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This paper investigates the application of Fresnel based numerical algorithms for the reconstruction of
Gabor in-line holograms. We focus on the two most widely used Fresnel approximation algorithms,
the direct method and the angular spectrum method. Both algorithms involve calculating a Fresnel inte-
gral, but they accomplish it in fundamentally different ways. The algorithms perform differently for dif-
ferent physical parameters such as distance, CCD pixel size, and so on. We investigate the constraints for
the algorithms when applied to in-line Gabor digital holographic microscopy. We show why the algo-
rithms fail in some instances and how to alter them in order to obtain useful images of the microscopic
specimen. We verify the altered algorithms using an optically captured digital hologram.
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1. Introduction

Holography [1,2] is an imaging technique made up of two parts,
recording and reconstruction. The first part of the imaging system
involves the recording of an interference pattern from an object
beam and a reference beam. The second part involves reconstruct-
ing the object wavefront from this recording. Digital holography
differs from conventional holography in that a digital camera
(CCD/CMOS) is used in place of photographic film or holographic
plates. Reconstruction of the hologram is then performed numeri-
cally on a computer [3,4]. The concept of digital holography
emerged in the 1960s, as reviewed in Ref. [5]. Numerical recon-
struction techniques for optically recorded holograms had been ap-
plied by then [6], however, it is only in the past decade that it is has
become feasible to record holograms digitally and use them prac-
tically [7]. This advance was facilitated by the availability of digital
cameras with high spatial resolution and high dynamic range. The
output of a numerical reconstruction is, in general, a complex two-
dimensional representation of the wavefront at a single distance
from the camera plane, and so we refer to the digital capture com-
bined with numerical reconstruction as an imaging system.

The novel microscopic principle originally proposed by Gabor
[1] is the simplest realisation of holography and has been coined
digital in-line holographic microscopy (DIHM) [8]. This simple
ll rights reserved.
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set up requires only a narrowband light source, a pinhole, an ob-
ject to be imaged, and an intensity recording area sensor. It is this
optical recording set up that we concern ourselves with in this pa-
per. An assumption made when using this set up is that the object
wave is weak with respect to the reference wave, which is an
accurate approximation in the case of partially transparent objects
[8] or small opaque objects sparsly distributed in the field of view
[9]. This limits applicability of DIHM as described in Chapter 9 of
[10].

In our analysis of DIHM we consider (i) the diverging spherical
wave that illuminates our object, (ii) our spherical reference
wave, (iii) DC terms and finally (iv) the twin image. (i) In our
DIHM setup we use a microscopic object and a pinhole to spatial
filter the illuminating wavefield. We model the field that emerges
from our pinhole as a coherent point source that diverges and
fully illuminates our object. (ii) The presence of a chirp function
due to the diverging spherical reference wave, which would have
a complex amplitude of 1 for a plane wave, influences the phase
results that can be reconstructed from a hologram. In this paper,
different methods for dealing with this chirp function are ex-
plored. The presence of a spherical wave reference beam means
that the hologram has a convergent quadratic phase present be-
fore we try to reconstruct. (iii) A disadvantage of DIHM is the
overlapping of the two dc terms and the twin image term during
reconstruction [11]. The reference wave intensity can be captured
in isolation in the absence of the object. This image can be sub-
tracted from the hologram to achieve a contrast hologram
[8,12–14] and thus approximates the removal of the dc term
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Fig. 1. The Gabor set up with a diverging spherical beam: signal rðx; zÞ emerging
from a pin hole illuminates an object gðxÞ at a distance d1. Immediately behind this
plane the object wave is oðx; d1Þ ¼ f ðxÞrðx; d1Þ. The interference pattern, Hðx0Þ,
between the propagated reference wave Rðx0Þ and the propagated object wave Oðx0 Þ
is sensed at a distance d2. This capture is the input to the numerical reconstruction
part of the imaging system described in the text.
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[8]. (iv) The effect of the twin image on each pixel in the recon-
structed intensity is assumed to be small due to the geometry of
the system [8]. The two twin images can be found equally sepa-
rated on either side of the hologram plane. When we take into ac-
count the hologram’s convergence to one object we can conclude
that its twin will undergo an equally dramatic divergence. There-
fore the signal produced by the twin is spread out and smeared
over the reconstructed object intensity as a small background sig-
nal [8]. As we shall see these conditions appear to be satisfied for
the experimental results that we present later.

