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Abstract

We report conditions on a switching signal that guarantee that solutions of

a switched linear systems converge asymptotically to zero. These conditions

are apply to continuous, discrete-time and hybrid switched linear systems,

both those having stable subsystems and mixtures of stable and unstable

subsystems.
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1. Introduction

In Science and Engineering, systems are frequently met that consist of a

family of subsystems and a switching signal which determines which subsys-

tem is activated each time.
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When all the subsystems are linear, one has a switched linear system

.
x(t) = Aσ(t)x(t) (1)

where σ : [0,+∞) → {1, · · · , n} is the switching signal and Ai : R
m →

R
m (i = 1, · · · , n) are matrices that characterise the subsystems. We will

assume the condition that there are a finite number of switches in each finite

time interval [1, 2].

The great number of areas in which switched linear systems appear makes

their study a matter of real concern and great importance [1]. Its theoretical

importance [1, 3, 4] derives from its practical importance (power systems,

control process, automotive industry, mechanical systems): one needs to un-

derstand under what circumstances the system (1) is stable, or what switch-

ing signals make the systems stable (see the survey [12] for more details).

Many times, time-delay must be taken into account [5, 22] because it plays

an important role in many practical systems, such as chemical processes,

nuclear reactors, engines, and so on [23, 24].

Liberzon and Morse [1] formulated three basic problems in relation to the

stability of switched systems.

“Problem A: Find conditions that guarantee that the switched system is

asymptotically stable for any switching signal”.

“Problem B: Identify those classes of switching signals for which the

switched system is asymptotically stable”.

“Problem C: Construct a switching signal that makes the switched system
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asymptotically stable”.

The condition of asymptotic stability referred to Problem A, is desirable

in practical applications. The theorems that provide solution (or partial

solutions) to in Problem A involve conditions that can be restrictive for ap-

plications: the existence of Lyapunov functions, symmetric systems, pairwise

commutativity of the subsystems, Lie-algebraic conditions, . . . [2, 3, 6, 7].

On the other hand, it is well-known that there exist systems that exhibit

instability even though all their subsystems are asymptotically stable [1, 2].

As a result, one sees the necessity of solving Problem B in practice, in order

to deal with the applications. Usually, Problem B is studied under the as-

sumption that all the individual subsystems are asymptotically stable [1, 6].

However, for some applications it is convenient to allow subsystems that may

be both stable and unstable (for instance, unstable subsystems have to be

considered when a failure occurs).

In this paper, we establish conditions on the switching signal of a switched

linear system that are sufficient to ensure asymptotic stability. We allow both

stable and unstable subsystems in the switched linear system [13]. Further-

more this switched linear system has no restrictive conditions involved, such

as the existence of Lyapunov functions, symmetries, pairwise commutativity

of the subsystems, Lie-algebraic conditions, etc.

In the following lines we are putting our results in context and indicate

which are the novel contributions. As we said above, switched systems with

all the subsystems stable can become unstable for certain switching signals.
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The contrary is also true, that switched systems with some of the subsystems

unstable can become stable for certain switching signals [14, 6]. From what

we have just said it is plain to see that the stability of switched systems

depends on both the dynamics of each subsystem and the switching signals.

Intuitively it is easy to imagine a switching signal that maintains stable

a switched linear system with all its subsystems stable. It is enough to stay

for a long time in one of the subsystems and jump into another with a low

frequency. This idea, and the mathematical concept of “low frequency of

jumping between subsystems”, was developed by Morse and Hespanha with

the concepts of dwell time and average dwell time switching [15, 16].

These results about stability were extended in [13] to take into account un-

stable subsystems, that is switched systems having both stable and unstable

subsystems. The underlying idea is very similar to the one just described

above. Stay for long times in stable subsystems in such a way that the total

activation time of stable subsystems is relatively big compared with that of

unstable ones, and furthermore the system should spend long times in every

stable subsystems (low frequency of jumping).

Dwell time and average dwell time switching have proved to be very

flexible and powerful tools to determine what conditions switching signal

should satisfy to guarantee the stability of switched systems. As a result,

there is a fruitful line of research since the pioneering ideas to the present

day [17, 18, 19, 20]. New approaches using fuzzy time control have also been

taken [21].
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The results shown in this paper also require that stable subsystems control

the unstable one, but in a different way. Average dwell time switching requires

that the average interval between consecutive switchings must be bigger than

a constant, although consecutive switchings can be separated by less than

that constant. In contrast to this idea the theorems we show do not need

time intervals, we use the number of times that the system switches. We

are speaking of a discrete variable in contrast to a continuous one. That is

not the only difference. We require that stable subsystems control unstable

subsystems pair by pair, as we will explain below. A consequence is that a

switched system can spend more time in unstable subsystems than in stable

ones and even then the switched system be stable, as is illustrated in example

2.

