Radial variation in some function spaces

David Walsh

(Communicated by Sten Kaijser)

2000 Mathematics Subject Classification. 30H05, 31A05, 46E15.

Keywords and phrases. Radial variation, Besov space, Lipschitz space.

Abstract. In a previous paper [8] we considered properties of the radial variation of analytic functions in a class of Besov spaces A_{pq}^s , s > 0. Here we wish to extend these results to certain related spaces. These are the Lipschitz classes Λ_s and the mean Lipschitz classes $\Lambda_{p,s}$ where $p \ge 1, 0 < s < 1$. We also consider A_{pq}^0 , where s = 0, although the results obtained for these are not as good as when s > 0.

1. Introduction

If f is analytic in the disc, the radial variation function of f is the function defined on the disc by

(1)
$$F(r,t) = \int_0^r |f'(ue^{it})| \, du, \quad r < 1, \quad 0 \le t \le 2\pi.$$

Since $f(re^{it}) - f(0) = \int_0^r f'(ue^{it}) du$, it is clear that

$$|f(re^{it})| \le |f(0)| + F(r,t), \quad r < 1, \quad 0 \le t \le 2\pi,$$

and F(r,t) is a majorant for f. The function F(r,t) represents the length of the image of the radius vector $[0, re^{it}]$ under the mapping f. It is clear from the definition, that the boundary function $F(t) = \lim_{r \to 1} F(r,t)$ exists, finite or infinite, for all $t \in [0, 2\pi]$. It is known as the radial or total variation. An immediate property of F is that if $F(t) < \infty$, then $\lim_{r\to 1} f(re^{it})$ exists.

We saw in [8] that the property that $f \in A_{pq}^s$, $0 < s < 1, 1 \le p, q < \infty$, translated into meaningful results for F, in particular that F(r,t) satisfies an analogous condition on the disc. In Section 1 we are led naturally to consider the case s = 0 when we ask for a condition under which F(t) is an integrable function on the circle. It follows immediately that $F \in L^1$ if and only if $f \in A_{11}^0$. We then show that F(r,t) satisfies a corresponding condition to that by f in the disc . This result extends to the general case $f \in A_{pq}^0$. In Section 3 we suppose that f belongs to a Lipschitz space or a mean Lipschitz space and show that both F(r,t) and F(t) exhibit the expected behaviour.

1.1 Preliminaries. Let D denote the unit disc, T the unit circle in the complex plane and $L^p = L^p(T)$ the usual Lebesgue space when $0 . For <math>p \ge 1$ we denote the norm of a function $f \in L^p$ by $||f||_p$. For convenience we shall let m denote normalised Lebesgue measure on the circle T.

Let $\Delta_t f(e^{ix}) = f(e^{i(x+t)}) - f(e^{ix})$ and $\Delta_t^m = \Delta_t(\Delta_t^{m-1})$. For $0 < s \leq 1$, the Lipschitz class Λ_s is the space of 2π -periodic functions on $[-\pi,\pi]$ for which $|\Delta_t f(e^{ix})| = O(|t|^s)$ uniformly in x. A generalization is the mean Lipschitz class $\Lambda(p,s)$ consisting of all functions f for which $||\Delta_t f||_p = O(|t|^s)$ for t > 0; $\Lambda(p,s)$ reduces to Λ_s when $p = \infty$. Suppose now that fis analytic in D. If $0 \leq r < 1$, let

$$M_p(f,r) = \left(\int_{-\pi}^{\pi} |f(re^{it})|^p \ dm\right)^{1/p}, \quad (0$$

denote the integral mean of f of order p. It is well known that $M_p(f,r)$ is an increasing function of r on [0,1) and that the class of functions ffor which $\sup_{r<1} M_p(f,r) < \infty$, is the familiar Hardy space H^p [2]. For $1 \le p, q < \infty, s > 0$, and an arbitrary integer m > s, we define the Besov space B_{pq}^s by

$$B_{pq}^{s} = \left\{ f \in L^{p} : \int_{-\pi}^{\pi} \frac{||\Delta_{t}^{m}f||_{p}^{q}}{|t|^{1+sq}} dm(t) < \infty \right\}.$$

It is well known that the definition is independent of m. For a discussion of these spaces see [1], [3], [4], [6], [7]. When s passes through a positive

D. Walsh

integer value, the working definition of the Besov space B_{pq}^s may require a change as indicated above.