The second stage of holography is reconstruction and it is this
stage that is the primary focus of this paper. Digital reconstruction
is possible on a computer by numerically calculating a diffraction
integral that describes the diffraction in free space from the re-
corded hologram [11]. In our Gabor set up, which is a lensless sys-
tem, the diffraction of the illuminated object can be characterised
by a Fresnel integral [15], i.e. only small angles of diffraction are in-
volved. The sampling conditions for the Fresnel integral have been
formalised [16–19] and numerical approximations of the Fresnel
transform (FST) have been applied successfully for digital holo-
gram reconstruction [18,20,21]. Efficient algorithms for calculating
free space Fresnel diffraction patterns have been developed [17]
and investigated for a converging wave case [22]. These two com-
monly used algorithms can be described as (i) a direct discretisa-
tion of the Fresnel kernel which employs one discrete Fourier
transform (DFT) and (ii) the angular spectrum (spectral) method
describing the FST as a convolution, usually employing two DFTs.
Much work has been carried out understanding and improving
these two algorithms. Currently, neither of these well known algo-
rithms are used to reconstruct the complex wavefront at the object
plane from a hologram captured specifically via a DIHM set up. The
typical DIHM reconstruction approach is to apply a numerical
approximation of the Kirchoff–Helmholtz transform bound by
the recording aperture [8,23]. In this paper, we investigate the
appropriateness of the direct method and the angular spectrum
method for the DIHM imaging system by considering the achieved
output field of view. We find that the presence of spherical waves
that are inherent in DIHM in the planes of the object and the
recording CCD complicate the applicability of these algorithms
and necessitate the development of a new algorithm, based on
the angular spectrum method, with a more suitable output field
of view. This is the focus of our paper.

The outline of the paper is as follows. In Section 2 we review the
optical set up for in-line Gabor digital holography. In Section 3 we
review the two most commonly used methods for the simulation
of free space propagation as described by the FST: the direct and
angular spectrum methods. These can be used to reconstruct Fres-
nel digital holograms. Then we investigate straightforward appli-
cation of the direct and angular spectrum methods to reconstruct
the Gabor digital holograms. The analysis appears to show that
problems exist for the angular spectrum algorithm; the output im-
age range is far too great to view a microscopic specimen. By a sim-
ple mathematical manipulation we show how to overcome this
problem. In Section 4 we show the result using an optically cap-
tured digital hologram. Finally, the main conclusions are drawn
in Section 5.

2. Recording an in-line Gabor digital hologram

A typical physical set up for Gabor holography is shown in
Fig. 1. For simplicity, we consider the one-dimensional case only.
A spherical beam emerges from a pinhole with a wavelength k.
After propagating a distance d1 this diverging spherical field,
rðx; d1Þ; called the reference field, where

rðx; zÞ ¼ exp½ðipx2Þ=ðkzÞ�; ð1Þ
is incident upon a highly transmissive scene [5],

gðxÞ ¼ jgðxÞj exp½i/ðxÞ�: ð2Þ

Note that for notational simplicity we do not include a 1=
ffiffiffiffiffiffi
ikz
p

in Eq.
(1). We approximate the wavefield immediately after the object by
following the analysis in Section 8.1.2 of [10]. To employ this anal-
ysis we introduce two assumptions. We first assume that the ampli-
tude function, jgðxÞj, is approximately constant and we replace it
with a constant value, C. Secondly we assume that the /ðxÞ function
does not vary significantly from 2p. Using these assumptions we
expand Eq. (2) with a binomial expansion to give

gðxÞ � C½1þ i/ðxÞ þ . . .�: ð3Þ

The field immediately after the object illuminated by rðx; d1Þmay be
described as

tðx; d1Þ ¼ rðx; d1ÞgðxÞ � C½rðx; d1Þ þ oðx; d1Þ�; ð4Þ

where oðx; d1Þ ¼ rðx; d1Þf ðxÞ and f ðxÞ ¼ i/ðxÞ. Setting C ¼ 1 for sim-
plicity, Eq. (4) becomes

tðx; d1Þ � rðx; d1Þ þ oðx; d1Þ: ð5Þ

Fz is the FST operator, applied to aðxÞ with a coordinate system x0,
that is defined in Chapter 4 of [10] as

