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Abstract

In this work, the dissipative nature of spatially distributed process systems is ex-
ploited to develop efficient exponential state observers based on a low dimensional
dynamic representation of the original set of partial differential equations. The ap-
proach we suggest combines standard observer design techniques for reactors where
the reaction rates are unknown with efficient model reduction methodologies based
on projection of the original concentration and temperature fields on low dimen-
sional subspaces capturing the slow dynamics of the process. The global exponential
stability of the resulting observer is derived combining classical Lyapunov analysis
with a transformation that allows us to obtain a diffusion system from a diffusion-
convection system. In addition aspects related to the location of sensors and their
influence on the ability to reconstruct the necessary fields to feed the observer will
also be considered.

Key words: Observer, Distributed Process Systems, Tubular (Bio)Reactors,
Optimal sensor location.

Introduction

As pointed out by Bastin and Dochain1, on-line monitoring and control in
biotechnology have been hampered by a number of obstacles essentially asso-
ciated with the poor knowledge of the process and the lack of reliable sensors
capable of providing on-line measurements of the biochemical variables. To
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overcome these limitations, a theoretical identification framework has been
presented by Bastin and Dochain1, and extended by Dochain et al.2, which
exploits the underlying reaction structure and transfer mechanisms of the
biotechnological processes to systematically design and implement state or
parameter identification schemes. This theory has been extended to particu-
lar classes of distributed reactors and bio-reactors3,4. However, a number of
issues and questions related to the spatially distributed nature of this class of
systems and convergence analysis still remain open.

In fact, on-line state observation is particularly critical in spatially distributed
reactors due to the high dimensionality associated with the dynamic represen-
tation. In this class of systems, the mass and energy balances result into a
nonlinear set of partial differential equations whose solution usually involves
the integration of a large set of ordinary differential equations5. In addition
the observer must be supplied with on-line state measurements covering the
whole spatial domain which are usually unavailable due to the limited number
of sensors4,6,7.

In order to overcome these issues, we develop a generalized version of the state
observer proposed by Bastin and Dochain1 for distributed tubular reactors,
proving the exponential convergence of the error depending on the design pa-
rameters via Lyapunov analysis. In addition, the results developed by Alonso
and co-workers8,9 are adapted to exploit the dissipative nature of diffusion-
convection reaction systems10,11 and derive an implementation of the observer
based on a low dimensional dynamic representation of the original system of
partial differential equations. This framework will also be useful in devising a
systematic solution to the field reconstruction problem from a limited number
of measurements for those states that feed the observer. To that purpose, we
use the formalism proposed by Garćıa et al.12 where a generalized version of
the optimal sensor problems is formulated by taking advantage of the finite
element method13.

The paper is structured as follows: first of all the generalization and error
convergence analysis of distributed observers is presented. After this section
the model reduction technique is described and applied to the design of low-
dimensional observers and state reconstruction schemes from a reduced num-
ber of sensors. Moreover, aspects related to the observer behavior under such
approximations are studied at the end of the section. Following, Continuous
production of gluconic acid will be employed to illustrate and validate these
techniques and, finally, the conclusions are summarized.
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Observer Design

As it was pointed out by Dochain14, on-line measurements such as dissolved
oxygen concentration, temperature or flow rates are usually available whereas,
concentrations of biomass and some products and reactants require the use
of state observers due to the lack of cheap or reliable on-line sensors. In ad-
dition the reaction rates in bioprocesses are usually unknown and classical
state estimators such as Luenberger or Kalman observers based on perfect
knowledge of the model structure cannot be applied. An observer design that
circumvent such limitations was developed by Dochain and co-workers2,1,14 for
stirred tank reactors with asymptotic convergence depending on the dilution
rate. The same idea was extended for the case of tubular reactors over the
discretized version of the original Partial Differential Equations (PDEs) with-
out going inside the convergence properties4. In the next section, we present
and adapt this theory to spatially distributed tubular reactors, discuss the
physical meaning and prove the exponential convergence.

General dynamic representation of tubular reactors

Tubular reactors are diffusion-convection-reaction systems described by a set
of PDEs always transformable to the following general dynamic structure:

∂x

∂t
= D

∂2x

∂ξ2
− v

∂x

∂ξ
+Kφ(x) +Q(x∗ − x) (1)

where x(t, ξ) ∈ Rs represents the state vector field as a function of time t ∈
[0,∞) and spatial coordinates ξ ∈ [0, L] ≡ Ω (where L is the reactor length).
v ∈ R+ denotes flow velocity and D,Q ∈ Rs×s are positive and semi-positive
definite diagonal matrices which contain the parameters describing dispersion
and exchange with the environment property included in vector x∗ ∈ Rs.
The kinetic part is described by a vector of nonlinear functions describing
reaction rates φ(x) ∈ Rr and a full column rank matrix K ∈ Rs×r of yield
coefficients1. Finally, the description is completed with appropriate boundary
and initial conditions, which for tubular reactors with axial dispersion are:

D
∂x

∂ξ
= −v(xin − x) ∀t ∈ R+, ξ = 0, (2a)

∂x

∂ξ
= 0 ∀t ∈ R+, ξ = L (2b)

and x = x0 ∀ξ ∈ [0, L], t = 0 (2c)

where (2a) and (2b) are the so-called Danckwerts boundary conditions with
L being the longitudinal length of the reactor, xin(t) ∈ Rs the input and
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x0(ξ) ∈ Rs the initial condition.

We should note that solutions for system (1) with natural boundary conditions
(2) can be found in the Sobolev spaces:

H0(Ω) ≡ L2(Ω) =

{
f : Ω → R such as ∥f∥Ω =

(∫
Ω
f2dξ

)1/2

<∞
}

(3a)

Hq(Ω) =

{
f ∈ Hq−1(Ω) :

df

dξ
∈ Hq−1(Ω)

}
(3b)

being q = 1, 2, ... and where f is a given function over the spatial domain Ω
and over the boundary Γ.

