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The echinocandins (e.g. caspofungin) function by inhibiting the synthesis of 1,3-b-glucan in the

fungal cell wall. While the potent antifungal activity of caspofungin has been well characterized in

mammals, this study investigated the in vivo antifungal effect of caspofungin using larvae of the

insect Galleria mellonella. Caspofungin was successful in increasing the survival of larvae that

were inoculated with Candida albicans 1 h before the drug was administered, particularly when a

concentration of 0.19 mg ml”1 was used. Pre-injecting larvae with caspofungin also increased

their survival when they were inoculated with either Staphylococcus aureus or C. albicans.

Caspofungin administration resulted in an increase in the number of circulating immune cells

(haemocytes), an increase in the expression of the genes encoding IMPI and transferrin, and an

increase in the expression of a number of proteins (identified by liquid chromatography–mass

spectrometry) some of which have immune functions. This work indicates that administration of

caspofungin can increase the survival of infected G. mellonella larvae, and this is due to the

antifungal properties of caspofungin and also to the ability of caspofungin to prime the insect’s

immune response.

INTRODUCTION

Interest in using insects as alternative models to mammals
for the in vivo screening of novel antimicrobial drugs
(Hamamoto et al., 2004, 2009) or for assessing the virulence
of microbial pathogens (Brennan et al., 2002; Lionakis &
Kontoyiannis, 2005) has been growing for a number of
years, since the immune response of insects shares a high
level of homology with the innate immune response of
mammals (Kavanagh & Reeves, 2004). Insect models of
microbial infections have been employed to investigate
the antimicrobial properties of drugs (Lionakis &
Kontoyiannis, 2005; Johny et al., 2007) and offer many
advantages over the use of mammals (Kavanagh & Reeves,
2004). Larvae of the Greater Wax Moth, Galleria mellonella,
have been used to evaluate the antifungal activity of
amphotericin B, flucytosine and fluconazole following
infection with Cryptococcus neoformans (Mylonakis et al.,
2005), while silkworms have also been used to investigate
the activity of commonly used antimicrobials including the
antifungal fluconazole (Hamamoto et al., 2004).

Larvae of G. mellonella are inexpensive to purchase, results
can be obtained within 48 h and a large number of insects

can be inoculated in a short period of time (Cotter et al.,
2000). G. mellonella larvae have been used to assess the
pathogenicity of mutants of Pseudomonas aeruginosa and a
correlation has been established between their virulence in
G. mellonella and in mice (Dunphy et al., 1986; Jander
et al., 2000). Similarly a correlation between the virulence
of Candida albicans mutants in G. mellonella and mice has
been demonstrated (Brennan et al., 2002), and the larval
model has been used to allow the determination of the
virulence of relatively ‘weak’ fungal pathogens (Bergin
et al., 2003). In addition, G. mellonella larvae have been
established as a good model for studying the virulence of
Cryptococcus neoformans (Mylonakis et al., 2005).

The insect immune system bears a number of structural
and functional similarities to the innate immune response
of mammals (Zhao & Kanost, 1996; Rock et al., 1998;
Wittwer et al., 1999). The cuticle of the insect serves a
function analogous to the skin in mammals and provides a
barrier to infection. The haemolymph of insects is
contained within the body cavity (haemocoel) and serves
a function comparable to blood, where it transports
nutrients, waste products and signal molecules (Matha &
Acek, 1984). Haemolymph contains circulating immune
cells (haemocytes) that are capable of immobilizing and
killing invading microbes (Lavine & Strand, 2002). The
humoral element of the insect immune response consists of
the processes of melanization, haemolymph clotting,
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juvenile hormone; JHBP, juvenile hormone binding protein; LC–MS,
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antimicrobial peptide (AMP) synthesis and wound healing
(Kavanagh & Reeves, 2004). AMPs are released from
haemocytes, other cells and organs into the haemolymph,
where they attack components of the bacterial and fungal
cell membrane and wall (Ratcliffe, 1985).