Fz½aðxÞ� ¼ 1=
ffiffiffiffiffiffi
ikz
p Z þ1

�1
aðxÞ expf½ipðx� x0Þ2�=ðkzÞgdx: ð6Þ

Using this to propagate tðx; d1Þ to the camera plane gives

Tðx0Þ ¼ Fd2
½tðx; d1Þ� ¼ Fd2

½rðx; d1Þ� þ Fd2
½oðx; d1Þ�: ð7Þ

The intensity of the wave field that is incident on the CCD is our
hologram Hðx0Þ :

Hðx0Þ ¼ jTðx0Þj2 ¼ jRðx0Þ þ Oðx0Þj2; ð8Þ

where

Rðx0Þ ¼ rðx; d1 þ d2Þ; ð9aÞ

and

Oðx0Þ ¼ Fd2 ½oðx; d1Þ�ðx0Þ: ð9bÞ

Expanding Eq. (8) gives an expression with four terms [7]

Hðx0Þ ¼ jOðx0Þj2 þ jRðx0Þj2 þ Oðx0ÞR�ðx0Þ þ Rðx0ÞO�ðx0Þ: ð10Þ

In line with the analysis presented in Section 9.3, Gabor holography,
of [10] we assume that jOðx0Þj � Rðx0Þ and so the Rðx0Þ term domi-
nates Eq. (10). Only the jOðx0Þj2 term in Eq. (10) has no Rðx0Þ part
and is, therefore, considered negligible [8]. We drop this term for
the remainder of the manuscript.
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If Rðx0Þ is an ideal spherical wave then jRðx0Þj2 will simply be a
constant value and can be removed using numerical techniques
[24]. Alternatively jRðx0Þj2 can be recorded separately and removed
by subtraction which is the approach that we employ. Although
the reference spherical wave is modulated by the object, an ideal
reference wave at the CCD plane has been assumed during the
numerical reconstruction process and a contrast hologram has
been achieved [8,12–14]. We note that the reference beam will
be modulated by the object, and our assumptions employed by
Eqs. (3)–(5) may contribute to error in our reconstructed image
after numerical reconstruction. To the best of our knowledge this
error has not been considered in previous publications on DIHM
[8,12–14]. It is widely assumed that the object wave is weak with
respect to the reference wave which is an accurate approximation
in the case of highly transmissive objects [10], or opaque objects
that are small with respect to the area being imaged [1,8], in order
for this approximation to be valid.

Once the two dc terms, jOðx0Þj2 and jRðx0Þj2, have been omitted,
the two twin image terms remain. As discussed in the introduction
we assume that the twin image term is so spread out by the diverg-
ing wave that it can be considered insignificant [8]. Only one of the
twin images is of interest so we let

eHðx0Þ ¼ Oðx0ÞR�ðx0Þ; ð11Þ

for this analysis.
In this section we have provided a mathematical description of

the recording process. However this in itself does not constitute an
imaging system. Rather it should be considered as one half of an
imaging system. As depicted in Fig. 1, we now implement the sec-
ond half of the imaging system by processing eHðx0Þ using numeri-
cal algorithms. In the next section we examine two numerical
algorithms that accomplish this, using the direct method [17]
and the angular spectrum method [25,26]. We note that, in effect,
we are examining different imaging systems. Both of them have
the same first half but different second halves. This assertion be-
comes clear when we view the numerical reconstruction proce-
dure as an optical system, as illustrated in the figures that follow.
3. Reconstructing an in-line Gabor digital hologram

In the previous section we reviewed the first part of a Gabor in-
line holography imaging process: the process of recording an in-
line hologram. In this section, we introduce numerical reconstruc-
tion algorithms that complete the imaging system. We begin by
reviewing a matrix based method for understanding and decom-
posing algorithms to simulate optical systems including free space
propagation as described by the paraxial approximation.

