
Plasma Etch Process Virtual Metrology using 

Aggregative Linear Regression 

PKS Prakash 

The Irish Centre for Manufacturing Research 

National University of Ireland, Maynooth, 

Co. Kildare, Ireland 

Email: prakash@eeng.nuim.ie 

 S. F. McLoone 

Department of Electronic Engineering  

National University of Ireland, Maynooth,  

Co. Kildare, Ireland  

Email: sean.mcloone@eeng.nuim.ie

Abstract—To enhance product quality semiconductor 

manufacturing industries are increasing the amount of metrology 

information collected during manufacturing processes. This 

increase in information has provided companies with many 

opportunities for enhanced process monitoring and control. 

However, the increase in information also posses challenges as it 

is quite common now to collect many more measurements than 

samples from a process leading to ill-conditioned datasets. Ill-

conditioned datasets are very common in semiconductor 

manufacturing industries where infrequent sampling is the norm. 

It is therefore critical to be able to quantify virtual metrology 

models developed from such data sets. This paper presents an 

aggregative linear regression methodology for modeling that 

allows the generation of confidence intervals on the predicted 

outputs. The aggregation enhances the robustness of the linear 

models in terms of process variation and model sensitivity 

towards prediction. Also, to deal with the large number of 

candidate process variables, variable selection methods are 

employed to reduce the dimensionality and computational efforts 

associated with building virtual metrology models. In the paper 

three methods for variable selection are evaluated in conjunction 

with aggregative linear regression (ALR). The proposed 

methodology is tested on a benchmark semiconductor plasma 

etch process dataset and the results are compared with state-of-

art multiple linear regression (MLR) and Gaussian Process 

Regression (GPR) VM models. 

Keywords: Virtual metrology, Aggregative Linear Regression, 

Forward Stepwise Regression, Decision Trees. 

I. INTRODUCTION

Plasma etching is a key process in modern semiconductor 
manufacturing facilities used to achieve precise control of 
wafer etching. Plasma etching offers process simplification and 
improved dimensional tolerances compared to wet-chemical-
etching technology. The flowchart of a plasma etching process 
is shown in Fig. 1. The process involves introducing an 
appropriate mixture of gases such as AlCl3 and Cl2 into a 
vacuum chamber followed by ionization of gases using high 
power microwave frequencies (MF) to generate a plasma [1]. 
Radio frequencies (RF) accelerate the generated plasma toward 
the electrode where it interacts with the masked wafer surface 
both chemically and mechanically to etch away the exposed 
surface. The chemical composition of the exhaust gases from 
the chamber can be monitored using optical emission 

spectroscopy (OES) [2]. The challenge with operating plasma 
etchers is maintaining a consistent etch rate spatially and 
temporally for a given wafer and for successive wafers 
processed in the same etch tool. Etch rate variations occur for a 
variety of reasons including chamber seasoning effects due to 
chemical interactions with the chamber wall, temperature 
changes in the chamber during the etching step, non-uniformity 
in the composition of the plasma gases and variability in the 
RF current discharge [3]. The complex nonlinear behaviour of 
plasma etch processes and their sensitivity to disturbances 
makes them very difficult to model and control. Further, etch 
rate measurements are not accessible in real-time. They can 
only be obtained through a costly non-value added post-etch 
metrology step leading to significant delays before they are 
available for process adjustment. Consequently, in practice, 
plasma etch processes are operated in open-loop fashion using 
pre-determined fine-tuned recipes with a small number 
metrology measurements performed to facilitate process 
monitoring and statistical process control. 
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Figure 1: Flow diagram of a plasma etch process 

Recently, virtual metrology (VM) has gained attention in 
the semiconductor manufacturing community as a cutting edge 
solution for estimating critical process quality parameters from 
other more accessible in-line process measurements [4]. This 
approach, also referred to as soft-sensing or inferential 
estimation, offers the potential to significantly enhance yield 
and improve process capability in semiconductor 
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manufacturing. PingHsu et al. [5] have demonstrated the 
application of VM tools for advance process control in wafer 
manufacturing and have shown a process capability (Cp)
improvement of more than 65% using a VM model integrated 
with advance process control (APC).  

