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Abstract. In a previous paper [8] we considered properties of the radial
variation of analytic functions in a class of Besov spaces A,,, s > 0. Here
we wish to extend these results to certain related spaces. These are the Lipschitz
classes As and the mean Lipschitz classes A, s where p > 1,0 < s < 1. We also
consider qu,
good as when s > 0.

where s = 0, although the results obtained for these are not as

1. Introduction

If f is analytic in the disc, the radial variation function of f is the
function defined on the disc by

(1) F(r,t) =/ If/ (ue™)| du, r<1, 0<t<2nm.
0

Since f(re) — f(0) = [, f'(ue') du, it is clear that

|f(re™)| < |f(0)| + F(r,t), r<1, 0<t<2r,
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and F(r,t) is a majorant for f. The function F(r,t) represents the length
of the image of the radius vector [0,7¢"] under the mapping f. It is
clear from the definition, that the boundary function F'(t) = lim,_,1 F(r,t)
exists, finite or infinite, for all ¢ € [0,27]. It is known as the radial or
total variation. An immediate property of F is that if F(t) < oo, then
lim, . f(re®) exists.

We saw in [8] that the property that f € A5 , 0 <s<1,1<p,q< oo,
translated into meaningful results for F', in particular that F(r,t) satisfies
an analogous condition on the disc. In Section 1 we are led naturally to
consider the case s = 0 when we ask for a condition under which F(t) is
an integrable function on the circle. It follows immediately that F € L1 if
and only if f € A};. We then show that F(r,t) satisfies a corresponding
condition to that by f in the disc . This result extends to the general case
fe qu. In Section 3 we suppose that f belongs to a Lipschitz space or
a mean Lipschitz space and show that both F(r,t) and F(t) exhibit the
expected behaviour.

1.1 Preliminaries. Let D denote the unit disc, T the unit circle in the
complex plane and L? = LP(T) the usual Lebesgue space when 0 < p < co.
For p > 1 we denote the norm of a function f € LP by ||f||,. For
convenience we shall let m denote normalised Lebesgue measure on the
circle T'.

Let A f(e') = f(e@tD)) — f(e') and AP = Ay(A7™ ). For0 < s <1,
the Lipschitz class Ay is the space of 2w-periodic functions on [—m, 7] for
which |A;f(e®®)| = O(|t|*) uniformly in x. A generalization is the mean
Lipschitz class A(p,s) consisting of all functions f for which ||A:f||, =
O(Jt|®) for t > 0; A(p,s) reduces to As when p = co. Suppose now that f
is analyticin D. If 0 <r <1, let

™ 1/p
M) = ([ Mt an) 0 << o),
denote the integral mean of f of order p. It is well known that My(f,r)
is an increasing function of r on [0,1) and that the class of functions f
for which sup,. . My(f,r) < oo, is the familiar Hardy space H? [2]. For
1 <p,qg < o0,s >0, and an arbitrary integer m > s, we define the Besov
space By, by

s ™A
qu:{fELp:[WW dm(t)<oo}

It is well known that the definition is independent of m. For a discussion
of these spaces see [1], [3], [4], [6], [7]. When s passes through a positive
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integer value, the working definition of the Besov space B,, may require a
change as indicated above.

The previous definition is no longer valid when s < 0; for these cases
another description is required. For n > 1 we let W,, be the polynomial
on T whose Fourier coefficients satisfy W,(2") = 1,W,(j) = 0 for j ¢
(271, 271y and W, is a linear function on [2"~1,2"] and on [27,2"1]. If
n<0weput W, =W_,. Weput Wy =Z+1+42z. For s <0, 1 <p,q < o0,
B, consists of all distributions f on 7' for which

oo
> 2 Wald < co.

n=-—oo

It is known that this description is equivalent to the previous one for s > 0,
but for s = 0 in particular, only the second definition is valid. See [4]
Appendix 2, [1]. In fact when ¢ > p there exist f € ng such that f ¢ LP.

Let A7, denote the subspace of B, consisting of analytic functions.
The space A;, for s >0, may be characterized as follows: for an arbitrary
integer m > s the analytic function f € A} if and only if

1/q

1
I£lla = 1£(0)] + { R e O dr} <.

Once again the definition is independent of m for m > s. For s =0 this
definition is easily modified. This is because of the property that f € qu
if and only if If € Aéq where [ is the integration operator. Therefore
fe qu if and only if with m = 2,

1/q

1
1f1la = |f<o>|+{ [ dr} < o0,
and with m = 3, if and only if

1 1/q
||f||A=|f(0)|+{ [ a-rr g dr} ‘.

We shall need both of these representations. In particular with p =¢ =1
we have f € AY; if and only if

1 27
||f||A=|f(0)|+/O/O | (re™)| dmr dr < oo,



28 Radial variation in some function spaces

2. Integrability of F
The function F(t) = F(1,t) is given from (1) by
1 .
Ft) = / I (ue)| du, 0 <t< 2.
0

We now ask what is a sufficient condition that F € L' ? Since F € L' if
and only if fo% fol |f/(re®)|r dr dm < oo, the answer is immediate from the
definition:

Proposition 1. F € LY(T) if and only if f € A, . Moreover

(2) 11+ 1FO)] = [[f]] -

It may be observed here that if f € AY; then its boundary function
f(e®) exists a.e.; in fact f € H'. This follows by integrating the obvious
inequality |f(rei®)| < |£(0)] + | (ue®)] du.