State reconstruction without knowledge of the reaction rates

The development of distributed state observers which do not require knowledge
of the reaction rates relies on the principles of mass and energy conservation
which essentially state the existence of some unaltered entities collected on a
vector z and related to the state vector x by a linear map of the form z = BTx.
Since these entities are not produced, neither destroyed by reaction, but only
transported through the system, the columns of B must form a basis for the
null space of KT so that BTK = 0. We should note that, since K is column
full rank (r), the dimension of the K left null space is s− r. This fact allows
us to define the following partitions in K and B, respectively:

BT = [BT
e |BT

m] KT = [KT
e |KT

m]

where KT
m ∈ Rr×r and BT

e ∈ Rs−r×s−r. In addition, since BTK = 0 we also
have that:

BT
m = −BT

e KeK
−1
m (4)

It should be stressed that the partition of KT must be chosen in order to
matrix Km be invertible. On the other hand, z can be written as:

z = BTx = BT
e xe +BT

mxm (5)

substituting (4) into (5) and re-ordering terms, we then get:

z = BT
e (xe −KeK

−1
m xm) (6)

Finally, by defining z = B−T
e z a new transformation is obtained of the form:

z = xe + Aoxm with Ao = −KeK
−1
m (7)

This transformation, that coincides with the one proposed by Bastin and
Dochain1,4, determines which states can be observed xe ∈ Rs−r from mea-
surements xm ∈ Rr, without knowledge of the reaction rates (as shown next,

4



the evolution of z is independent of them), provided that a reliable estimation
z is at hand. To that purpose, let us re-order and partition the original system
as follows:

∂xe
∂t

= De
∂2xe
∂ξ2

− v
∂xe
∂ξ

+Keφ(x) +Qe(x
∗
e − xe) (8a)

∂xm
∂t

= Dm
∂2xm
∂ξ2

− v
∂xm
∂ξ

+Kmφ(x) +Qm(x
∗
m − xm) (8b)

with:

D =

De 0

0 Dm

 K =

 Ke

Km

 Q =

Qe 0

0 Qm


where De, Qe ∈ Rs−r×s−r and Dm, Qm ∈ Rm×m are diagonal matrices whereas
Ke ∈ Rs−r×r and Km ∈ Rm×r are full submatrices of K.

Applying (7) to (8) and adding and subtracting the termsDeAo
∂2xm

∂ξ2
+QeAo(x

∗
m−

xm) in the transformed PDE, and the terms v(Aox
in
m + Aoxm) in the trans-

formed boundary condition at ξ = 0, we obtain the following reaction rate
independent set of PDEs for the new states z:

∂z

∂t
= De

∂2z

∂ξ2
− v

∂z

∂ξ
−Qez + h(xm, x

∗) (9a)

De
∂z

∂ξ
= vz + g(xm, x

in) ∀t ∈ R+, ξ = 0 (9b)

∂z

∂ξ
= 0 ∀t ∈ R+, ξ = L (9c)

z = z0 ∀ξ ∈ [0, L], t = 0 (9d)

with

h(xm, x
∗) = (AoDm −DeAo)

∂2xm
∂ξ2

+ (AoQm −QeAo)(x
∗
m − xm) +Qez

∗, (9e)

g(xm, x
in) = −v(DeAoD

−1
m − Ao)(x

in
m − xm)− vzink , (9f)

z∗ = x∗e + Aox
∗
m, zin = xine + Aox

in
m and z0 = x0e + Aox

0
m (9g)

Remark 1 When diffusivities in D and transfer coefficients in Q are the same
for each state (D = dI and Q = qI where I represents the identity matrix)
since now h(xm, x

∗) and g(xm, x
in) become zero, the dynamic structure of the

reactor is drastically simplified.

In order to prove the exponential convergence of the error for each observed
state, let us re-write the PDE model in the element-wise case with the subindex
k extended to the dimension of z (number of states minus reaction rates):

∂zk
∂t

= dk
∂2zk
∂ξ2

− v
∂zk
∂ξ

− qkzk + hk(xm, x
∗) (10a)
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dk
∂zk
∂ξ

= vzk + gk(xm, x
in) ∀t ∈ R+, ξ = 0, (10b)

∂zk
∂ξ

= 0 ∀t ∈ R+, ξ = L (10c)

zk = z0k = x0k + Aokx
0
m ∀ξ ∈ [0, L], t = 0 (10d)

in such a way that the functions hk(xm, x
∗) and gk(xm, x

in) are:

hk(xm, x
∗) = (AokDm−dkAok)

∂2xm
∂ξ2

+(AokQm−qkAok)(x
∗
m−xm)+qkz∗k (10e)

gk(xm, x
in) = −v(dkAokD

−1
m − Aok)(x

in
m − xm)− vzink (10f)

with

z∗k = x∗k + Aokx
∗
m and zink = xink + Aokx

in
m (10g)

and where k denotes the kth row for full matrices (Ao) and column vec-
tors (zin, z∗, z, xine , x

∗
e, x

0
e) and the kth diagonal element for diagonal matrices

(D,Q).

Assuming that transport terms are known we have that:

∂ẑk
∂t

= dk
∂2ẑk
∂ξ2

− v
∂ẑk
∂ξ

− qkẑk + hk(xm, x
∗) (11a)

dk
∂ẑk
∂ξ

= vẑk + gk(xm, x
in) ∀t ∈ R+, ξ = 0, (11b)

∂ẑk
∂ξ

= 0 ∀t ∈ R+, ξ = L (11c)

ẑk = ẑ0k = zk − e0k ∀ξ ∈ [0, L], t = 0 (11d)

where xm represents the measurable states and e0k = x0k− x̂0k are the errors due
to the unknown transformed initial condition. Finally each of the observed
states xk that belong to the vector xe is recovered by inverting the transfor-
mation (7):

x̂k = ẑk − Aokxm (11e)

The equation describing the error evolution between the real and the observed
states as ek = xk − x̂k = zk − ẑk is constructed by combining (10) and (11) so
that:

∂ek
∂t

= dk
∂2ek
∂ξ2

− v
∂ek
∂ξ

− qkek (12a)

dk
∂ek
∂ξ

= vek ∀t ∈ R+, ξ = 0, (12b)

∂ek
∂ξ

= 0 ∀t ∈ R+, ξ = L (12c)

ek = e0k ∀ξ ∈ [0, L], t = 0 (12d)
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The convergence properties of this observation scheme are summarized in the
following proposition where integrals over the domain Ω and over the boundary
Γ are denoted respectively as ⟨·, ·⟩Ω and ⟨·, ·⟩Γ. In order to show convergence,
the following result by book of Polyanin (page 59)16 will be employed.