Many researchers have used data mining based approaches 
to build virtual metrology (VM) models for estimating critical 
parameters in manufacturing processes. These methods use 
historical process measurements to build the relationship 
between the process variables and critical parameters. The 
trained models are then used to estimate the critical parameters 
on-line in a real-time control environment. All the methods 
used in VM models can be broadly classified as either linear or 
non-linear. Linear models include methods such as linear 
regression, principle component regression (PCR) and partial 
least square regression (PLS) [6][7]. Non-linear VM models 
involve methods such as non-linear regression and neural 
networks (NN) [8].  Ringwood et al. [9] summarizes different 
methods for building VM models for semiconductor etch 
processes based on statistical and machine learning techniques. 
Most of the research carried out to-date on VM focuses on 
determining estimates of critical parameters such as etch rate, 
with little consideration given to quantifying the reliability of 
the estimates produced. To understand and take account of the 
estimation accuracy of VM models, methodologies that 
generate estimates with confidence intervals (CI) are needed. 

This paper proposes an aggregative linear regression (ALR) 
methodology for generating VM estimates of etch rate with 
associated confidence intervals. ALR is a multi-model 
approach for building VM models that helps to reduce the 
sensitivity of models to process variation and inherent noise. 
Two aggregation methods: (i) bagging; and (ii) Adaboost are 
explored in this research. Both these aggregation strategies are 
tested using linear regression as the basic component model. In 
modern semiconductor etching processes optical emission 
spectroscopy (OES) is common place as a source of in-line 
process information on plasma and exhaust gas composition 
leading to many thousands of candidate input variables for VM 
models. Thus, identification of a small number of key variables 
which can model the etch rate accurately is also a critical issue. 
This paper evaluates three different methods for selecting input 
variables for ALR, namely, correlation, forward stepwise 
regression and decision tree analysis. The developed 
methodology is evaluated on a benchmark semiconductor 
plasma etch process dataset and the results obtained with ALR 
are compared with state-of-art multiple linear regression 
(MLR) and Gaussian Process Regression (GPR) VM models. 

The remainder of the paper is organized as follows: Section 
II presents the variable selection methods. Section III details 
the ALR methodology for etch rate estimation and also 
provides an overview of MLR and GPR. Confidence interval 
determination and performance metrics are then presented in 
Section IV. To illustrate and validate the proposed 
methodology comparative results are presented for a 
benchmark plasma etch process dataset in Section V.  Finally, 
conclusions are summarized in Section VI. 

II. VARIABLE SELECTION

The quality of the final product from a manufacturing 
process is usually dependent on many process variables. 
Identification of a few variables which are most influential and 
which can be used to model the system is a challenging 
problem, especially if a large number of process variables are 
collected during processing and only a limited number of post-
process sample measurements are available leading to multi-
collinearity issues with the dataset. Variable selection methods 
are needed to address this issue. This paper evaluates three 
different variable selection methods for determining input 
variables associated with a target response.  

A. Correlation based variable selection  

The correlation based methodology selects critical variables 
based on linear correlation of the input vector xi with response
vector y where i =1, 2, 3... r and r is the number of input 
variables. The correlation between input vector xi and response 
y is defined as 
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where, [ ]11−∈iρ  represents the correlation coefficient for the 

ith
 input vector and 

ixμ  and yμ  are the mean of the input and  

response vectors, respectively.  

Since correlation only measures the linear relationship 
between the input and response vector, it is possible that there 
may be a stronger non-linear relation between them. This can 
be investigated by applying non-linear transformations to the 
data before conducting the correlation analysis. These 
transformations may be as simple as powers and cross-products 
or as complicated as spline relationships. In this research log 
and power transformations were performed when testing the 
correlation between the input and response vectors. The input 
variables with the highest correlation with the response are 
selected for building VM models. 