The echinocandins are a relatively new group of antifungal
agents and caspofungin was the first of this group to be
licensed for use (Kartsonis et al., 2003). Echinocandins
show potent activity against the yeast C. albicans and are
unique in their mode of action by targeting the
biosynthesis of the fungal cell wall. In particular,
echinocandins inhibit the synthesis of 1,3-b-glucan, the
major polymer of the fungal cell wall (Eggimann et al.,
2003). Since caspofungin targets the synthesis of the cell
wall, a structure not found in mammalian cells, minimal
toxicities are observed in humans, and excellent in vivo
activity has been observed in patients (Petraitiene et al.,
2002).

This study examined the in vivo activity of caspofungin in
larvae of the insect G. mellonella. The objective of this work
was to determine whether the survival of larvae adminis-
tered caspofungin was due to the antifungal activity of the
drug alone or to the induction of a protective immune
response by the drug in the treated larvae.

METHODS

Assessment of the effect of caspofungin on the viability of G.

mellonella inoculated with C. albicans or Staphylococcus

aureus. Sixth instar larvae of G. mellonella (the greater wax moth,
which belongs to order Lepidoptera, family Pyralidae) were obtained
from The Mealworm Company (Sheffield, England) and stored in

wood shavings in the dark at 15 uC. Larvae chosen for experiments
weighed between 0.2 and 0.4 g. Ten healthy larvae were placed in
sterile 9 cm Petri dishes containing a sheet of Whatman filter paper.

C. albicans strain MEN (a gift from Professor D. Kerridge, University
of Cambridge, Cambridge, England) was grown to early stationary
phase (1–26108 ml21) in YEPD liquid [2 %, w/v, glucose; (Sigma-
Aldrich), 2 %, w/v, bacteriological peptone (Oxoid) and 1 %, w/v,

yeast extract (Scharlau Chemie)] in an orbital shaker (200 r.p.m.) at
30 uC. Cells were harvested and washed in PBS (Sigma-Aldrich), and
resuspended in PBS at cell densities of either 56105 or 16106 cells

per 20 ml. Larvae were inoculated through the last left pro-leg into the
haemocoel with a volume of 20 ml using a Myjector syringe (Terumo
Europe) and placed at 30 uC in the dark. All experiments included a
control that consisted of larvae injected with sterile PBS (20 ml) and/

or untouched larvae.

For the assessment of the in vivo antifungal activity of caspofungin,
larvae of G. mellonella were inoculated with C. albicans as described,

and 1 h post-inoculation were further injected with a 20 ml volume of
caspofungin at concentrations of 0.19, 0.095 or 0.0475 mg ml21

(Merck) or PBS, and placed at 30 uC for 24, 48 and 72 h. The
concentrations of caspofungin used here relate to the MIC90, 1/2

MIC90 and 1/4 MIC90 values for C. albicans, respectively (Kelly et al.,
2009).

Alternatively, larvae were injected with PBS or caspofungin (as

above), placed at 30 uC for 24 h and subsequently inoculated with a
20 ml volume of either C. albicans (56105 cells) or S. aureus [clinical
isolate grown in nutrient broth (Oxoid) at 37 uC and 200 r.p.m. to

early stationary phase]. A culture of S. aureus with an OD600 value of 1

was diluted 1 in 4 in PBS for the inoculation. Infected larvae were

placed at 30 uC and survival was monitored over 72 h.

Determination of the haemocyte density of G. mellonella.
G. mellonella larvae were injected with PBS or caspofungin as above,

placed at 30 uC, and the haemocyte density was determined after 4

and 24 h. Haemocyte density was ascertained by collecting the

haemolymph in a pre-chilled 1 ml tube containing a few grains of

1-phenyl-3-(2-thiazolyl)-2-thiourea (Sigma-Aldrich) to prevent mel-

anization. Haemolymph was diluted 1 in 10 in cold PBS containing

0.37 % (v/v) 2-mercaptoethanol (Sigma-Aldrich) to reduce clotting

and melanization. Haemocytes were counted on a haemocytometer

and the density (ml haemolymph)21 was calculated.