Lemma 1 The following PDE systems:

∂Υ

∂t
= d∆Υ−v·∇Υ− qΥ+ f(ξ, t) and

∂Υ

∂t
= d∆Υ+exp(δt−µ ·ξ)f(ξ, t)

are related by the transformation:

Υ = exp(µ · ξ − δt)Υ µ =
v

2d
> 0, δ =

v2

4d
+ q > 0

where the bold letters denote vectors and ξ = [ξ1, ξ2, ξ3].
Proof: The demonstration is straightforward by introducing the transforma-
tion into the diffusion-convection system and applying the chain rule.

Proposition 1 Let the evolution of zk and ẑk be described by (10) and (11),
respectively. Then ẑk will converge exponentially to zk in the L2 norm.

Proof: Let us denote for the sake of clarity, the dynamics of each element ek
of the error vector as:

∂e(ξ, t)

∂t
= d

∂2e(ξ, t)

∂ξ2
− v

∂e(ξ, t)

∂ξ
− qe(ξ, t) (13a)

d
∂e(0, t)

∂ξ
= ve(0, t),

∂e(L, t)

∂ξ
= 0, e(ξ, 0) = e0 (13b)

The state-space description of the PDE system (13) can be re-written as an
infinite-dimensional system as follows:

dẽ

dt
= Aẽ ẽ = e0 for t = 0 (14)

where A is a operator of the form:

Af := d
d2f

dξ2
− v

df

∂ξ
− qf

with domain:

D(A) =

{
f ∈ H2(Ω); d

df(0)

dξ
− vf(0) =

df(L)

dξ
= 0

}
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By Lemma 1, the error evolution can be expressed as the classical diffusion
PDE:

∂e(ξ, t)

∂t
= d

∂2e(ξ, t)

∂ξ2
(15a)

where

e = exp(µξ − δt)e µ =
v

2d
> 0, δ =

v2

4d
+ q > 0 (15b)

with boundary and initial conditions:

∂e(0, t)

∂ξ
= µe(0, t),

∂e(L, t)

∂ξ
= −µe(L, t), e(ξ, 0) = e0. (15c)

Now, let us define a Lyapunov function V = 1
2
⟨e, e⟩Ω and compute its time

derivative along (15a) so that:

∂V
∂t

=

⟨
e,
∂e

∂t

⟩
Ω

= d

⟨
e,
∂2e

∂ξ2

⟩
Ω

(16)

From the divergence theorem and introducing the boundary conditions (15c),
we obtain:

d

⟨
e,
∂2e

∂ξ2

⟩
Ω

= d

[
e
∂e

∂ξ

]L
0

− d

∥∥∥∥∥∂e∂ξ
∥∥∥∥∥
2

Ω

=

= −dµ[e(L, t)2 + e(0, t)2]− d

∥∥∥∥∥∂e∂ξ
∥∥∥∥∥
2

Ω

≤ −d
∥∥∥∥∥∂e∂ξ

∥∥∥∥∥
2

Ω

Furthermore, with boundary conditions (15c) the following Poincaré inequality
holds: ∥∥∥∥∥∂e∂ξ

∥∥∥∥∥
2

Ω

≥ ν∥e∥2Ω,

where ν is a positive parameter17,18. Combining this inequality with (16) we
then obtain:

V̇ ≤ −2νdV,
whose explicit solution using the Gronwall-Bellman lemma is:

V ≤ V0 exp(−2dνt).

that by using V = 1
2
∥e∥2Ω remains:

∥e∥2Ω ≤ ∥e0∥2Ω exp(−2dνt).

Finally, the L2 norm of the observation error using relation (15b) is bounded
as follows:

∥e∥2Ω ≤ ∥ exp(µξ − δt)∥2Ω∥e∥2Ω ≡ ϖ exp[−2(δ + dν)t] (17)

with

ϖ =
exp(2µL)− 1

2µ
∥e0∥2Ω
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Remark 2 As it can be concluded from (17) the observation rate of conver-
gence will depend on process design parameters such as the degree of disper-
sion, velocity and/or mass and energy transfer coefficients. In fact the larger
the transfer coefficient (qk) and the reactor velocity (v), and the lower the
dispersion coefficient (dk), the faster the convergence.

We should note that if we have at our disposal a given number of sensors
for measuring the field xe at some spatial locations, then classical estimators
with manipulable velocity convergence, such as the Luenberger or Kalman ob-
servers4,14,19, could be employed to reconstruct the whole field without knowl-
edge of the reaction rates.

Observer Implementation

In order to implement the proposed observation scheme (11), the PDE set
needs to be solved on-line and the complete field xm measured. Standard PDE
solvers based on finite differences or finite element methods (FEM) essentially
consist of spatial discretization schemes that approximate the original PDEs
by an usually large set of ordinary differential equations (ODEs). The FEM,
in particular, is specially advantageous because allows us to obtain the finite
set of ODEs in a systematic way regardless of the geometry of the spatial
domain. Although in this article we propose the use of reduced order models
to obtain a low dimensional set of ODEs, the projections will be implemented
by exploiting the underlying FEM algebraic structure which we summarize
next:

The FEM method is based on the Galerkin projection of the original PDEs
over a set of locally defined basis functions {ψi}ni=1

13, known as finite element
functions, plus a relaxation of the second derivatives using the divergence
theorem. The resulting PDEs (11) are formally stated as the solution of the
ODE set:

Żk = DA−1
[
−(dkC − vQ+ vBE)Zk + Gk

]
+ qk(Z

∗
k − Zk) +Hk(xm, x

∗) (18)

where Zk ∈ Rn and Hk(xm, x
∗) ∈ Rn correspond with the discrete versions of

the original distributed functions zk and hk(xm, x
∗). On the other hand the

FEM matrices are computed as13:

BE ij =

⟨
∂ψi

∂ξ
, ψj

⟩
Ω

Cij =
⟨
∂ψi

∂ξ
,
∂ψj

∂ξ

⟩
Ω

(19a)
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DAij = ⟨ψi, ψj⟩Ω Qij = ⟨ψi, ψj⟩Γ Gk
j =

⟨
gk(xm, x

in), ψj

⟩
Γ

(19b)

Alternatively to the step-by-step Galerkin projection, the discretized version
(18) of the PDE system (11a) can be obtained in a straightforward way by
means of the FEM equivalents to infinite dimensional operators. Table 1 shows
the mappings between the continuous and discrete domain integrals, gradients
or Laplacians for a pair of arbitrary functions f and g continuous in space,
where F and G correspond to the discretized version of such functions. More
details about the exploitation of the FEM structure to obtain the relations for
1D, 2D or 3D spatial operators can be seen in the work of Garćıa et al.12.