The previous definition is no longer valid when $s \leq 0$; for these cases another description is required. For $n \geq 1$ we let W_n be the polynomial on T whose Fourier coefficients satisfy $\hat{W}_n(2^n) = 1, \hat{W}_n(j) = 0$ for $j \notin$ $(2^{n-1}, 2^{n+1})$ and \hat{W}_n is a linear function on $[2^{n-1}, 2^n]$ and on $[2^n, 2^{n+1}]$. If n < 0 we put $W_n = \overline{W}_{-n}$. We put $W_0 = \overline{z} + 1 + z$. For $s \leq 0, 1 \leq p, q < \infty$, B_{pq}^s consists of all distributions f on T for which

$$\sum_{n=-\infty}^{\infty} 2^{|n|s} \|f * W_n\|_p^q < \infty.$$

It is known that this description is equivalent to the previous one for s > 0, but for s = 0 in particular, only the second definition is valid. See [4] Appendix 2, [1]. In fact when q > p there exist $f \in B_{pq}^0$ such that $f \notin L^p$.

Let A_{pq}^s denote the subspace of B_{pq}^s consisting of analytic functions. The space A_{pq}^s for s > 0, may be characterized as follows: for an arbitrary integer m > s the analytic function $f \in A_{pq}^s$ if and only if

$$||f||_A = |f(0)| + \left\{ \int_0^1 (1 - r^2)^{q(m-s)-1} M_p(f^{(m)}, r)^q r \, dr \right\}^{1/q} < \infty.$$

Once again the definition is independent of m for m > s. For s = 0 this definition is easily modified. This is because of the property that $f \in A_{pq}^0$ if and only if $If \in A_{pq}^1$ where I is the integration operator. Therefore $f \in A_{pq}^0$ if and only if with m = 2,

$$||f||_{A} = |f(0)| + \left\{ \int_{0}^{1} (1 - r^{2})^{q-1} M_{p}(f', r)^{q} r \, dr \right\}^{1/q} < \infty,$$

and with m = 3, if and only if

$$||f||_A = |f(0)| + \left\{ \int_0^1 (1 - r^2)^{2q - 1} M_p(f^{(2)}, r)^q r \, dr \right\}^{1/q} < \infty.$$

We shall need both of these representations. In particular with p = q = 1we have $f \in A_{11}^0$ if and only if

$$||f||_A = |f(0)| + \int_0^1 \int_0^{2\pi} |f'(re^{it})| \, dmr \, dr < \infty.$$

2. Integrability of F

The function F(t) = F(1, t) is given from (1) by

$$F(t) = \int_0^1 |f'(ue^{it})| \, du, \quad 0 \le t \le 2\pi.$$

We now ask what is a sufficient condition that $F \in L^1$? Since $F \in L^1$ if and only if $\int_0^{2\pi} \int_0^1 |f'(re^{it})| r \, dr \, dm < \infty$, the answer is immediate from the definition:

Proposition 1. $F \in L^1(T)$ if and only if $f \in A^0_{11}$. Moreover

(2)
$$||F||_1 + |f(0)| = ||f||_A.$$

It may be observed here that if $f \in A_{11}^0$ then its boundary function $f(e^{it})$ exists a.e.; in fact $f \in H^1$. This follows by integrating the obvious inequality $|f(re^{it})| \leq |f(0)| + \int_0^r |f'(ue^{it})| \, du$.

We can equally express the relationship in terms of the A-norm of F(r,t). For this purpose we introduce the gradient of $F: \nabla F(r,t) = \left(\frac{\partial F}{\partial r}, 1/r\frac{\partial F}{\partial t}\right) = (|f'(re^{it})|, 1/r\frac{\partial F}{\partial t})$. The relationship referred to is

$$f \in A_{11}^0$$
 if and only if $\int_0^1 \int_0^{2\pi} |\nabla F(r,t)| \ dmr \ dr < \infty.$

If the integral is finite then it follows very simply that $f \in A_{11}^0$ and that $||f||_A \leq |f(0)| + ||F||_A$. The proof in the other direction has already been done in essence in [8] where we considered only s > 0. In fact we can state a more general result which follows from Theorem 1 there, and which works without any changes for our situation.

Theorem 1. Suppose that $1 \leq p, q < \infty$. There is a constant C = C(p,q) such that if $f \in A_{pq}^0$ then

$$\int_0^1 (1-r^2)^{q-1} \left(\int_{-\pi}^{\pi} |\nabla F(r,t)|^p \ dm \right)^{q/p} r \ dr \le C ||f||_A^q$$

Proof. The proof in [8] goes through word for word with s = 0. In the case p = q = 1 it is simpler since the use of Hölder's inequality is not needed. We do make use of the alternative definitions of A_{pq}^0 mentioned above.

