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Abstract—We define a class of multi–hop erasure networks that
approximates a wireless multi–hop network. The network carries
unicast flows for multiple users, and each information packet
within a flow is required to be decoded at the flow destination
within a specified delay deadline. The allocation of coding rates
amongst flows/users is constrained by network capacity. We
propose a proportional fair transmission scheme that maximises
the sum utility of flow throughputs. This is achieved by jointly
optimising the packet coding rates and the allocation of bits of
coded packets across transmission slots.

Index Terms—Code rate selection, cross layer optimisation,
network utility maximisation, packet erasure channels, schedul-
ing

I. I NTRODUCTION

In a communication network, the network capacity is shared
by a set of flows. There is a contention for resources among
the flows, which leads to many interesting problems. One such
problem, ishow to allocate the resources optimally across
the (competing) flows, when the physical layer is erroneous.
Specifically, schedule/transmit time for a flow is a resource
that has to be optimally allocated among the competing
flows. In this work, we pose a network utility maximisation
problem subject to scheduling constraints that solve a resource
allocation problem. In another work, we studied the problem
of optimal resource allocation in networks [1].

We define a class of multi–hop erasure networks, and
consider packet communication over this class. The network
consists of a set ofC ≥ 1 cells C = {1, 2, · · · , C} which
define the “interference domains” in the network. We allow
intra–cell interference (i.e transmissions by nodes within the
same cell interfere) but assume that there is no inter–cell
interference. This captures, for example, common network
architectures where nodes within a given cell use the same
radio channel while neighbouring cells using orthogonal radio
channels. Within each cell, any two nodes are within the
decoding range of each other, and hence, can communicate
with each other. The cells are interconnected using multi–
radio bridging nodes to create a multi–hop wireless network.
A multi–radio bridging nodei connecting the set of cells
B(i) = {c1, .., cn} ⊂ C can be thought of as a set ofn single
radio nodes, one in each cell, interconnected by a high–speed,
loss–free wired backplane (see Figure 1).
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Fig. 1. An illustration of a wireless mesh network with 4 cells.Cells a,
b, c, andd use orthogonal channels CH1, CH2, CH3, and CH4 respectively.
Nodes 3, 5, and 6 arebridge nodes. The bridge node 3 (resp. 5 and 6) is
provided a time slice of each of the channels CH1 & CH2 (resp. CH2 &
CH4 for node 5 and CH2& CH3& CH4 for node 6). Three flowsf1, f2,
andf3 are considered. In this example,Cf1 = {a, b}, Cf2 = {d, b, a}, and
Cf3 = {c, d}.

Data is transmitted across this multi–hop network as a setF
= {1, 2, · · · , F}, F ≥ 1 of unicast flows. The route of each
flow f ∈ F is given by Cf = {c1(f), c2(f), · · · , cℓf (f)},
where the source nodes(f) ∈ c1(f) and the destination node
d(f) ∈ cℓf (f). We assume loop–free flows (i.e., no two cells
in Cf are same). Figures 1 and 2 illustrate this network setup.
A scheduler assigns a time slice of durationTf,c > 0 time
units to each flowf that flows through cellc, subject to the
constraint that

∑
f :c∈Cf

Tf,c ≤ Tc whereTc is the period of the
schedule in cellc. We consider a periodic scheduling strategy
(see Figure 2) in which, in each cellc, service is given to the
flows in a round robin fashion, and that each flowf in cell c
gets a time slice ofTf,c units in every schedule.

The scheduled transmit times for flowf in source cellc1(f)
define time slots for flowf . We assume that a new information
packet arrives in each time slot, which allows us to simplify
the analysis by ignoring queueing. Information packets of each
flow f at the source nodeS(f) consist of a block ofkf



symbols. Each packet of flowf is encoded into codewords
of lengthnf = kf/rf symbols, with coding rate0 < rf ≤ 1.
The code employed for encoding is discussed in Section II.
We require sufficient transmit times at each cell along routeCf
to allownf coded symbols to be transmitted in every schedule
period. Hence there is no queueing at the cells along the route
of a flow. It is not apparent at this point whether it is optimal
for flow f to transmit a single code–word ofnf symbols or
transmit a block ofnf symbols where each block carries some
portions of each of a set of coded packets.