As pointed out by Christofides5 and Delattre and co-workers20, approaches
based on spatial discretization present a number of disadvantages: they are
usually computationally involved and some essential control-theoretic proper-
ties, such as controllability or observability, may be lost by the discretization
scheme or the degree of refinement. Moreover, complete measurements of the
field xm are not usually available due to the large number of sensors required,
which calls for efficient field reconstruction schemes from a reduced number
of sensors6. These questions will be properly addressed next in the framework
of reduced order modelling (ROM) of dissipative systems7,12.

In constructing a reduced order dynamic representation for any field x(t, ξ)
with general dynamic structure (1), we make use of the dissipative nature of
diffusion-convection systems and expand the field x(t, ξ) as a complete series
of orthonormal globally defined basis functions {ϕx

i (ξ)}∞i=1 and time dependent
functions {cxi (t)}∞i=1 so that:

x(t, ξ) =
∞∑
i=1

cxi (t)ϕ
x
i (ξ) (20)

where each ϕx
i is computed by solving the following eigenvalue problem:∫

Ω
R(ξ, ξ′)ϕx

i (ξ
′)dξ′ = λxi ϕ

x
i (ξ) (21)

with λxi being the eigenvalue associated to each eigenfunction ϕx
i of the field

x. Depending on the nature of the kernel R different sets of basis functions
emerge7, among which the following are considered:

(1) Laplacian Spectral Decomposition (LSD), where R is the Green function
associated with a symmetric spatial operator.

(2) Proper Orthogonal Decomposition (POD), where R is a two point corre-
lation matrix constructed from empirical data (snapshots).

In both cases, the ordered structure of the eigenspectrum {λxi (ξ)}∞i=1 defines
a set of low dimensional subspaces {ϕx

i (ξ)}mx
i=1 which approximate the original
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field, thus guiding the selection of the subspace which captures most of the
relevant dynamic features of the solution. This fact was proved by Christofides
and Daoutidis21 for the LSD and by Baker and Christofides22 for the POD
method using the concept of approximate inertial manifolds. Once the sub-
space is defined, the field is approximated by a truncated series expansion of
the form:

x(t, ξ) ∼= x̃(t, ξ) =
mx∑
i=1

cxi (t)ϕ
x
i (ξ) (22)

In the following sections, the LSD will be employed to expand the observer
PDEs (11) while the POD method will be used for the reconstruction of the
measurable states from partial measurements. Finally, in the last section, the
final estimation error due to the latter approximations plus the influence of
the sampling period will be considered.

Reduced order observer representation

Similar to the FEM method, the low dimensional dynamic representation is
constructed by projecting the observer (11) using global basis functions ob-
tained from the LSD, instead of the local finite element functions. However
the Galerkin’s method combined with global basis is only applicable under ho-
mogeneous boundary conditions and, therefore, only when no perturbations
in the inlet are taken into account. To avoid such restriction two alterna-
tives are in hand whose advantages and disadvantages can be seen in Balsa
et al.23: the tau-method24, and the transformation of the original problem
into an homogeneous boundary system25,26. In this work we make use of the
second alternative, namely that in which the non-homogeneous boundary con-
ditions (11b) are transformed into their homogeneous equivalents by using the
following linear transformation:

pk(xm) = zk(xm) +
1

v
gk(xm, x

in)|ξ=0 (23)

where gk(xm, x
in)|ξ=0 is a time-depending function that corresponds with the

equation (10f) evaluated in the first point of the reactor (ξ = 0):

gk(xm, x
in)|ξ=0 = gk(xm(0, t), x

in(t)) =

= −v(dkAokD
−1
m − Aok)(x

in
m(t)− xm(0, t))− vzink (t) (24)

The evolution of the transformed field pk is obtained by computing its time
derivative along (10) so that:

∂pk
∂t

= dk
∂2pk
∂ξ2

− v
∂pk
∂ξ

− qkpk + fk(xm, x
∗, xin) (25a)
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dk
∂pk
∂ξ

= vpk ∀t ∈ R+, ξ = 0, (25b)

∂pk
∂ξ

= 0 ∀t ∈ R+, ξ = L (25c)

pk = p0k ∀ξ ∈ [0, L], t = 0 (25d)

fk(xm, x
∗, xin) =

qk
v
gk(xm, x

in)|ξ=0 + hk(xm, x
∗) +

1

v
ġk(xm, x

in)|ξ=0 (25e)

In the same way, the observer of this transformed field pk, computed from
(11), takes the form:

∂p̂k
∂t

= dk
∂2p̂k
∂ξ2

− v
∂p̂k
∂ξ

− qkp̂k + fk(xm, x
∗, xin) (26a)

dk
∂p̂k
∂ξ

= vp̂k ∀t ∈ R+, ξ = 0, (26b)

∂p̂k
∂ξ

= 0 ∀t ∈ R+, ξ = L (26c)

p̂k = p̂0k = p0k − e0k ∀ξ ∈ [0, L], t = 0 with e0k = x0k − x̂0k (26d)

where the estimated concentrations and temperatures are recovered by com-
bining the transformation (11e) and (23) and re-arranging terms:

x̂k(xm) = p̂k(xm)−
1

v
gk(xm, x

in)|ξ=0 − Aokxm (27)

Instead of using the classical FEM to solve the latter PDE system we will
employ the ROM approach where, similarly with equation (22), the field p̂k is
approximated by a truncated series expansion of the form:

p̂k ∼= p̃k =

mpk∑
i=1

ĉpki ϕ
pk
i (28)

with mpk denoting the dimension of the subspace chosen. Global basis func-
tions {ϕpk

i (ξ)}mpk
i=1 are obtained from the eigenvalue problem (21) associated

with the diffusion operator in equation (26) (see the Courant and Hilbert
book27 for details):

d2ϕpk
i (ξ)

dξ2
= −λpki ϕ

pk
i (ξ) (29a)

dk
dϕpk

i

dξ
= vϕpk

i ∀t ∈ R+, ξ = 0, (29b)

dϕpk
i

dξ
= 0 ∀t ∈ R+, ξ = L (29c)
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and time dependent functions {ĉpki (t)}mpk
i=1 by projecting the transformed ob-

served state (26a) over {ϕpk
i (ξ)}mpk

i=1 . Noting that such functions are orthonor-
mal, the following ODE set is obtained:

dĉpki
dt

= −dkλpki ĉ
pk
i +

∫
Ω
ϕpk
i

(
−v∂p̂k

∂ξ
− qkp̂k + fk(xm, x

∗, xin)