3.1. A matrix description for understanding algorithms

Numerical reconstruction of a hologram generally requires the
evaluation of an interference pattern using discrete mathematics.
DFTs can be used to efficiently calculate an FST. Two methods for
this type of evaluation are considered here, the direct method
and the angular spectrum method. In Ref. [27] it was shown that
the direct and angular spectrum methods are completely equiva-
lent provided appropriate interpolation of the signal is performed
at different stages in the algorithms. All optical systems, including
free space propagation as described by the FST, can be represented
by an ABCD ray transfer matrix and a framework is provided in Ref.
[27] for this type of analysis. Using this framework, a matrix can be
decomposed into a product of other matrices that have well under-
stood numerical algorithms associated with them. By implement-
ing these algorithms in the correct sequence of the
decomposition one arrives at an overall algorithm that simulates
the original system. Take for example free space propagation as de-
scribed by the FST: one can derive both the direct and angular
spectrum methods in a very convenient manner using this ap-
proach. Since this framework is used for the computation pre-
sented in this paper which is independent of [27], we must
familiarise ourselves with the following matrix operations:

1 kz

0 1

� �
; ð12aÞ

S 0
0 1=S

� �
; ð12bÞ

0 1
�1 0

� �
; and ð12cÞ

1 0
1=ð�kf Þ 1

� �
: ð12dÞ

These four matrices represent the ABCD ray transfer matrices for (i)
FST, (ii) a magnification system (scaling), (iii) a Fourier transform
and (iv) a lens where k is the wavelength, z is the propagation dis-
tance, S is a scaling factor and f is the focal length of the lens [28].
The latter three matrices are well defined [27]. These operations
are used throughout this paper.

We refer the reader to Refs. [19,27,29] for a graphical interpre-
tation of these effects based on the Wigner distribution function.
We note that the latter three matrices in Eq. (12) have well defined
numerical algorithms associated with them, see Section 5 of [27].
The scaling matrix, Eq. (12b), means that we redefine the sampling
interval in our algorithm. The Fourier transform matrix, Eq. (12c),
means that we implement a DFT algorithm on our samples. The
chirp matrix for a positive lens exp½ð�ipx2Þ=ðkf Þ�, Eq. (12d), means
that we multiply the samples by a discrete chirp function (f is re-
placed by �f for a negative or concave lens). If it is possible to
decompose our Fresnel matrix, Eq. (12a), into a product of these
matrices, Eqs. (12b)–(12d), then we can calculate the FST using
an ordered sequence of these well defined numerical processes.
The reader should consult Section 5 in Ref. [27] for a complete
description on how to numerically implement each matrix and
how to track changes to the sampling rate by analysing the space
bandwidth product after each matrix operation.

3.2. A brief review of the direct and angular spectrum methods for
simulating the FST

The direct method can be represented using the following ma-
trix decomposition

1 kz

0 1

� �
¼

1 0
1=ðkzÞ 1

� �
�

kz 0
0 1=ðkzÞ

� �
�

0 1
�1 0

� �
�

1 0
1=ðkzÞ 1

� �
:

ð13Þ

Thus the direct method corresponds to four numerical processes.
On the right hand side of Eq. (13), from right to left: we first multi-
ply our sampled signal by a discrete chirp function. Then we imple-
ment a DFT. This is followed by a scaling operation which is, in turn,
followed by multiplying the resultant output samples by a second
discrete chirp function. Appropriate sampling rates to ensure repli-
cas do not overlap with each other can be found using the approach
in Ref. [27]. Another possible method for numerically evaluating Eq.
(6) is the angular spectrum method. This method comes from the
following decomposition

1 kz
0 1

� �
¼

0 �1
1 0

� �
�

1 0
�kz 1

� �
�

0 1
�1 0

� �
: ð14Þ

The angular spectrum method corresponds to three numerical pro-
cesses. For the expression right of the equals sign, moving from
right to left: we implement a DFT, multiply by a chirp function
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and then implement an inverse DFT. Both of these descriptions omit
the constant phase term in Eq. (6), 1=

ffiffiffiffiffiffi
ikz
p

, which we apply as a final
step in both of these methods.

It is well known that the direct method produces a scaled out-
put distribution, whereas the angular spectrum method has a con-
stant output field of view [17,22,26]. Accordingly the direct
method is more applicable for a diffraction field further from the
diffraction plane, and the angular spectrum method is applicable
for short distances [10,30]. In what follows we define the resulting
output window width for each of the algorithms given the system
parameters d1; d2; k; N and dx where d1 and d2 are shown in
Fig. 1, k is the wavelength of the light, N is the number of pixels
across the width of the CCD and dx is the distance between the cen-
ters of adjacent pixels of the CCD. We then use this criteria alone
for determining which algorithm is suitable rather than perform-
ing a time consuming interpolation step.