RNA extraction from G. mellonella. Larvae were inoculated with

PBS or caspofungin (0.19, 0.095 or 0.0475 mg ml21) and incubated

at 30 uC for 4 h. Three larvae per treatment were selected, and

crushed using liquid nitrogen and a sterile pestle and mortar. To

this, 3 ml TRI-reagent (Sigma-Aldrich) was added, mixed and left at

room temperature for 15 min. The mixture was placed in sterile

1.5 ml tubes and centrifuged at 12 000 g for 10 min at 4 uC
(Eppendorf centrifuge 5417R). The pellets were discarded and the

supernatants collected. Chloroform (200 ml) (molecular grade;

Sigma-Aldrich) was added and mixed vigorously by vortexing. The

solution was allowed to stand at room temperature for 10 min and

centrifuged at 12 000 g for 10 min at 4 uC. The top layer was

collected, placed in a tube and 500 ml 2-propanol (molecular grade;

Sigma-Aldrich) was added. The tube was inverted several times, left

to stand for 10 min and centrifuged at 12 000 g for 10 min at 4 uC.

The supernatant was discarded and the resulting pellet was washed

in 75 % (v/v) ethanol (50 ml molecular grade; Sigma-Aldrich) and

centrifuged at 12 000 g for 10 min at 4 uC. The supernatant was

removed completely, and the resulting pellet was air-dried and

resuspended in RNase-free water, dispensed into aliquots and stored

at 270 uC or used immediately.

cDNA synthesis and PCR analysis from G. mellonella RNA.
Extracted RNA was DNase treated (DNase1; Sigma-Aldrich) prior to

cDNA synthesis. cDNA synthesis was performed using a Superscript

III first-strand synthesis system for RT-PCR kit from Invitrogen

according to the manufacturer’s instructions. Primers and cycle

conditions were as used by Bergin et al. (2006). The housekeeping

gene ACT1 (actin) was used as a control. PCR product (4 ml) was

visualized on a 1 % (w/v) agarose gel and images were analysed by

densitometry to determine the relative fold increase/decrease by using

the array analysis tool in the ImageQuantL software.

Effect of caspofungin on the haemolymph protein profile

assessed by two-dimensional (2D) gel electrophoretic

separation and liquid chromatography–mass spectrometry

(LC–MS). Haemolymph was collected from larvae that had been

injected 24 h previously with either PBS or caspofungin (0.19 mg

ml21), and the protein (300 mg) was separated by 2D gel

electrophoresis as described by Bergin et al. (2006). PBS-injected

larvae were used as a control. Gel results were visualized using

colloidal Coomassie staining. Gel images (in triplicate) were analysed

by Progenesis SameSpots software (Nonlinear Dynamics) in order to

assess the fold change between the control and caspofungin-injected

larvae. Protein spots that displayed altered intensities between control

and drug-treatment samples were excised, washed and trypsin

digested as described by Shevchenko et al. (2006). Samples were

analysed using a 6340 Ion Trap LC–MS spectrometer (Agilent

Technologies) with BSA as external standards. The mass lists

generated were BLAST searched using the Mascot MS/MS ion search

program available at http://www.matrixscience.com.
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Statistical analysis. All experiments were performed on three

independent occasions. The results presented are given as the

mean±SE. A 2-tailed, 2-sample equal variance (homoscedastic)

Student’s t-test was performed and samples with a P value ¡0.05

were deemed significant.

RESULTS

Analysis of the effect of caspofungin on the
survival of G. mellonella infected with C. albicans
prior to administration of the drug

To establish the effectiveness of caspofungin in an insect
model, larvae of G. mellonella were inoculated with C.
albicans (56105 cells per insect). After 1 h, larvae were
injected with caspofungin (0.19, 0.095 or 0.0475 mg ml21;
20 ml) or PBS (20 ml) and incubated for up to 72 h at
30 uC. Larvae that were injected with the given concentra-
tions of caspofungin showed no ill-effects and there was no
decrease in survival over 72 h (data not presented). Fig. 1
illustrates the effect of caspofungin on the survival of G.
mellonella after inoculation with C. albicans. A statistically
significant increase in survival at all time points was
detected for 0.19 mg caspofungin ml21 treatment com-
pared to the control. The survival rate increased from
66.6±8.8 % in the control to 93.3±3.3 % after 24 h with
this concentration of caspofungin. After 72 h, survival in
the control larvae was 3.3±3.3 % compared to
56.6±12.0 % in larvae that had received caspofungin.
Smaller increases in survival were observed using 0.095 and
0.0475 mg caspofungin ml21.

