stiffness fo the cable
connecting vessel and harvester to be infinitely stiff.

B. The complete system dynamics

Expanding the formulation of Fossen and Perez [5], a 2-
body unconstrained 12 DOF motion model can be obtained,
as in Gallieri [13]. Then, using the NEEC approach, the
model presented here will have 9 DOF. To apply the NEEC,
we choose the following 9 x 1 independent velocity vector
(generalized coordinates):

s=[u vi wi p1 @ 1 P2 G Em )L, (5

defined in Figure 2, except for the harvester roll and pitch rate,
po and ¢o. The partial velocity matrix, P € R%*12 given by:

P:{ (avg)T (awgly (fmig)T (awfgz)T]
s s Os ds
(6)

is defined. The generalized velocities, v, and accelerations 7,
are given by:

v=PTs p=PTi+ PTs (7)

Defining the vector ¢, such that ¢ = s, where s is given
by eq.(5), we can define the following state, input and output



vectors, respectively, as:

q
(Te + 7p)
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X = ) Uin = U , y= s
M n
Vdq

n

- 3

where:

- T
S=[w v w p @ T owa ], )

and U;, € R'%1 while the vectors, 7. and 7,, provide the
generalized propeller and ship motion control forces in the
b-frames, as given in [5] and [6], and where vy, the desired
winch motor speed, is the altitude control (manipulated) signal.

The seaweed harvester dynamics are given by the following
non-linear stochastic state space system:

x=AX) x+ B(x) Up, + W,

(10)
y=C(x) x+ Wy,
where the input matrix, B (x) € R®*10_is given by:
Bx)=[0 Bf(x) o Bf|" (11)

and B, € R?%19, B, € R'*10 are given by:
B 00O .

BQ(X):{ o 0 /\}, By=[0 @™ 0]. (12
where B is the upper left (8 x8) submatrix of (M9)~?, defined
in eq.(16). In eq.(12) is assumed that the motor speed input,
vq, only affects the motor velocity state, ws. The state transfer
matrix, A(x) € R8>8 in eq.(10), is given by:

0 1 0 0

Ag1(x)  Aoga(x) Aoz(x) 0
A(x) = (13)

0 BY A? 0

L 0 A42(§) 0 0 ]
where Ay (x) € R2*Y is given by:
A.

A21(§) = { 51 ] (14)

where the matrix /Ll contains the first 8 rows of:
Az = (M)~ G (15)

where G9 € R%%? is the restoring force matrix [5], [14], in
the NEEC space [9], where [9]:

M9 =P Mb, PT. (16)
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is the generalized mass matrix, of the 9 DOF constrained
system, in which, M%, = (JP)T ME, JP is the rigid body
mass matrix in the b; and by-frame, and [9]:

M, = blkDiag{ [ My, M2, ] } (17)

is the rigid body mass matrix, in the h; and ho-frame. In
eq.(13) the term Agy(x) € R*9:
_ Ag
Az(x) = { 0 —\ ] (18)

which includes the motor dynamics, where ggg contains the
first 8 rows of:

Asy = —(M9)"H(N9(c0) + DY + C) (19)

where
with N9(c0) = P N%(0) PT, (20)
NP(c0) = (J)T[B"(00) + UA"(00)L)Jf, (21

and A"(c0), B"(c0) are the infinite frequency added mass
and damping matrices, given in [5], as L, while J,ﬁ‘ is given
in [13], and where:

Chp =P M}z PT+ P Clhp PT. (22)

provides the rigid body centripetal and Coriolis matrix, where:

UMY, L 0
b )
Chp = gB ch (23)

is the centripetal and Coriolis matrix, in the b-frames, and

mQS(wfbe) —mgS(wz%Q)S(rgg)
0%32 == )
maS(ri)S(ws,)  —S(wy,)
(24)

is the centripetal and coriolis matrix, for a single rigid body,
as given in [5], [6], and L is given in [5].

Returning to the terms in eq.(13), Agz(x) € RY*M7 g
given by:

Ags(x) = { Azy ] (25)

0
where 7 is the order of the state space approximation of the
convolution integral of the Cummins equation [15], [16], and
the matrix Aoz contains the first 8 rows of:

5y = —(M9)~1 ¢, (26)
where CY is defined in eq.(32).
Finally, A42(x) € R1%9, in eq.(13), is given by:
Ap(x) = Jp P, 27)

where jb” contains the 11 x 11 upper matrix of J;', given in
[13], and P is given by eq.(6).