B. Stepwise Regression based variable selection  

Stepwise regression can be performed using three different 
approaches: Forward selection, Forward stepwise regression 
(FSR), and backward elimination [10]. Among all the 
approaches, forward stepwise regression is the most popular in 
the literature [11]. Forward stepwise regression is a 
combination of both the forward selection and backward 
elimination methods. Thus, variables selected into a model do 
not necessary stay there. As in the forward selection method 
variables in FSR are added one by one into the model based on 
a selection criteria such as the F-test, mean square error (MSE), 
residual square (R

2
), adjusted coefficient of multiple 

determination  (AjdR
2
), Akaike information criterion (AIC), 

Hannan and Quinn information criterion (HQ), and the 
Bayesian information criterion [12]. However, unlike the 
forward selection method, FSR also looks at all the variables 
already included in a model and deletes any variables that are 
no longer significant based on the selection criteria. 
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In this research, F-test is used as the selection criteria. The 
F-statistic is computed using Eq. (2) when assessing the 
significance of a variable being added to a model, 
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where, RSSi is the residual sum of squares of model i and (n-
p+1) represents the degrees of freedom associated with the 
larger model with n representing sample size and p the number 
of variables in the previous model.  The p-value is computed 
based on an F-distribution with degrees of freedom (1, n-p+1)
and a variable is selected based on a 95% confidence interval, 
i.e., p=0.05.

C. Decision tree based variable selection 

Piecewise constant regression decision tree analysis is used 
to identify variables which can predict the response y [13]. The 
steps involved in constructing a decision tree are: (i) fitting a 
model to the training data; (ii) identifying the variable with the 
most significant chi-square statistic based on the residue of 
each predictor; (iii) determining the best split for the selected 
variable based on a suitable loss function; and (iv) pruning the 
developed tree on the basis of 10-fold cross validation. The loss 
function used in this research to fit the model is the least-
squared deviation. The least square deviation LSD( ) at node  
is computed as: 
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where, )(ηwN  represents the weighted number of cases at node  

, iw  and if represent the weight and frequency, respectively 

associated with case i  and response yi. The weighted mean for 

node , is denoted by y . The variables identified by the 

regression tree are used as the inputs to a VM model. 

III. MODELLING ETCHING DATA

This section discusses the 3 modelling techniques for 

modelling the etching data: (i) Multiple linear regression; (ii) 

Aggregative linear regression; and (iii) Gaussian process 

regression. 

A. Multiple Linear Regression 

 In multiple linear regression a linear relationship is 
assumed to exist between the response y and input variables X 
and is defined as  

Xy +=
,

  (4) 

where nℜ∈y  is the response for n samples and 
vn×ℜ∈X

represents the input vectors with v variables and  n samples. 

The vector vℜ∈  represents the regression coefficients for the 

input variables. The regression coefficients  are determined 

based on minimization of the distance between the predicted 
and actual etch rate as shown in Eq. (5)  

2
min yX −

β
   (5) 

However, the objective function defined in Eq. (5) becomes 
ill-posed when X is ill-conditioned or singular, i.e., nv >
leading to imprecise results [14]. To deal with this scenario the 

pseudo-inverse is used in which is selected such that it is the 

minimum norm solution to Eq. (5), i.e., 
2

min  subject to 

satisfying Eq. (5) [14]. 

To enhance the robustness of linear regression prediction 
with respect to process variation and model sensitivity 
aggregation methods can be employed to improve the 
prediction accuracy and confidence in the solution. The 
approach referred to as aggregative Linear Regression (ALR) is 
discussed in the next sub-section.  

B. Aggregative Linear Regression (ALR) 

The ALR methodology utilizes multiple instances of the 
linear model to enhance the model robustness to noise and 
reduce the impact of data dependency. Two widely used 
aggregation methods are Bagging [15] and AdaBoost [16]. 