Channel Model: The channel in cellc for flow f is
considered to be a packet erasure channel with the probability
of packet erasure beingβf,c ∈ [0, 1]. Thus, the end–to–
end channel for flowf is a packet erasure channel with the
probability of packet erasure being

βf = 1−
∏

c∈Cf

[1− βf,c]

Let the Bernoulli random variableEf [i] indicate the end–to–
end erasure seen by theith block of flowf (independent of the
erasure seen by other blocks) of flowf . Note thatEf [i] = 1
means that theith block is erased, andEf [i] = 0 means that
the ith block is received successfully. Note thatP{Ef [i] =
1} = βf = 1− P{Ef [i] = 0}.

Each packet has a deadline ofDf slots, by which time
it must be decoded. Such a delay constraint is natural in
applications such as video streaming. A packet is in error ifthe
destination fails to decode the packet by the deadline. Letting
ef (rf ) denote the error probability that a packet fails to be de-
coded before its deadline, the expected number of information
symbols successfully received isSf (rf ) = kf (1 − ef (rf )).
Other things being equal, we expect that decreasingrf (i.e.,
increasing the number of coded symbolsnf = kf/rf sent)
decreases error probabilityef and so increasesSf . However,
since the network capacity is limited, and is shared by multiple
flows, increasing the coded packet sizenf1 of flow f1 gen-
erally requires decreasing the packet sizenf2 for some other
flow f2. That is, increasingSf1 comes at the cost of decreasing
Sf2 . We are interested in understanding this trade–off, and in
analysing the optimal fair allocation of coding rates amongst
users/flows.

Our main contribution is the analysis of fairness in the
allocation of coding rates between users/flows competing for
limited network capacity. In particular, we adopt a utility–
fair framework, and propose a scheme for obtaining the
proportional fair allocation of coding rates,i.e. the allocation
of coding rates that maximises

∑
f∈F logSf (rf ) subject to

network capacity constraints. This problem, which we show
in Section III, requires solving a non–convex optimisation
problem. Specifically, at the physical layer, the (channel)
coding rate of a flow can be lowered (to alleviate its channel
errors) only at the expense of increasing the coding rates of
other flows. Also, at the network layer, the length of schedules
of each flow should be chosen in such a way that it maximises
the network utility. Interestingly, we show in our problem
formulation that the coding rate and the scheduling are tightly
coupled. Also, we show that for alog (network) utility function
(which typically gives proportional fair allocation of resources)

Fig. 2. An illustration of transmission scheme in cella of the network
in Figure 1: Every transmission schedule ofTa time units is time–shared by
nodes 1 and 3. Note thatφ∆(f)NfRf symbols of the encoded packetp are
transmitted in transmission schedulep+∆, where∆ ∈ {0, 1, 2, · · · , nf−1}.
The scheduling or capacity constraint of cella may not be tight (indicated by
empty time slice in the figure), as the rates of flowsf1 andf2 are governed
by the whole network.

the optimum rate allocation (in general) gives unequal air–
times which is quite different from the previously known
result of proportional fair allocation being the same as that of
equal air–time allocation ([2]). This problem, which we show
in Section III, requires solving a non–convex optimisation
problem. Our work differs from the previous work on network
utility maximisation (see [3] and the references therein) in
the following manner. To the best of our knowledge, this
is the first work that computes the optimal coding rate for
a given scheduling (or capacity) constraints in the utility–
optimal framework.

The rest of the paper is organised as follows. In Section II,
we obtain a measure for the end–to–end packet erasure, and
describe the throughput of the network. We then formulate a
network utility maximisation problem subject to constraints on
the transmission schedule lengths. In Section III, we obtain the
optimum transmission strategy and the optimum packet–level
coding rates for each flow in the network. In Section V, we
provide some simple examples to illustrate our results. Dueto
lack of space, the proofs of various Lemmas are omitted.

II. PROBLEM FORMULATION

The encoding has two stages. The first stage is the encoding
of each information packet using a standard generator matrix
such as a Reed–Solomon code or a fountain code [4]. LetPf [t]
denote the information packet that arrives at the source of
flow f in slot t. A packetPf [t] of flow f haskf symbols, the
encoded packetCf [t] of which is of sizenf = kf/rf with 0 <
rf ≤ 1, and we assume that the code is such that the packet
Pf [t] can be reconstructed fromanyof its kf encoded symbols
(this is possible, for example, by Reed–Solomon codes).