The state disturbance vector, W, € R®*1 appearing in
(10) and due to the first and second order wave forces [14],
is given by:

W,=[0 7T 0 0] (28)



where 79 contains the first 8 elements of the first and second
order wave induced force vector, 7 [5], which is computed
using the RAO approach as in [5] and [14].

The output disturbance vector, W, € R'*! in (10), is a
stochastic process vector, given as:

W, (t) = N{O, VAR(Wy)}, (29)

and depends on the sensor measurement noise, Wy, ry, W,
and W, (t). The output matrix, C(x) € R“4*® in (10), is
given by:

0 Cs O 0

(30)
0 0 0 Cpx)
where C, and C,(x), are given in Gallieri [13].

The following provides the fluid memory state space ap-
proximation of Cummins’ equation [15], computed for both
the vessel and the harvester device, using the approach in [16].

f= Aalz p+Bls

i =C¢ u+DIs, ()

where:
BI=BPT , C4=PCP

b DI=P D PT, (32
and AP, Bb, C® and D! are computed with the approach in

[16].
IV. CONTROL DESIGN

For the altitude control of the harvesting device, two control
strategies have been implemented and compared. The first
strategy, which uses a gain scheduled PID controller [13], is
shown in Section IV-A.

The second strategy, shown in Figure 3, includes a feed-
forward controller to counteract the vessel-induced altitude
motion of the cutter, and an altitude feedback controller, to
follow the seabed profile. The approach combines a model
based feed-forward, with a gain scheduled proportional feed-
back controller, and is shown in Section IV-B.

The feed-forward controller tries to linearize the harvester
heave motion, and simplifies the altitude control problem. The
feed-forward scheme, shown in Figure 3, uses the Seatex MRU
and the seaweed harvester kinematics to compute the nonlinear
motion of the harvester, induced by the vessel, which is the
input for the feed forward (FF) controller. Assuming that the
motor dynamics are linear, the FF control law will be a LTI
discrete time transfer function. The wave induced disturbances,
d(k), acting on the harvester altitude, are a function of the
system state x. To compute the current value of d(k), an
estimator is needed, as shown in Section IV-B1. The feedback
scheme, shown in Figure 3, uses the sonar device to sense the
distance between the harvester and the seabed. A Nomoto PID
vessel heading controller [5], included in the MSS toolbox, is
used for course keeping.
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Fig. 3. The altitude control scheme

A. Gain scheduled PID altitude controller

Initially, a stand alone discrete time PID controller, with
adapting coefficients, is implemented. The feedback law is
given by the recursive velocity PID algorithm [17]:

valk) = valk = 1)+ K, (e(k) = e(k = 1)) + K; T, e(k)
+Ka | T (e(k) =2 e(k = 1) = e(k —2))
where e(k) = ya —y(k), 84313

where y(k) is the altitude measure, yq4 is the altitude setpoint,
Ty = 0.05s is the sample time. The control law of eq.(33) is
adapted, according to the error magnitude, using the following
rules:

KX, le(k)| > e*
K =
(KI]JWAX _K;ZJ)V[IN) Ieélf)\ _|_KZ])\/[IN’ le(k)| < e*
(35)
KMAX, le(k)| > e
K; =
(KZMAX 7KZMIN) Ieélf)l +KZ_JWIN, le(k)| < e*
(36)
K, le(k)| > e*
Ky =
(K(JIWIN _K(JiWAX) |@£’f)| +Kév1AX, le(k)] < e*
(37
where e* = 0.1 m, KMAX = 10.264, KMV = 3,

KMAX = 0.5906, KM™N = 0.1, K}4X = 0.002, KN =
0.0001.
B. Combined feedback and feed-forward control

1) The feed-forward vessel motion compensator: The har-
vester motion satisfies the following kinematic relation [13]:

7;’2 = RS Wa
U1 p1
= Rows{R{} | v1 | 4+ Rows{RyST(rt)} | @&
w1 1
lch2
+Rows{Ry} | —lcyp2
Um
(38)



Assuming that the position, velocity and acceleration of the
vessel are measurable, taking the small angle approximation
for the harvester motion, and substituting the results of eq.(1),
we obtain the following model:

U (1) = =X v (E) + X vg

5a() = vy () + (1) + du (1), 59)

where

d(t) = —sb1 w1 + chispr v1 + cbicpr w1 — Zo, 01501 p1
—[Z0,801 + To,cl1ch1]q1 + [To,cl1501]r1,

