Radial variation in some function spaces

David Walsh

(*Communicated by Sten Kaijser*)

2000 Mathematics Subject Classification. 30H05, 31A05, 46E15.

Keywords and phrases. Radial variation, Besov space, Lipschitz space.

Abstract. In a previous paper [8] we considered properties of the radial variation of analytic functions in a class of Besov spaces A_{pq}^s , $s > 0$. Here we wish to extend these results to certain related spaces. These are the Lipschitz classes Λ_s and the mean Lipschitz classes $\Lambda_{p,s}$ where $p \geq 1, 0 < s < 1$. We also consider A_{pq}^0 , where $s=0$, although the results obtained for these are not as good as when $s > 0$.

1. Introduction

If f is analytic in the disc, the radial variation function of f is the function defined on the disc by

(1)
$$
F(r,t) = \int_0^r |f'(ue^{it})| du, \quad r < 1, \ \ 0 \le t \le 2\pi.
$$

Since $f(re^{it}) - f(0) = \int_0^r f'(ue^{it}) du$, it is clear that

$$
|f(re^{it})| \le |f(0)| + F(r,t), \quad r < 1, \ \ 0 \le t \le 2\pi,
$$

and $F(r, t)$ is a majorant for f. The function $F(r, t)$ represents the length of the image of the radius vector $[0, re^{it}]$ under the mapping f. It is clear from the definition, that the boundary function $F(t) = \lim_{r \to 1} F(r, t)$ exists, finite or infinite, for all $t \in [0, 2\pi]$. It is known as the radial or total variation. An immediate property of F is that if $F(t) < \infty$, then $\lim_{r\to 1} f(re^{it})$ exists.

We saw in [8] that the property that $f \in A_{pq}^s$, $0 < s < 1, 1 \le p, q < \infty$, translated into meaningful results for F, in particular that $F(r, t)$ satisfies an analogous condition on the disc. In Section 1 we are led naturally to consider the case $s = 0$ when we ask for a condition under which $F(t)$ is an integrable function on the circle. It follows immediately that $F \in L^1$ if and only if $f \in A_{11}^0$. We then show that $F(r, t)$ satisfies a corresponding condition to that by f in the disc. This result extends to the general case $f \in A_{pq}^0$. In Section 3 we suppose that f belongs to a Lipschitz space or a mean Lipschitz space and show that both $F(r, t)$ and $F(t)$ exhibit the expected behaviour.

1.1 Preliminaries. Let D denote the unit disc, T the unit circle in the complex plane and $L^p = L^p(T)$ the usual Lebesgue space when $0 < p < \infty$. For $p \geq 1$ we denote the norm of a function $f \in L^p$ by $||f||_p$. For convenience we shall let m denote normalised Lebesgue measure on the circle T .

Let $\Delta_t f(e^{ix}) = f(e^{i(x+t)}) - f(e^{ix})$ and $\Delta_t^m = \Delta_t(\Delta_t^{m-1})$. For $0 < s \le 1$, the Lipschitz class Λ_s is the space of 2π -periodic functions on $[-\pi, \pi]$ for which $|\Delta_t f(e^{ix})| = O(|t|^s)$ uniformly in x. A generalization is the mean Lipschitz class $\Lambda(p,s)$ consisting of all functions f for which $||\Delta_t f||_p =$ $O(|t|^s)$ for $t > 0$; $\Lambda(p, s)$ reduces to Λ_s when $p = \infty$. Suppose now that f is analytic in D. If $0 \leq r < 1$, let

$$
M_p(f,r) = \left(\int_{-\pi}^{\pi} |f(re^{it})|^p \ dm\right)^{1/p}, \quad (0 < p < \infty),
$$

denote the integral mean of f of order p. It is well known that $M_p(f,r)$ is an increasing function of r on $[0,1)$ and that the class of functions f for which $\sup_{r\leq 1} M_p(f,r) < \infty$, is the familiar Hardy space H^p [2]. For $1 \leq p, q < \infty, s > 0$, and an arbitrary integer $m > s$, we define the Besov space B_{pq}^s by

$$
B_{pq}^s = \left\{ f \in L^p : \int_{-\pi}^{\pi} \frac{||\Delta_t^m f||_p^q}{|t|^{1+sq}} dm(t) < \infty \right\}.
$$

It is well known that the definition is independent of m . For a discussion of these spaces see $[1]$, $[3]$, $[4]$, $[6]$, $[7]$. When s passes through a positive D. Walsh 27

integer value, the working definition of the Besov space B_{pq}^s may require a change as indicated above.