D. Walsh

If the double integral for F(r,t) is finite then as noted already it is clear that $f \in A_{pq}^0$. The question when $F \in L^p$, p > 1, does not have so neat an answer. A reasonable sufficient condition is given by

Theorem 2. Suppose that $1 \le p, q < \infty$. If $f \in A_{p1}^0$ then

$$||F||_p \leq ||f||_A.$$

Proof. By Minkowski's Inequality in continuous form

$$\left(\int_0^{2\pi} |F(t)|^p \ dm \right)^{1/p} = \left(\int_0^{2\pi} \left(\int_0^1 |f'(re^{it})| \ dr \right)^p \ dm \right)^{1/p}$$

$$\leq \int_0^1 \left(\int_0^{2\pi} |f'(re^{it})|^p \ dm \right)^{1/p} \ dr$$

$$< \infty,$$

and $||F||_p \le ||f||_A$.

Remark. The condition $f \in A_{p1}^0$ implies that $f \in H^p$ for all $p \ge 1$. To see this we note that for r < 1

$$|f(re^{it})| \le |f(0)| + \int_0^r |f'(ue^{it})| \, du.$$

On using Minkowski's Inequality again we obtain

$$M_p(f,r) \leq |f(0)| + \int_0^r M_p(f',u) \, du$$

 $\leq ||f||_A$

and the result is immediate.

In [8] it was shown that if $f \in A_{pq}^s$, 0 < s < 1, then the boundary function $F \in B_{pq}^s$. We do not know whether this is true for the case s = 0 since the proof given there is no longer valid.

3. The Lipschitz spaces

The Lipschitz space $\Lambda_s, 0 < s < 1$, may be regarded as the Besov space $B^s_{\infty\infty}$. It is well known that for an analytic function f on the disc, $f \in \Lambda_s$ if and only if there exists M such that

(3)
$$|f'(z)| \le \frac{M}{(1-r)^{1-s}}$$

This property has its counterpart for the function F(r, t).

Theorem 3. The function $f \in \Lambda_s$, 0 < s < 1, if and only if $\nabla F(r,t) = O((1-r)^{s-1})$.

Proof. Suppose $f \in \Lambda_s$ and let M be the number noted above. First we show that F(t) is bounded.

$$F(r,t) = \int_0^r |f'(ue^{it})| \, du \leq M \int_0^r \frac{1}{(1-u)^{1-s}} \, du$$
$$= M \left(1 - (1-r)^s\right)/s \leq M/s,$$

for all r < 1 and so F(t) is bounded.

Since the first component of $\nabla F(r,t)$ is $|f'(re^{it})|$ we need only consider the second. Now by Lemma 3 of [8], $\frac{\partial F}{\partial t}(r,t) = \int_0^r \frac{\partial |f'|}{\partial t}(ue^{it}) du$ and

$$\begin{split} \left| 1/r \frac{\partial F}{\partial t}(r,t) \right| &= \left| 1/r \int_0^r \frac{\partial |f'|}{\partial t} (ue^{it}) \ du \right| \\ &\leq 1/r \int_0^r u |f''(ue^{it})| \ du \\ &\leq M \int_0^r \frac{1}{(1-u)^{2-s}} \ du \leq M' \frac{1}{(1-r)^{1-s}}. \end{split}$$

In the second inequality above we used Theorem 5.5 of [2]. The result follows. $\hfill \Box$

There is a corresponding result for F(t).

Theorem 4. If $f \in \Lambda_s$, 0 < s < 1, then $F(t) \in \Lambda_s$.

Proof. We have shown that F is bounded. We write

$$F(x) - F(t) = F(x) - F(r, x) + F(r, x) - F(r, t) + F(r, t) - F(t).$$

But

$$F(x) - F(r, x) = \int_{r}^{1} |f'(ue^{ix})| \, du \leq M \int_{r}^{1} \frac{1}{(1-r)^{1-s}} \, du$$
$$\leq M(1-r)^{s}/s$$

and the same holds for F(r,t) - F(t). Moreover $F(r,x) - F(r,t) = \int_t^x \frac{\partial F}{\partial v}(r,v) dv$. Consequently

D. Walsh

$$\begin{split} |F(r,x) - F(r,t)| &\leq \left| \int_t^x \left| \frac{\partial F}{\partial v}(r,v) \right| \, dv \right| &\leq M' \left| \int_t^x \frac{1}{(1-r)^{1-s}} \, dv \right| \\ &= M' \frac{1}{(1-r)^{1-s}} |t-x|, \end{split}$$

on using the previous theorem. If we now choose 1 - r = |x - t| we get $|F(r, x) - F(r, t)| \le M'' |t - x|^s$ and $F(t) \in \Lambda_s$.