(40)

is the vessel induced heave velocity disturbance, which is a

function of the vessel attitude and speed, while

du(t) = %{0, VAR(dy,) } (1)

is a Gaussian white noise disturbance, including the model
uncertainties and measurement noise. From eq.(39), we have:

A
= 42
U’ITL(S) 8+)\ Vd, ( )
1
22(5) = — (vm(s) +d(s) + du(s)). (43)
Choosing the following feed-forward control law:
54+ A
=—v———d 44
vals) = ~15 s d(s) (#4)
the system dynamic becomes:
1 1
= d — dy 45
a(s) = = d(s) + 5 duo) @)

A discrete-time equivalent, using Tustin’s method [17], for
eq.(43) is:

_Ez—&-l

k) =5 (vm(k) +d(k) + dw(k)>. (46)
and the control action, v4(k), is given by:
zZ — Q7
va(k) =k d(k), 47
k) =k 251 (k) @)

where k, oy and By are given in [13]. To apply the control
action, given by eq.(47), we need an estimate, ci(k), of the
vessel induced disturbance, d(k). Given d(k), and defining
an estimation error as é(k) = d(k) — d(k), the closed loop
dynamics become:

Ts(z+1) Ts(z+1)

z— B 2(z—1)
The quality of the control is therefore a function of the
accuracy of d(k). Given the high complexity of the 9 DOF
model, for the aim of the feasibility study, several black-box

estimation strategies for the wave induced disturbance, d(k),
have been evaluated:

2(k) = d(k) +

(€(k) + duw(k)). (48)

o Previous sample holding (PSH), where:

d(k) = d(k —1) = 2~ 'd(k), (49)
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providing an error given by [13]:

é(t) =T d(t)v (50

o Recursive least squares autoregressive (AR) model iden-
tification (RAR) of d(k), using a forgetting factor [13],
(18], [19],

e Multiple switching AR identification (MSAR), where
d(k) is estimated using a set of AR models with fixed
parameters, along with an adaptive recursive least squares
(RLS) AR model, to ensure asymptotic stability, and a
reconfigurable RLS AR model. At every iteration, a logi-
cal supervisor uses the estimation error of every model to
select the next candidate, to perform the estimation [20].

o Periodical least square AR identification (PLSAR), which
periodically uses the offline LS algorithm, over a certain
number of samples, to identify an AR model, used to
predict the next sample of d(k).

The model order can be chosen with an appropriate data
analysis and cross validation, as shown in [13], [18]. To
date, the best control results have been achieved by using the
PLSAR approach, as shown in Gallieri [13].

2) The gain scheduled feedback loop: Combining the pre-
dictive heave feed-forward, shown in Section IV-B1, with a
gain scheduling P controller, we obtain the following control
law:

va(k) = vq(k) + v} (k), (51)

where 04(k) is given by the feed forward controller of eq.(47),
using the PLSAR disturbance estimation [13] , and

va(k) = Kp e(k), (52)

where K, is adapted with the rule of, eq.(35) , with e* =
0.1 m, and K}4X =3, KMIN — 15,

V. CONTROL RESULTS

The simulated system is subject to variations in free sur-
face elevation and seabed profile as shown in Fig.4. The
surface variations come from a JONSWAP [21] model with
a significant wave height of 1.5m, a directional spreading
factor of 4 [6] and the mean wave direction, relative to
the initial vessel heading, is 7 rads/s. The seabed variations
constitute both abrupt and smooth changes, with a variance of
2.15m around the mean seabed height. These initial control
results neglect measurement noise. The control performances
of the gain scheduling PID controller, are shown in Figure
5, with a setpoint of 0.8 m, while the performance of a feed-
forward controller with a gain scheduled proportional feedback
controller is shown in Fig.6.

VI. CONCLUSION

In this paper, the feasible altitude control of a seaweed
harvester, with respect to an unknown seabed profile, has been
proven. The combined adaptive feed forward and feedback
control strategy offers a balance between low complexity,
moderate sensor requirements, and control accuracy. From the
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simulation results, in the presence of ideal sensors, the altitude
control error is less than +5 cm.

While this preliminary study offers encouragement, a num-
ber of areas need to be addressed, including the effects of
sensor noise and modelling/linearisation errors, to which feed-
forward control strategies can be sensitive. Finite stiffness of
the harvester cable should also be considered by including
an extra degree of freedom in the model, resulting in a
modification of the restoring force matrix [5].
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