The previous definition is no longer valid when $s \leq 0$; for these cases another description is required. For $n \geq 1$ we let W_n be the polynomial on T whose Fourier coefficients satisfy $\hat{W}_n(2^n) = 1, \hat{W}_n(j) = 0$ for $j \notin$ $(2^{n-1}, 2^{n+1})$ and \hat{W}_n is a linear function on $[2^{n-1}, 2^n]$ and on $[2^n, 2^{n+1}]$. If $n < 0$ we put $W_n = \overline{W}_{-n}$. We put $W_0 = \overline{z} + 1 + z$. For $s \leq 0, 1 \leq p, q < \infty$, B_{pq}^s consists of all distributions f on T for which

$$
\sum_{n=-\infty}^{\infty} 2^{|n|s} \|f \ast W_n\|_p^q < \infty.
$$

It is known that this description is equivalent to the previous one for $s > 0$, but for $s = 0$ in particular, only the second definition is valid. See [4] Appendix 2, [1]. In fact when $q > p$ there exist $f \in B_{pq}^0$ such that $f \notin L^p$.

Let A_{pq}^s denote the subspace of B_{pq}^s consisting of analytic functions. The space A_{pq}^s for $s > 0$, may be characterized as follows: for an arbitrary integer $m > s$ the analytic function $f \in A_{pq}^s$ if and only if

$$
||f||_A = |f(0)| + \left\{ \int_0^1 (1 - r^2)^{q(m-s)-1} M_p(f^{(m)}, r)^q r \, dr \right\}^{1/q} < \infty.
$$

Once again the definition is independent of m for $m > s$. For $s = 0$ this definition is easily modified. This is because of the property that $f \in A_{pq}^0$ if and only if $If \in A_{pq}^1$ where I is the integration operator. Therefore $f \in A_{pq}^0$ if and only if with $m = 2$,

$$
||f||_A = |f(0)| + \left\{ \int_0^1 (1 - r^2)^{q-1} M_p(f', r)^q r \, dr \right\}^{1/q} < \infty,
$$

and with $m = 3$, if and only if

$$
||f||_A = |f(0)| + \left\{ \int_0^1 (1 - r^2)^{2q-1} M_p(f^{(2)}, r)^q r \, dr \right\}^{1/q} < \infty.
$$

We shall need both of these representations. In particular with $p = q = 1$ we have $f \in A_{11}^0$ if and only if

$$
||f||_A = |f(0)| + \int_0^1 \int_0^{2\pi} |f'(re^{it})| \, dmr \, dr < \infty.
$$

2. Integrability of F

The function $F(t) = F(1, t)$ is given from (1) by

$$
F(t) = \int_0^1 |f'(ue^{it})| \ du, \quad 0 \le t \le 2\pi.
$$

We now ask what is a sufficient condition that $F \in L^1$? Since $F \in L^1$ if and only if $\int_0^{2\pi} \int_0^1 |f'(re^{it})|r \, dr \, dm < \infty$, the answer is immediate from the definition:

Proposition 1. $F \in L^1(T)$ *if and only if* $f \in A_{11}^0$ *. Moreover*

(2)
$$
||F||_1 + |f(0)| = ||f||_A.
$$

It may be observed here that if $f \in A_{11}^0$ then its boundary function $f(e^{it})$ exists a.e.; in fact $f \in H^1$. This follows by integrating the obvious inequality $|f(re^{it})| \leq |f(0)| + \int_0^r |f'(ue^{it})| \, du$.

We can equally express the relationship in terms of the A-norm of $F(r, t)$. For this purpose we introduce the gradient of $F: \nabla F(r,t) = \left(\frac{\partial F}{\partial r}, 1/r \frac{\partial F}{\partial t}\right) =$ $(|f'(re^{it})|, 1/r \frac{\partial F}{\partial t})$. The relationship referred to is

$$
f \in A_{11}^0
$$
 if and only if $\int_0^1 \int_0^{2\pi} |\nabla F(r,t)| dm r dr < \infty$.

If the integral is finite then it follows very simply that $f \in A_{11}^0$ and that $||f||_A \leq |f(0)| + ||F||_A$. The proof in the other direction has already been done in essence in [8] where we considered only $s > 0$. In fact we can state a more general result which follows from Theorem 1 there, and which works without any changes for our situation.