Bagging (also known as Bootstrap aggregation) uses 
bootstrapping on the training dataset to create many 
overlapping instances with equal probability of selection. The 
algorithm then creates a different model instance for each 

bootstrap sample and the predicted response y  is the average 

of the predictions of all model instances. For a given input 

vector
vℜ∈x  this is computed as  
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1
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where iŷ  is the predicted response from the ith 
regression 

model for the input data x.

AdaBoost (adaptive boosting) based model aggregation is 
similar to the bagging approach except that a weighting is 
applied to the individual model predictions to obtain the overall 

predicted response. Thus, AdaBoost prediction y  can be 

written as 

,ˆ

1=

=
m

i

ii ywy    (7) 

where, iw  represents the weight assigned to ith
 model. The 

weights iw  are selected to reflect the overall confidence in the 

individual models based on their training set performance. 
Machine learning techniques can be used to generate weights 
that vary as a function of the input variables (local weights). 
Alternatively input-independent ‘global’ weights can be 
employed.  

In this research, the Bagging strategy for aggregation is used to 
determine the etch rate estimates and build confidence interval 
around the estimates. 
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C. Gaussian process regression 

Williams and Rasmussen [17] proposed Gaussian process 
regression (GPR) for high dimensional problems. GPR does 
not model for a specific structure, f(x), instead a Gaussian prior 
is placed on a range of possible functions that could map input 
X to y as 

ε+= )...,( 21 vxxxfy     (8) 

where ),0(~ 2
εσε N is Gaussian white noise with zero mean 

and 2
εσ  variance. The range of possible functions for y are 

evaluated based on a covariance function as 

),0(~ KNyi

where IK
2
εσ+= and the covariance for the input variables 

is determined using Eq. (9)  
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where, m  and τ  are the hyperparameters of the covariance 

function. The hyperparameters are identified by maximizing 
the log marginal likelihood given by 
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Based on the optimized hyperparameters the posterior 
distribution of y* for given X*, i.e., P(y*| X*, y, X) is determined 
using Eq. (11-12). Here {y*, X*} are unseen data and {y, X} is 
the dataset used to train the Gaussian model.  
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Column vector *k is the covariance between the training and 

testing data points and **k  is the auto covariance of the given 

input. The mean and variance of the posterior distribution of y*

is given by )( *yμ  and )( *
2 yσ .

IV. BUILDING CONFIDENCE INTERVALS (CI) 

This section describes methods for building confidence 
intervals around the estimates determined using the methods 
discussed in Section III. 

A.  CI using Multiple Linear Regression (MLR) 

This confidence interval is built using the standard error 
estimates obtained from the training and test data. The standard 

error ( εσ ) is determined as  
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where, ytst and tstŷ are the true and estimated values of the test 

dataset, respectively. Using εσ  the CI around the estimates is 

defined as 

εαyCI −Ζ±= 1*ˆ (14) 

where, *ŷ  represents the estimated response for given X* for 

unseen data. Scalar α−Ζ1  is the upper critical value of the 

normal distribution for given confidence level .

B. CI using Aggregative Linear Regression (ALR) 

The confidence interval for ALR is estimated as 

)ˆ
*1 (xyCI α−Ζ±=     (15) 

where )(ˆ
*x  is defined as  
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ALR x represents the variance of the prediction y*

for the given input vector x* across the m ALR models, that is; 
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and  is the standard error as determined using Eq. (13). 