)
dξ (30)

For computational purposes, let us express both eigenvalue (29a) and initial-
boundary (30) problems in their discrete versions using the FEM matrices
according to Table 1. Therefore, the off-line computation of the spatial basis
{ϕpk

i (ξ)}mpk
i=1 is obtained from:

(dkC + vQ) Φpk
i = −λpki DAΦpk

i with i = 1, ..,mpk (31)

where each Φpk
i ∈ Rn represents the spatial discrete version of ϕpk

i . On the
other hand, the initial-boundary problem (30) is solved on-line in its reduced
order version:

dĈpk

dt
=
(
−dkΛpk + ΦpkT(−vBE − qkDA)Φpk

)
Ĉpk + ΦpkTDAfk(xm, x∗, xin)

(32a)
Ĉpk(t) = ΦpkTDAp̂k(t) ∀ξ ∈ [0, L], t = 0 (32b)

where Λpk ∈ Rmpk
×mpk is a diagonal matrix containing the eigenvalues of equa-

tion (31) and Φpk = [Φpk
1 , ...,Φ

pk
mpk

] ∈ Rn×mpk and Ĉpk(t) = [Ĉpk
1 (t), ..., Ĉpk

mpk
(t)] ∈

Rmpk collect in matrix and vector form, respectively, the sets {ϕpk
i (ξ)}mpk

i=1 and
{ĉpki (t)}mpk

i=1 . Finally, the estimation of concentrations and temperatures x̂e at
every point of the FEM mesh (X̂e) can be recovered from:

X̂e = P̃ (t)− 1

v
g(Xm, x

in)|ξ=0 − AoXm (33)

with:

P̃ (t) = [Φp1Ĉp1(t), ...,Φps−rĈps−r(t)]T ∈ Rs−r×n and Xm ∈ Rr×n

Optimal field reconstruction from a limited set of measurements

As we have mentioned before, observer (11) implemented either in the FEM
framework (18) or as a reduced order observer (32) requires on-line measure-
ments of the complete field xm which are not usually available. In addition,
the PDE set that describes the behavior of the measurable states (8b) depends
on the unknown reaction rates so a dynamic ROM is not possible.

Although the need for systematic selection of optimal sensor location, as well
as inputs and outputs pairings in distributed systems has become evident28,
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exhaustive search procedures which can be useful for placing a small number
of sensors are still widely employed. Alternative approaches include the one
proposed by Antoniades and Christofides29 to solve the placement problem by
standard unconstrained optimization and taking advantage of the time scale
separation properties of transport-reaction systems. The approach, although
elegant, requires the process to be under control and restricts the number of
sensors to be equal to the dimension of the slow dynamics. A theory that cir-
cumvents such limitations was proposed by Alonso and co-workers7 for point-
wise sensors and extended by Garćıa et al.12 for both point-wise or array
sensors. In these articles the empirical global basis obtained from the POD
method are used to set up the location of sensors for continuous distributed
processes and optimally reconstruct the complete field from a limited number
of measurements. Details about the methodology applied to the estimation of
the on-line measurable vector field xm are summarized in Appendix A.

Observer stability under the influence of the implementation approximations

In order to understand the behavior of the observer under the approximations
proposed in previous subsections (reconstruction of the measurable field and
reduced order model) as well as the influence of the sampling time, let us
define the following error sources:

• Truncation error The truncation error associated with each of the p̃k fields
is of the form:

ϵk = p̂k − p̃k =
∞∑

i=mpk
+1

ĉpki ϕ
pk
i , with k = 1, ..., s− r (34)

• Reconstruction error The vector xm is only measured at some sampling
times {tj}Ns

j=1 with a reduced number of optimal located sensors. At each
tj the reconstruction of the field in the whole spatial domain, we denote
by x̂m(tj, ξ), is computed by using the methodology developed in appendix
A. Linear behavior is considered between successive sampling times and
therefore between successive reconstructions, so that:

x̂m(t, ξ) = at+ b t ∈ [tj, tj+1] (35a)

where

a =
x̂m(tj+1, ξ)− x̂m(tj, ξ)

tj+1 − tj
, b = x̂m(tj, ξ)− atj (35b)

The error associated with these approximations, we call reconstruction error
in contrast to the observation error associated with the observed field xe, is
then represented as:

em = xm(t, ξ)− x̂m(t, ξ), ∀t, ξ (36)

14



In order to show the final convergence of the observer, we note that both
the reconstruction error em(t, ξ) and its second spatial derivative ∂2em

∂ξ2
are

bounded provided that the number of sensors is equal or greater than the
number of the low-dimensional subspace used to represent xm (see Appendix
A for details).

The following proposition establishes the region around the “true” field where
the observations will exponentially converge. This region will depend on the
truncation and reconstruction error.

Proposition 2 Let each of the process fields included in xe be described by
equation (11e)

xk(xm) = zk(xm)− Aokxm (37)

and the observations be obtained from equations (27) and (28) fed with x̂m:

x̂k(x̂m) = p̃k(x̂m)−
1

v
gk(x̂m, x

in)|ξ=0 − Aokx̂m (38)

Therefore the norm of the observation errors ∥ek∥Ω = ∥xk(xm) − x̂k(x̂m)∥Ω
will exponentially converge to a region defined by:

Ξk = ηk +
∥∥∥∥1vgk(em)|ξ=0 + ϵk − Aokem

∥∥∥∥
Ω

(39)

with

ηk =
Fk

dkνk + δk

[
exp(2µkL) + exp(−2µkL)− 2

4µ2
k

]1/2
and Fk ≥ fk(em)

Proof: See Appendix B

Remark 3 When no implementation errors are considered, Proposition 2
coincides with Proposition 1 and the observations goes exponentially to the
”true” states.

Remark 4 As it can be concluded from (39), the region where the observer
will converge exponentially is a function of reconstruction error of the measur-
able variables (em) and the truncation error. In fact we should note that, small
relative errors in x̂m are translated into high percentage errors in the observed
field x̂e when the order of magnitude of the measurements is significantly larger
than the observations.