The paper is organised as follows. First we work on continuous switched

linear systems, then on discrete systems. Afterwards we combine these to

study hybrid systems. Then we apply our results about problems of type B

to the design of switching signals in order to solve problems of type C.

2. Definitions

The following definitions are necessary for further discussion.

tij denotes the time during which the system (1) is ruled by matrix Ai,

when this matrix is switched to for the j-th time.

mi(t) : [0,∞) → N denotes how many times the matrix Ai has been

switched up to time t .
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3. Continuous systems

We first investigate continuous systems, then we will reformulate the res-

ults of this section to approach discrete systems.

The next theorem gives us sufficient conditions to get asymptotic stability

in a continuous system having both stable and unstable subsystems. It is

important to emphasise two things. First, the system will be asymptotically

stable even though it has unstable subsystems. Second, we are not using

average dwell time switching. This theorem will allow us the stabilisation of

a switched linear system by a switching strategy.

Theorem 1 . Consider a switched linear system of the form (1) that satisfies:

(i) mi(t) → ∞ as t → ∞ for i = 1, · · · , n

(ii) < eAi >=
[

∏mi

ij=1

∥

∥

∥
eAitij

∥

∥

∥

]
1

mi → ci < +∞ as mi → +∞ where

ci ≤ 1− εβ, εβ > 0, i = 1, · · · , k − 1

ci ≥ 1, i = k, · · · , n

(iii)
mj(t)

mρ(t)
→ kj,ρ ≥ 1 as t → +∞ for

j = 1, · · · , k − 1

ρ = k, · · · , n

(iv)
∏n

i=1 ci 6 1− εα εα > 0

Then each solution x(t) of (1) tends asymptotically to zero.

Significance.
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i) Each matrix Ai is used infinitely many times. The process may be

random or deterministic. The systems does not stay in any one state

as t → ∞.

ii) The geometric average of the norms of the flows for each matrix Ai of

(1) is finite. The matrices Aj , j = 1, · · · , k − 1 contract the flow,

whereas the matrices Aρ, ρ = k, · · · , n expand it.

iii) Each contracting matrix dominates each expanding matrix.

iv) The contracting flows dominate the expanding ones.

Proof. After a time t, the transfer matrix Ai i = 1, · · · , n will have been

used mi(t) times. Taking norms it results

‖x(t)‖ ≤

mn
∏

in=1

∥

∥eAntin
∥

∥ ...

m1
∏

i1=1

∥

∥eA1ti1
∥

∥ ‖x0‖ (2)

it follows from (ii) that

∀εi > 0 ∃ Nεi/mi > Nεi →
∣

∣< eAi > −ci
∣

∣ 6 εi i = 1, · · · , n

Let Nε = max
i=1,··· ,n

{Nεi} ε = max
i=1,··· ,n

{εi}.

If

mi > Nε i = 1, · · · , n (3)

it follows from (2) that

‖x(t)‖ ≤ (cn + ε)mn ... (ck + ε)mk (ck−1 + ε)mk−1 ... (c1 + ε)m1 ≤
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≤ (cn + ε)M ... (ck + ε)M (ck−1 + ε)m ... (c1 + ε)m ‖x0‖ (4)

where M = max
l=k,··· ,n

{ml} , m = min
j=1,··· ,k−1

{mj} and εi has been chosen so

that εi < εβ i = 1, ..., n

It follows from (iii) that

∃tL/t > tL → m ≥ M

if

t > tL (5)

it follows from (4) that

‖x(t)‖ ≤ [(cn + ε) ... (c1 + ε)]m ‖x0‖ =

= (c1...cn + kε)m ‖x0‖ ≤ (1− εα + kε)m ‖x0‖
(6)

where (iv) has been used in the last equality.

We choose ε < min
{

εβ,
εα
k

}

then 1− εα + kε < 1

It follows from (i) that

∀N ∃tN/t > tN → mi ≥ N i = 1, · · · , n

it is sufficient to take t > max {tL, tNε
} so that (3) and (5) are met and

consequently (6) with 1 − εα + kε < 1. It follows from (i) that m → ∞
t→∞

.

Therefore

‖x(t)‖ ≤ (1− εα + kε)m ‖x0‖ →
t→∞

0
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Presented below is a numerical example in the continuous-time domain.