Analysis of the effect of caspofungin on the
survival of G. mellonella infected with C. albicans
or S. aureus after administration of the drug

Larvae of G. mellonella were injected with PBS or
caspofungin, placed at 30 uC for 24 h and inoculated with
20 ml of either C. albicans (56105 cells) or S. aureus (a
culture with an OD600 value of 1 was diluted 1 in 4 in PBS).
Fig. 2(a) illustrates the effect of pre-injecting larvae with
caspofungin 24 h before inoculating with C. albicans. A
statistically significant increase in survival was observed
after 48 h with all concentrations of caspofungin compared
to the control. After 48 h, survival increased from
43.3±3.3 % in the control to 80±5.7 % in 0.019 mg
caspofungin ml21 injected larvae. A significant increase
in survival was also observed after 72 h when 0.19 and
0.0475 mg caspofungin ml21 was administered.

Although caspofungin is a well established antifungal
agent, we endeavoured to examine whether the immuno-
modulatory effect observed above was active against a
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Fig. 1. Effect of caspofungin on the survival of G. mellonella

inoculated with C. albicans. G. mellonella were inoculated with C.

albicans (5�105 cells per larva) and subsequently (1 h) injected
with PBS (20 ml) or caspofungin (20 ml; 0.19, 0.095 or 0.0475 mg
ml”1). Percentage survival was scored at 24, 48 and 72 h. The
asterisks indicate a P value ¡0.05 relative to the PBS-injected
control. Light grey bars, 24 h; dark grey bars, 48 h; white bars,
72 h.
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inoculated with S. aureus or C. albicans. (a) G. mellonella were
injected with caspofungin 24 h before injection with C. albicans

(5�105 cells per larva). Larvae were placed at 30 6C and survival
was monitored over 72 h. (b) G. mellonella were injected with
caspofungin 24 h before injection with 20 ml S. aureus (a culture
with an OD600 value of 1 was diluted 1 in 4 in PBS for use in the
inoculation). Larvae were placed at 30 6C and survival was
monitored over 72 h. The asterisks indicate a P value ¡0.05
relative to the PBS-injected control. Light grey bars, 24 h; dark
grey bars, 48 h; white bars, 72 h.
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bacterial infection. Fig. 2(b) illustrates the effect of pre-
injecting larvae with caspofungin 24 h before infecting with
S. aureus. It is evident that pre-injecting larvae with
caspofungin resulted in a significant increase in survival of
larvae compared to the control. For example, after 48 h
larval survival was 13.3±6.6 % in the control and
50±15.3 % when larvae were administered 0.095 mg
caspofungin ml21. Indeed, after 72 h, survival of larvae
increased from 3.3±3.3 % in the control to 26.6±13.3 %
in those larvae injected with the same concentration of
caspofungin. These data illustrate that pre-injecting larvae
with caspofungin provides protection to subsequent fungal
(C. albicans) or bacterial (S. aureus) infection, indicating
that survival is not due to the antifungal activity of
caspofungin alone.

Analysis of the effect of caspofungin on
haemocyte densities in G. mellonella

Administration of a foreign agent to an insect has the
potential to evoke an antimicrobial immune response
independent of whether the original agent has any inherent
antimicrobial properties (Bergin et al., 2006; Mowlds et al.,
2010). We investigated whether caspofungin altered the
haemocyte density since this is an indication of larval
susceptibility to infection (Bergin et al., 2003). Larvae were
injected with caspofungin (0.19, 0.095 and 0.0475 mg ml21)
or PBS, and after 4 and 24 h, haemocytes were extracted
and counted using a haemocytometer. The result (Fig. 3)
indicates that after 24 h incubation, caspofungin-treated
larvae demonstrated an increase in haemocyte density. The
haemocyte density was 1.7±0.16106 haemocytes (ml
haemolymph)21 in the control, 2.8±0.36106 haemocytes
(ml haemolymph)21 in larvae that had received a dose of
0.19 mg caspofungin ml21, 3.1±0.46106 haemocytes (ml
haemolymph)21 in larvae that received a dose of 0.095 mg
caspofungin ml21 and 2.8±0.56106 haemocytes (ml
haemolymph)21in larvae that received 0.0475 mg caspo-
fungin ml21. These results suggest that administration of
caspofungin to larvae induced an elevation in haemocyte
density, which could contribute to the overall antimicro-
bial activity within the haemolymph.