The second stage allocates the content of the encoded packet
Ct of the first stage across thetransmitted packets. Each
encoded packet is segmented intoDf portions (where we
recall thatDf is the decoding deadline requirement for each
packet of flowf ), the size of the∆th portion beingφf (∆)nf ,
where∆ ∈ {0, 1, · · · , Df − 1} and 0 6 φf (∆) 6 1. At
transmission slott, a transmitted packet is assembled from the
φf (0) portion ofCf [t], theφf (1) portion ofCf [t− 1], and so
on until theφf (Df − 1)th portion of packetCf [t−Df + 1].
This procedure is illustrated in Figure 3 fornf = 3. Note
that the transmitted packet is of sizenf symbols. To decode a
packetPf [t] of flow f , we use the transmitted packets that are
received during the transmission slotst, t+1, · · · , t+Df −1.
Note that the conventional strategy of transmitting an encoded
packet every transmission slot corresponds to the special case:



Pf [1] Pf [2] Pf [3]

Cf [1] Cf [2] Cf [3]

φ0C[1] φ0C[2] φ1C[1] φ0C[3] φ1C[2] φ2C[1]

1 2 3Time
Fig. 3. Two stage encoding (example ofDf = 3): information packetPf [1]
of sizekf is encoded toCf [1] of sizenf = kf/rf , the contents of which are
allocated across subpacketsφ0Cf [1], φ1Cf [1], φ2Cf [1] across3 timeslots.

φf (0) = 1 and φf (1) = φf (2) = · · · = φf (Df − 1) = 0.
We call the transmission scheme outlined above with general
φ·(∆)s ageneralised block transmission scheme.

A. Network Constraints on Coding Rate

Let wf,c be the PHY rate of transmission of flowf in cell c.
For each transmitted packet of flowf , each cellc ∈ Cf along
its route must allocate at leastnf

wf,c
units of time to transmit

the packet (or encoded block). LetFc := {f ∈ F : c ∈ Cf}
be the set of flows that are routed through cellc. We recall
that the transmissions in any cellc are scheduled in a TDMA
fashion, and hence, the total time required for transmitting
packets for all flows in cellc is given by

∑
f∈Fc

nf

wf,c
. Since,

for cell c, the transmission schedule interval isTc units of time,
the coding ratesrf must satisfy the schedulability constraint∑

f∈Fc

nf

wf,c
6 Tc.

B. Error Probability – Upper bound

Lemma 1. The end–to–end probability of a packet erasure
for flow f is bounded by

ẽf

= P






Df−1∑

∆=0

φf (∆)
kf
rf

Ef [∆] > nf − kf






≤ exp


−


θf (1− rf )−

Df−1∑

∆=0

ln
(
1− βf + βfe

θf ·φf (∆)
)





=: ef .

whereθf > 0 is the Chernoff–bound parameter.

Let the random variableαf [t] indicate whether packetPf [t]
is successfully decoded or not, i.e.,

αf [t] =

{
1, if packetPf [t] is decoded successfully
0, otherwise.

We note here that the decoding errors for the successive
packets are correlated, as each encoded packet overlaps with
the transmission of previousDf−1 packets and the successive
Df − 1 packets. Hence, the sequence of random variables
αf [1], αf [2], αf [3], · · · are correlated. But, the probability of
anyαf [t] = 0 is upper bounded by Lemma 1.

III. N ETWORK UTILITY MAXIMISATION

For flow f , the total expected throughput as a result of
transmittingT ≥ 1 packets is given by

Sf (T )

=
∑

(x1,x2,··· ,xT )∈{0,1}T

(

T
∑

t=1

kfxt

)

P
{

αf [t] = xt, t = 1, 2, · · · , T
}

Note that the joint probability mass function
P {αf [t] = xt, t = 1, 2, · · · , T } is not a product–form
distribution as the packet erasuresαf [t]s are correlated.
However, the above expectation can be written as

Sf (T ) =

T∑

t=1

∑

xt∈{0,1}

kfxtP {αf [t] = xt}

= T · kf · (1− ef )

Thus, the (average expected) flow throughput is defined as

Sf = lim
T→∞

Sf (T )

T
= kf · (1− ef ).