We can equally express the relationship in terms of the A-norm of F(r,t).
For this purpose we introduce the gradient of F: VF(r,t) = (25, 1/r2E) =
(|f'(re’*)), 1/r%—f). The relationship referred to is

1 21
f €A% if and only if / / E(r )| dmr dr < oo,
0 0

If the integral is finite then it follows very simply that f € A9, and that
Iflla < |f(0)] 4+ [|[Flla. The proof in the other direction has already been
done in essence in [8] where we considered only s > 0. In fact we can state
a more general result which follows from Theorem 1 there, and which works
without any changes for our situation.

Theorem 1. Suppose that 1 < p,q < oco. There is a constant C' =
C(p,q) such that if f € qu then

1 - q/p
[a=m ([ wreoran) ar< i
0

—T

Proof.  The proof in [8] goes through word for word with s = 0. In
the case p = ¢ = 1 it is simpler since the use of Holder’s inequality is not
needed. We do make use of the alternative definitions of qu mentioned
above. a
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If the double integral for F'(r,t) is finite then as noted already it is clear
that f € qu. The question when F' € L?, p > 1, does not have so neat an
answer. A reasonable sufficient condition is given by

Theorem 2. Suppose that 1 < p,g < oc. If f € Agl then

11 < {If]]a-

Proof. By Minkowski’s Inequality in continuous form

(/ T Em dm)w (/ " ([ 17en) dr)p dm)”p

1 2
ret) P d l/pd
/0</0 |/ (re) P dm) " dr

< oo,

IA

and [[F[[, <||flla- O

Remark. The condition f € Agl implies that f € HP? for all p > 1. To
see this we note that for r < 1

£ < £+ [ 17/ (we)] du
On using Minkowski’s Inequality again we obtain

M < o+ | "My () du
1711

IN

and the result is immediate.

In [8] it was shown that if f € AJ , 0 < s < 1, then the boundary
function F' € Bf;q. We do not know whether this is true for the case s =0

since the proof given there is no longer valid.

3. The Lipschitz spaces

The Lipschitz space As,0 < s < 1, may be regarded as the Besov space
B3 .- It is well known that for an analytic function f on the disc, f € A,
if and only if there exists M such that

, M
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This property has its counterpart for the function F'(r,t).

Theorem 3. The function f € As, 0 < s < 1, if and only if
VF(rt)=0((1 —r)*"1).

Proof. Suppose f € As and let M be the number noted above. First
we show that F'(t) is bounded.

P = [ 17w dn < A4/ T

= —(1=r)%) /s < M/s,

for all » < 1 and so F(t) is bounded.
Since the first component of VF(r, t) is |f'(re®)| we need only consider

the second. Now by Lemma 3 of [8], 2 9 (r,t) =[] 8|f ‘( e) du and

0
OF ol f'|

o

(t)| = h/o
1/7“/(: ulf" (ue')| du

(ue') du‘

IN

r 1 1
< M - du<M_—
= A (T—u2e = A=

In the second inequality above we used Theorem 5.5 of [2]. The result
follows. 0

There is a corresponding result for F(t).

Theorem 4. If f € A,, 0<s <1, then F(t) € As.
Proof. We have shown that F' is bounded. We write

F(z)—F(t)=F(x) — F(r,x) + F(r,z) — F(r,t) + F(r,t) — F(t).

uf
. 1—7’

1—r) /s

IN

ﬂm—mezjﬂfWWMm

IN

and the same holds for F(r,t) — F(t). Moreover F(r,z) — F(r,t) =

. 2E(r,v) dv. Consequently
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E S e e
’ TSy Tou - . (1—r)t=s
1
= M——Jt-
(1 _ 7")1_8| £C|,
on using the previous theorem. If we now choose 1 —r = |z — t| we get
|F(r,x) — F(r,t)] < M"|t — x|®* and F(t) € A. O

The mean Lipschitz classes A, (T), 1 < p, 0 < s < 1, are indentical
with the Besov spaces B,. . They satisfy the condition: A function
g € LP(T) belongs to A, s if

gl

pom ( / T lge+8) — g do )Up = O(t)

for small ¢. It is known (Theorem 5.4 of [2]) that an analytic function f
is in Ay if and only if My(f',7) = O(gmy=) 0 <r < 1. With the
aid of this, similar results to those of the last two theorems can be shown
to hold and the proofs are straightforward.

Theorem 5. If f € A, s, 1 <p, 0 < s <1, then there exists C = C(p, s)
such that

1/p
(a) (f;|VF<r,t>|p dm) < O fllpa(1 — 1)1
(b) F(t) € Ay and | Fllpe < Ol e

Whether a particular type of continuity for f implies the same holds for
F is uncertain. The boundary function f(e®) is absolutely continuous if
and only if ' € H*. We dont know that this implies that F(¢) is absolutely
continuous but it does imply that F' is continuous.

Proposition 2. If f(e®) is absolutely continuous then F(t) s
cONtInuous.

Proof. We have F(t +z) — F(t) = f01(|f’(rei(t+w))| — |f'(re’*)|) dr and
therefore

[F(t+x) = F(t)]

IN
=
—

=3
®
s
=
+
&
S~—
~
3
—
=
®
B
=
U
3
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where g, (t) = g(t+z) is a translate of g. The Fejer-Riesz inequality allows
us to conclude

|[F(t+x)—F)|+ |F{t+z+7m)— F(t+mn)|
! / it / it 1 o / it / it
< [ 1fee) = peetar < 3 [ Inet) = £t de =0

as « — 0 uniformly in ¢, because the translation map x — g, is uniformly
continuous from T to L'. The proof is complete. a
In [8] it was seen that if we assume slightly more, namely if f € A},
then F' € Bi, which implies that F is absolutely continuous. However
mere continuity of f on the circle does not even imply that F' is bounded.
In fact Walter Rudin [5] has shown that there exists an analytic function f
continuous in the closed disc, such that F(t) = oo almost everywhere.
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