Analysis of the effect of caspofungin on the
expression of antimicrobial genes in G.
mellonella

It has been demonstrated previously that survival of larvae of
G. mellonella following inoculation with C. albicans is
mediated by an increase in the expression of AMP and
immune protein-encoding genes (Bergin et al., 2006). The
expression of the genes that encode transferrin (iron-binding
protein; Yoshiga et al., 1997), galiomicin (defensin; Lee et al.,
2004), IMPI (inducible metallo-proteinase inhibitor;
Clermont et al., 2004) and gallerimycin (cysteine-rich
antifungal peptide; Schuhmann et al., 2003) in G. mellonella
in response to caspofungin administration was investigated.
Expression of the IMPI -encoding gene increased to 206.1±

26.1 % relative to the control when 0.095 mg caspofungin ml21

was used (Fig. 4). In the case of the transferrin -encoding gene,
the greatest increase in expression was noted at a concentra-
tion of 0.19 mg caspofungin ml21, which gave a relative value
of 208.6±6.7 %. Smaller increases were observed at the other
concentrations of drug used (133.3±19.9 and 128.7±4.2 % at
0.095 and 0.0475 mg ml21, respectively). Expression of the
galiomicin-encoding gene showed small increases over the
different concentrations resulting in increases to 122.1±3.6,
130.4±10.4 and 119.0±16.0 % at 0.19, 0.095 and 0.0475 mg
caspofungin ml21, respectively. The gallerimycin-encoding
gene demonstrated the smallest alteration in expression
following exposure to the drug.

Assessment of the effect of caspofungin on the
expression of larval proteins

Larvae were injected with 0.019 mg caspofungin ml21 and
after 24 h, haemolymph protein was extracted and
resolved by 2D electrophoresis in order to determine
changes in the protein profile. Spots of interest were
excised from 2D gels (Fig. 5) and trypsin-digested prior to
identification by LC–MS (Table 1). A number of spots
showing homology to proteins with immune function or
involved in regulating metabolism were found to be
altered in expression. The 32 kDa ferritin subunit I and II
(spots 3 and 4) were shown to have increased by 2 and
1.6-fold, respectively, following caspofungin administra-
tion. Ferritin is important in iron binding, and storage
and maintaining cellular iron homeostasis, along with
playing a role in the immune response (Levy et al., 2004).
Recent research has demonstrated increased expression of
this protein in larvae in response to mercury (Choi et al.,
2006). Spot 6 showed homology to prophenoloxidase,
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which is a protein involved in melanin synthesis, a key
defence against pathogens (Kavanagh & Reeves, 2004).
Prophenoloxidase is found in the haemocyte as the
inactive form of phenoloxidase, which catalyses the
formation of melanin. Administration of caspofungin to
G. mellonella resulted in a 1.9-fold increase in expression.
Spot 8 showed homology to juvenile hormone binding
protein (JHBP), which is an important regulator of
growth, development and reproduction in insects. JHBP
carries juvenile hormone (JH) to the target tissues and
protects it from digestion by non-specific esterases
(Sanburg et al., 1975; Kramer & Childs, 1977). Here it
was shown that this protein was increased by 1.2-fold
upon caspofungin treatment of larvae. Spot 7 showed
homology to arginine kinase, which is a kinase involved in
the transfer of a phosphate from ATP, and the protein was
observed to have increased by 2.2-fold when larvae were
injected with caspofungin. These results demonstrate that
upon administration of caspofungin there is an increase in
the expression of some proteins with antimicrobial
functions or with metabolic activity.