We are interested in maximising the utility of the network
which is defined as the sum utility of flow throughputs.
We consider the log of throughput as the candidate for the
utility function being motivated by the desirable properties
like proportional fairness that it possesses.

We define the following notations: the Chernoff–bound
parametersθ := [θf ]f∈F , coding ratesr := [rf ]f∈F , and
the allocation of coded bits across transmission slotsΦ :=
[φf ]f∈F whereφf := [φf (0), φf (1), · · · , φf (Df − 1)]. Thus,
we define the network utility as

Ũ (Φ, θ, r) :=
∑

f∈F

ln (kf (1− ef (φf , θf , rf )))

=:
∑

f∈F

ln (kf ) + U (Φ, θ, r) (1)

The problem is to obtain the optimum coded bit allocationΦ
∗,

the optimum Chernoff–bound parameterθ∗, and the optimum
coding rater∗ that maximises the network utility. Since,kf ,
the size of information packets of each flowf is given,
maximising the network utility is equivalent to maximising
U(Φ, θ, r) :=

∑
f∈F ln (1− ef ). Thus, we define the follow-

ing problem
P1:

max
Φ,θ,r

U(Φ,θ, r)

subject to
∑

f :c∈Cf

kf

rfwf,c

≤ Tc, ∀c ∈ C (2)

Df−1∑

∆=0

φf (∆) = 1, ∀f ∈ F (3)

φf (∆) ≥ 0, ∀f ∈ F , 0 ≤ ∆ ≤ Df − 1

θf > 0, ∀f ∈ F

rf ≤ λf ∀f ∈ F

rf ≥ λf ∀f ∈ F



We note that the Eqn. (2) enforces the network capacity (or
the network schedulability) constraint. The objective function
U(Φ, θ, r) is separable in(φf , θf , rf ) for each flow f .
Importantly, the component of utility function for each flow
f given by ln (1− ef (φf , θf , rf )) is not jointly concave in
(φf , θf , rf ). However, ln (1− ef (φf , θf , rf )) is concave in
each ofφf (·), θf , andrf . Hence, the network utility maximi-
sation problemP1 is not in the standard convex optimisation
framework. Instead, we pose the following problem,
P2:

max
Φ

max
θ

max
r

∑

f∈F

ln (1− ef (φf , θf , rf )) (4)

subject to
∑

f :c∈Cf

kf

rfwf,c

≤ Tc, ∀c ∈ C

Df−1∑

∆=0

φf (∆) = 1, ∀f ∈ F

φf (∆) ≥ 0, ∀f ∈ F , 0 ≤ ∆ ≤ Df − 1

θf > 0, ∀f ∈ F

rf ≤ λf ∀f ∈ F

rf ≥ λf ∀f ∈ F

In general, the solution toP2 need not be the solution to
P1. However, in our problem, we show thatP2 achieves the
solution ofP1.

Lemma 2. . For a functionf : Y × Z → R that is concave
in y and inz, but not jointly in(y, z), the solution to the joint
optimisation problem for convex setsY andZ

max
y∈Y,z∈Z

f(y, z) (5)

is the same as

max
z∈Z

max
y∈Y

f(y, z), (6)

if f(y∗(z), z) is a concave function ofz, where for eachz ∈ Z,
y∗(z) := argmax

y∈Y
f(y, z).

We note that for eachrf and θf , the probability of error
ef is convex inφf , and hence,ln(1− ef ) is concave inφf .
Thus, we first solve for the optimum code bit allocationφ∗

f

in Section IV-A. Then, using the optimum code bit allocation,
we solve for the optimum Chernoff bound parameterθ∗ which
we describe in subsection IV-B. After having solved for the
optimumθ∗, we show in Section IV-C thatU(Φ∗, θ∗(r), r) is
a concave function ofr. Hence, from Lemma 2, the solution
to problem(P2) (the maximisation problem that separately
obtains the optimumθ∗ and optimumr∗) is globally optimum.
We study the rate optimisation problem that obtainsr∗ in
subsection IV-D.