C. CI using Gaussian Process Regression (GPR) 

The CI predicts the distribution of y* for given x* based on the 

training samples. The mean ( )( *yμ  ) and variance ( )( *
2

yσ )

predicted by the GPR can be used to build the confidence 
interval around y* as

)()( *1* yyCI αμ −Ζ±=

     

(15) 

D. Performance metrics for CI 

The confidence intervals determined using Eqs (12-15) are 
evaluated on unseen data using two criteria: (i) percentage of 
actual data points violating the confidence interval; and (ii) the 
conservativeness of the confidence interval as measured by the 
confidence interval performance index (CIPI), 
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Here iy*,
ˆ and iy*,  are the estimated and actual response, 

respectively for the ith data point and UCIi and LCIi are the 
upper and lower limits of the corresponding confidence 
interval. If CIPI<1 the model has under estimated the CI,  
while a value greater than 1 indicates that the model has over 
estimated the CI (i.e. wider than required).  

V.  CASE STUDY 

The case study employed is a VM dataset consisting of 
OES signatures and corresponding actual etch rates for a 
sequence of wafers processed on an industrial plasma etch tool. 
The OES dataset consists of 6 statistical moments, mean, 
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variance, skewness, kurtosis, maximum and minimum 
amplitude for the time series for each of 2048 wavelengths 
recorded during the etch step. For the most part, sampling of 
wafers processed on the tool was performed uniformly for each 
lot of 25 wafers. A total of 2194 sampled wafers are considered 
in this study for training and testing of VM models. A subset of 
1894 samples are used for training and validation of the models 
with the remaining 300 samples retained for testing 
performance of the VM model confidence intervals.  

 The goal is to develop a model that can predict etch rate 
using only the OES measurements.  For the considered dataset, 
estimation of the number of input variables required by each 
model is carried out using the variable selection approaches 
discussed in Section II. An extensive study was carried out to 
understand the affect of the number of variables selected on 
VM model performance, the results of which are reported in 
Table 1-3. These show the normalized mean square error 
(NMSE) performance of MLR, ALR and GPR as function of 
the number of input variables selected for each of the three 
variable selection methods considered.  

Table 1: Training and test dataset NMSE performance for 
Correlation based variable selection 

  Linear ALR Gaussian Regression

Nv Training Validation Training Validation Training Validation

1 16.05 15.93 16.00 16.00 16.41 15.43

50 9.21 11.12 9.46 10.89 6.71 12.05

100 6.02 8.55 6.25 8.57 1.19 10.08

150 5.00 7.38 4.84 7.77 0.12 8.98

200 3.64 6.63 3.58 6.91 0.15 9.34

250 2.80 6.93 2.79 6.71 0.16 8.79

285* 2.46 6.02 2.34 6.61 0.10 8.95

296* 2.15 6.70 2.25 6.50 0.10 8.80

300* 1.99 7.36 2.21 6.66 0.12 7.91

350 1.96 7.49 1.78 6.92 0.11 8.34

Table 2: Training and test dataset NMSE performance for 
FSR based variable selection 

  Linear ALR Gaussian Regression

Nv Training Validation Training Validation Training Validation

1 15.64 16.57 16.20 16.28 16.69 15.43

50 3.59 3.59 3.30 3.78 0.20 4.95

51* 3.32 3.73 3.23 3.75 0.23 4.35

100 1.77 2.83 1.97 2.70 0.16 6.10

150 1.34 2.37 1.41 2.27 0.16 5.06

200 1.04 2.08 1.08 2.09 0.12 6.45

250 0.82 1.95 0.83 1.95 0.11 6.34

300 0.64 1.89 0.64 1.89 0.13 6.34

342* 0.56 1.56 0.50 1.84 0.14 6.8

346* 0.47 1.74 0.49 1.82 0.11 6.41

350 0.49 1.71 0.48 1.85 0.09 6.74

Table 3: Training and test dataset NMSE performance for 
decision tree based variable selection 