Example 1. Consider the switched linear system

.
x(t) = Aσ(t)x(t) (7)

σ : [0,+∞) → {1, · · · , 4}

where switching sequence is generated by random numbers and

A1 =







−2 3

−4 5







A2 =







0 6

−1 5







A3 =







−29
4

4
9

−10
9

−7
9







A4 =







−69
17

2
17

− 9
17

−50
17







The subsystems ruled by A1 and A2 are unstable because their eigenvalues

are respectively λ(A1) = {1, 2} and λ(A2) = {2, 3}. Whereas A3 and A4 ,

with eigenvalues λ(A3) = {−1, −3} and λ(A4) = {−3, −4} respectively,

determine stable subsystems.
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In order to calculate the evolution of the system (7) the following expres-

sions are needed.

eA1t =







−1 −3
4

−1 −1













et 0

0 e2t













−4 3

4 −4







eA2t =







3 2

1 1













e2t 0

0 e3t













1 −2

−1 3







eA3t =







1 2

5 1













e−t 0

0 e−3t













−1
9

2
9

5
9

−1
9







eA4t =







1 2

9 1













e−3t 0

0 e−4t













− 1
17

2
17

9
17

− 1
17







After 100000 switches, the result is

〈

eA1

〉

=
[

∏m1

1j

∥

∥

∥
e
A1t1j

∥

∥

∥

2

]
1

m1 →
m1→∞

c1 = 1.106 ≥ 1

〈

eA2

〉

=
[

∏m2

2j

∥

∥

∥
e
A2t2j

∥

∥

∥

2

]
1

m2 →
m2→∞

c2 = 1.198 ≥ 1

〈

eA3

〉

=
[

∏m3

3j

∥

∥eA3t3j
∥

∥

2

]
1

m3 →
m3→∞

c3 = 0.985 ≤ 1− εβ εβ > 0

〈

eA4

〉

=
[

∏m4

4j

∥

∥eA4t4j
∥

∥

2

]
1

m4 →
m4→∞

c4 = 0.101 ≤ 1− εβ εβ > 0

with
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∏4
i=1 ci = 0.1321− εα εα > 0

and (see Figure 1)

m3

m1
→
t→∞

k3,1 = 1.486

m3

m2
→
t→∞

k3,2 = 1.498

m4

m1
→
t→∞

k4,1 = 1.492

m4

m2

→
t→∞

k4,2 = 1.503

So theorem conditions from (i) to (iv) are satisfied and the system must

asymptotically tend to zero, as it is shown in Figures 2a and 2b.

4. Discrete-time systems

When time is discrete instead of continuous we have a switched linear

discrete-time system, and the system (1) is turned into

x(n + 1) = Aσ(t)x(n) (8)

where σ(t) and Aσ(t) have the same meaning as in system (1).

Discrete-time systems are as useful in engineering as continuous-time sys-
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tems, and theoretical research is also very active. Furthermore, they appear

in other areas where continuous systems are not found, as a result of using

the transfer matrix method to solve differential equations [8]. Lately, they are

becoming more important in the study of structures consisting of stiffened

plates (naval architecture, bridge engineering, aircraft design buildings) [9]

and spatially periodic structures (satellite antennae, satellite solar panels)

[10]. The theorem, stated some lines below, will indicate to a designer how

to insert panels (given by Ai in (8)) so that oscillations fade off and do not

damage the structure.

The theorem 1 can be reformulated for discrete-time systems in the fol-

lowing way:

Theorem 2 . Consider a switched linear discrete-time of the form (8) such

that

i) mi(t) →
t→∞

∞ i = 1, · · · , n

ii)
mj(t)

mρ(t)
→

t→∞
kj,ρ ≥ 1

j = 1, · · · , k − 1

ρ = k, · · · , n

iii)
‖Aj‖ < 1 j = 1, · · · , k − 1

‖Aρ‖ ≥ 1 ρ = k, · · · , n

iv)
∏n

i=1 ‖Ai‖ ≤ 1− εα εα > 0

Then each solution of (8) tends to 0 as n → +∞.
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Proof. After a time t has elapsed, the transfer matrix Ai i = 1, · · · , n, will

have been used mi(t) times. Hence, taking norms we have

‖x(t)‖ ≤
mn
∏

in=1

‖An‖ ...

m1
∏

i1=1

‖A1‖ ‖x0‖ ≤

≤ (‖An‖ ... ‖Ak‖)
M (‖Ak−1‖ ... ‖A1‖)

m ‖xo‖ (9)

where M = max
l=k,··· ,n

{ml} , m = min
j=1,··· ,k−1

{mj} and (iii) has been used.