Theorem 1. *Suppose that* $1 \leq p, q < \infty$ *. There is a constant* $C =$ $C(p,q)$ *such that if* $f \in A_{pq}^0$ *then*

$$
\int_0^1 (1 - r^2)^{q-1} \left(\int_{-\pi}^{\pi} |\nabla F(r, t)|^p \ dm \right)^{q/p} r \ dr \leq C ||f||_A^q.
$$

Proof. The proof in [8] goes through word for word with $s = 0$. In the case $p = q = 1$ it is simpler since the use of Hölder's inequality is not needed. We do make use of the alternative definitions of A_{pq}^0 mentioned above. \Box

D. Walsh 29

If the double integral for $F(r, t)$ is finite then as noted already it is clear that $f \in A_{pq}^0$. The question when $F \in L^p$, $p > 1$, does not have so neat an answer. A reasonable sufficient condition is given by

Theorem 2. *Suppose that* $1 \leq p, q < \infty$ *. If* $f \in A_{p1}^0$ *then*

 $||F||_p \le ||f||_A.$

Proof. By Minkowski's Inequality in continuous form

$$
\left(\int_0^{2\pi} |F(t)|^p \ dm\right)^{1/p} = \left(\int_0^{2\pi} \left(\int_0^1 |f'(re^{it})| \ dr\right)^p \ dm\right)^{1/p}
$$

$$
\leq \int_0^1 \left(\int_0^{2\pi} |f'(re^{it})|^p \ dm\right)^{1/p} \ dr
$$

$$
< \infty,
$$

and $||F||_p \leq ||f||_A$.

Remark. The condition $f \in A_{p_1}^0$ implies that $f \in H^p$ for all $p \ge 1$. To see this we note that for $\,r<1\,$

$$
|f(re^{it})| \le |f(0)| + \int_0^r |f'(ue^{it})| \ du.
$$

On using Minkowski's Inequality again we obtain

$$
M_p(f,r) \leq |f(0)| + \int_0^r M_p(f',u) du
$$

$$
\leq ||f||_A
$$

and the result is immediate.

In [8] it was shown that if $f \in A_{pq}^s$, $0 < s < 1$, then the boundary function $F \in B_{pq}^s$. We do not know whether this is true for the case $s = 0$ since the proof given there is no longer valid.

3. The Lipschitz spaces

The Lipschitz space Λ_s , $0 < s < 1$, may be regarded as the Besov space B_{∞}^s . It is well known that for an analytic function f on the disc, $f \in \Lambda_s$ if and only if there exists M such that

(3)
$$
|f'(z)| \le \frac{M}{(1-r)^{1-s}}
$$

 $\hfill \square$

This property has its counterpart for the function $F(r, t)$.

Theorem 3. *The function* $f \in \Lambda_s$, $0 \lt s \lt 1$, *if and only if* $\nabla F(r, t) = O((1 - r)^{s-1}).$

Proof. Suppose $f \in \Lambda_s$ and let M be the number noted above. First we show that $F(t)$ is bounded.

$$
F(r,t) = \int_0^r |f'(ue^{it})| du \leq M \int_0^r \frac{1}{(1-u)^{1-s}} du
$$

= $M (1 - (1-r)^s) / s \leq M/s,$

for all $r < 1$ and so $F(t)$ is bounded.

Since the first component of $\nabla F(r,t)$ is $|f'(re^{it})|$ we need only consider the second. Now by Lemma 3 of [8], $\frac{\partial F}{\partial t}(r,t) = \int_0^r \frac{\partial |f'|}{\partial t}(ue^{it}) du$ and

$$
\left|1/r\frac{\partial F}{\partial t}(r,t)\right| = \left|1/r\int_0^r \frac{\partial |f'|}{\partial t}(ue^{it}) du\right|
$$

\n
$$
\leq 1/r \int_0^r u|f''(ue^{it})| du
$$

\n
$$
\leq M \int_0^r \frac{1}{(1-u)^{2-s}} du \leq M' \frac{1}{(1-r)^{1-s}}.
$$

In the second inequality above we used Theorem 5.5 of [2]. The result follows. \Box \Box

There is a corresponding result for $F(t)$.

Theorem 4. *If* $f \in \Lambda_s$, $0 < s < 1$, then $F(t) \in \Lambda_s$.

Proof. We have shown that F is bounded. We write

$$
F(x) - F(t) = F(x) - F(r, x) + F(r, x) - F(r, t) + F(r, t) - F(t).
$$

But

$$
F(x) - F(r, x) = \int_r^1 |f'(ue^{ix})| du \le M \int_r^1 \frac{1}{(1-r)^{1-s}} du
$$

$$
\le M(1-r)^s / s
$$

and the same holds for $F(r,t) - F(t)$. Moreover $F(r, x) - F(r, t) =$ $\int_t^x \frac{\partial F}{\partial v}(r, v) dv$. Consequently

D. Walsh 31

$$
|F(r,x) - F(r,t)| \le \left| \int_t^x \left| \frac{\partial F}{\partial v}(r,v) \right| dv \right| \le M' \left| \int_t^x \frac{1}{(1-r)^{1-s}} dv \right|
$$

= $M' \frac{1}{(1-r)^{1-s}} |t-x|,$

on using the previous theorem. If we now choose $1 - r = |x - t|$ we get $|F(r, x) - F(r, t)| \leq M'' |t - x|^s$ and $F(t) \in \Lambda$. □ $|F(r, x) - F(r, t)| \leq M'' |t - x|^s$ and $F(t) \in \Lambda_s$.