Of particular importance in the present discussion is the rela-
tionship between input and output window width for both the di-
rect and angular spectrum methods. The output window width,
Dout , with respect to the input window width, Dx, depends on the
method used to evaluate the Fresnel integral. The direct method,
Eq. (13), evaluates Eq. (6) discretely by sampling the integral. The
Fourier transform part of the Fresnel integral can be made to re-
duce to a discrete Fourier transform by imposing the following
relation [17]

DxDout ¼ kzN: ð15Þ

Dout widens as z increases. For the angular spectrum method, Eq.
(14), the DFT and DFT�1 mean that the input and output distribu-
tions are identical [17]:

Dx ¼ Dout: ð16Þ
Fig. 2. Schematic of AD approach. This optical system is simulated, with eHðx0Þ as
input, in order to get to the image plane of the system in Fig. 1.
3.3. A matrix description of the recording set up

Now that we have established the two main numerical tech-
niques for simulating Fresnel transformation we focus on finding
a matrix description for the recording set up and its corresponding
inverse. The idea here is that we will be able to describe the record-
ing system matrix as a product (or decomposition) of the matrices
associated with the numerical algorithms that we have at our dis-
posal, e.g. the Fresnel matrix is associated with the two algorithms
we have just discussed. Thus we will develop algorithms that can
undo the recording process and bring us back to the object plane.
This is of course our image plane. Our goal is to calculate the field
f ðxÞ from eHðx0Þ. The matrix, Mp, describing the relationship be-
tween f ðxÞ and eHðx0Þ can be derived by looking at Fig. 1 and is de-
fined as

Mp ¼
1 0

�1=½kðd1 þ d2Þ� 1

� �
�

1 kd2

0 1

� �
�

1 0
1=ðkd1Þ 1

� �
: ð17Þ

The rightmost matrix represents the illuminating chirp, the middle
one represents the FST using a distance d2, and the remaining
matrix represents the reference beam chirp that multiplies by the
object wave field at the CCD. Our goal therefore is to find a
decomposition of the inverse of this matrix, M�1

p where M�1
p �

Mp ¼
1 0
0 1

� �
such that the Gabor set up followed by our algorithm

forms a one to one imaging system. This decomposition will be in
terms of the four matrices already defined above in Eq. (12a). This
time we can say that the Fresnel matrix has a well defined algo-
rithm associated with it since we have just shown how to derive
two in this section.

In the following subsections 3.4 and 3.5 we derive two decom-
positions of M�1

p that employ the Fresnel matrix, the lens matrix
and the scaling matrix. The first of the two approaches calculates
f ðxÞ using the actual distance d2 for FST evaluation. The second ap-
proach calculates f ðxÞ using a virtual distance that is related to the
physical distance, d2, by a scaling factor,

S ¼ ðd1 þ d2Þ=d1; ð18Þ

for evaluating the FST.
The necessity for more than one algorithm to reconstruct the

image can be explained as follows. The first approach is essentially
a direct inverse of the system. We undo the reference chirp by mul-
tiplying by the conjugate chirp. Then we propagate back to the ob-
ject plane using one of our two Fresnel algorithms, and finally we
undo the illuminating chirp by multiplying by its conjugate. This
somewhat obvious and straightforward method works well when
the direct method is used as the algorithm to calculate the Fresnel
part. However, the angular spectrum method fails when it is used
because the output size is too wide. From the above discussions we
know the output range of the angular spectrum method will be
equal to the input range, i.e. the physical CCD size which is usually
in the order of 10 mm. This is an impractical output image size if
our microscopic object is of the order of 0.1 mm. Thus, we need a
second approach based on a different matrix decomposition of
our system that leads to a new algorithm that does not have this
problem. In the following two subsections we discuss these ideas
in more detail.
3.4. The straightforward matrix decomposition: actual distance (AD)
approach

In this approach we implement M�1
p by simply implementing

the inverse of each of three matrices in Eq. (17) one by one. Thus,
the first step required in order to reconstruct f ðxÞ from eHðx0Þ is to
remove the chirp function R�ðx0Þ. We achieve this numerically by
multiplying eHðx0Þ by Rðx0Þ ¼ expfðipx02Þ=½kðd1 þ d2Þ�g to give Oðx0Þ.
So now the task remains to reconstruct f ðxÞ from Oðx0Þ.