It follows from (ii) that ∃ tL/t > tL → m ≥ M .

If

t > tL (10)

it follows from (9) that

‖x(t)‖ ≤ (‖An‖ ... ‖A1‖)
m ‖xo‖ ≤ (1− εα)

m ‖xo‖ →
t→∞

0

where (ii) has been used and condition (10) is satisfied when t → ∞. �

If we consider the problem mentioned at the beginning of the section, and

imagine a “solar panel” with many sections suffering unstable oscillations then

the theorem will indicate the possibility of inserting a panel to extinguish the

vibrations.

Giving that the solar panel is a periodical structure, such that the switch-

ing to its different components would be ruled by a travelling wave it follows

that the switching signal σ(t) would be determined by a deterministic expres-

sion; hence, the engineer will have to choose the materials in the solar panel

so that theorem 2 is satisfied and the travelling wave in it is extinguished.

13



A similar argument would allow one to deduce whether a wave would

extinguish in a system ruled by Schrödinger or Maxwell equations [11].

Remark 1. It is very easy for engineers to decide whether condition (iv) is sat-

isfied. Given that ‖A‖2 =
√

λmax(A∗A) where λmax(A
∗A) = max {eigenvalues ofA∗A}

it follows that condition (iv) is satisfied if

‖An‖2 ... ‖A1‖2 =
n
∏

i=1

√

λmax(A∗
iA) < 1

Below is a numerical example for discrete-time systems.

Example 2. Consider the switched linear system

x(n + 1) = Aσ(t)x(n) (11)

where switching sequence is generated by random numbers and

A1 =







0 −29
50

28
50

1
10







A2 =







51
40

− 1
40

− 3
40

49
40







A3 =







57
50

1
25

3
50

29
25







‖A1‖2 ≃ 0.623 < 1
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with eigenvalues λ(A1) =
{

1
20

+
√
3223i
100

, 1
20

−
√
3223i
100

}

‖A2‖2 ≃ 1.301 > 1

with eigenvalues λ(A2) = {1.2, 1.3}

‖A3‖2 ≃ 1.201 > 1

with eigenvalues λ(A3) = {1.2, 1.1}

So, the subsystems ruled by A1 is stable, whereas the subsystems ruled

by A2 and A3 are unstable.

After 10000 switches we obtain (see Figure 3)

m1(t)

m2(t)
→
t→∞

k1,2 = 1.0158 > 1 (12)

m1(t)

m3(t)
→
t→∞

k1,3 = 1.0236 > 1 (13)

with

‖A1‖2 ‖A2‖2 ‖A3‖2 ≃ 0.973 ≤ 1− εα εα > 0

Given that the conditions of theorem 2 are satisfied the system must

asymptotically tend to zero, as it is shown in Figures 4a and 4b.
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From (12) and (13) it results that

m2(t) +m3(t)

m1(t)
→∼ 2
t→∞

(as it can be seen in Figure 3) that is, the system jumps twice as many times

into unstable subsystems as it does into stable subsystems. As the switching

sequence is generated by random numbers it results, by using the Law of large

numbers, that the system spends twice as much time in unstable subsystem

as in the stable subsystem. However the system tends asymptotically to zero!

5. Hybrid system

When the system has both continuous and discrete subsystems we have

a hybrid system.

A linear hybrid system can be described by equations

.
x(t) = Aσ1(t)x(t) σ1(t) : [0,∞) → {1, · · · , n} (14)

x(t+) = Bσ2(t)x(t−) σ2(t) : [0,∞) → {0, 1, · · · , m} (15)

Here x(t±) denote the one-sided limits of x at t. The matrix B0 is the

identity, and the signal σ2(t) that controls discrete jumps has σ2(t) = 0

except at a discrete set of times t. The system evolves according to the

differential equation (14), except when the switching signal σ1(t) jumps (also

a discrete set of times) or when σ2(t) > 0.

These systems are more and more frequent in industry due to integration
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of continuous and discrete systems. The continuous system might have its

origin in the flow or process of a factory or traffic, and the discrete one in

the digital control of the diverse steps of the process. Hybrid systems show

the same problems formulated by Liberzon y Morse, that we have already

mentioned formerly [4]. We can deduce a theorem for these systems that

gives the sufficient conditions of stability by using theorems 1 and 2.

Theorem 3 . Suppose a hybrid system given by (14) and (15) is such that

the continuous subsystem (14) satisfies the conditions of theorem 1 and the

discrete subsystem (15) satisfies the conditions of theorem 2. Then the hybrid

system is asymptotically stable.