IV. U TILITY OPTIMUM RATE ALLOCATION

A. Optimal Code Bit AllocationΦ

We consider the maximisation problem defined in Eqn. 4 for
a given coding rate vectorr and Chernoff–bound parameter
vectorθ, and obtain the optimumφf for each flowf ∈ F .

The sub–problem is given by

max
φf

∑

f∈F

ln (1− ef (φf , θf , rf ))

subject to

Df−1∑
∆=0

φf (∆) = 1, ∀f ∈ F
φf (∆) ≥ 0, ∀f ∈ F , ∀∆ ≤ Df − 1.

This is a separable convex optimisation problem, and hence
can be solved by Lagrangian method. Letµf be a Lagrangian

multiplier for the constraint
Df−1∑
∆=0

φf (∆) = 1, and defineµ =

[µf ]f∈F . The Lagrangian function is given by

L(Φ,µ) =
∑

f∈F

ln (1− ef )−
∑

f∈F

µf

(
1−

Df−1∑

∆=0

φf (∆)

)

Applying KKT condition,

∂L

∂φf (i)
|φf (i)∗ = 0,

we get

0 =
−ef
1− ef

· βfθfe
θfφ

∗

f (i)

1− βf + βfe
θfφ∗

f (i)
+ µf

or, eθfφ
∗

f (i) =
1− βf

βf

(1 − ef)µf

θfef − µf (1− ef )
(7)

for i = 0, 1, 2, · · · , nf − 1. Since, the RHS of Eqn. 7 is the
same for alli, we getφ∗

f (i) = φ∗
f (j), and hence

φ∗
f (∆) =

1

Df
, ∀∆ = 0, 1, · · · , Df − 1.

Thus,Φ∗ allocates equal portions of an encoded packet across
transmission schedules with a delay of0, 1, · · · , Df−1, unlike
the conventional transmission scheme which transmits all the
coded bits of a packet in one shot. Hence,ef (φ

∗
f , θf , rf ) is

ef = exp

(
−
[
θf (1− rf )−Df ln

(
1− βf + βfe

θf
Df

)])
.

(8)

B. Optimalθ∗

We now consider the optimum Chernoff–bound parameter
problem with the optimum coded bits allocationΦ∗, and for
any given coding rate vectorr ∈ [λf , λf ]

F .

max
θ

∑

f∈F

ln
(
1− ef(φ

∗
f , θf , rf )

)
(9)

subject to θf > 0, ∀f ∈ F

We note that the objective function is separable inθfs, and
thatef is convex inθf . Hence, the problem defined in Eqn. (9),
is a concave maximisation problem. The partial derivative of
ef with respect toθf is given by

∂ef
∂θf

= −ef ·
[
(1 − rf )−

βfe
θf/Df

1− βf + βfeθf/Df

]
.



Observe that βfe
θf /Df

1−βf+βfe
θf /Df

is an increasing function ofθf .

Thus, if, for θf = 0, 1− rf − βf

1−βf+βf
< 0 or rf > 1− βf ,

the derivative is positive for allθf > 0, or ef is an increasing
function of θf . Hence, forrf > 1 − βf , the optimumθ∗f is
arbitrarily close to0 which yields ef arbitrarily close to1.
Thus, for error recovery, for any end–to–end error probability
βf , the coding rate should be smaller than1 − βf , in which
case, we obtain the optimumθ∗f by equating the partial
derivative ofef with respect toθf to zero.

i.e., βfe
θ∗f /Df

1−βf+βfe
θ∗
f
/Df

= 1− rf

or, eθ
∗

f/Df =
1−rf
βf

1−βf

rf

or, θ∗f = Df

[
ln
(

1−rf
βf

)
− ln

(
rf

1−βf

)]
.

Thus, the probability of a packet decoding error for a given
rf with the optimum allocation of coded bitsΦ∗, and the
optimum Chernoff–bound parameterθ∗f , is

ef

= exp

(
−Df

[
(1− rf ) ln

(
1− rf
βf

)
+ rf ln

(
rf

1− βf

)])

= exp (−Df · KL(B(1− rf )||B(βf ))

where KL(f1, f2) is the Kullback–Leibler divergence between
the probability mass functions (pmfs)f1 andf2.