Recovering oðx; d1Þ from Oðx0Þ can be performed as per Eq. (9b)
using either the direct method or the angular spectrum method
with a distance of �d2. f ðxÞ is then recovered from oðx; d1Þ by
removing the additional chirp term, i.e. multiplying oðx; d1Þ by
r�ðx; d1Þ to obtain the final image, f ðxÞ. A schematic of this process
is shown in Fig. 2.

This approach can described through the following
decomposition

M�1
p ¼

1 0
�1=ðkd1Þ 1

� �
�

1 �kd2

0 1

� �
�

1 0
1=½kðd1 þ d2Þ� 1

� �
:

ð19Þ

The matrices, from right to left, represent: multiplication by the
conjugate of chirp ðd1 þ d2Þ, FST ð�d2Þ which is achieved by either
the direct method or the angular spectrum method, and multiplica-
tion by conjugate of chirp ð�d1Þ. So for the AD approach, the dis-
tance used for the FST is the actual distance, d2.
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In a previous section we discussed how the output window
width, Dout , to the FST is different for the direct method and
the angular spectrum method as shown in Eqs. (15) and (16),
respectively. The resulting window size at the output of a given
reconstruction algorithm depends on the input window width
and the method used to approximate the FST. In our case, where
we are reconstructing an in-line Gabor hologram, the input win-
dow width will be given by Dx ¼ DCCD, i.e. the physical width of
the CCD. The AD output window widths are straightforward to
calculate as the actual distance d2 is substituted for z in Dout

for the output window width using the direct method. The out-
put window width for the angular spectrum method is simply
the input window width and no scaling needs to be considered
for either method.

In order to fully understand the importance of the output
window widths we now illustrate the output widths from the
AD approach for different values of z ¼ d2. We take a value for
the camera width DCCD ¼ 12 mm, with a number of pixels
N ¼ 2008, and the wavelength of the illuminating light to be
k ¼ 405� 10�6 mm. These values are the actual values of the
physical parameters in the results section that follows. In
Fig. 3 we show the output widths for the AD method when
the direct and angular spectrum methods are employed. The
window width is plotted against an increasing d2 for a fixed
d1 ¼ 1:2 mm. In these graphs it can be seen that the output win-
dow width is constant for the angular spectrum method, but
that it expands from zero for the direct method as d2 increases.
In general, our object will be quite small and will be placed a
short distance from the camera. In Fig. 3 we illustrate this point
by showing a small object window 7 mm at a distance from the
camera equal to d2 ¼ 12 mm. This is consistent with the micro-
scopic specimen imaged in the results section of this paper. It
is clear that the output window width for the angular spectrum
case is far too large, i.e. our object will appear very small in our
image. This necessitates the need for a new approach if the
angular spectrum method is to be used for practical in-line Ga-
bor digital hologram reconstructions.
Fig. 3. For the AD approach, given a fixed d1 ¼ 1:2 mm, this figure shows the
change in output window size (field of view) of reconstructions obtained by the
direct method and the angular spectrum method for different values of d2. The
window width of the CCD, DCCD, is 12.7 mm, which is the output window width for
the angular spectrum method irrespective of d2. The output window width of the
direct method at the object plane, d2 ¼ 12 mm, is 7 mm and the object can be
observed. The field of view observed by the angular spectrum method is very large
compared to the size of small object. This requires one to rescale or zoom to view
the object comfortably, and is wasteful of computer memory if applied to the whole
field of view. However, the direct method achieves a small enough field of view to
see our object. We observe a common output window width for the two methods
when d2 ¼ 198:3 mm.
3.5. The second matrix decomposition: scaled down distance (SDD)
approach

As in the AD approach, f ðxÞ is calculated from eHðx0Þ. Again, the
chirp function R�ðx0Þ is removed by multiplying eHðx0ÞRðx0Þ which
leaves Oðx0Þ: f ðxÞ is reconstructed from Oðx0Þ using the numerical
process shown in Fig. 4. This time oðx; d1Þ is not recovered directly
from Oðx0Þ as the chirp function is removed prior to the FST and so
the input to the FST is scaled by 1=S, where S is defined in Eq. (18),

F�d2=S½f ðxÞ�ðx0=SÞ: ð20Þ

For the SDD approach the distance used to evaluate the FST is the
actual distance, d2, divided by S. Removal of the two chirp functions
cancel each other and so they are not shown in the subsequent dis-
cussion. A detailed derivation of this result is provided in Appendix
A using wave equations.