Proof. It is straight forward. It is enough taking norms of state x(t) after

a time t, and then to gather separately the norms corresponding to the

continuous subsystem and the discrete one. Then proofs of theorem 1 and 2

are respectively repeated for any group.�

Remark 2. If one of the subsystems has a bounded solution and the another

one tends asymptotically to zero (because it satisfies its respective theorem)

then the solution of hybrid system also tends asymptotically to zero. We will

return to this remark later.

Example 3. Finally, we consider the hybrid system 14 and 15 formed by the

continous one given in example 1 and the discrete system given in example

2. Furthermore the activation of continuous and discrete subsystems is given
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by a switching sequence σ3(t) generated by random numbers. As theorem

conditions are satisfied the system tends asymptotically to zero as it is shown

in Figures 5a and 5b.

6. Aftermaths: stabilisation via the control of the switching signal

If the switching signal of a switched linear systems is not fixed, but de-

pends on a parameter or can be designed by the engineers, then theorems in

this paper allow the design of appropriate feedback laws to make the system

stable. Let us show how to do that.

Continuous time.- The condition (i) of theorem 1 shows every subsystem,

described by Ai, must be left before a time Ti (see remark 3 below).

Given that
∥

∥eAit
∥

∥ ≤ pi(t)e
µit

where µi = max {Reλi/λi eigenvalue of Ai} and pi(t) a polynomial of

degree the order of Ai. If we bound pi(t) ≤ ki in [0, Ti] it follows that

〈

eAi
〉

≡





mi
∏

ij=1

∥

∥

∥
eAitij

∥

∥

∥





1
mi

≤ kie
µiti

where

ti =

∑mi

ij=1 tij

mi

is the average time that system (1) stays in subsystem given by Ai.

18



Therefore
n
∏

i=1

〈

eAi
〉

≤ ke
∑n

i=1
µiti (16)

Thus, the time ti can be deduced such that theorem 1 is satisfied and

asymptotic stability is obtained. It is plain to see that σ(t) will not be

unique, because we have an average time ti, that is, engineers can choose any

σ(t) on the assumption that the average time ti satisfies theorem 1 .

It does not matter whether the switched linear system has unstable matrices,

the engineer must design the system in such a way that it spends enough

time (according to (16)) in stable matrix so that they control the unstable

matrices.

Remark 3. The condition of staying a maximum Ti in subsystem Ai makes a

lot of sense from a practical point of view. If the system could be indefinitely

in any subsystem then two possibilities would arise:

1. Either the system is ruled by an unstable subsystem and it would be

destroyed.

2. Or the system is ruled by a stable subsystem and it would tend asymp-

totically to zero. Then the result is trivial.

So, the condition is not really a restriction at all.

Discrete time.- In this case, roughly speaking, theorem 2 shows that the

system must spend more time evolving under the stable subsystem

matrices than under the unstable ones.
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Hybrid system.- The system may have a stable solution because both the

continuous and discrete subsystems converge to 0. Or because the

continuous (discrete) subsystem converges to 0 while the discrete (con-

tinuous) has a bounded solution (see remark 2).

7. Conclusions

We have presented theorems showing that, if a switched linear system has

a switching signal such that:

i) The geometric average of the subsystems flow norms is finite;

ii) The geometric averages of stable subsystems dominate the unstable

ones;

iii) The stable subsystems control unstable subsystems pair by pair;

then the solution of the system converges asymptotically to zero (even if

the system spends more time in unstable subsystems —see example 2). The

conditions are for continuous, discrete-time or hybrid systems. These results

would allow a practitioner to design the switching signal in order to stabilize

the system.

The engineer finds it easier to count how many times the system jumps

between different subsystems (see iii) than to calculate an average dwell

time switching in order to control the dangerous unstable subsystems. It

is easier, and what is more important in practical systems: it is cheaper.

Several numerical examples have been presented in order to demonstrate the

effectiveness of the theoretical findings.
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Figure 1: Temporal evolution of m3/m1 , m3/m2, m4/m1 and m4/m2.
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Figure 2: Temporal evolution of the asymptotic convergence in norm to zero of continuous
system (7).
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Figure 3: Temporal evolution of m1/m2 , m1/m3 and m1/(m2 +m3).
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Figure 4: Temporal evolution of the asymptotic convergence in norm to zero of discrete
system (11).
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Figure 5: Temporal evolution of the asymptotic convergence in norm to zero of the hybrid
system (14)-(15).
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