C. A convex optimisation framework to obtain optimalr∗f
If ln(1 − ef(φ

∗
f , θ

∗
f , rf )) is concave inrf , then one can

obtain the optimumr∗f using convex optimisation framework.
To show the concavity ofln(1−ef(φ

∗
f , θ

∗
f , rf )) it is sufficient

to show thatef (φ∗
f , θ

∗
f , rf ) is convex inrf . Note that

∂ef
∂rf

= ef · θ∗f (rf )

∂2ef
∂r2f

= ef

[
θ∗2f − Df

rf (1− rf )

]

ef is convex if
[
ln

(
1− rf
βf

)
− ln

(
rf

1− βf

)]2
≥ Df

rf (1− rf )
,

or,

ln

(
1− rf
rf

1− βf

βf

)
≥

√
Df√

rf (1− rf )

or,

√
Df√

rf (1− rf )
− ln

(
1− rf
rf

1− βf

βf

)
≤ 0

The function 1√
rf (1−rf )

is convex in rf . Also, ln
(

1−rf
rf

)

is decreasing withrf , and hence,− ln
(

1−rf
rf

1−βf

βf

)
≤

− ln
(

1−λf

λf

1−βf

βf

)
. Thus, we have a sufficient condition

√
Df√

rf (1− rf )
− ln

(
1− λf

λf

1− βf

βf

)
≤ 0 (10)

The above condition requires the delay deadlineDf to be
smaller than someDf (rf ). We considerDfs to satisfy this

condition, and hence, the rate optimisation problem is a
concave maximisation problem. For the sake of completeness,
we include this as a constraint in the problem formulation.
However, this condition is not an active constraint.

D. Optimal Coding Rater

From the previous subsection, we observe under the delay
constraint Eqn. (10) thatef(φ∗

f , θ
∗
f (rf ), rf ) is convex inrf ,

and hence, we obtain the optimum coding rater∗f using convex
optimisation method. Also, from Lemma 2, it is clear that
r∗f is the unique globally optimum rate. Thus, we solve the
following network utility maximisation problem

max
r

∑

f∈F

ln
(
1− ef (φ

∗
f , θ

∗
f (rf ), rf )

)
(11)

subject to
∑

f :c∈Cf

kf
rfwf,c

≤ Tc, ∀c ∈ C

rf ≤ λf ∀f ∈ F
rf ≥ λf ∀f ∈ F

√
Df√

rf (1− rf )
− a ≤ 0 ∀f ∈ F (12)

wherea = ln
(

1−λf

λf

1−βf

βf

)
. It is clear that the objective func-

tion is separable and concave, and hence, can be solved using
Lagrangian relaxation method. Also, we note here that the
constraint represented by Eqn. (12) is not an active constraint,
and hence, there is no Lagrangian cost to this constraint. We
note here that the coding rate should be such thatkf/rf is
an integer, and hence, obtainingr∗f is a discrete optimisation
problem. This is, in general, an NP hard problem. Hence, we
relax this constraint, and allowrf to take any real value in
[λf , λf ]. The Lagrangian function for the rate optimisation
problem is thus

L(r,p,u,v)

=
∑

f∈F

ln (1− ef )−
∑

c∈C

pc




∑

f∈Fc

kf
rfwf,c

− Tc





+
∑

f∈F

uf

(
rf − λf

)
−
∑

f∈F

vf
(
rf − λf

)

Applying KKT condition, ∂L
∂rf

|r∗
f
= 0, we have

−1

1− ef

∂ef
∂rf

|r∗f =
∑

c∈Cf

pc
−kf

r∗2f wf,c
+ vf − uf

=
−kf
r∗2f




∑

c∈Cf

pc
wf,c



+ vf − uf

ef
1− ef

· θ∗f =
kf
r∗2f




∑

c∈Cf

pc
wf,c



+ vf − uf .

If the optimumr∗f is eitherλf or λf , then it is unique. Ifr∗f ∈
(λf , λf ), then uf = vf = 0, which is the most interesting
case, and we consider only this case for the rest of the paper.