  Linear ALR Gaussian Regression

Nv Training Validation Training Validation Training Validation

1 88.40 87.79 88.17 88.02 80.51 84.44

50 10.73 13.06 10.95 12.74 0.08 13.48

100 7.54 10.23 7.32 10.34 0.08 10.33

150 5.98 10.50 5.61 9.54 0.11 9.69

200 4.96 9.59 4.96 9.92 0.11 10.15

250 4.23 9.41 4.04 9.85 0.14 10.04

300 3.16 10.14 3.06 9.42 0.13 9.42

332* 2.30 7.41 2.35 8.47 1.31 9.56

340* 2.16 7.71 2.11 8.01 0.14 8.9

341* 2.29 7.50 2.10 7.99 0.12 9.67

350 1.98 8.93 2.05 8.08 0.15 9.29

The number of variables that yields the minimum validation 
error for each model is highlighted in each Table. An example 
of the trend in validation error for different VM models where 
variables are selected using FSR is shown in Fig. 1.  As can be 
seen MLR and ALR begin to over fit after 340 variables, while 
the more flexible GP model over fits the dataset at 50 variables.  
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Figure 1: Validation error as a function of the number of FSR 
input variables for different VM models 

Table 4: Performance of confidence interval estimates 

Variable 

Selection 

Method 

VM 

Models 

Performance 

Nv
%

violation 
CIPI 

%

NMSE 

Correlation 

Linear 285 6 2.49 9.6

ALR 296 1.33 3.06 10.33 

GPR 300 5.33 2.27 9.69 

FSR 

Linear 342 5.33 2.39 2.55 

ALR 346 0 3.75 2.2 

GPR 50 10.33 1.99 9.02 

Decision  

Tree

Linear 332 4.33 2.41 10.52 

ALR 350 1.33 3.13 14.75 

GPR 340 19.33 1.69 13.68 
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Figure 2: ALR predictions and confidence intervals for the 
optimum FSR-ALR VM model. 
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Figure 3: GPR predictions and confidence intervals for the 
optimum correlation-GPR VM model. 

VM models were developed and optimised for each of the 
variable selection methods in accordance with Table 1-3. These 
models where then used to estimate the etch rate and 
corresponding 95% CI ( =0.05) for 300 previously unseen 
wafers and their performance evaluated in terms of the, NMSE, 
the CIPI and the percentage of samples violating the CI. The 
results obtained are summarized in Table 4. By way of 
example, the confidence intervals for the optimum FSR-ALR 
and Correlation-GPR models are plotted in Fig. 2 and 3, 
respectively. These plots show the CI and predicted and actual 
etch rate (normalised) for the test wafers, which have been 
sorted with respect to predicted etch rate to facilitate 
visualisation and assessment of the quality of the CI. 

The results show that the ALR models perform much better 
in terms of estimating and building confidence intervals than 
the GPR method for the etch process data.  

VI. CONCLUSIONS 

This paper presents Aggregative Linear Regression (ALR) 
based VM models for predicting etch rate with confidence 
intervals. As many manufacturing processes involve large 
numbers of process variables and restricted access to samples 
the impact of variable selection processes on model prediction 
estimates and confidence intervals has also been considered in 
this work. Three methods are considered namely, correlation, 
forward step-wise regression (FSR), and decision tree based 
variable selection. Results demonstrate that the VM model 
developed using FSR based variables in ALR outperforms the 
VM models build using input variables selected based on 
correlation or decision tree methods. 

The paper also presents a systematic approach to evaluating 
the confidence intervals generated by models. Etch rate 
predictions with confidence intervals are presented for three 
different VM models; Multiple Linear Regression (MLR), 
ALR, and Gaussian process regression (GPR). The results 
show that the ALR model with variables selected using FSR 
performs best in terms of percentage of CI violations, however 
this is at the cost of overly conservative CI estimates. GPR 
produces much tighter CI intervals around the estimates in 

general but has a much higher percentage of points falling 
outside the confidence bounds, but this may also be linked to 
the overall poor performance of GPR for this dataset. The 
superior performance of ALR and MLR compared to GPR is 
likely a reflection of the strength of the linear relationship 
between the OES measurements and etch rate.
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