A matrix decomposition of this approach is given by

M�1
p ¼

1 ð�kd2Þ=S

0 1

� �
�

1=S 0
0 S

� �
: ð21Þ

From right to left these matrices represent: scale ð1=SÞ, and FST
ð�d2=SÞ.

For the SDD approach, the input window size is scaled by 1=S.
For the direct method d2=S is substituted for z in Dout which can-
cels out the scaling factor. In fact, it is for this reason that the SDD
approach using the direct method is exactly the same as the AD
method using the direct method. For the angular spectrum meth-
od the scaled input window width is the output window width.
The output window widths for the SDD approach are calculated
by multiplying by the scaling factor on the system, 1=S, for both
methods and replacing z in equation Dout with d2S for the direct
method.

Now we illustrate the output widths from the SDD approach for
different values of z ¼ d2. Once again we take a value for the cam-
era width DCCD ¼ 12:7 mm, with a number of pixels N ¼ 2008, and
the wavelength of the illuminating light to be k ¼ 405� 10�6 mm.
We take d1 ¼ 0:12 mm and d2 ¼ 12 mm. These values are the ac-
tual values of the physical parameters in the results section that
follows. In Fig. 5 we show the output widths for the SDD method
when the direct and angular spectrum methods are employed for
a small object window, 0.7 mm, at a distance, d2 ¼ 12 mm, from
the camera.

It is clear that the output window width for the angular spec-
trum case is now a suitable size for viewing the object.
4. Results

An example hologram, see Fig. 6, of a real world object captured
using a Gabor digital holographic microscope set up, is used to
illustrate the performance of each system. The object is a slice
through the head of a drosophila melanogaster, commonly known
Fig. 4. Schematic of SDD approach. This optical system is simulated, with eHðx0Þ as
input, in order to get to the image plane of the system in Fig. 1.



Fig. 5. For the SDD approach, given a fixed d1 ¼ 1:2 mm, this figure shows the
change in output window size of reconstructions obtained by the direct method and
the angular spectrum method for different values of d2. The output window size
achieved by the angular spectrum method is DCCD=S ¼ 1:2 mm, for all values of d2,
which is now sufficiently small to view comfortably our rescaled small object,
which was too small in the field of view using this method and the AD approach. An
output window width of 0.7 mm is achieved by the direct method which is scaled
down with respect to the AD approach. However the same scale function applied to
the reconstruction distance when using the SDD approach cancels out this observed
effect and the same view of our small object can be achieved by both the AD and
SDD approach.
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Fig. 6. Optically captured hologram of a drosophila melanogaster head, minus the
intensity image of the reference beam jRðx0Þj2 when no object was present in the
optical path, courtesy of Prof. H. Juergen Kreuzer and his collaborators.

Fig. 7. Reconstruction results for the AD approach: (A) intensity image from the
direct method, and (B) intensity image from the angular spectrum method. The
output window width for each result is shown. We can see in (A) that the AD
approach using the direct method is suitable for viewing our object. However, in (B)
it is clear that the field of view, 12.7 mm, is too large to comfortably view our small
object using the AD approach and the angular spectrum method. In fact multiple
small copies of our object can be observed in this case.

Fig. 8. Reconstruction results for the SDD approach: (A) intensity image from the
direct method, and (B) intensity image from the angular spectrum method. The
output window width for each result is shown. These results show that the SDD
approach provides a suitable output window width for viewing our small object
with either the direct method or the angular spectrum method.
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as a fruit fly. The associated parameters are given in the previous
section. The reference image jRðx0Þj2 has been subtracted, thus
the hologram can be described as jOðx0Þ2j þ Oðx0ÞR�ðx0Þ þ O�ðx0Þ
Rðx0Þ. As previously stated, jOðx0Þj2 is ignored as it is such a weak
term, and the spread out twin image, O�ðx0ÞRðx0Þ, can also be con-
sidered negligible. We thus assume that our hologram can be de-
scribed simply as eHðx0Þ ¼ Oðx0ÞR�ðx0Þ. The verification for the two
methods are given in Figs. 7 and 8.

