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Abstract. In a previous paper [8] we considered properties of the radial

variation of analytic functions in a class of Besov spaces As
pq , s > 0. Here

we wish to extend these results to certain related spaces. These are the Lipschitz

classes Λs and the mean Lipschitz classes Λp,s where p ≥ 1, 0 < s < 1. We also

consider A0
pq , where s = 0, although the results obtained for these are not as

good as when s > 0.

1. Introduction

If f is analytic in the disc, the radial variation function of f is the
function defined on the disc by

(1) F (r, t) =
∫ r

0

|f ′(ueit)| du, r < 1, 0 ≤ t ≤ 2π.

Since f(reit) − f(0) =
∫ r

0 f ′(ueit) du , it is clear that

|f(reit)| ≤ |f(0)| + F (r, t), r < 1, 0 ≤ t ≤ 2π,
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and F (r, t) is a majorant for f . The function F (r, t) represents the length
of the image of the radius vector [0, reit] under the mapping f . It is
clear from the definition, that the boundary function F (t) = limr→1 F (r, t)
exists, finite or infinite, for all t ∈ [0, 2π] . It is known as the radial or
total variation. An immediate property of F is that if F (t) < ∞ , then
limr→1 f(reit) exists.

We saw in [8] that the property that f ∈ As
pq , 0 < s < 1, 1 ≤ p, q < ∞ ,

translated into meaningful results for F , in particular that F (r, t) satisfies
an analogous condition on the disc. In Section 1 we are led naturally to
consider the case s = 0 when we ask for a condition under which F (t) is
an integrable function on the circle. It follows immediately that F ∈ L1 if
and only if f ∈ A0

11 . We then show that F (r, t) satisfies a corresponding
condition to that by f in the disc . This result extends to the general case
f ∈ A0

pq . In Section 3 we suppose that f belongs to a Lipschitz space or
a mean Lipschitz space and show that both F (r, t) and F (t) exhibit the
expected behaviour.

1.1 Preliminaries. Let D denote the unit disc, T the unit circle in the
complex plane and Lp = Lp(T ) the usual Lebesgue space when 0 < p < ∞ .
For p ≥ 1 we denote the norm of a function f ∈ Lp by ||f ||p . For
convenience we shall let m denote normalised Lebesgue measure on the
circle T .

Let Δtf(eix) = f(ei(x+t))−f(eix) and Δm
t = Δt(Δm−1

t ). For 0 < s ≤ 1,
the Lipschitz class Λs is the space of 2π -periodic functions on [−π, π] for
which |Δtf(eix)| = O(|t|s) uniformly in x . A generalization is the mean
Lipschitz class Λ(p, s) consisting of all functions f for which ||Δtf ||p =
O(|t|s) for t > 0; Λ(p, s) reduces to Λs when p = ∞ . Suppose now that f

is analytic in D . If 0 ≤ r < 1, let

Mp(f, r) =
(∫ π

−π

|f(reit)|p dm

)1/p

, (0 < p < ∞),

denote the integral mean of f of order p . It is well known that Mp(f, r)
is an increasing function of r on [0, 1) and that the class of functions f

for which supr<1 Mp(f, r) < ∞ , is the familiar Hardy space Hp [2]. For
1 ≤ p, q < ∞, s > 0, and an arbitrary integer m > s , we define the Besov
space Bs

pq by

Bs
pq =

{
f ∈ Lp :

∫ π

−π

||Δm
t f ||qp

|t|1+sq
dm(t) < ∞

}
.

It is well known that the definition is independent of m . For a discussion
of these spaces see [1], [3], [4], [6], [7]. When s passes through a positive
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integer value, the working definition of the Besov space Bs
pq may require a

change as indicated above.
The previous definition is no longer valid when s ≤ 0; for these cases

another description is required. For n ≥ 1 we let Wn be the polynomial
on T whose Fourier coefficients satisfy Ŵn(2n) = 1, Ŵn(j) = 0 for j /∈
(2n−1, 2n+1) and Ŵn is a linear function on [2n−1, 2n] and on [2n, 2n+1] . If
n < 0 we put Wn = W−n . We put W0 = z+1+z . For s ≤ 0, 1 ≤ p, q < ∞ ,
Bs

pq consists of all distributions f on T for which

∞∑
n=−∞

2|n|s‖f ∗ Wn‖q
p < ∞.

It is known that this description is equivalent to the previous one for s > 0,
but for s = 0 in particular, only the second definition is valid. See [4]
Appendix 2, [1]. In fact when q > p there exist f ∈ B0

pq such that f /∈ Lp .
Let As

pq denote the subspace of Bs
pq consisting of analytic functions.

The space As
pq for s > 0, may be characterized as follows: for an arbitrary

integer m > s the analytic function f ∈ As
pq if and only if

‖f‖A = |f(0)| +
{∫ 1

0

(1 − r2)q(m−s)−1Mp(f (m), r)
q
r dr

}1/q

< ∞.