15



Case study: Gluconic Acid Production

In order to illustrate the methodology developed in previous sections, we con-
sider a tubular reactor for Gluconic Acid production whose biological features
has been largely studied by Mirón and et al.30.

Gluconic Acid Dynamic Model for control and identification

The process takes place in a tubular reactor fed with glucose and oxygen. The
consumption of glucose (G) by the microorganisms (X) to produce gluconic
acid (GA) motivates the following simplified mechanism:

G+X
RX−→ X (40a)

G+
1

2
O2

RGA−→ GA (40b)

where the biomass and gluconic acid reaction rates correspond with:

RX = µXX
kX1 −X

kX1
; µX =

µX
maxG

kX2 +G
(41)

RGA = µGAGA
kGA
1 −GA

kGA
1

; µGA =
µGA
maxG

kGA
2 +G

(42)

In accordance with the general dynamic structure proposed in (1) the state
vector field, yield matrix and reaction kinetic vector is formally written as:

x =



X

GA

G

O2


K =



1 0

0 1

−1 −1

0 −0.5


φ(x) =

 RX

RGA

 (43)

with oxygen mass exchange with the environment so that Q is a null matrix
except for the last element Q(4, 4) = kla.

Given the design parameters and feed streams of Table 2, the evolution and
distribution of the concentrations under the perturbations in the glucose inlet
depicted in Figure 1, are shown in Figure 2.
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Observer Validation

The observation scheme for continuous gluconic acid production is designed,
as discussed in previous sections, to produce estimates of biomass and gluconic
acid from a limited number of measurements of oxygen and glucose so that
according to (8) and (43) we have:

xe =

 X

GA

 xm =

 G
O2

 (44a)

Ke =

 1 0

0 1

 Km =

−1 −1

0 −0.5

 (44b)

The rest of matrices are null except the one that includes the oxygen exchange
parameter:

Qm =

 0 0

0 kla

 (45)

In order to illustrate the theoretical performance of the observer developed
in Proposition 1 without any approximation, let us consider a 15% of error
in the initial concentration of the products, perturb the glucose inlet as illus-
trated in Figure 1 and measure the input variables (Glucose and Oxygen) at
any time and point of the spatial domain. The dynamic observer (11) is imple-
mented using the FEM (18) with a mesh of 61 nodes. In Figure 3, the gluconic
acid and biomass concentration errors are shown at any time along the reac-
tor, illustrating the exponential-type error convergence property discussed in
Proposition 1.

At this point, let us illustrate how the observed variables (biomass and gluconic
acid) are affected by the model reduction and errors due to the sampling time
and reconstruction from a limited number of sensors in the spatial domain.
As it was commented in remark 2, special attention must be paid in the case
of the biomass observation, obtained from:

X = Z1 −G+ 2O2

where small relative errors in G and Z1 fields would produce big relative errors
in the biomass estimation, due to the differences of one order of magnitude
between the glucose and the biomass. The gluconic acid estimation, however,
does not present such inconvenient:

GA = Z2 − 2O2
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Anyway, and as we will show later, even in this case the methodology proposed
can be applied being careful with the approximations considered.

In fact, when the reduced order framework is implemented, the error in the
gluconic acid estimation has almost the same performance as the FEM im-
plementation whereas the error in the biomass is slightly affected as shown
Figure 4. For that purpose 7 and 8 basis functions computed from (31) were
used for, respectively, gluconic acid and biomass. The ROM proposed, equa-
tions (28) and (33), represents a considerable reduction in the computational
effort (20 ODEs in front of the 122 ODEs necessary when FEM is imple-
mented), specially advantageous not also for observation, but also for control
and optimization.

So far we have considered time-continuously oxygen and glucose measurements
along the axial dimension of the reactor. In Figure 5 biomass relative error
is depicted when the observer is fed with measurements every half an hour
assuming linear behavior, equation (35a), between successive sampling times.

The appropriate number of sensors and optimal locations for glucose and oxy-
gen measurements in the reactor, were selected as discussed in Appendix A
from a POD basis set computed by solving (A.2) from a sufficiently rich set of
dynamic snapshots. The POD set consisted of four and three elements for glu-
cose and oxygen concentrations, respectively. The optimal location of sensors
was obtained by solving the max-min problem (A.7) with the guided search
algorithm developed by Alonso and co-workers7. The locations along the re-
actor of the five and four sensors for glucose (triangles) and oxygen (circles)
are depicted in Figure 6.

Their measurements were employed to reconstruct the whole field by means
of equations (A.1) and (A.6). As shown in Figure 7 for glucose and oxygen
concentration, the reconstruction error remains extremely low in the event of
perturbations thus showing good reconstruction properties.

Finally, the error obtained combining all the approximations of the proposed
methodology can be seen in Figure 8 where the differences between the obser-
vation and the state, 250 hours after the initialization, remain in both cases
below 3.5 % (see figure 9) of relative error despite the ill-conditioned estima-
tion of biomass.

Conclusions

In this work, a novel systematic observer design methodology for spatially
distributed continuous reactors was presented. The approach, which extends
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further the theory of reactor estimation developed by Bastin and Dochain
to diffusion-convection-reaction processes, takes advantage of its dissipative
nature to demonstrate the exponential convergence depending on the design
parameters and derive robust and efficient low order dimensional observation
schemes. In addition, practical aspects of importance in industrial implemen-
tation such as the optimal location of a given limited number of sensors can
be also easily handled.
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Continous Discrete

⟨g(ξ), f(ξ)⟩Ω −→ GT(DA)F

⟨
g(ξ), ∂f(ξ)∂ξ

⟩
Ω

−→ GT(BE)F

⟨
g(ξ), ∂

2f(ξ)
∂ξ2

⟩
Ω
−→ GT(G)− GT(C + vQ)F

∂f(ξ)
∂ξ −→ (DA−1)(BE)F

D ∂2f(ξ)
∂ξ2

−→ (DA−1)(G)− (DA−1)(DC +Q)F

Table 1
Algebraic relations to numerically compute integrals and derivatives using the FEM
structure.
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Design parameter Symbol Value & Units