Let λf :=
∑

c∈Cf

pc

wf,c
. The above equation becomes

ef
1− ef

· θ∗f =
λfkf
r∗2f

(13)

ef =
λfkf

λfkf + θ∗fr
∗2
f

(14)

exp
(
−DfD(B(1− r∗f )‖B(βf))

)
=

λfkf
λfkf + θ∗fr

∗2
f

DfD(B(1− r∗f )‖B(βf)) = ln

(
λfkf + θ∗fr

∗2
f

λfkf

)

(15)

In the above equation, the LHS is a strictly convex decreasing
function of r∗f . Since, the utility maximisation problem is a
concave maximisation problem, the optimum rater∗f ∈ (0, 1−
βf ) exists and is unique.

E. Sub–gradient Approach to Compute optimump∗c

In this section, we discuss the procedure to obtain the
Shadow costs or the Lagrange variablesp∗. The dual problem
for the primal problem defined in Eqn. (11) is given by

min
p≥0

D(p),

where the dual functionD(p) is given by

D(p)

= max
r

∑

f∈F

ln(1 − ef(rf )) +
∑

c∈C

pc



Tc −
∑

f∈Fc

kf
rfwf,c





(16)

=
∑

f∈F

ln(1− ef (r
∗
f (p))) +

∑

c∈C

pc


Tc −

∑

f∈Fc

kf
r∗f (p)wf,c


 .

(17)

In the above equation,ef (rf ) denotesef(φ∗
f , θ

∗
f (rf ), rf ).

Since the dual function (of a primal problem) is convex,D is
convex inp. Hence, we use a sub–gradient method to obtain
the optimump∗. From Eqn. (16), it is clear that for anyr,

D(p) ≥
∑

f∈F

ln(1− ef (rf )) +
∑

c∈C

pc


Tc −

∑

f∈Fc

kf
rfwf,c


 ,

and in particular,D(p) is greater than that forr = r∗f (p̃), i.e.,

D(p)

≥
∑

f∈F

ln(1 − ef(r
∗
f (p̃))) +

∑

c∈C

pc


Tc −

∑

f∈Fc

kf
r∗f (p̃)wf,c




= D(p̃) +
∑

c∈C

(pc − p̃c)


Tc −

∑

f∈Fc

kf
r∗f (p̃)wf,c


 (18)

Thus, a sub–gradient ofD(·) at anyp̃ is given by the vector

Tc −

∑

f∈Fc

kf
r∗f (p̃)wf,c




c∈C

. (19)

We obtain an iterative algorithm based on sub–gradient method
that yieldsp∗, with p(i) being the Lagrangians at theith
iteration.

pc(i + 1) =



pc(i)− γ ·



Tc −
∑

f∈Fc

kf
r∗f (p(i))wf,c








+

.

whereγ > 0 is a sufficiently small stepsize, and[f(x)]+ :=
max{f(x), 0} ensures that the Lagrange multiplier never goes
negative. Note that the Lagrangian updates can be locally done,
as each cellc is required to know only the ratesr∗f (p(i))
of flows f ∈ Fc. Thus, at the beginning of each iterationi,
the flows choose their coding rates tor∗f (p(i)), and each cell
computes its cost based on the rates of flows through it. The
updated costs along the route of each flow are then fed back
to the source node to compute the rate for the next iteration.

The Lagrange multiplierpc can be viewed as the cost of
transmitting traffic through cellc. The amount of service
time that is available is given byδ = Tc −

∑
f∈Fc

kf

r∗f (p(i))wf,c
.

When δ is positive and large, then the Lagrangian costpc
decreases rapidly (becauseD is convex), and whenδ is
negative, then the Lagrangian costpc increases rapidly to make
δ ≥ 0. We note that the increase or decrease ofpc between
successive iterations is proportional toδ, the amount of service
time available. Thus, the sub–gradient procedure providesa
dynamic control scheme to balance the network loads.

We explore the properties of the optimum rate parameter
r∗f in Section IV-F. In Section V, we provide some examples
that illustrate the optimum utility–fair resource allocation.