The mean Lipschitz classes $\Lambda_{p,s}(T)$, $1 \leq p$, $0 < s < 1$, are indentical with the Besov spaces $B_{p\infty}^s$. They satisfy the condition: A function $g \in L^p(T)$ belongs to $\Lambda_{p,s}$ if

$$
||g||_{p,s} = \left(\int_0^{2\pi} |g(x+t) - g(x)|^p \, dx\right)^{1/p} = O(|t|^s)
$$

for small t. It is known (Theorem 5.4 of [2]) that an analytic function f is in $\Lambda_{p,s}$ if and only if $M_p(f',r) = O\left(\frac{1}{(1-r)^{1-s}}\right)$ 0 < r < 1. With the aid of this, similar results to those of the last two theorems can be shown to hold and the proofs are straightforward.

Theorem 5. *If* $f \in \Lambda_{p,s}$, $1 \leq p$, $0 < s < 1$, then there exists $C = C(p, s)$ *such that*

(a)
$$
\left(\int_{-\pi}^{\pi} |\nabla F(r,t)|^p \ dm\right)^{1/p} \le C ||f||_{p,s} (1-r)^{s-1};
$$

\n(b) $F(t) \in \Lambda_{p,s}$ and $||F||_{p,s} \le C ||f||_{p,s}.$

Whether a particular type of continuity for f implies the same holds for F is uncertain. The boundary function $f(e^{it})$ is absolutely continuous if and only if $f' \in H^1$. We dont know that this implies that $F(t)$ is absolutely continuous but it does imply that F is continuous.

Proposition 2. *If* $f(e^{it})$ *is absolutely continuous then* $F(t)$ *is continuous.*

Proof. We have $F(t+x) - F(t) = \int_0^1 (|f'(re^{i(t+x)})| - |f'(re^{it})|) dr$ and therefore

$$
|F(t+x) - F(t)| \leq \int_0^1 |f'(re^{i(t+x)}) - f'(re^{it})| dr
$$

=
$$
\int_0^1 |f'_x(re^{it}) - f'(re^{it})| dr
$$

where $g_x(t) = g(t+x)$ is a translate of g. The Fejer-Riesz inequality allows us to conclude

$$
|F(t+x) - F(t)| + |F(t+x+\pi) - F(t+\pi)|
$$

\n
$$
\leq \int_{-1}^{1} |f'_x(re^{it}) - f'(re^{it})| dr \leq \frac{1}{2} \int_{0}^{2\pi} |f'_x(re^{it}) - f'(re^{it})| dx \to 0
$$

as $x \to 0$ uniformly in t, because the translation map $x \to g_x$ is uniformly continuous from T to L^1 . The proof is complete.

In [8] it was seen that if we assume slightly more, namely if $f \in A_{11}^1$, then $F \in B_{11}^1$ which implies that F is absolutely continuous. However mere continuity of f on the circle does not even imply that F is bounded. In fact Walter Rudin [5] has shown that there exists an analytic function f continuous in the closed disc, such that $F(t) = \infty$ almost everywhere.

References

- [1] D. Adams, and L. Hedberg, *Function Spaces and Potential Theory,* Springer, 1999.
- [2] P.L. Duren, *Theory of H^p Spaces*, Academic Press, New York, 1970.
- [3] S.M. Nikolskii, *Approximation of Functions of Several Variables and Embedding Theorems,* Springer, 1975.
- [4] V.V. Peller, *Hankel Operators and Their Applications,* Springer, 2003.
- [5] W. Rudin, *The radial variation of analytic functions,* Duke Math. J., 22 (1955) 235–242.
- [6] E.M. Stein, *Singular Integrals and Differentiablity Properties of Functions,* Princeton Univ. Press, 1970.
- [7] H. Triebel, *Spaces of Besov-Hardy-Sobolev Type,* Teubner, Leipzig 1978.
- [8] D. Walsh, *Radial variation of functions in Besov spaces,* Publ. Mat., 50 (2006) 371–399.

Department of Mathematics NUI Maynooth Ireland (*E-mail : David.Walsh@maths.nuim.ie*)

(*Received : January 2008*)