5. Conclusion

Numerical algorithms for the reconstruction of Gabor in-line
holograms using Fresnel integral calculation have been presented.
The direct method and the angular spectrum method were used to
evaluate Fresnel diffraction patterns for the DIHM system consid-
ered. Imaged objects are magnified by the scaling factor of the
imaging system which is the distance of the light source to the
imaging device divided by the distance from the light source to
the sample. Therefore microscopic objects are often placed close
to the light source.

Two approaches for numerically reconstructing holograms in
this configuration have been investigated here. The first, the AD ap-
proach, is a direct numerical inverse of the physical recording sys-
tem. This approach uses the physical distance from the object to
the imaging device as an input parameter for the Fresnel integral
evaluation. It was shown that this approach is applicable using
the direct method but that using the angular spectrum method
with this approach is impractical due to the output image size.
Therefore a second and new approach was developed, the SDD ap-
proach. This new approach is also an inverse of the physical imag-
ing system. However the process is not reversed, rather the order
of implementation is manipulated. A scaled distance, the physical
distance from the object to the imaging device scaled down by
the scaling factor of the imaging system, is used as the input
parameter for the Fresnel integral evaluation. This parameter re-
sults in the input window width being scaled by the same factor.
For the direct method this scaled window size cancels out with
the scaled distance and so an identical result to the previous ap-
proach is obtained. The scaled input window width for the angular
spectrum method renders the output window width suitable for
viewing the object.

These two approaches combined with the same physical Gabor
set up comprises two separate DIHM imaging systems. The direct
method for Fresnel integral evaluation is suitable for use with
either imaging system. The angular spectrum method, however,
is only applicable for the SDD approach.
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Appendix A

A full mathematical description of the SDD approach using
wave theory is presented here.

Rðx0Þ � eHðx0Þ ¼ Oðx0Þ ðA:1Þ

Oðx0Þ ¼ Fd2ff ðxÞ exp½ðipx2Þ=ðkd1Þ�gðx0Þ ðA:2Þ

Oðx0Þ ¼ exp ðipx02Þ=ðkd2Þ
� � Z þ1

�1
ff ðxÞ exp ðipx2Þ=ðkd1Þ

� �
g

� exp ðipx2Þ=ðkd2Þ
� �

exp ð�i2pxx0Þ=ðkd2Þ½ �dx ðA:3Þ

Oðx0Þ ¼ exp ðipx02Þ=ðkd2Þ
� � Z þ1

�1
f ðxÞ

� exp ðipx2SÞ=ðkd2Þ
� �

exp ð�i2pxx0Þ=ðkd2Þ½ �dx ðA:4Þ

where S ¼ ðd1 þ d2Þ=d1 as before.

Oðx0Þ ¼ exp ðipx02Þ=ðkd2Þ
� � Z þ1

�1
f ðxÞ

� exp ðipx2SÞ=ðkd2Þ
� �

expf ð�i2pxx0SÞ=ðkd2Þ½ �ð1=SÞgdx

ðA:5Þ

Oðx0Þ ¼ exp ðipx02Þ=ðkd2Þ
� �

expf ð�ipx02SÞ=ðkd2Þ
� �

ðSÞg

� expf ðipx02SÞ=ðkd2Þ
� �

ðSÞg
Z þ1

�1
f ðxÞ

� exp ðipx2SÞ=ðkd2Þ
� �

expf ð�i2pxx0SÞ=ðkd2Þ½ �ð1=SÞgdx

ðA:6Þ

Oðx0Þ ¼ expfðipx02Þ=ðkÞ½1=d2 � S=ðd2SÞ�g

� expf ðipx02SÞ=ðkd2Þ
� �

ðSÞg
Z þ1

�1
f ðxÞ

� exp ðipx2SÞ=ðkd2Þ
� �

expf ð�i2pxx0SÞ=ðkd2Þ½ �ð1=SÞgdx

ðA:7Þ
Oðx0Þ ¼ expð0Þ expf ðipx02SÞ=ðkd2Þ
� �

ðSÞg
Z þ1

�1
f ðxÞ

� exp ðipx2SÞ=ðkd2Þ
� �

expf ð�i2pxx0SÞ=ðkd2Þ½ �ð1=SÞgdx

ðA:8Þ

Oðx0Þ ¼ Fd2=S½f ðxÞ�ðx0=SÞ ðA:9Þ

f ðxÞ ¼ F�d2=S½Oðx0ÞðS=x0Þ� ðA:10Þ
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