The mean Lipschitz classes $\Lambda_{p,s}(T)$, $1 \leq p$, 0 < s < 1, are indentical with the Besov spaces $B^s_{p\infty}$. They satisfy the condition: A function $g \in L^p(T)$ belongs to $\Lambda_{p,s}$ if

$$||g||_{p,s} = \left(\int_0^{2\pi} |g(x+t) - g(x)|^p dx\right)^{1/p} = O(|t|^s)$$

for small t. It is known (Theorem 5.4 of [2]) that an analytic function f is in $\Lambda_{p,s}$ if and only if $M_p(f',r) = O(\frac{1}{(1-r)^{1-s}}) \qquad 0 < r < 1$. With the aid of this, similar results to those of the last two theorems can be shown to hold and the proofs are straightforward.

Theorem 5. If $f \in \Lambda_{p,s}$, $1 \le p$, 0 < s < 1, then there exists C = C(p,s) such that

(a)
$$\left(\int_{-\pi}^{\pi} |\nabla F(r,t)|^p dm\right)^{1/p} \le C \|f\|_{p,s} (1-r)^{s-1};$$

(b) $F(t) \in \Lambda_{p,s}$ and $\|F\|_{p,s} \le C \|f\|_{p,s}.$

Whether a particular type of continuity for f implies the same holds for F is uncertain. The boundary function $f(e^{it})$ is absolutely continuous if and only if $f' \in H^1$. We dont know that this implies that F(t) is absolutely continuous but it does imply that F is continuous.

Proposition 2. If $f(e^{it})$ is absolutely continuous then F(t) is continuous.

Proof. We have $F(t+x)-F(t)=\int_0^1 (|f'(re^{i(t+x)})|-|f'(re^{it})|)\ dr$ and therefore

$$\begin{aligned} |F(t+x) - F(t)| &\leq \int_0^1 |f'(re^{i(t+x)}) - f'(re^{it})| \ dr \\ &= \int_0^1 |f'_x(re^{it}) - f'(re^{it})| \ dr \end{aligned}$$

where $g_x(t) = g(t+x)$ is a translate of g. The Fejer-Riesz inequality allows us to conclude

$$\begin{aligned} |F(t+x) - F(t)| + |F(t+x+\pi) - F(t+\pi)| \\ &\leq \int_{-1}^{1} |f'_x(re^{it}) - f'(re^{it})| \ dr \leq \frac{1}{2} \int_{0}^{2\pi} |f'_x(re^{it}) - f'(re^{it})| \ dx \to 0 \end{aligned}$$

as $x \to 0$ uniformly in t, because the translation map $x \to g_x$ is uniformly continuous from T to L^1 . The proof is complete.

In [8] it was seen that if we assume slightly more, namely if $f \in A_{11}^1$, then $F \in B_{11}^1$ which implies that F is absolutely continuous. However mere continuity of f on the circle does not even imply that F is bounded. In fact Walter Rudin [5] has shown that there exists an analytic function fcontinuous in the closed disc, such that $F(t) = \infty$ almost everywhere.

References

- D. Adams, and L. Hedberg, Function Spaces and Potential Theory, Springer, 1999.
- [2] P.L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- [3] S.M. Nikolskii, Approximation of Functions of Several Variables and Embedding Theorems, Springer, 1975.
- [4] V.V. Peller, Hankel Operators and Their Applications, Springer, 2003.
- [5] W. Rudin, The radial variation of analytic functions, Duke Math. J., 22 (1955) 235-242.
- [6] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [7] H. Triebel, Spaces of Besov-Hardy-Sobolev Type, Teubner, Leipzig 1978.
- [8] D. Walsh, Radial variation of functions in Besov spaces, Publ. Mat., 50 (2006) 371–399.

Department of Mathematics NUI Maynooth Ireland (*E-mail : David.Walsh@maths.nuim.ie*)

(Received : January 2008)