DISCUSSION

Conventional assays to examine the virulence of various
microbial pathogens have traditionally relied upon the use
of vertebrate species. In recent years it has been demon-
strated that insects may be employed to evaluate the
virulence of fungi (Cotter et al., 2000; Reeves et al., 2004;
Lionakis & Kontoyiannis, 2005; Mylonakis et al., 2005),
bacteria (Mansfield et al., 2003) and parasites (Boulanger
et al., 2001), and may be employed for the in vivo screening
of antimicrobial drugs (Hamamoto et al., 2004, 2009;
Johny et al., 2007). The immune response of insects is
similar to the innate immune response of mammals
(Kavanagh & Reeves, 2004), and contains structural and
passive barriers, as well as cellular and humoral responses
mediated by haemocytes and the fat body within the
haemolymph. As a consequence of these similarities there is
a strong correlation between the virulence of various
pathogens when tested in insects and in mice (Brennan
et al., 2002; Jander et al., 2000).

Caspofungin demonstrates potent in vivo antifungal
activity (Petraitiene et al., 2002) and an excellent safety
profile with patients suffering few adverse effects (Maertens
et al., 2004; Walsh et al., 2004). In this work it was
demonstrated that injection of larvae with caspofungin
following inoculation with C. albicans resulted in statis-
tically significant increases in survival. Similarly, it was
demonstrated that injection of caspofungin before infect-
ing with a fungal or bacterial pathogen significantly
increases the survival rate. Interestingly, administration of
caspofungin can provide protection against both a fungal
(C. albicans) and a bacterial (S. aureus) infection indicating
that, in addition to the inherent antifungal activity of the
drug, caspofungin administration also induces a non-
specific antimicrobial response in larvae.

Haemocytes are similar to the phagocytes of mammals
(Bergin et al., 2005) and the majority circulate freely in the
haemolymph, but a significant number can be found
associated with internal organs such as the fat body,
trachea or digestive system (Ratcliffe, 1985). There are six
types of haemocytes, and some are involved in phagocy-
tosis and encapsulization, which are important in the insect
cellular defence against microbes (Tojo et al., 2000). The
administration of caspofungin to G. mellonella larvae
caused an increase in haemocyte density after 4 h and this
increase was also evident after 24 h, which may be due to
the release of haemocytes from the associated organs and/
or the proliferation of haemocytes. The ability of
caspofungin-treated larvae to survive a fungal or bacterial
infection could be due, in part, to the elevation in the
haemocyte density evident in such larvae.

G. mellonella can synthesize a number of AMPs that are
released into the haemolymph where they can attack
invading microbes (Kavanagh & Reeves, 2004). It was
observed that the expression of the gene encoding transferrin
was upregulated approximately twofold when larvae were
injected with 0.19 mg caspofungin ml21. Interestingly, the

1

*

*

In
c
re

a
s
e
 i
n
 e

xp
re

s
s
io

n
 (

%
)

*
* *

*

2 3 4

TRANS

GALIO

GALLER

IMPI

ACT1

409

bp(a)

(b)

535

359

175

400

200

150

100

50

250

PBS 0.19 0.095 0.0475

Caspofungin (μg ml-1)

Fig. 4. Relative expression of four genes involved in the immune
response of G. mellonella and a housekeeping gene. (a)
Visualization of PCR products on a 1 % (w/v) agarose gel. RT-
PCR was performed as described in Methods. Lane: 1, PBS; 2,
0.19 mg caspofungin ml”1; 3, 0.095 mg caspofungin ml”1; 4,
0.0475 mg caspofungin ml”1. (b) Densitometric quantification of
the PCR products normalized to the values of the ACT1 control.
The asterisks indicate a P value ¡0.05 relative to the PBS-
injected control. Light grey bars, IMPI-encoding gene; hatched
bars, transferrin-encoding gene; white bars, galiomicin-encoding
gene; black bars, gallerimycin-encoding gene.

Caspofungin efficacy in Galleria larvae

http://jmm.sgmjournals.org 193



kDa

pH 4(a) (b)pH 7 pH 4 pH 7

6

5

7

8

3

4

2

1

97.4

66.2

45

31

21.5

14.4

Fig. 5. 2D gels of G. mellonella haemolymph protein showing spots chosen for identification by LC–MS. (a) Haemolymph
protein separated from PBS-injected larvae. (b) Haemolymph protein separated from (0.19 mg ml”1) caspofungin-injected
larvae. Spots 1–8 were excised for identification by LC–MS. The gel images are representative images of experiments
performed in triplicate.