Mass dispersion coefficient D = 0.01 m2h−1

Flow velocity v = 0.01mh−1

Mass exchange parameter kla = 600 h−1

Input related parameters

Saturation of dissolved oxygen O∗
2 = 7.5e-3 gl−1

Glucose stream Gin = 115 gl−1

Dissolved oxygen stream O2in = 7.5e-3 gl−1

Biomass reaction Gluconic acid reaction

rate parameters rate parameters

µXmax = 0.219 h−1 µGA
max = 0.312 h−1

kX1 = 2.53 gl−1 kGA
1 = 109 gl−1

kX2 = 5 gl−1 kGA
2 = 6 gl−1

Table 2
Model Parameters
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Notation

Ao Matrix used to obtain the independent reaction rate fields Rs−r×s

B Basis for the null space of KT Rs×s−r

BE FEM matrix associated with the gradiant operator Rn×n

ca Modes or time-dependent functions associated with a R

Ca Vector collecting the set {cai }
ma
i=1 Rma

C FEM matrix associated with the laplacian operator Rn×n

dk Diffusion associated with the kth field of xe R+

D Matrix of dispersion parameters Rs×s

DA FEM matrix associated with the integral operator Rn×n

ek Error between the “real” and the kth observed field of xe R

epk Error between the “real” and the observed pk R

G FEM vector associated with the boundary conditions Rn

h Dimension of the spatial domain N

K Matrix of yield coefficients Rs×r

l Number of uncorrelated snapshots N

L Axial dimension of the reactor R+

n Dimension of the FEM mesh N

N Number of non-overlapping subdomains so Ω = ∪N
j=1Ωj N

Ns Number of sampling times R

p Independent reaction rates field with homogeneous bound-
ary conditions

Rs−r

Pk Spatial discretization of p in the FEM mesh R1×n

qk Transfer coefficient with environment associated with the
kth field of xe

[0,∞)

Q Matrix of exchange coefficients with the environment Rs×s

Q FEM vector associated with the boundary conditions Rn

r Dimension of the reaction rates vector N

R Kernel of both LSD and POD method R

R Spatial discretization of R in the FEM mesh Rn×n

s Number of states N

t Time [0,∞)

v Flow velocity R+

V Lyapunov function [0,∞)

x State vector field Rs

y Each element of the measurement vector R

z Vector field independent of the reaction rates Rs−r
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Greek symbols

Γ Boundary of the spatial domain Rh−1

λa Eigenvalue associated with the field a R

Λa Diagonal matrix collecting the set {λai }
ma
i=1 Rma×ma

ξ Spatial coordinates Rh

ϕa Global basis function associated with the filed a R

ψ FEM locally basis function (i = 1, ..., n) R

ϵk Truncation error of pk R

Ω Spatial domain Rh

ΩS Spatial domain of measurements Rn

φ Vector of reaction rates Rr

Superindex

ain a input in the reactor

aT Transpose of a

a∗ a property in the environment

a Transformation of the field a

ã Truncation of the infinite dimensional field a

â Truncation of the infinite dimensional field a

Subindex

ae Partition of the matrix or vector a associated with the ob-
served states

ak Element (or row in the case of full matrices) associated with
the kth element of a (k = 1, ..., s− r)

am Partition of the matrix or vector a associated with the mea-
surable states

aS a field in the ΩS spatial domain

a0 Initial condition of a
Table 3
Nomenclature denoting by a a generic function
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Appendices

A Optimal field reconstruction

Let us denote each element of the measurement vector xm as y and expand
it in terms of the basis function set {ϕy

i (ξ)}
my

i=1 in the same way as in (22), so
that:

y ∼= [ϕy
1, ..., ϕ

y
mk

]Cy ≡ ΦyCy (A.1)

Discrete global basis functions Φy are obtained off-line from the POD method
representing the behaviour not only related to the diffusion part, as in the
LSD, but also with the reaction rates and the rest of transport terms. To that
purpose a sufficiently rich collection of l uncorrelated snapshots of the states
are taken at every point of the FEM mesh, denoted by Y (tj), and used to
compute the kernel of the eigenvalue problem associated with (21):

RDAΦy
i = λyiΦ

y
i with R =

1

l

l∑
j=1

[Y (tj)Y (tj)
T] (A.2)

Details about the POD implementation exploiting the FEM structure and the
continuous formulation can be also seen in the Garćıa et al. work12.

In the same work, the notion of subdomains of measurements was also in-
troduced as those which partition the whole spatial domain and are suitable
for placing sensor arrays. Thus the estimation of the vector field xm from
optimal selection of point-wise measurements is substituted by the problem
of reconstructing spatial distributed states searching among regions of mea-
surements ensuring the solvability of the problem in high dimensionality FEM
meshes. For that purpose let us decompose the spatial domain Ω into N non-
overlapping subdomains Ωj so Ω = ∪j∈JΩj where J defines the set of natural
numbers ordered from 1 to N . With these preliminaries, the reconstruction
problem can be stated as follows:

For a given set of subdomains ΩS = ∪j∈SΩj ⊂ Ω with S ⊂ J (i.e. a collection
of elements belonging to J ) where the sensors are located, find the mode vector
Cy associated with the low-dimensional basis set (defined over ΩS) which min-
imizes the distance between the measurements yS and the estimates ŷS over
the L2 norm

Before proceeding with the reconstruction problem, let us first note that basis
functions are orthogonal and can be normalized with respect to the spatial
integration operator DA so that ΦyTDAΦy = I, with I denoting the identity
matrix. In the same way, the above orthonormality condition can be re-written
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as:
N∑
i=1

ΦyT
i DAiΦ

y
i = I (A.3)

where Φy
i ∈ Rni×mk , DAi ∈ Rni×ni and ni are defined for each subdomain. In

particular, DAi corresponds with the spatial integration operator associated
to subdomain i which, as DA, is invertible and thus accepts the following
factorization:

DAi =WiΛiW
T
i (A.4)

with Λi being diagonal and Wi unitary matrices.