Once again the definition is independent of m for m > s . For s = 0 this
definition is easily modified. This is because of the property that f ∈ A0

pq

if and only if If ∈ A1
pq where I is the integration operator. Therefore

f ∈ A0
pq if and only if with m = 2,

||f ||A = |f(0)| +
{∫ 1

0

(1 − r2)q−1Mp(f ′, r)q
r dr

}1/q

< ∞,

and with m = 3, if and only if

||f ||A = |f(0)| +
{∫ 1

0

(1 − r2)2q−1Mp(f (2), r)
q
r dr

}1/q

< ∞.

We shall need both of these representations. In particular with p = q = 1
we have f ∈ A0

11 if and only if

||f ||A = |f(0)| +
∫ 1

0

∫ 2π

0

|f ′(reit)| dmr dr < ∞.
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2. Integrability of F

The function F (t) = F (1, t) is given from (1) by

F (t) =
∫ 1

0

|f ′(ueit)| du, 0 ≤ t ≤ 2π.

We now ask what is a sufficient condition that F ∈ L1 ? Since F ∈ L1 if
and only if

∫ 2π

0

∫ 1

0 |f ′(reit)|r dr dm < ∞ , the answer is immediate from the
definition:

Proposition 1. F ∈ L1(T ) if and only if f ∈ A0
11 . Moreover

(2) ‖F‖1 + |f(0)| = ‖f‖A.

It may be observed here that if f ∈ A0
11 then its boundary function

f(eit) exists a.e.; in fact f ∈ H1 . This follows by integrating the obvious
inequality |f(reit)| ≤ |f(0)| + ∫ r

0
|f ′(ueit)| du .

We can equally express the relationship in terms of the A-norm of F (r, t).
For this purpose we introduce the gradient of F : ∇F (r, t) = (∂F

∂r , 1/r ∂F
∂t ) =

(|f ′(reit)|, 1/r ∂F
∂t ). The relationship referred to is

f ∈ A0
11 if and only if

∫ 1

0

∫ 2π

0

|∇F (r, t)| dmr dr < ∞.

If the integral is finite then it follows very simply that f ∈ A0
11 and that

‖f‖A ≤ |f(0)| + ‖F‖A . The proof in the other direction has already been
done in essence in [8] where we considered only s > 0. In fact we can state
a more general result which follows from Theorem 1 there, and which works
without any changes for our situation.

Theorem 1. Suppose that 1 ≤ p, q < ∞ . There is a constant C =
C(p, q) such that if f ∈ A0

pq then

∫ 1

0

(1 − r2)q−1

(∫ π

−π

|∇F (r, t)|p dm

)q/p

r dr ≤ C||f ||qA.

Proof. The proof in [8] goes through word for word with s = 0. In
the case p = q = 1 it is simpler since the use of Hölder’s inequality is not
needed. We do make use of the alternative definitions of A0

pq mentioned
above. �
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If the double integral for F (r, t) is finite then as noted already it is clear
that f ∈ A0

pq . The question when F ∈ Lp, p > 1, does not have so neat an
answer. A reasonable sufficient condition is given by

Theorem 2. Suppose that 1 ≤ p, q < ∞ . If f ∈ A0
p1 then

‖F‖p ≤ ||f ||A.

Proof. By Minkowski’s Inequality in continuous form

(∫ 2π

0

|F (t)|p dm

)1/p

=
(∫ 2π

0

(∫ 1

0

|f ′(reit)| dr

)p

dm

)1/p

≤
∫ 1

0

(∫ 2π

0

|f ′(reit)|p dm
)1/p

dr

< ∞,

and ||F ||p ≤ ||f ||A . �

Remark. The condition f ∈ A0
p1 implies that f ∈ Hp for all p ≥ 1. To

see this we note that for r < 1

|f(reit)| ≤ |f(0)| +
∫ r

0

|f ′(ueit)| du.

On using Minkowski’s Inequality again we obtain

Mp(f, r) ≤ |f(0)| +
∫ r

0

Mp(f ′, u) du

≤ ||f ||A
and the result is immediate.

In [8] it was shown that if f ∈ As
pq , 0 < s < 1, then the boundary

function F ∈ Bs
pq . We do not know whether this is true for the case s = 0

since the proof given there is no longer valid.

3. The Lipschitz spaces

The Lipschitz space Λs, 0 < s < 1, may be regarded as the Besov space
Bs

∞∞ . It is well known that for an analytic function f on the disc, f ∈ Λs

if and only if there exists M such that

(3) |f ′(z)| ≤ M

(1 − r)1−s
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This property has its counterpart for the function F (r, t).

Theorem 3. The function f ∈ Λs, 0 < s < 1, if and only if
∇F (r, t) = O((1 − r)s−1) .