Table 1. G. mellonella protein spots identified by LC–MS plus fold changes in expression in response to caspofungin

Spots were removed, trypsin-digested and analysed by LC–MS as described in Methods. Images were analysed with Progenesis SameSpots software

to assess the fold change in expression.

Protein Spot

no.

Fold change upon

injection of 0.19 mg

caspofungin ml”1

(compared to

control)

Mascot score Coverage

(%)

UniProtKB

accession no.

Function

Apolipophorin III 1 – 459 44 P80703 Antimicrobial; antibiotic; induced by

bacterial infection; immune response;

transport of lipids

27 kDa

haemolymph

protein

2 +1.2 552 49 P83632 Secreted; signal; extracellular region

32 kDa ferritin

subunit I

3 +2 329 20 Q8WSA5 Ferric iron binding and transport;

oxidoreductase activity

32 kDa ferritin

subunit II

4 +1.6 314 20

Transferrin

precursor

5 21.2 609 21 Q6UQ29 Cellular iron ion homeostasis and

transport; extracellular region; ferric

iron binding

Prophenoloxidase

subunit II

6 +1.9 393 10 Q6UEH6 Transport; oxygen transporter activity;

oxidoreductase activity

Arginine kinase 7 +2.2 201 19 B3TG12 Transferase, kinase activity

JHBP 8 +1.2 182 20 Q8ITP4 JH regulates embryogenesis and

stimulates reproductive maturation in

the adult; JHBP protects JH molecules

from hydrolysis by non-specific

esterases
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protein transferrin precursor (spot 5 in Fig. 5) was observed
to have a fold change of 21.2 when larvae were injected with
caspofungin. A possible reason for this difference may be
due to the time at which the larvae were sampled after
administration of the drug (gene expression after 4 h,
protein analysis after 24 h). The levels of transferrin in G.
mellonella may initially rise upon caspofungin injection, but
may decrease after several hours. Expression of IMPI was
also increased approximately twofold following caspofungin
treatment (0.095 mg ml21). Smaller increases were observed
for galiomicin and gallerimycin following administration of
the agent. These results suggest that while caspofungin may
not induce the expression of a wide range of AMPs it may
activate a selected subset of proteins involved in the immune
response (i.e. transferrin and IMPI). This phenomenon has
been observed previously where physical stress induced the
expression of a selected number of AMPs in G. mellonella
(Mowlds et al., 2008). Analysis of the proteome of larvae that
had received caspofungin 24 h previously revealed the
increased expression of a number of peptides that show
homology to proteins that exhibit immune properties (e.g.
prophenoloxidase, ferritin), and those involved with growth
and development (arginine kinase, JHBP).

An increase in AMP or immune protein gene expression
and haemocyte density in G. mellonella following caspo-
fungin treatment may indicate a novel means of protection
against infection. It appears that not only can caspofungin
kill fungal cells in vivo, but also it may enhance the insect’s
natural defences against infection. The injection of non-self
material into the haemocoel of G. mellonella larvae can
prime the immune response against a subsequent microbial
challenge although the original material may have no
inherent antimicrobial properties (Bergin et al., 2006;
Mowlds et al., 2010). Administration of mercury to larvae
also resulted in an increase in the expression of ferritin,
which has a role in the insect’s immune response (Choi
et al., 2006). The ability of caspofungin to stimulate the larval
immune response is an added benefit in that it constitutes a
second line of attack against the invading pathogen.

While the utility of employing insects to assess the
virulence of microbial pathogens or examine the in vivo
properties of antimicrobial agents is now well established,
researchers should be aware that, in addition to the
inherent antimicrobial activity of the test agent, admin-
istration of the agent to larvae can trigger an increase in the
insect’s immune response. Controls to allow discrimina-
tion between the antimicrobial properties of a novel agent
and the alteration in the immune response of insects
induced by the agent should be included in all experiments
to ensure that the efficacy of the antimicrobial agent, rather
than its immune priming abilities, is measured.
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