Using the Table 1 and expressing the discrete version of the estimates as in
(A.1), the optimization problem is formally stated as:

min
Ĉy

1

2
∥ey∥2ΩS

= min
Ĉy

∑
i∈S

[
(yi − ĈyΦy

i )
TDAi(yi − ĈyΦy

i )
]

(A.5)

Its solution, once cast into a least squares minimization problem12, takes the
form:

Ĉy = (Πy)−1
∑
i∈S

ΦyT
i DAiyi Πy =

∑
i∈S

ZyT
i Zy

i (A.6)

where matrices Zy
i are computed as:

Zi =
√
Λy

iW
T
i Φ

y
i with ΦyT

i DAiΦ
y
i = ZyT

i Zy
i

It must be pointed out that matrix Π is always invertible provided that the
number of point-wise measurements is larger than or equal to the dimension
of the reduced space. Under this assumption the vector Ĉy is identifiable and
the errors ey bounded. The same assumption was also made by Christofides
and Baker31 to deal with time-varying uncertain variables in designing output
feedback controllers. According with this work, although the static output
feedback is more sensitive to measurements noise, the boundedness of the state
and output tracking was guaranteed provided that the separation between the
slow and fast eigenvalues is sufficiently large.

Equation (A.6) suggests a criterion to place sensors based on the degree of
conditioning of matrix Π. In this way, sensors will be placed over those subdo-
mains S which maximize the minimum eigenvalue of Π. Formally this problem
is stated as:

max
S

min
j
λyj

(∑
i∈S

ZyT
i Zy

i

)
(A.7)

and solved by means of the guided search algorithm developed by Alonso et
al.7.
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B Proof of Proposition 2

Proof: Combining equations (37) and (38) the observation error then becomes
of the form:

ek = zk(xm)− p̃k(x̂m) +
1

v
gk(x̂m, x

in)|ξ=0 − Aok(xm − x̂m)

furthermore, using (23) and (36), this error can be re-written as:

ek = pk(xm)− p̃k(x̂m) +
1

v
gk(em)|ξ=0 − Aokem

with

gk(em) = gk(xm, x
in)|ξ=0 − gk(x̂m, x

in)|ξ=0 = v(dkAokD
−1
m − Aok)em

Finally, adding and subtracting p̂k(x̂m) and using equation (34) the observa-
tion error can be formally stated as a function of the truncation error ϵk, and
the pk error, defined as epk = pk(xm)− p̂m(x̂m):

ek = epk +
1

v
gk(em)|ξ=0 − Aokem + ϵk (B.1)

Before continuing, let us study the stability properties of epk whose evolution
can be obtained by subtracting equation (25) from (26) where the reconstruc-
tion of the measurable fields x̂m has been employed:

∂epk
∂t

= dk
∂2epk
∂ξ2

− v
∂epk
∂ξ

− qkepk + fk(em) (B.2a)

dk
∂epk(0, t)

∂ξ
= vepk(0, t),

∂epk(L, t)

∂ξ
= 0 (B.2b)

epk(ξ, 0) = e0pk (B.2c)

where

fk(em)= fk(xm, x
∗, xin)− fk(x̂m, x

∗, xin) =

=
qk
v
gk(em)|ξ=0 + hk(em) +

1

v
ġk(em)|ξ=0 (B.2d)

hk(em)=hk(xm, x
∗)− hk(x̂m, x

∗)

= (AokDm − dkAok)
∂2em
∂ξ2

− (AokQm − qkAok)em (B.2e)

For the sake of clarity, let us omit the subindex k and follow the next steps:
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(1) Make use of Lemma 1, analogously to proposition 1, and re-write the
error epk as:

ep = exp(µξ − δt)e δ = q +
v2

4d
, µ =

v

2d
(B.3)

where the dynamics of the e field reads:

∂e

∂t
= d

∂2e

∂ξ2
+ exp(δt− µξ)f(em) (B.4a)

∂e(0, t)

∂ξ
= µe(0, t)

∂e(L, t)

∂ξ
= −µe(L, t) (B.4b)

e(ξ, 0) = e0 = e0p exp(−µξ) (B.4c)

(2) Define a Lyapunov function V = 1
2
⟨e, e⟩Ω and compute its time derivative

along the trajectories (B.4a):

∂V
∂t

= d

⟨
e,
∂2e

∂ξ2

⟩
Ω

+ ⟨e, exp(δt− µξ)f(em)⟩Ω (B.5)

(3) Find bounds for the right hand side in terms of ∥e∥Ω. We have already

found in the demonstration of proposition 1 that d
⟨
e, ∂

2e
∂ξ2

⟩
Ω
≤ −dν∥e∥2Ω.

In order to bound the second right hand term note that, since em and its
second spatial derivative ∂2em

∂e2m
are bounded, we can consider a parameter

F so that F ≥ f(em) and employ the Schwarz inequality to state:

⟨e, exp(δt− µξ)f(em)⟩Ω ≤ κF exp(δt)∥e∥Ω, κ =

[
1− exp(−2µL)

2µ

]1/2

(4) Re-write equation (B.5) noting that V = 1
2
∥e∥2Ω as follows:

V̇ ≤ −2dνV + κF exp(δt)
√
2V

(5) Use the transformation V =
√
V and differentiate V to obtain:

˙V + dνV ≤ κF√
2
exp(δt),

(6) Multiply both sides by exp(dνt), use the transformation r = V exp(dνt)
so that

ṙ ≤ κF√
2
exp [(dν + δ) t]

and integrate the inequality to get:

V exp(dνt)− V 0 ≤ κF√
2(dν + δ)

exp [(dν + δ) t]− κF√
2(dν + δ)
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(7) Since V = 1√
2
∥e∥Ω, we then have

∥e∥Ω ≤ κF

dν + δ
exp(δt) +

[
∥e0∥Ω − κF

dν + δ

]
exp(−dνt) (B.6)

Finally, let us re-introduce the subindex k and combine relation (B.3) with
(B.1) to get:

∥ek∥Ω ≤ ∥ exp(µkξ − δkt)∥Ω∥ek∥Ω +
∥∥∥∥1vgk(em)|ξ=0 + ϵk − Aokem

∥∥∥∥
Ω
,

therefore the norm of the observation error, using inequality (B.6) and re-
arranging terms, is bounded as:

∥ek∥Ω ≤ ϖk exp[−(δk + dkνk)t] + Ξk (B.7a)

with

ϖk = ∥e0k∥Ω
[
exp(2µkL)− 1

2µk

]1/2
− ηk <∞ (B.7b)

Ξk = ηk +
∥∥∥∥1vgk(em)|ξ=0 + ϵk − Aokem

∥∥∥∥
Ω
<∞ (B.7c)

ηk =
Fk

dkνk + δk

[
exp(2µkL) + exp(−2µkL)− 2

4µ2
k

]1/2
(B.7d)

�
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