F. Properties ofr∗f
Lemma 3. r∗f (Df ) is an increasing function ofDf .

Lemma 3 is quite intuitive. For any given channel errorβf ,
as the deadline become less stringent, it is optimal to go fora
high rate code. In other words, it is optimal for a flow to use as
much scheduling time as possible (for a largeDf , and hence,
use a high rate code); however, the resources are shared among
multiple flows, and hence, we ask the following question:
“what is the optimal share of the scheduling time” that each
flow should have. Interestingly, in our problem formulation,
the code raterf also solves this optimal scheduling times for
each flows.

V. EXAMPLES

A. Example 1: Two cells with equal traffic load

We begin by considering the example shown in Figure 4
consisting of two cellsa and b having three nodes 1, 2, and
3. Each cell has the same packet erasure probabilityβ and the
schedule lengthT . There are three flowsf1, f2, andf3, with
two of the flowsf1 andf3 having one–hop routesCf1 = {b}
and Cf3 = {a}, and one flowf2 having a two–hop route



a b

3flow f

flow f
1

Fig. 4. Cells with equal traffic load

Cf2 = {a, b}. Each flow has the same information packet size
k, decoding deadlineD and PHY transmit rate,i.e.wf,c = w.
This is analogous to the so–called parking–lot topology often
used to explore fairness issues.

The end–to–end erasure probability experienced by the two–
hop flow f2 is greater than that experienced by the one hop
flows f1 and f3, since each hop has the same fixed erasure
probability. Hence, we need to assign a lesser coding raterf2
to flow f2 than to flowsf1 and f3 in order to obtain the
same error probability (after decoding) across flows. However,
when operating at the boundary of the network capacity region
(thereby maximising throughput), decreasing the coding rate
rf2 of the two–hop flowf2 requires that the coding rate of
bothone–hop flowsf1 andf3 be increased in order to remain
within the available network capacity. In this sense, allocating
coding rate to the two–hop flowf2 imposes a greater marginal
cost on the network (in terms of the sum–utility) than the one–
hop flows, and we expect that a fair allocation will therefore
assign higher coding rate to the two–hop flowf2. The solution
optimising this trade–off in a proportional fair manner canbe
understood using the analysis in the previous section.

In this example, both the cells are equally loaded and, by
symmetry, the Lagrange multiplierspa = pb. Hence,λf1 =
λf2

2 = λf3 . For the Chernoff–bound parameterθ = [θ, θ], we
find from Eqn. (13),

ef2
1− ef2

· 1− ef1
ef1

=
λf2

λf1

·
r∗2f1
r∗2f2

= 2 ·
r∗2f1
r∗2f2

.

For sufficiently small erasure probabilities, we have

ef2
ef1

≈ 2 ·
r∗2f1
r∗2f2

≈ 2

Thus the proportional fair allocation isef1 = ef3 ≈ 1/2 · ef2 .
That is, the coding rates are allocated such that the one–hop
flows have approximately half the error probability of the two–
hop flow.

B. Example 2: Two cells with unequal traffic load

We consider the same network as in the previous example,
but now with only the flowsf1 andf2 (i.e., the flowf3 is not
present) in the network. In this example, cell b carries two

a b

3flow f

flow f1

Fig. 5. Cells with unequal traffic load

flows while cell a carries only one flow. The encoding rate
constraints are given by

1

rf2
≤ wT

k
, (from cell 1),

1

rf1
+

1

rf2
≤ wT

k
, (from cell 2).

Since, bothrf1 and rf2 are at most 1, it is clear that at
the optimal point, the rate constraint of cell a is not tight
while the constraint of cell b is tight. Thus, the shadow prices
(Lagrange multipliers)pa = 0 andpb > 0. That is, at the first
hop the cell is not operating at capacity, and so the “price”
for using this cell is zero. In this example,λf1 = λf2 , and
hence, from Eqn. (13), we deduce that for sufficiently low
cell erasure probabilityβ, ef1 ≈ ef2 . Alternatively, as the
delay deadlineD → ∞, from Eqn. (13) we haveef1 = ef2 .
These proportional fair allocations make sense intuitively since
although flowf2 crosses two hops, it is only constrained at the
second hop and so it is natural to share the available capacity
of this second hop approximately equally between the flows.
When the erasure probability is sufficiently small, this yields
approximately the same error probabilities for both flows. For
larger erasure probabilities, it leads to the two–hop flow having
higher error probability, in proportion to the per–hop erasure
probabilityβ.
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