Proof. Suppose f ∈ Λs and let M be the number noted above. First
we show that F (t) is bounded.

F (r, t) =
∫ r

0

|f ′(ueit)| du ≤ M

∫ r

0

1
(1 − u)1−s

du

= M (1 − (1 − r)s) /s ≤ M/s,

for all r < 1 and so F (t) is bounded.
Since the first component of ∇F (r, t) is |f ′(reit)| we need only consider

the second. Now by Lemma 3 of [8], ∂F
∂t (r, t) =

∫ r

0
∂|f ′|
∂t (ueit) du and

∣∣∣1/r
∂F

∂t
(r, t)

∣∣∣ =
∣∣∣1/r

∫ r

0

∂|f ′|
∂t

(ueit) du
∣∣∣

≤ 1/r

∫ r

0

u|f ′′(ueit)| du

≤ M

∫ r

0

1
(1 − u)2−s

du ≤ M ′ 1
(1 − r)1−s

.

In the second inequality above we used Theorem 5.5 of [2]. The result
follows. �

There is a corresponding result for F (t).

Theorem 4. If f ∈ Λs, 0 < s < 1 , then F (t) ∈ Λs .

Proof. We have shown that F is bounded. We write

F (x) − F (t) = F (x) − F (r, x) + F (r, x) − F (r, t) + F (r, t) − F (t).

But

F (x) − F (r, x) =
∫ 1

r

|f ′(ueix)| du ≤ M

∫ 1

r

1
(1 − r)1−s

du

≤ M(1 − r)s/s

and the same holds for F (r, t) − F (t). Moreover F (r, x) − F (r, t) =∫ x

t
∂F
∂v (r, v) dv . Consequently
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|F (r, x) − F (r, t)| ≤
∣∣∣∣
∫ x

t

|∂F

∂v
(r, v)| dv

∣∣∣∣ ≤ M ′
∣∣∣∣
∫ x

t

1
(1 − r)1−s

dv

∣∣∣∣
= M ′ 1

(1 − r)1−s
|t − x|,

on using the previous theorem. If we now choose 1 − r = |x − t| we get
|F (r, x) − F (r, t)| ≤ M ′′|t − x|s and F (t) ∈ Λs . �

The mean Lipschitz classes Λp,s(T ), 1 ≤ p , 0 < s < 1, are indentical
with the Besov spaces Bs

p∞ . They satisfy the condition: A function
g ∈ Lp(T ) belongs to Λp,s if

‖g‖p,s =
(∫ 2π

0

|g(x + t) − g(x)|p dx

)1/p

= O(|t|s)

for small t . It is known (Theorem 5.4 of [2]) that an analytic function f

is in Λp,s if and only if Mp(f ′, r) = O
(

1
(1−r)1−s

)
0 < r < 1. With the

aid of this, similar results to those of the last two theorems can be shown
to hold and the proofs are straightforward.

Theorem 5. If f ∈ Λp,s , 1 ≤ p, 0 < s < 1 , then there exists C = C(p, s)
such that

(a)
(∫ π

−π |∇F (r, t)|p dm

)1/p

≤ C‖f‖p,s(1 − r)s−1 ;

(b) F (t) ∈ Λp,s and ‖F‖p,s ≤ C‖f‖p,s .

Whether a particular type of continuity for f implies the same holds for
F is uncertain. The boundary function f(eit) is absolutely continuous if
and only if f ′ ∈ H1 . We dont know that this implies that F (t) is absolutely
continuous but it does imply that F is continuous.

Proposition 2. If f(eit) is absolutely continuous then F (t) is
continuous.

Proof. We have F (t + x) − F (t) =
∫ 1

0
(|f ′(rei(t+x))| − |f ′(reit)|) dr and

therefore

|F (t + x) − F (t)| ≤
∫ 1

0

|f ′(rei(t+x)) − f ′(reit)| dr

=
∫ 1

0

|f ′
x(reit) − f ′(reit)| dr
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where gx(t) = g(t+x) is a translate of g . The Fejer-Riesz inequality allows
us to conclude

|F (t + x) − F (t)| + |F (t + x + π) − F (t + π)|

≤
∫ 1

−1

|f ′
x(reit) − f ′(reit)| dr ≤ 1

2

∫ 2π

0

|f ′
x(reit) − f ′(reit)| dx → 0

as x → 0 uniformly in t , because the translation map x → gx is uniformly
continuous from T to L1 . The proof is complete. �

In [8] it was seen that if we assume slightly more, namely if f ∈ A1
11 ,

then F ∈ B1
11 which implies that F is absolutely continuous. However

mere continuity of f on the circle does not even imply that F is bounded.
In fact Walter Rudin [5] has shown that there exists an analytic function f

continuous in the closed disc, such that F (t) = ∞ almost everywhere.
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